
A NOTE ON EFFECTIVE DESCENT FOR OVERCONVERGENT ISOCRYSTALS

CHRISTOPHER LAZDA

ABSTRACT. In this short note we prove that proper surjective and faithfully flat maps are morphisms of ef-
fective descent for overconvergent isocrystals. We deduce that for an arbitrary variety over a perfect field of
characteristic p, the Frobenius pull-back functor is an equivalence on the overconvergent category.
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INTRODUCTION

Let k be a perfect field of characteristic p > 0. One of the major problems in arithmetic geometry over
the last 50 years or so has been that of describing a ‘good’ category of coefficients for p-adic cohomology
of varieties over k, with behaviour mirroring that of the category of `-adic étale sheaves for ` 6= p. The first
attempt at doing so was the category of crystals on a variety introduced by Berthelot in his thesis, following
an idea of Grothendieck. However, this category fails one of the basic requirements that one expects of
such a ‘good’ category of coefficients, namely topological invariance. This manifests itself in the fact that
the Frobenius pull-back functor

F∗ : Crys(X/W )Q→ Crys(X/W )Q

on isocrystals is not necessarily an equivalence of categories, even if X is smooth and proper. This problem
was rectified by the introduction of the category of convergent isocrystals in [Ogu84], which turns out
to be the largest full sub-category of Crys(X/W )Q on which F∗ is an equivalence. This characterisation is
deduced from the fact that the category of convergent isocrystals satsfies descent under proper and surjective
morphisms of varieties, which in turn implies the required topological invariance.

When X is not proper, Berthelot introduced in [Ber96] a refinement of the category of convergent isocrys-
tals on X , by considering ‘overconvergence conditions’ (on both objects and morphisms) along the boundary
of some compactification X ↪→ X . A natural question then arises of whether or not this category of over-
convergent isocrystals satisfies proper descent, and is thus a topological invariant. This is what we prove in
this note.
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Theorem (4.1). Let f : X → Z be a proper surjective (or faithfully flat) morphism of varieties over k. Then
f is a morphism of effective descent for overconvergent isocrystals.

Note that the ‘full faithfulness’ part of descent follows from the more general results on cohomological
descent proved in [Tsu03, ZB14], the question is really one of effectivity of descent data. In the expected
manner, one can then use this theorem to obtain invariance of Isoc†(X/K) under universal homeomor-
phisms, and in particular the following.

Corollary (5.2). Let X be a variety over k. Then the Frobenius pull-back functor

F∗ : Isoc†(X/K)→ Isoc†(X/K)

is an equivalence of categories.

For smooth varieties with good compactifications, this follows from Berthelot’s theorem on Frobenius
descent for arithmetic D-modules [Ber00]. A more general version of this result (and therefore the deduc-
tion of Corollary 5.2) forms part of current work in progress of Crew (see the introduction to [Cre17] for
details). Our proof via Theorem 4.1, however, is reasonably direct (i.e. does not depend on any results on
arithmetic D-modules), and Theorem 4.1 itself is potentially of independent interest.

The strategy of the proof of Theorem 4.1 is to reduce to the following version of flat descent in analytic
geometry.

Theorem (2.9). Let f : X → Y be a faithfully flat morphism of adic spaces locally of finite type over a
complete, discretely valued field. Then f is a morphism of effective descent for coherent sheaves.

This is essentially just a rephrasing of the descent results of [Con06, §4]; our modest contribution is the
rather satisfying observation that Conrad’s condition that a flat map of rigid analytic spaces (in the sense
of Tate) ‘admits local fpqc sections’ translates exactly into the surjectivity of the associated map on adic
spaces. We would therefore like to view this result as yet more evidence (if it were needed) that Huber’s
theory of adic spaces really is the correct setting in which to do non-archimedean analytic geometry.

Given this analytic descent result the proof of Theorem 4.1 proceeds more or less as expected, the point
being that a projective surjective map of varieties can, locally on the base, be extended to a proper flat
morphism of frames. One can then show that the induced morphism on suitably small neighbourhoods of
the respective tubes is faithfully flat (in the sense of adic geometry) and therefore is a morphism of effective
descent for coherent sheaves. Applying this universally in frames mapping to the base Z and using Le
Stum’s ‘site-theoretic’ interpretation of Isoc†(X/K) given in [LS07, §8] completes the proof.

Acknowledgements. C. Lazda was supported by a Marie Curie fellowship of the Istituto Nazionale di Alta
Matematica “F. Severi”. He would like to thank A. Pál, B. Chiarellotto, R. Crew, B. Le Stum and N. Mazzari
for useful conversations regarding the contents of this note.

Notations and conventions. We will let V be a complete, discrete valuation ring with fraction field K of
characteristic 0 and perfect residue field k of characteristic p > 0. We will let ϖ be a uniformiser of V . A
variety over k will be a separated scheme of finite type, and the category of these objects will be denoted
Vark. All formal schemes over V will be assumed to be of finite type.

An analytic space over K will be an adic space locally of finite type over Spa(K,V ). It will be called
an analytic variety over K if in addition the structure morphism to Spa(K,V ) is separated. Similarly, we
will refer to a rigid analytic space in the sense of Tate [BGR84, §9.3.1] as a ‘rigid space’, and when it is
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separated over Sp(K) we will call it a rigid variety. Thus by [Hub96, §1.1.11] there is a fully faithful functor
from rigid spaces over K to analytic spaces over K, which induces an equivalence on the full-subcategories
of quasi-separated objects. We will denote the category of analytic spaces over K by AnK .

1. THE FORMALISM OF DESCENT

In this section we will very briefly recall the formalism of descent, and introduce the three examples that
particularly interest us, namely coherent sheaves on analytic spaces over K, j†-modules on frames over V ,
and overconvergent isocrystals on algebraic varieties over k. So suppose that we have a fibred category

F → C

over some base category C . That is, for every object X ∈C we have a category FX , and for every morphism
f : X → Y a pull-back functor f ∗ : FY → FX , which are compatible under composition. Then for any
morphism f : X → Y in C we have two pull-back functors

π
∗
0 ,π

∗
1 : FX →FX×Y X

associated to the two projections πi : X×Y X → X . Similarly, we have three projections

π01,π12,π02 : X×Y X×Y X → X×Y X

giving rise to corresponding pull-back functors.

Definition 1.1. If E ∈ CX then descent data on E relative to f is an isomorphism α : π∗0 E ∼→ π∗1 E such that

π
∗
02(α) = π

∗
12(α)◦π

∗
01(α).

The category of objects in FX equipped with descent data is denoted FX×Y X⇒X , pull-back by f induces

f ∗ : FY →FX×Y X⇒X .

Definition 1.2. We say that f is a morphism of descent for F if the functor

f ∗ : FY →FX×Y X⇒X

is fully faithful. We say that f is a morphism of effective descent for F if f ∗ is an equivalence of categories.

The three key examples of fibred categories we will consider in this note are the following.

Example 1.3. (1) As in [Cre92, §1] (but fixing the ground field K) we will view the category of over-
convergent isocrystals Isoc† as a fibred category

Isoc†→ Vark

over the category of k-varieties. That is, for every X ∈ Vark we have the category Isoc†(X/K) of
overconvergent isocrystals on X/K, and for every morphism f : X →Y there is a pull-back functor
f ∗ : Isoc†(Y/K)→ Isoc†(X/K), compatibly with composition.

(2) Similarly, we may view the category Coh of coherent sheaves as a fibred category

Coh→ AnK

over the category of analytic spaces over K.
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(3) Let FrameV denote the category of frames over V , that is triples (X ,X ,X) consisting of an open
immersion of k-varieties X → X and a closed immersion X → X of separated formal V -schemes.
Then taking (X ,X ,X) to the category of coherent j†

XO]X [X
-modules (in the sense of adic geometry)

gives rise to a fibred category

Coh j† → FrameV .

2. FLAT DESCENT FOR ANALYTIC SPACES

The purpose of this section is to give a careful discussion of flat descent for analytic spaces, and in
particular rephrasing the results of [Con06] in terms of adic spaces. One particularly pleasing aspect of this
reformulation is that it gives a very natural interpretation of the condition appearing in [Con06, §4] that a
flat map of rigid spaces ‘admits local fpqc sections’ - it simply means that the induced map on adic spaces
is surjective. This will then let us deduce a simple-to-state version of flat descent for analytic spaces over
K.

Definition 2.1. Let f : X → Y be a morphism of analytic spaces over K.

(1) We say that f is flat if for all x ∈ X the ring homomorphism OY, f (x)→ OX ,x is flat.
(2) We say that f is faithfully flat if in addition f is surjective.
(3) We say that f is fpqc if it is faithfully flat and quasi-compact.

Note that the second condition is stronger than simply requiring surjectivity on rigid points, as the fol-
lowing example shows.

Example 2.2. Let X be the disjoint union of the open unit disc and the closed annulus of radius 1. Let Y be
the closed unit disc, and f : X → Y the obvious map. Then f is flat and surjective on rigid points, but not
faithfully flat in our sense.

Since we will be comparing with the situation of rigid spaces, let us recall the following definitions.

Definition 2.3. Let f0 : X0→ Y0 be a morphism of rigid spaces over K.

(1) We say that f0 is flat if for all x ∈ X0 the ring homomorphism OY0, f0(x)→ OX0,x is flat.
(2) We say that f0 is fpqc if it is flat, quasi-compact and surjective.

Note that we have deliberately avoided giving the definition of a faithfully flat map of rigid spaces
without additional quasi-compactness hypotheses. We will first need to check various compatibilities of
these notions. Note that it follows immediately from the definitions that a morphism f0 : X0→ Y0 of rigid
spaces over K is flat if the associated morphism f : X →Y of analytic spaces over K is so, and the converse
follows from the following result.

Proposition 2.4. Let f : X → Y be a morphism of analytic spaces over K. If the ring homomorphism
OY, f (x)→ OX ,x is flat for all rigid points of X, then f is flat.

Proof. The question is local on X and Y which we may assume to be affinoid, say X = Spa(B,B+) and
Y = Spa(A,A+). By [Sch99, Theorem 4.8] the assumption on ‘flatness at rigid points’ implies that (after
possibly further localising) A→ B is flat as a morphism of affinoid K-algebras. Since analytic localisations
are flat the claim then follows. �

Let us from now on abbreviate ‘quasi-compact, quasi-separated’ as qcqs.
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Corollary 2.5. Let f0 : X0 → Y0 be a morphism of qcqs rigid spaces over K, with induced morphism
f : X → Y of analytic spaces over K. Then the following are equivalent.

(1) f0 is flat (resp. fpqc);
(2) f is flat (resp. fpqc);
(3) there exists a flat (resp. fpqc) morphism X→ Y of admissible formal schemes over V whose

induced morphism on rigid generic fibres is f0, and on adic generic fibres is f .

Proof. The flat case follows from Proposition 2.4 above together with [Bos09, Theorem 7.1]. In the fpqc
case the implication (1)⇒(2) is clear, and the equivalence (1)⇔(3) follows from the proof of [Bos09,
Corollary 7.2]. It remains to prove that if X→ Y is an fpqc map of admissible formal schemes over V ,
then the induced map on adic generic fibres is surjective.

Applying [Sch12, Theorem 2.22], we will divide the map X→Y into two parts. First of all, let C denote
the category of admissible blow-ups of Y, and D that of X. By [Aut17, Tag 080F] there is therefore a
canonical functor C →D taking Y′→Y to its base change X′→X, the induced map X′→Y′ is therefore
faithfully flat. We now consider the maps

X = lim←−
X′→X∈D

X′→ lim←−
Y′→Y∈C

X′→ lim←−
Y′→Y∈C

Y′ = Y,

and can conclude by applying [FK13, Theorem 0.2.2.13] twice. �

Corollary 2.6. Let f : X → Y be a flat morphism of analytic spaces over K. Then f is open.

Proof. The question is local on both Y and X , we may therefore assume them both to be qcqs. It moreover
suffices to show that the image f (X) is open. We know that there exists a flat formal model X→ Y of
f , and arguing as in [Bos09, Corollary 7.2] we can see that this map has to factor as a fpqc map X→ U

followed by an open immersion U→Y. We can now apply Corollary 2.5 above. �

This then begs the question of what the ‘rigid’ analogue of faithful flatness is, and rather pleasingly this
turns out to be exactly the descent condition appearing in [Con06, Theorem 4.2.8].

Definition 2.7. We say that a flat map f0 : X0→Y0 of rigid spaces ‘admits local fpqc sections’ if there exists
an admissible cover Y0 =

⋃
i Y0,i of Y0, fpqc maps Z0,i→ Y0, and for each i factorisations Z0,i→ X0→ Y0 of

Z0,i→ Y0.

Theorem 2.8. Let f0 : X0 → Y0 be a flat morphism of rigid spaces over K, with f : X → Y the induced
morphism of analytic spaces over K. Then f0 admits local fpqc sections if and only if f is faithfully flat.

Proof. First suppose that f0 admits fpqc local sections, we must show that f is surjective. This is clearly
local for an admissible covering of Y0, hence we may assume that Y0 is affinoid, and that there exists an fpqc
map Z0→ Y0 and a commutative diagram

X0

��

Z0 //

>>

Y0.

Hence by simple functoriality, it suffices to show that if Z0 → Y0 is fpqc, then the induced map Z → Y is
surjective. This follows from Corollary 2.5 above.
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Conversely, let us suppose that f is faithfully flat, we wish to show that f0 admits local fpqc sections.
This question is clearly local for an admissible cover of Y0, which we may therefore assume to be affinoid,
and in particular qcqs. Thus for any qcqs open V ⊂ X we know that f (V ) is a qcqs open in Y . Hence
the fpqc map V → f (V ) between qcqs analytic spaces over K has to come from an fpqc map V0→ f0(V0)

of Tate spaces over K. As V ranges over an open cover of X by qcqs opens, the images f (V ) form an
open cover of Y . Hence the images f0(V0) form an admissible open cover of Y0, and f0 admits fpqc local
sections. �

By following the proof of this theorem, it is now straightforward to deduce the descent result we require
from [Con06, Theorem 4.2.8].

Theorem 2.9. Let f : X →Y be a faithfully flat morphism of analytic spaces over K. Then f is a morphism
of effective descent for coherent sheaves.

Proof. Let {Vi} be an open cover of X by qcqs opens, and let Ui = f (Vi). Then we have a commutative
diagram ∐

i Vi //

��

X

��∐
i Ui // Y

and since we know effective descent for open covers, it suffices to show that each fi : Vi→Ui is of effective
descent for coherent sheaves. But now fi is an fpqc morphism between qcqs analytic spaces, in particular it
comes from an fpqc morphism V0,i→U0,i of rigid spaces. Hence we may apply [Con06, Theorem 4.2.8] to
conclude. �

3. DESCENT FOR COHERENT j†-MODULES

The strategy of proof of Theorem 4.1 below will be to follow that of Ogus [Ogu84, Theorem 4.6] in the
convergent case, and just as the key component of the proof there is a version of flat descent for coherent
sheaves on rigid spaces, so we will need a version of flat descent for coherent j†-modules on frames.

Theorem 3.1. Let f : (X ,X ,X)→ (T,T ,T) be a morphism of frames such that:

(1) X → T is proper surjective;
(2) X → T is proper;
(3) X→ T is flat.

Then f is a morphism of effective descent for coherent j†-modules (taken in the sense of adic geometry).

Unsurprisingly, the idea will be to reduce to flat descent for rigid analytic varieties, and the key lemma
that will enable us to do so is the following.

Lemma 3.2. Let f : (X ,X ,X)→ (T,T ,T) be a morphism of frames. Then for every neighbourhood

]X×T X [X×TX⊂W ⊂]X×T X [X×TX

of ]X×T X [X×TX in ]X×T X [X×TX there exists a neighbourhood

]X [X⊂V ⊂]X [X

of ]X [X in ]X [X such that V ×TK V ⊂W.
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Proof. The question is local on both T and X, hence we may assume that they are both affine. In particular,
we may choose functions f1, . . . , fr,g1, . . . ,gs ∈ Γ(X,OX) such that X =

⋂
i V ( fi)⊂Xk and X =

⋃
j D(g j)⊂

X . Hence we have
X×T X =

⋂
i,i′

V ( fi⊗ fi′)⊂ Xk×Tk Xk

and
X×T X =

⋃
j, j′

D(g j⊗g j′)⊂ X×T X .

By [Ber96, §1.2.4] we may assume that there exists an increasing sequence mn of integers such that

W =
⋃
n

{
x ∈ XK×TK XK

∣∣vx(ϖ
−1 f n

i ⊗ f n
i′ )≤ 1 ∀i, i′, ∃ j, j′ s.t. vx(ϖ

−1gmn
j ⊗gmn

j′ )≥ 1
}
.

Again applying [Ber96, §1.2.4] we may construct the neighbourhood

V =
⋃
n

{
x ∈ XK |vx(ϖ

−1 f n
i )≤ 1 ∀i, i′, ∃ j s.t. vx(ϖ

−1g2mn
j )≥ 1

}
of ]X [X inside ]X [X which clearly satisfies V ×TK V ⊂W . �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. We may assume that X and T are dense in X and T respectively, from which we
deduce that X → T is also proper and surjective. In particular, we can see that the square

X //

��

X

��

T // T

is Cartesian. Thus we have f (]X \X [X) =]T \T [T and hence using Lemma 2.6 we can deduce that if

V ⊂]X [X

is a neighbourhood of ]X [X, then
f (V )⊂]T [T

must be a neighbourhood of ]T [T. Moreover, if {V} forms a cofinal system of neighbourhoods of ]X [X in
]X [X, then { f (V )} forms a cofinal system of neighbourhoods of ]T [T in ]T [T.

In particular, for any such V we may consider the category

Coh(V × f (V )V ⇒V )

of coherent OV -modules together with descent data relative to V → f (V ). Since V × f (V )V is a neighbour-
hood of ]X×T X [X×TX in ]X×T X [X×TX we therefore obtain a pull-back functor

Coh(V × f (V )V ⇒V )→ Coh( j†
XO]X [X

⇒ jX×T XO]X×T X [X×TX
)

and hence a functor

2-colimV Coh(V × f (V )V ⇒V )→ Coh( j†
XO]X [X

⇒ jX×T XO]X×T X [X×TX
).

It follows from Lemma 3.2 together with [LS07, Proposition 6.1.15] that this functor is an equivalence of
categories. By Theorem 2.9 above we have an equivalence of categories

Coh(V × f (V )V ⇒V )∼= Coh( f (V )),
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and hence once more applying [LS07, Proposition 6.1.15] finishes the proof. �

4. EFFECTIVE DESCENT FOR ISOCRYSTALS

In this section we will prove our main result.

Theorem 4.1. Let f : X → Z be a proper surjective or faithfully flat map of k-varieties. Then f is a
morphism of effective descent for overconvergent isocrystals.

Note that by the results of [Tsu03, ZB14] f is a morphism of descent, the problem is to show effectivity
of descent data. Throughout the proof, we will use Le Stum’s ‘site-theoretic’ characterisation of overcon-
vergent isocrystals [LS07, §8].

Proof. Let us first treat the case of a proper surjective map f : X → Z. As usual, we may by Chow’s lemma
assume that f is projective, and since the question is also local on Z, we may assume that we have some
closed immersion X ↪→ Pn

Z .
Let E ∈ Isoc†(X/K) be equipped with descent data relative to f ; we wish to produce an overconvergent

isocrystal on Z/K, and we will do so by constructing its realisations on any frame (T,T ,T) equipped with
a map T → Z. Indeed, in this situation we may base change X ↪→ Pn

Z by T → Z to obtain

XT ↪→ Pn
T

and hence we may extend XT → T to a morphism of frames

XT //

��

XT //

��

P̂n
T

��

T // T // T

where XT is simply the closure of XT inside Pn
T . Since proper surjective maps are stable by base change, this

morphism satisfies the conditions of Theorem 3.1. We may realise E on (XT ,XT , P̂n
T) to obtain a coherent

j†
XT

O]XT [P̂n
T

-module EXT . Moreover, the descent data for E relative to X → Z gives rise to descent data for

EXT relative to

(XT ,XT , P̂n
T)→ (T,T ,T).

Hence by Theorem 3.1 we obtain a coherent j†
T O]T [T

-module FT whose pullback to (XT ,XT , P̂n
T) is EXT .

Note that once our original embedding X → Pn
Z was fixed the construction of FT is completely canonical,

and does not depend on any further choices. Thus one easily checks using the corresponding properties of
E together with Theorem 3.1 that if g : (T ′,T ′,T′)→ (T,T ,T) is a morphism of frames over Z, then there is
a corresponding isomorphism g†FT

∼→ FT ′ , and these moreover satisfy the cocycle condition. Hence there
is a unique overconvergent isocrystal F on Z/K whose realisation on each (T,T ,T) is exactly FT . This
completes the proof in the proper surjective case.

We can now deduce the faithfully flat case using [Aut17, Tag 05WN]. This implies that if f : X → Z
is faithfully flat, then there exists a composite Z′→ Z of Zariski covers and finite faithfully flat maps such
that X ′ := X ×Z Z′ admits a section. By the usual arguments, together with the fact that we know effective
descent for Zariski covers, we may therefore reduce the faithfully flat case to the finite faithfully flat case,
and hence to the proper surjective case already handled. �
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5. TOPOLOGICAL INVARIANCE AND EQUIVALENCE OF FROBENIUS PULL-BACK

The main application of Theorem 4.1 we have in mind is the following.

Theorem 5.1. Let f : X → Z be a universal homeomorphism (i.e. f is finite, surjective and radicial). Then

f ∗ : Isoc†(Z/K)→ Isoc†(X/K)

is an equivalence of categories.

Proof. We follow the proof of [Ogu84, Corollary 4.10]. Under the given assumptions on f , the diagonal

X → X×Z X

is a nilpotent immersion. Since the tube of a k-sub-scheme T inside some formal V -scheme T only depends
on the underlying set of T , we can thus deduce directly from the definitions that we have an equivalence of
categories

Isoc†(X×Z X/K)∼= Isoc†(X/K)

and hence an equivalence
Isoc†(X/K)∼= Isoc†(X×Z X ⇒ X/K).

In other words, every E ∈ Isoc†(X/K) is equipped with a canonical descent data relative to f : X→ Z. Since
f is finite and surjecitve, we may therefore apply Theorem 4.1. �

Now let us suppose that we have chosen a lift σ to K of the q-power Frobenius on k. Thus we obtain a
q-power Frobenius pull-back functor

F∗ : Isoc†(X/K)→ Isoc†(X/K).

Corollary 5.2. Let X be any k-variety. Then F∗ is an equivalence of categories.

Proof. Let X (q) be the pull-back of X by the q-power Frobenius of k. Since k is perfect, the corresponding
(semi-linear) pull-back functor

Isoc†(X/K)→ Isoc†(X (q)/K)

is an equivalence of categories. It therefore suffices to observe that the relative Frobenius FX/k : X → X (q)

is a universal homeomorphism and apply Theorem 5.1. �
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