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Abstract

In this paper we prove that the E
†
K -valued cohomology, introduced in [9] is finite di-

mensional for smooth curves over Laurent series fields k((t)) in positive characteristic,
and forms an E

†
K -lattice inside ‘classical’ EK -valued rigid cohomology. We do so by prov-

ing a suitable version of the p-adic local monodromy theory over E
†
K , and then using an

étale pushforward for smooth curves to reduce to the case of A1. We then introduce E
†
K -

valued cohomology with compact supports, and again prove that for smooth curves, this
is finite dimensional and forms an E

†
K -lattice in EK -valued cohomology with compact

supports. Finally, we prove Poincaré duality for smooth curves, but with restrictions on
the coefficients.
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Introduction

This is the second in a series of papers [8, 9] dedicated to the construction of a new
p-adic cohomology theory for varieties over local fields of positive characteristic. A
detailed introduction to the whole series is given in [9], so here we will give a brief
overview of the results contained in this paper.

In the first paper [9] we introduced a version of rigid cohomology for varieties over
the Laurent series field k((t)) with values in vector spaces over the bounded Robba ring
E

†
K (here K is a complete discretely valued field of characteristic 0 with residue field

k). There we proved that the cohomology groups were welll-defined and functorial, as
well as introducing categories of coefficients. The main result in this paper is that base
change holds for smooth curves over k((t)), a precise statement of which is as follows.

Theorem (2.11). Let X /k((t)) be a smooth curve and E ∈ F-Isoc†(X /E †
K ) an overconvegent

F-isocrystal, with associated overconvergent F-isocrystal Ê ∈ F-Isoc†(X /EK ). Then the
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base change morphism

H i
rig(X /E †

K ,E )⊗
E

†
K

EK → H i
rig(X /EK , Ê )

is an isomorphism.

Here EK is the Amice ring, which is the p-adic completion of E
†
K . This implies that

H i
rig(X /E †

K ,E ) is finite dimensional, of the expected dimension, and that the linearised
Frobenius morphism is bijective. The method of proof is very similar to that used by
Kedlaya in [7] to prove finite dimensionality of ‘classical’ rigid cohomology. We first
prove a version of the p-adic local monodromy theorem, exploiting the fact that E

†
K can

be viewed as a kind of ‘dagger algebra’ over K to adapt Kedlaya’s proof of a monodromy
theorem for dagger algebras in loc. cit. to our situation. This will then more or less
immediately imply the required result for A1

k((t)).
We then use étale pushforward - the point is that locally any smooth curve admits

a finite étale map to A1
k((t)), and after making a finite separable extension of k((t)) we

can lift this to characteristic zero to construct an étale pushforward functor and thus
reduce to the case of the affine line. The construction is slightly more difficult than in
classical rigid cohomology, since one must first choose models over kJtK before lifting. It
is not clear to us whether a similar construction can be made in higher dimensions, and
it is for this reason that we are compelled to restrict to the case of curves.

We also introduce a version of E
†
K -valued rigid cohomology with compact supports,

again with and without coefficients, and use similar methods as before to show that for
smooth curves, these groups are finite dimensional, and form an E

†
K -lattice inside EK -

valued rigid cohomology. This allows us to deduce Poincaré duality entirely straightfor-
wardly, by base changing to EK , however, using this method forces us to make restric-
tions on coefficients, namely we must restrict to those F-isocrystals which extend to a
compactification.

In the third paper in the series [8] we will discuss some arithmetic applications of
the theory. We will introduce a more refined category of coefficients such that the asso-
ciated cohomology groups come with a natural Gauss–Manin connection, and then use
this to attach (ϕ,∇)-modules over the Robba ring RK , and hence p-adic Weil–Deligne
representations, to smooth curves over k((t)). We will also discuss questions such as
`-independence and a p-adic version of the weight-monodromy conjectures.

1 A p-adic local monodromy theorem after Kedlaya

For the whole of this paper, notations will be as in [9]. That is, k will be a field of
characteristic p > 0, V will be a complete DVR with residue field k and fraction field K
of characteristic 0, π will be a uniformiser for V . We let |·| denote the norm on K such
that |p| = 1/p, and we let r = ∣∣π−1∣∣> 1. We will let k((t)) denote the Laurent series field
over k, and E

†
K ,RK and EK respectively denote the bounded Robba ring, Robba ring,

and Amice ring over K , and curO
E

†
K

, OEK the valuation rings of E
†
K and EK respectively.

For definitions of these, see the introduction to [9]. We will fix a Frobenius σ on V JtK,
and denote by σ the induced Frobenius on any of the rings SK = V JtK⊗V K , OEK , EK ,
O

E
†
K

, E
†
K , RK .

In [9] we constructed, for any k((t))-variety, a category F-Isoc†(X /E †
K ) of overcon-

vergent F-isocrystals on X /E †
K , as well as cohomology groups H i

rig(X /E †
K ,E ) which are

vector spaces over E
†
K , functorial in both E and X . We will not go into the details of

this construction here. For a k((t))-variety X and an overconvergent F-isocrystal E on
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X /E †
K , two of the fundamental results that one would want to know about E

†
K -valued

rigid cohomology are finite dimensionality and base change. This latter means that the
base change map

H i
rig(X /E †

K ,E )⊗
E

†
K

EK → H i
rig(X /EK , Ê )

is an isomorphism, where Ê is the associated overconvergent F-isocrystal on X /EK (see
§5 of [9]). In this section, we pave the way for proving this for smooth curves over k((t))
by proving a version of Kedlaya’s relative local monodromy theorem. The statement of
Kedlaya’s result is as follows (for more details about the specific terms appearing in the
statement, see [7]).

Theorem 1.1 ( [7], Theorem 5.1.3). Let A be an integral dagger algebra over K , and let
M be a free (ϕ,∇)-module over the relative Robba ring RA (as defined in §2.5 of loc. cit.).
Then there exists a weakly complete localisation B of A, an integer m ≥ 0, a finite étale
extension B1 of B0 = Bσ−m

, a finite, étale, Galois extension R′ of Rint
B1

, and a continuous
B1-algebra isomorphism

RB1
∼=R′′ :=RB1 ⊗Rint

B1
R′

such that M⊗R′′ is unipotent.

This theorem allows Kedlaya to prove generic coherence of the higher direct images
of an overconvergent F-isocrystal along the projection A1

X → X , for X ∼= Spec(A0) a
smooth affine variety over k, with weakly complete lift A. In keeping with the general
philosophy that we should view E

†
K as a ‘weakly complete lift’ of k((t)), one would hope

that by replacing A in the statement of the above theorem by E
†
K , one could hope to

prove finite dimensionality of
H i

rig(A1
k((t))/E

†
K ,E )

for any overconvergent F-isocrystal E on A1
k((t))/E

†
K . This will be our eventual strategy.

Almost everything in this section is based upon Section 5 of [7], and there are very few
new ideas involved. The only real insight is that the relationship between E

†
K and EK

is exactly analogous to the relationship between a dagger algebra and the completion
of its fraction field, and hence the methods used in loc. cit. should work more or less
verbatim to descend properties of ∇-modules from REK to R

E
†
K

.
Our first task is to introduce the objects the will allow us to formulate our version of

Kelaya’s theorem, including the Robba ring over E
†
K . We will also need to prove various

important properties of this ring, and of it’s ‘integral’ subring Rint
E

†
K

. Recall that we have

E
†
K = colimη<1Eη

Eη =
{∑

i
ai ti ∈ EK

∣∣∣∣∣ |ai|ηi → 0 as i →−∞
}

,

each Eη is equipped with the norm∥∥∥∥∥∑
i

ai ti

∥∥∥∥∥
η

=max
{

sup
i<0

|ai|ηi,sup
i≥0

|ai|
}

and these induce a direct limit topology on E
†
K which we call the fringe topology. Recall

that for each η we may define the Robba ring over Eη to be⋃
s>0

Rη,s
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where Rη,s is the ring of series
∑

i∈Z f i yi with f i ∈ Eη such that ‖ f i‖η r−is′ → 0 as |i|→∞
for all 0 < s′ ≤ s. To define the Robba ring over E

†
K requires a bit more care. For each

s > 0, we define R
E

†
K ,s to be the ring consisting of series

∑
i f i yi such that for all 0< s′ ≤ s,

there exists some η such that f i ∈ Eη and ‖ f i‖η r−is′ → 0 as |i|→∞.

Definition 1.2. The Robba ring R
E

†
K

is by definition

R
E

†
K

:= ⋃
s>0

R
E

†
K ,s,

that is it consists of series
∑

i f i yi such that for all s > 0 sufficiently small, there exists
some η such that f i ∈ Eη and ‖ f i‖η r−is → 0

Thus, if REK denotes the Robba ring over EK , in the usual sense as in Section 2
of [7], there is a natural inclusion

R
E

†
K
→REK .

arising from the inclusion E
†
K → EK . We will let Rint

E
†
K

⊂R
E

†
K

denote the subring consist-

ing of series with integral coefficients, i.e. coefficients in O
E

†
K

. There is thus a similar
inclusion

Rint
E

†
K
→Rint

EK

where Rint
EK

is defined analogously. Note that we have REη ⊂ R
E

†
K

, but be warned that
∪ηREη (R

E
†
K

. The former is obtained by reversing the quantifiers ‘∀ sufficiently small
s > 0’ and ‘∃η< 1’ in the definition of the latter.

We will need to know how to ‘lift’ certain finite extension of k((t))((y)) to those of R
E

†
K

,
however, this will not be achieved in an entirely straightforward manner. The first
problem is that the residue field of R

E
†
K

is not the whole of the double Laurent series
field k((t))((y)), but is in fact somewhat smaller.

Lemma 1.3. The quotient ring Rint
E

†
K

/(π) is isomorphic to the ring of Laurent series

∑
i

f i yi ∈ k((t))((y))

such that there exist positive integers c,d with −vt( f i)≤ ci+d for all i. This is a subfield
of k((t))((y)) which contains k((t))(y).

Proof. It is straightforward to see that Rint
E

†
K

/(π) is contained inside k((t))((y)), since for∑
i f i yi ∈ Rint

E
†
K

and i ¿ 0 we have ‖ f i‖ ≤ ‖ f i‖η < 1, where ‖·‖ denote the p-adic norm on

OEK . To show that it is the ring described, first suppose that we have some
∑

i f i yi ∈
k((t))((y)) such that −vt( f i) ≤ ci+d for some c,d. Write f i = ∑

j f i j t j and lift each non-
zero f i j ∈ K to some f̃ i j ∈ K of norm one. I claim firstly that f̃ i =∑

j f̃ i j t j lies in O
E

†
K

, and

secondly that
∑

i f̃ i yi is in R
E

†
K

.

Indeed, in the first case we actually have that f̃ i ∈ V JtK[t−1]⊂O
E

†
K

, and for the second

note that since f̃ i = 0 for i ¿ 0, it suffices to check the growth condition as i →∞. But
since f̃ i j = 0 for j ≤−ci−d we have that∥∥ f̃ i j

∥∥
η ≤ η−ci−d
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and hence for each s we can find some η close enough to 1 to ensure that η−ci−dr−is → 0
as i →∞. Hence

∑
i f̃ i yi ∈R

E
†
K

as required.

Conversely, let us suppose that f = ∑
i f i yi does not satisfy the growth condition,

that is −vt( f i) ≥ ci+d for all integers c,d. For any lift
∑

i f̃ i yi of f to O
E

†
K
Jy, y−1K, then

since f̃ i must have a term in tvt( f i), it follows that we must have
∥∥ f̃ i

∥∥
η ≥ ηvt( f i) and so∥∥ f̃ i

∥∥
η r−is ≥ η−ci−dr−is

for all c,d. Hence for any given s, no matter how we choose η, we can always choose
some c to make this →∞ as i →∞, thus f does not lift.

Finally, since the element y of k((t))((y)) trivially satisfies the growth condition, to
prove the final claim it suffices to show that if f ∈ k((t))((y)) is non-zero and satisfies the
growth condition, then so does f −1. We easily reduce to the case where f = 1+∑

i≥1 ai yi

with ai ∈ k((t)), let us choose c,d such that −vt(ai) ≤ ci+ d. Then f −1 = 1+∑
i≥1 bi yi

where bi is a sum of things of the form ai1 . . .aim with iL ≥ 1 and i1+ . . .+ im = i. Hence

−vt(bi)≤ sup
i1+...+im=i

{∑
l
−vt(ai l )

}
≤ sup

i1+...+im=i

{∑
l

(ci l +d)

}
≤ (c+d)i

for all i ≥ 1 and so f −1 satisfies the growth condition, as required.

Let us denote this field of ‘overconvergent’ Laurent series by k((t)){{y}}, and the part
with positive y-adic valuation by k((t)){y}. The next result tells us that with respect to
totally ramified extensions, this field behaves essentially the same as the full double
Laurent series field k((t))((y)).

Proposition 1.4. Write F = k((t)). The field F{{y}} is y-adically Henselian, and if we
have P ∈ F{y}[X ] an Eisenstein polynomial, with root u, so that there is an isomorphism
F((y))[u]∼= F((u)), then there is an equality

F{{y}}[u]= F{{u}}

inside k((t))((u)). In particular, every finite, separable, (Galois) totally ramified extension
F((u))/F((y)) arises from a unique finite, separable, (Galois) totally ramified extension of
the form F{{u}}/F{{y}}.

Proof. We first show that F{{y}} is Henselian Write v = vt for the t-adic valuation on F,
and define partial valuations on F{y} by setting vn(

∑
j≥0 f i yi) = v( fn). Let P ∈ F{y}[X ]

be a polynomial and x0 ∈ F{y} such that P(x0) ≡ 0 mod y and P ′(x0) 6≡ 0 mod y, we need
to show that there exists some x ∈ F{y} such that x ≡ x0 mod y and P(x) = 0. After
replacing P(X ) by P(X + x0) we may assume that x0 = 0.

Write P = am X m+ . . .+a0X0 with ak =∑
i≥0 aki yi, aki ∈ F and choose c,d ∈Z≥0 such

that v(aki) ≥ −ci − d for all i,k. Actually, by multiplying P through by a sufficiently
hight power of t, we may assume that d = 0, and by increasing c we may also assume
that v0(P ′(x0))≤ c. We are going to inductively construct x =∑∞

i=1 xi yi such that:

i) P(
∑n

i=1 xi yi)≡ 0 mod yn+1;

ii) v(xi)≥−3ci+ c;

iii) v0(P ′(
∑n

i=1 xi yi))= v0(P ′(0)).

This clearly suffices to prove the claim. So suppose that x1, . . . , xn−1 have been con-
structed (note that the same argument with n = 1 allows us to construct x1 to start the
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induction). By Taylor’s formula we have

P(x1 y+ . . .+ xn yn)≡ P(x1 y+ . . .+ xn−1 yn−1)+ xn ynP ′(x1 y+ . . . xn−1 yn−1) mod yn+1

≡ (α+ xnβ)yn mod yn+1

where α,β ∈ F are such that v(α)= vn(P(x1 y+x2 y2+. . .+xn yn−1)) and v(β)= v0(P ′(x1 y+
x2 y2 + . . .+ xn−1 yn−1))= v0(P ′(x0)). Hence to ensure that

P(x1 y+ . . .+ xn yn)≡ 0 mod yn+1

we must have xn = −αβ−1, which is a well defined element of F. To see that v(xn) ≥
−2cm, note that

v(xn)= vn(P(x1 y+ . . .+ xn1 yn−1))−v0(P ′(0)).

and that we can write the coefficient of yn in the expansion of P(x1 y+ . . .+ xn1 yn−1) as

n∑
i=0

m∑
k=0

aki
∑

i1+...+in−1=k
i1+2i2+...(n−1)in−1=n−i

(
i

i1 . . . in−1

)
xi1

1 . . . xin−1
n−1 .

Now, each summand in this has valuation at least as large as

v(aki)+ i1v(x1)+ . . .+ in−1v(xn−1)≥−ci−2ci1 −5ci2 − . . .− (3(n−1)− c)cin−1

≥−ci−2c(n− i)− ci2 −2ci3 − . . .− (n−2)cin−1

≥−2cn− c(n− i−k)≥−3cn+
and hence using the ultra metric inequality, to show that

v(xm)≥−3cn+ c.

it suffices to show that i+ k ≥ 1. But if k = 0 then i1 = . . . = im−1 = 0 and hence i = n, so
we are done. Finally, that v0(P ′(

∑n
i=1 xi yi)) = v0(P ′(0)) is clear, hence F{y} is Henselian

as claimed.
Next let us show that we have an inclusion F{{u}}⊂ F{{y}}[u], it suffices to show that

we have an inclusion F{u} ⊂ F{y}[u]. Write P = X m − am−1X m−1 − . . .− a0, so that we
have

um = am−1um−1 + . . .+a0

with ak ∈ F{y}, say ak = ∑
i≥1 aki yi with a01 6= 0. Now, for any

∑
i≥0 biui ∈ F{u} we can

repeatedly substitute in um for lower powers to give

∑
i≥0

biui =
m−1∑
j=0

g ju j

with g j ∈ FJyK. The problem is to show that g j ∈ F{y}.
Choose integers c,d such that −v(bi) ≤ ci+d, and −v(aki) ≤ ci+d for all i,k. The

point is that after repeatedly substituting in um for lower powers we can write

g j = b j +
∑

l≥m
bl f l

where for l in the range nm+ j ≤ l < (n+1)m+ j, the term f l is a sum of products of at
least n of the ak. Since each ak is divisible by y, this means that if when calculating
−vn(g j) we only need to take account of the terms

b j +
(n+1)m+ j∑

l=m
bl f l
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and moreover, only need to take account of the terms for which f l is a sum of multiples
of at most n of the ak. But since we have −v(aki)≤ ci+d, when we multiply together at
most n of the ak, we get something which satisfies −vn ≤ (c+d)n, for all n ≥ 1, in other
words −vn( f l)≤ (c+d)n for n ≥ 1. Since −v(bl)≤ cl+d, it follows that

−vn(g j)≤ (c+d)n+ c((n+1)m+ j)+d = (c(m+1)+d)n+ (d+ ( j+1)c)

for n ≥ 1, hence each g j is in F{y} as required.
Finally, let us show that we have F{{y}}[u] ⊂ F{{u}}, since F{{u}} is a ring containing

u it suffices to show that F{{y}} ⊂ F{{u}}. We first claim that if g = ∑
j≥1 g ju j ∈ F{u}

and f i ∈ F are such that −v( f i) ≤ ci + d for some c,d, then
∑

i f i gi, a priori in F((u)),
is actually in F{{u}}, note that we may also assume that −v(g j) ≤ c j+ d. The point is
that when calculating −vn(

∑
i f i gi), we only need to take account of the terms

∑n
i=0 f i gi,

since u divides g. Once can easily see that since −v(g j)≤ c j+d, we must therefore have
−vn(gi)≤ cn+ (i+1)d, and hence −vn(

∑n
i=0 f i gi)≤ (2c+d)n+2d.

Applying this claim with g = y we see that to show F{{y}} ⊂ F{{u}} it suffices to show
that y ∈ F{{u}}. Write y= g(u)= um ∑

j≥0 g ju j, we now assume that P has the form

X m +am−1X m−1 + . . .+a0

which ak = ∑
i≥1 aki yi with −v(aki) growing linearly in i. We will show that if −v(g j)

grows faster than linearly, then there cannot be the requisite cancellation in

um +am−1um−1 + . . .+a0

to ensure that it equals zero.
If we substitute the expression for y into the above equation, then the term akuk,

for k < n, looks like

∞∑
N=0

b N−k
m c∑

i=1
aki

( ∑
j1+...+ j i=N−in−k

g j1 . . . g j i

)uN

and there exist arbitrarily large N such that for each k, the dominant term in this sum
for the coefficient of uN is the term ak1 gN−k−n corresponding to i = 1, since otherwise
this would contradict the faster than linear growth of the −v(g j) (here we are using the
fact that the −v(aki) grow linearly in i). Hence again by the faster than linear growth
of the −v(g j), there exist arbitrarily large N for which one of these terms ak1 gN−k−n
has strictly larger negative valuation than the others. Hence it cannot possibly happen
that

um +am−1um−1 + . . .+a0 = 0

and we obtain our contradiction.

Our next key result result will be that Rint
E

†
K

itself is Henselian. Recall that by defi-

nition, we can write

R
E

†
K
= ⋃

s>0

( ⋂
0<s′≤s

( ⋃
η<1

Aη,s′

))

where Aη,s′ consists of series
∑

i f i yi with f i ∈ Eη and ‖ f i‖η r−is′ → 0. We can define a
norm on Aη,s′ given by ∥∥∥∥∥∑

i
f i yi

∥∥∥∥∥
η,s′

= sup
i

{
‖ f i‖η r−is′

}
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which induces a topology. We put the direct limit topology on
⋃
η<1 Aη,s′ , the inverse

limit topology on (
⋂

0<s′≤s(
⋃
η<1 Aη,s′ )) and then the direct limit topology on R

E
†
K

. With

respect to this topology, a sequence fn = ∑
i f in yi ∈ R

E
†
K

tends towards 0 if and only if
for all sufficiently small s > 0, there exists some η < 1, such that the norms ‖ fn‖η,s =
supi

{‖ f in‖ r−is} are all defined, and ‖ fn‖η,s → 0. We first need a lemma.

Lemma 1.5. i) The norm ‖·‖η,s makes each Aη,s into a Banach K-algebra.

ii) Suppose that a ∈Rint
E

†
K

satisfies ‖a‖ < 1, ‖·‖ denoting the π-adic norm on Rint
E

†
K

. Then

there exists some s such that for all 0< s′ ≤ s, there exists some η such that a ∈ Aη,s′
and ‖a‖η,s′ < 1.

Proof. i) This is entirely standard.

ii) If a = ∑
i ai yi ∈ Rint

E
†
K

and ‖a‖ < 1, it follows from discreteness of the π-adic norm

on R̂int
EK

(which is just another copy of OEK but with ‘ground field’ EK rather than
K) that there exists some c < 1 such that ‖ai‖ < c for all i. Choose s0 such that
a ∈ R

E
†
K ,s0

, so there exists some η0 such that ai ∈ Eη and ‖ai‖η0 r−is0 → 0 as i →
±∞, note that for all i > 0 we have ‖ai‖η0 r−is0 < ‖ai‖ ≤ c. Choose i0 ≤ 0 such that
i ≤ i0 ⇒ ‖ai‖η0 r−is0 ≤ c, by increasing η0 if necessary we may also assume that
‖ai‖η0 < c for i0 < i ≤ 0. We can thus choose s ≤ s0 to ensure that ‖ai‖η0 r−is ≤ c for
all i0 < i ≤ i0, hence supi

{‖ai‖η0 r−is} ≤ c, however, we may no longer have that
‖ai‖η0 r−is → 0 as i →−∞.
But now we know that for all 0< s′ ≤ s,

sup
i

{
‖ai‖η0 r−is′

}
≤ c

and that there exists some η such that ‖ai‖η r−is′ → 0, we may assume that η> η0,
hence

sup
i

{
‖ai‖η r−is′

}
≤ c < 1

as required.

Proposition 1.6. The ring Rint
E

†
K

is a Henselian local ring, with maximal ideal generated

by π.

Proof. I first claim that Rint
E

†
K

is local, with maximal ideal generated by π. So consider

the embedding Rint
E

†
K

→ R̂int
EK

into the π-adic completion of Rint
EK

, and suppose that a ∈Rint
E

†
K

is such that a ∉ (π), that is ‖a‖ = 1 for the natural π-adic norm on Rint
E

†
K

. Since the mod-π

reduction of a is a unit there exists some u ∈ Rint
E

†
K

such that ‖au−1‖ < 1, and if we let

x = 1−au then the series
∑

n≥0 xn converges in R̂int
EK

to an inverse v for au. By Lemma
1.5(ii) there exists some s0 such that for all 0< s ≤ s0, there exists some η< 1 such that
a,u ∈ Aη,s and ‖x‖η,s < 1. Hence by Lemma 1.5(i) the series

∑
n xn converges in Aη,s for

all such s, and so v ∈ R
E

†
K

. Since R
E

†
K
∩ R̂int

EK
= Rint

E
†
K

, it follows that v ∈ Rint
E

†
K

, and hence

a is a unit in Rint
E

†
K

.

8



Exactly as in Lemma 3.9 of [5], to show that Rint
E

†
K

is Henselian, it suffices to show

that if P(x) = xm − xm−1 + a2xm−2 + . . .+ am is a polynomial with ak ∈ πRint
E

†
K

for all k,

then P has a root y in Rint
E

†
K

such that y≡ 1 (modπ). By Hensel’s lemma the sequence yn

defined by

y0 = 1, yn+1 = yi − P(yn)
P ′(yn)

converges to such a y ∈ R̂int
EK

, since R
E

†
K
∩R̂int

EK
=Rint

E
†
K

we must show that in fact yn → y

inside R
E

†
K

. The proof is almost identical to the usual proof of Hensel’s Lemma. Since

‖ak‖ ,
∥∥P(1)P ′(1)−1∥∥ < 1, by Lemma 1.5 we may choose s, and for all 0 < s′ ≤ s some

η = η(s′) such that all the ak and P ′(1)−1 are in Aη,s and ‖ak‖η,s′ ,
∥∥P(1)P ′(1)−1∥∥

η,s′ < 1.
We claim by induction that:

i) yj ∈ Aη,s′ , ‖yn−1‖η,s′ ≤ 1 and ‖yn −1‖η,s′ ≤ c,

ii) P ′(yn) is invertible in Aη,s′ ,

iii)
∥∥P(yn)P ′(yn)−1∥∥

η,s′ ≤ c2n
.

Note that by assumption these are all true for n = 0. Thus assume that i), ii) and iii)
are true for yn. Then we have

‖yn+1 −1‖η,s′ ≤max
{
‖yn+1 − yn‖η,s′ ,‖yn −1‖η,s′

}
≤max

{
c2n

, c
}
≤ c∥∥yj+n

∥∥
η,s′ ≤max

{
‖yn+1 − yn‖η,s′ ,‖yn‖η,s′

}
≤max

{
c2n

,1
}
≤ 1

and thus i) holds for yn+1. Hence we can write P ′(yn+1) = 1+ x for some x ∈ Aη,s′
with ‖x‖η,s′ < 1, and thus ii) is also true for yn+1. Also note that this implies that∥∥P ′(yn)−1∥∥

η,s′ ≤ 1 and hence to prove iii) it suffices to show that ‖P(yn+1)‖η,s′ ≤ c2n+1
.

But now using the Taylor expansion and the fact that ‖yn‖η,s′ ≤ 1 gives

P(yn+1)= P(yn)−P ′(yn)P(yn)P ′(yn)−1 + z(P(yn)P ′(yn)−1)2

for some z ∈ Aη,s′ with ‖z‖η,s′ ≤ 1. Hence

‖P(yn+1)‖η,s ≤
∥∥P(yn)P ′(yn)−1∥∥2

η,s′ ≤ c2n+1

and iii) holds for yn+1. Hence yn → y in each Aη,s′ , and thus y ∈Rint
E

†
K

as required.

Lemma 1.7. Write F = k((t)) and suppose that F((u))/F((y)) is a separable, finite, totally
ramified extension, coming from some F{{u}}/F{{y}}. Let R/Rint

E
†
K

be the corresponding

unramified finite extension given by Proposition 1.6. Then there is an isomorphism

Ru
E

†
K

∼=R⊗Rint
E

†
K

R
E

†
K

where Ru
E

†
K

is a copy of R
E

†
K

but with series parameter u.

9



Proof. We closely follow the proof of Proposition 3.4 of [10]. Write y = ḡ(u), so that
ḡ = um( ḡ0+ ḡ1u+. . .) for ḡ i ∈ F, ḡ0 6= 0 and −v( ḡ i)≤ c j+d for some integers c,d, v being
the t-adic valuation on F. Lift ḡ to some g ∈R

int,+,u
E

†
K

(i.e. a copy of R
int,+
E

†
K

but with series

parameter u) of the form g = un(g0 + g1u+ . . .) with g0 ∉ πO
E

†
K

. Actually, we want to

lift slightly more carefully than this - if we write ḡ i = ∑
j≥−ci−d ḡ i j t j then we will set

g i =∑
j≥−c−d g i j t j where g i j ∈ K is an element of norm 1 lifting ḡ i j, and zero if ḡ i j is.

Thus g is invertible in R
int,u
E

†
K

, and in fact I claim that for all
∑

i f i yi ∈Rint
E

†
K

, the sum∑
i f i gi converges in R

int,u
E

†
K

. Let us treat the sums
∑

i≥0 f i gi and
∑

i<0 f i gi separately,

first let’s look at the positive part. Since we have ‖g i‖η ≤ η−ci−d it follows that

‖g‖η,s ≤ η−dr−ns

at least for η and s such that this norm is defined. We therefore have∥∥∥ f i gi
∥∥∥
η,s

≤ ‖ f i‖η (η−dr−ns)i

and hence, if we are given s and η such that f i ∈ Eη, g ∈ Aη,s and ‖ f i‖ r−is → 0 as
i →∞, then since n > 1, by increasing η we can ensure that η−dr−ns ≤ r−s and hence∥∥ f i gi∥∥

η,s → 0 as i →∞. Hence for all s sufficiently small, there exists some η such that∑
i≥0 f i gi converges in Aη,s and thus the sum converges in R

E
†
K

. It is easy to see that

the limit has to have integral coefficients, and hence the sum converges in Rint
E

†
K

.

Next let us look at the negative part
∑

i<0 f i gi, let us rewrite this as
∑

i>0 f i g−i where
for all sufficiently small s there exists an ηwith f i ∈ Eη and ‖ f i‖η ris → 0 as i →∞. Write
g−1 = a−1

0 u−n(1+ b1u+ . . .), then as in the proof of Lemma 1.3, we have that each bi is
a sum of things of the form g i1 . . . g im with i j ≥ 1 and i1 + . . .+ im = i. Hence we have
‖bi‖η ≤ η−i(c+d), and hence, where defined, we must have

∥∥g−1∥∥
η,s ≤ ∥∥a−1

0

∥∥ rns. Now
choose s0 > 0 such that for all 0< s ≤ s0 we have some η such that ‖ f i‖η ris → 0, and let
s1 = s0/(n+1). Then for any 0< s ≤ s1 we have∥∥∥ f i g−i

∥∥∥
η,s

≤ ‖ f i‖η
(∥∥a−1

0
∥∥
η rns

)i

and since
∥∥a−1

0

∥∥= 1, by increasing η we can ensure that
∥∥a−1

0

∥∥
η

rns ≤ rs′ for some s′ ≤ s0,

and thus by further increasing η we can ensure that
∥∥ f i g−i∥∥

η,s → 0 and hence the sum

converges in Ru
E

†
K

. Again, it is not hard to see that it must actually lie in R
int,u
E

†
K

.

Hence we get a ring homomorphism Rint
E

†
K

→R
int,u
E

†
K

by sending
∑

i f i yi to
∑

i f i gi, it is

clear that modulo π this induces the given map F{{y}}→ F{{u}}. Note also that there are
uniquely determined power series ck =∑

i≥1 cki yi ∈O
E

†
K
JyK such that

um + cm−1um−1 + . . .+ c0 = 0

inside O
E

†
K
JuK, I claim that in fact these power series lie inside R

int,+
E

†
K

, it suffices to show

that they lie in R+
E

†
K

. In fact, one can show inductively using the equation

um +
∞∑

N=m

m−1∑
k=0

b N−k
m c∑

j=1
ck j

∑
k1+...+k j=N− jm−k

gk1 . . . gk j

uN = 0

10



determining the cki that if η, s are such that ‖ai‖η ≤ Cris for some constant C, then we
have

‖cki‖ ≤ (Crs)n(i−1)+k ∥∥g−1
0

∥∥n(i−1)+k+i
η

for all i,k. Since by increasing η we may make both C and
∥∥g−1

0

∥∥
η

as close to 1 as we
please, it therefore follows that for all k, there exists some s0 such that for all 0< s ≤ s0
and all λ> 1, there exists some η< 1 and D > 0 such that

‖cki‖η ≤ D(λrs)(n+1)i

for all i. Hence the series ck are in R+
E

†
K

as required, and u is actually integral over

Rint
E

†
K

. It then follows that

Rint
E

†
K
→R

int,u
E

†
K

=Rint
E

†
K

[u]

is a finite, π-adically unramified extension with induced extension F{{y}} → F{{y}} of
residue fields, we must therefore have R′ ∼=R

int,u
E

†
K

, or in other words R
int,u
E

†
K

is an explicit

construction of the lift R′ of F{{u}}. Finally, we need to prove that we have R
int,u
E

†
K

⊗Rint
E

†
K

R
E

†
K

∼= Ru
E

†
K

. But the exact same argument as in the integral case shows that for any

series
∑

i f i yi in R
E

†
K

, the series
∑

i f i gi converges in Ru
E

†
K

, and we therefore get a finite

map R
E

†
K
→ Ru

E
†
K

such that Ru
E

†
K

= R
E

†
K

[u]. We therefore get a commutative push-out

diagram

R
int,u
E

†
K

// Ru
E

†
K

Rint
E

†
K

//

OO

R
E

†
K

OO

which realises Ru
E

†
K

as the tensor product R
int,u
E

†
K

⊗Rint
E

†
K

R
E

†
K

.

Having established the required properties of R
E

†
K

, we can now introduce the key
objects of study in this section, namely (ϕ,∇)-modules over R

E
†
K

.

Definition 1.8. A Frobenius on R
E

†
K

is a continuous ring endomorphism, σ-linear over

E
†
K , lifting the absolute q-power Frobenius on k((t)){{y}}.

Fix a Frobenius σ on R
E

†
K

, and let ∂y : R
E

†
K
→R

E
†
K

be the derivation given by differ-

entiation with respect to y, that is ∂y(
∑

i f i yi)=∑
i i f i yi−1.

Definition 1.9. • A ϕ,-module over R
E

†
K

is a finite free R
E

†
K

-module M together
with a Frobenius structure, that is an σ-linear map

ϕ : M → M

which induces an isomorphism M⊗R
E

†
K

,σR
E

†
K

∼= M.

• A ∇-module over R
E

†
K

is a finite free R
E

†
K

-module M together with a connection,

that is an E
†
K -linear map

∇ : M → M

such that ∇( f m)= ∂y( f )m+ f∇(m) for all f ∈R
E

†
K

and m ∈ M.

11



• A (ϕ,∇)-module over R
E

†
K

is a finite free R
E

†
K

-module M together with a Frobenius
ϕ and a connection ∇, such that the diagram

M ∇ //

ϕ

��

M

∂y(σ(y))ϕ
��

M ∇ // M

commutes.
If M is a ∇-module over R

E
†
K

we define its cohomology to be

H0(M) := ker(∇)

H1(M) := coker(∇).

It will also be useful to interpret these in a more co-ordinate free fashion, to do so
let Ω1

R
E

†
K

be the free R
E

†
K

-module generated by d y, and

d : R
E

†
K
→Ω1

R
E

†
K

given by d f = ∂y( f )d y. Then (Ω1
R

E
†
K

,d) is universal for continuous E
†
K -derivations from

R
E

†
K

into separated topological R
E

†
K

-modules, and a connection on an R
E

†
K

-module M is
equivalent to a homomorphism

∇ : M → M⊗Ω1
R

E
†
K

such that ∇( f m)= m⊗d f + f∇(m).

Definition 1.10. A ∇-module M over R
E

†
K

is said to be unipotent if there exists a basis

{e1, . . . , en} of M such that

∇(e i) ∈R
E

†
K

e1 + . . .+R
E

†
K

e i−1

for all i. We say that a (ϕ,∇)-module is unipotent if the underlying ∇-module is.

We will be using Theorem 6.1.2 of [5] as a template for the theorem we wish to
prove, so we will need to be able to associate a finite extension of R

E
†
K

to certain kinds
of ‘nearly finite separable’ extensions of k((t))((y)), that is composite extensions of the
form

k((t)){{y}}→ k((t))1/pm
{{y}}→ F{{y}}→ F{{u}}

where F/k((t))1/pm
is a finite separable extension and F{{u}}/F{{y}} is finite, Galois and

totally ramified. We will consider each of these extensions in turn, starting with the
extension k((t)){{y}}→ k((t))1/pm

{{y}}. If σ is our Frobenius on E
†
K , then there is an induced

map R
E

†
K

σ′
→ R

E
†
K

given by
∑

i f i yi 7→ ∑
iσ( f i)yi, note that this should not be confused

with a Frobenius on R
E

†
K

. We let R(E †
K )σ−m denote R

E
†
K

considered as an R
E

†
K

-algebra

via the m-fold composition of σ′, so that R
E

†
K
→ R(E †

K )σ−m is a lifting of k((t)){{y}} →
k((t))1/pm

{{y}}.
Secondly, if F/k((t)) is a finite separable extension, then we can consider the finite

extension E
†,F
K /E †

K as in Section 5 of [9]. Since E
†,F
K is of the same form as E

†
K (but with a

12



different parameter and ground field) we may define R
E

†,F
K

exactly as above, and there

is a natural map
R

E
†
K
→R

E
†,F
K

.

Actually, these are both particular cases of a more general construction associated to a
finite extension F †/E †

K . The point is that we can use the fringe topology on E
†
K to induce

a similar fringe topology on F †, by writing

F † = colimηFη

where each Fη is a finite free Eη-module (namely the sub-Eη-module of F † spanned
by some chosen basis for F †/E †

K ). These then come with a compatible collection of
topologies induced by some Banach norm on each Fη, and we can give F † the direct
limit topology. This does not depend on the choice of basis. Thus we can define the
Robba ring RF † over F † exactly as in Definition 1.2, this does not depend on the choice
of Fη or their Banach norms, and we can topologise it exactly as we topologise the
Robba ring R

E
†
K

. We can also describe RF † more straightforwardly as follows.

Lemma 1.11. Let F †/E †
K be a finite extension. Then the natural multiplication map

R
E

†
K
⊗

E
†
K

F † →RF †

is an isomorphism. Hence in particular, R
E

†
K
⊗

E
†
K

E
†,F
K

∼=R
E

†,F
K

Proof. Both are subrings of the ring F †Jy−1, yK of doubly infinite series with coefficients
in F †, hence the map is injective. To prove surjectivity, let v1, . . . ,vn be a basis for
F †/E †

K . Then for
f =∑

i
f i yi ∈RF †

we know that we can write
f =∑

j
(
∑

i
f i j yi)v j

where f i = ∑
j f i jv j ∈ F †, we must show that each

∑
i f i j yi actually lies in R

E
†
K

. So let
s > 0 be sufficiently small. Then there exists some η < 1 such that each f i ∈ Fη and
‖ f i‖η r−is → 0. But f i ∈ Fη implies that f i j ∈ Eη for all i, j, and since Fη is a finite free
module over the Banach algebra Eη, ‖ f i‖η r−is → 0 if and only if

∥∥ f i j
∥∥
η r−is → 0 for all

j.

Finally we consider the extension F{{y}}→ F{{u}}. By Proposition 1.6 we can lift this
uniquely to some finite, étale, Galois extension Rint

E
†,F
K

→R. Define R′ =R
E

†,F
K

⊗Rint
E

†,F
K

R,

this is isomorphic to Ru
E

†,F
K

by Lemma 1.7. Thus associated to the series of extensions

k((t)){{y}}→ k((t))1/pm
{{y}}→ F{{y}}→ F{{u}}

we get extensions
R

E
†
K
→R(E †

K )σ−m →R
E

†,F
K

→Ru
E

†,F
K

.

We next explain how to base extend a ∇-module M over R
E

†
K

up this tower of extensions.
For the extensions

R
E

†
K
→R(E †

K )σ−m →R
E

†,F
K

13



this is straightforward, we just use the fact that R
E

†,F
K

= R
E

†
K
⊗

E
†
K

E
†,F
K and extend the

connection M → M linearly over E
†,F
K in the obvious fashion. For the extension R

E
†,F
K

→
Ru

E
†,F
K

, we note that the appropriate universal properties of Ω1 (and the fact that Ru
E

†,F
K

is a separated topological R
E

†,F
K

-module) give a commutative diagram

R
E

†,F
K

//

��

Ω1
R

E
†,F
K

��

Ru
E

†,F
K

// Ω1
Ru

E
†,F
K

with Ω1
R

E
†,F
K

→Ω1
Ru

E
†,F
K

linear over R
E

†,F
K

. Hence we can extend

∇ : M → M⊗Ω1
R

E
†,F
K

to a morphism
∇′ : M⊗Ru

E
†,F
K

→ M⊗Ω1
Ru

E
†,F
K

by setting ∇′(m⊗ r) = ∇(m)⊗ r + m⊗ dr. We can now state the version of the p-adic
monodromy theorem we wish to prove.

Theorem 1.12. Let M be a (ϕ,∇) module over the Robba ring R
E

†
K

. Then M is quasi-

unipotent, that is there exists an integer m ≥ 0, a finite separable extension F/k((t))1/pm

and a finite, Galois, totally ramified extension F{{u}}/F{{y}} such that M⊗Ru
E

†,F
K

is unipo-

tent.

As mentioned above, the proof will closely mirror Kedlaya’s proof of Theorem 1.1,
which uses the ‘usual’ p-adic monodromy theorem for the completion of the fraction
field of A, and then ‘descending’ horizontal sections to RB for some localisation B of
A. Our proof will proceed entirely similarly, with A being replaced by E

†
K and the

completion of its fraction field by EK , we do not have to worry about the localisation,
since E

†
K is already a field.

Thus we will deduce Theorem 1.12 from the corresponding statement for EK , which
we now recall. Associated to the extensions

k((t)){{y}}→ k((t))1/pm
{{y}}→ F{{y}}→ F{{u}}

we get the extensions

k((t))((y))→ k((t))1/pm
((y))→ F((y))→ F((u))

and therefore the extensions

REK →R(EK )σ−m →RE F
K
→Ru

E F
K

as in Section 3 of [5], where, for example, E F
K is the finite extension of EK corresponding

to some F/k((t)) (beware that the notations in [5] are very different, there these rings are

denoted Γk((t))((y))
an,con ,Γk((t))1/pm

((y))
an,con ,ΓF((y))

an,con and ΓF((u))
an,con respectively). Then over EK Kedlaya’s

p-adic monodromy theorem is the following.
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Theorem 1.13 ( [5], Theorem 6.1.2). Let M be a (ϕ,∇) module over the Robba ring REK .
Then there exists an integer m ≥ 0, a finite separable extension F/k((t))1/pm

, and a finite,
Galois, totally ramified extension F((u))/F((y)) such that M⊗Ru

E F
K

is unipotent.

If we choose compatible Frobenii on R
E

†
K

and REK (which we may do) there is a
natural base extension functor M 7→ M⊗R

E
†
K

REK from (ϕ,∇)-modules over R
E

†
K

to (ϕ,∇)-

modules over REK . Exactly as in [7], the key stage in the proof of Theorem 1.12 will be
to show the following.

Proposition 1.14. Suppose that M is a ∇-module over R
E

†
K

. If M⊗R
E

†
K

REK is unipotent

(as a ∇-module over REK ), then M is unipotent.

In order to prove Proposition 1.14 we will need to adapt Kedlaya’s method of produc-
ing horizontal sections to our situation. Happily, this can be achieved entirely straight-
forwardly. As in [7], we first need to introduce some auxiliary rings. For any η< 1 and
s > 0 we let REη,s denote the ring of formal series

∑
i f i yi such that there exists c > 0

with
‖ f i‖η r−is+|i|c → 0

as i →±∞. We let R
E

†
K ,s be the direct limit colimη<1REη,s. For R = R

E
†
K ,s or R = REK ,s

there is an obvious notion of ∇-module over R, as well as unipotence for such modules.
Each REη,s has a norm given by∥∥∥∥∥∑

i
f i yi

∥∥∥∥∥
η,s

= sup
i

{
‖ f i‖η r−is

}
and there is a similarly defined norm on REK ,s, all are complete with respect to these
norms. The ring R

E
†
K ,s is given the direct limit topology from the topologies on each

REη,s.

Definition 1.15. Let A be either E
†
K or EK , and let M be a free ∇-module over either RA

or RA,s for some s > 0. Define D : M → M by D(m) = y∇(m). Then a strongly unipotent
basis for M is a basis e1, . . . , en such that

D(e i) ∈ Ae1 + . . .+ Ae i−1.

Note that by Proposition 5.2.6 of [7], when A = EK then any free, unipotent ∇-module
over RA or RA,s admits a strongly unipotent basis, and in fact exactly the same proof
shows that the same is true when A = E

†
K . Also, if e1, . . . , en is a strongly unipotent basis

for m, then the kernel of ∇ on M is equal to the kernel of D on the A-span on the e i.

Lemma 1.16. Fix η0 < 1. For any rational ε ∈ (0,1] there exists some η0 ≤ η < 1 such
that

‖ f ‖η ≤ ‖ f ‖1−ε ‖ f ‖εη0

for all f ∈ Eη0 . Here ‖·‖η the is natural norm on Eη, and ‖·‖ the π-adic norm on EK .

Proof. For f = ∑
i ai ti ∈ Eη0 we write f+ = ∑

i≥0 ai ti and f− = ∑
i<0 ai ti, I claim that it

suffices to find some η that works for all f−, indeed if so then we would have

‖ f ‖1−ε ‖ f ‖εη0
=max

{‖ f+‖1−ε ,‖ f−‖1−ε} ·max
{
‖ f+‖εη0

,‖ f−‖εη0

}
≥max

{
‖ f+‖1−ε ‖ f+‖εη0

,‖ f−‖1−ε ‖ f−‖εη0

}
≥max

{
‖ f+‖η ,‖ f−‖η

}
= ‖ f ‖η
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since ‖ f+‖1−ε ‖ f+‖εη0
= ‖ f+‖η = ‖ f+‖. But now the change of coordinate z = y−1 converts

the question for f− into Proposition 2.4.2 of [7] in the case of the one-dimensional MW-
algebra K〈z〉†.

Lemma 1.17. Let M be a free ∇-module over R
E

†
K ,s for some s > 0 such that M′ :=

M⊗R
E

†
K ,s

REK ,s is unipotent. Let e be the nilpotency index of the matrix via which D acts

on a strongly unipotent basis of M′. Define functions fn : M′ → M′ by f0(m) = De−1(m)
and

fn(m)=
(
1− D2

l2

)e

fn−1(m)

for n ≥ 1. Then for any m ∈ M′, the sequence fn(m) converges as n →∞ to some element
f (m) such that ∇( f (m))= 0. Moreover, if m ∈ M ⊂ M′ then so is f (m).

Proof. The fact that fn(m) converges as n →∞ to some f (m) such that ∇( f (m)) = 0 is
exactly Lemma 5.3.1 of [7], we must show that if m ∈ M then so is f (m), or in other
words we need to show that the sequence fn(m) actually converges in M. As in lemma
5.3.2 of loc. cit., choose a basis e1, . . . , en for M and define the matrix N by

De j =
∑

i
Ni j e i.

Also write m =∑
i g i,−1e i and choose some η such that each Ni j and g i,−1 are all defined

over REη,s. Write fn(m) = ∑
i g ine i so that each g in ∈ REη,s, we need to prove that each

sequence g in converges to some g i ∈ REη,s. Exactly as in the proof of Lemma 5.3.2 of
loc. cit. we know that there exist constants D > 0,0<λ< 1,ρ > 1 such that∥∥g i(n+1) − g in

∥∥
s ≤ Dλn∥∥g i(n+1) − g in

∥∥
η,s ≤ Dρn

where ‖·‖s is the natural norm on REK ,s and ‖·‖η,s that on REη,s. Thus by Lemma 1.16
above we can find some η< η′ < 1 and D′ > 0,0<λ′ < 1 such that∥∥g i(n+1) − g in

∥∥
η′,s ≤ D′(λ′)n

and hence each sequence g in converges in REη′ ,s.

Proof of Proposition 1.14. We first claim that if M is a free ∇-module over R
E

†
K ,s for

some s > 0, such that M⊗REK ,s is unipotent, then M is unipotent. Let D, e and f be as
in Lemma 1.17 above, and let M0 denote the EK -span of a strongly unipotent basis.

Now, for all m ∈ M ⊗REK ,s, ∇( f (m)) = 0 and hence f (m) must lie in the image of
De−1 on M0. Since f (m) = De−1(m) for any m ∈ M0, it follows that the image of f is
exactly the image of De−1 on M0. But since M ⊗

E
†
K

EK is dense in M ⊗REK ,s it follows

that f (M ⊗
E

†
K

EK ) = De−1(M0). Hence f (m) 6= 0 for some m ∈ M, and thus exists some
non-zero n = f (m) ∈ M with ∇(n) = 0. By Corollary 5.2.5 of [7], the REK ,s-submodule
of M⊗REK ,s generated by m is a direct summand, since m belongs to the EK -span of a
strongly unipotent basis for M⊗REK ,s, and hence the R

E
†
K ,s-submodule of M spanned by

m is a direct summand. Thus by quotienting out by this submodule and using induction
on the rank of M we get the claimed result.

Now suppose that we have some free ∇-module M over R
E

†
K

such that M ⊗REK

is unipotent, and let e1, . . . , en be a basis for M. Then as in Proposition 5.4.1 of [7],
if we let N denote the R

E
†
K
∩R

E
†
K ,s-span on the e i, then since REK ⊂ ⋃

s>0 REK ,s, for s
sufficiently small, N⊗(REK ∩REK ,s) is unipotent. Hence by what we have proved above,
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N⊗R
E

†
K ,s is unipotent, and thus admits a strongly unipotent basis {vi}. By an argument

identical to Proposition 5.2.6 of [7], N ⊗ (REK ∩REK ,s) also admits a strongly unipotent
basis {wi}, and by Corollary 5.2.5 of loc. cit., these two bases have the same EK -span
inside N ⊗REK ,s. Hence the vi form a strongly unipotent basis of N ⊗ (REK ∩R

E
†
K ,s).

Since REK ∩R
E

†
K ,s ⊂R

E
†
K

, it thus follows that M = N⊗R
E

†
K

is unipotent, completing the
proof.

With Proposition 1.14 out of the way, we can complete the proof of Theorem 1.12.

Proof of Theorem 1.12. Let m,F and F((u))/F((y)) be as in Theorem 1.13, so that we have
extensions

REK →R(EK )σ−m →RE F
K
→Ru

E F
K

such that M⊗Ru
E F

K
is unipotent. We may assume that the extension F((u))/F((y)) arises

from some extension F{{u}}/F{{y}}. There is therefore a commutative diagram

R
E

†
K

//

��

R(E †
K )σ−m //

��

R
E

†,F
K

//

��

Ru
E

†,F
K

��

REK
// R(EK )σ−m // RE F

K
// Ru

E F
K

and hence if we let N = M ⊗Ru
E

†,F
K

, then N ⊗Ru
E F

K
is unipotent. Hence by Proposition

1.14, N is unipotent.

Using the monodromy theorem, we can now prove finite dimensionality and base
change for the cohomology of (ϕ,∇)-modules over R

E
†
K

. Again, assume that we have
chosen compatible Frobenii on R

E
†
K

and REK .

Theorem 1.18. Let M be a (ϕ,∇)-module over R
E

†
K

. Then the cohomology groups

H0(M),H1(M)

are finite dimensional over E
†
K , and the base change morphisms

H0(M)⊗
E

†
K

EK → H0(M⊗REK )

H1(M)⊗
E

†
K

EK → H1(M⊗REK )

as isomorphisms.

Remark 1.19. Of course, H0(M⊗REK ) and H1(M⊗REK ) are defined entirely similarly
to H0(M) and H1(M).

Proof. This is entirely similar to Proposition 7.2.1 of [7], since H i(M ⊗REK ) is finite
dimensional, it suffices to prove the base change statement. First suppose that M is
unipotent, with unipotent basis {m1, . . . ,mn}. Let M j be the span of m1, . . . ,m j, this is
a sub-∇-module of M, and M j/M j−1 is isomorphic, as a ∇-module, to R

E
†
K

. Hence direct
calculation for M = R

E
†
K

together with the snake lemma and induction on j imply the
result. Of course, exactly the same calculation works over RF † for any finite extension
F †/E †

K .
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In general, we choose m,F and F{{u}}/F{{y}} such that the conclusions of Theorem
1.12 hold. By Lemma 1.11 we know that

H i(M)⊗
E

†
K

E
†,F
K

∼= H i(M⊗R
E

†
K

R
E

†,K
K

)

and since a similar calculation holds when replacing E
†
K and E

†,F
K by their completions

EK and E F
K respectively, it suffices to prove the theorem after base changing to R

E
†,F
K

. In

other words, after replacing k((t)) by F we may assume that there exists a finite, Galois,
totally ramified extension k((t)){{u}}/k((t)){{y}} and corresponding extension R/Rint

E
†
K

such

that R⊗Rint
E

†
K

R
E

†
K

∼=Ru
E

†
K

and M⊗Ru
E

†
K

is unipotent.

Since R/Rint
E

†
K

is Galois, we can define a trace map tr : Ru
E

†
K

→R
E

†
K

by summing over

Aut(R/Rint
E

†
K

), we similarly get a trace map tr :Ω1
Ru

E
†
K

→Ω1
E

†
K

such that the diagram

M //

∇
��

M⊗Ru
E

†
K

tr //

∇
��

M

∇
��

M⊗Ω1
R

E
†
K

// M⊗Ω1
Ru

E
†
K

tr // M⊗Ω1
R

E
†
K

commutes, and the composite maps

M →M⊗Ru
E

†
K
→ M

M⊗Ω1
R

E
†
K

→M⊗Ω1
Ru

E
†
K

→ M⊗Ω1
R

E
†
K

are both multiplication by n = [R : Rint
E

†
K

]. Hence there exists a projector H i(M⊗Ru
E

†
K

)→
H i(M⊗Ru

E
†
K

) whose image is exactly H i(M). Of course, similar considerations hold over

REK , and hence we get a commutative diagram

H i(M⊗Ru
E

†
K

)⊗
E

†
K

EK //

��

H i(M⊗Ru
E

†
K

)⊗
E

†
K

EK

��

H i(M⊗Ru
EK

) // H i(M⊗Ru
EK

)

where the images of the horizontal arrows are H i(M)⊗
E

†
K

EK and H i(M⊗REK ) respec-

tively. Since M⊗Ru
E

†
K

is unipotent, the vertical arrows are isomorphisms, and hence we

get an isomorphism
H i(M)⊗

E
†
K

EK → H i(M⊗REK )

as required.

2 Finiteness of rigid cohomology for smooth curves

Now armed with a suitable version of the p-adic local monodromy theorem we can prove
finite dimensionality of H i

rig(X /E †
K ,E ) for smooth curves X , though perhaps not in the
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expected manner. One might expect to prove this by attaching a version of the Robba
ring to every missing point of X as in §7.3 of [4], and deducing finite dimensionality
directly, but we will not do this. Instead, we will prove finite dimensionally for A1

directly using the p-adic monodromy theorem, and then deduce it for more general
smooth curves by locally pushing forward via a finite étale map to A1.

Our first task is therefore to use the monodromy theorem to prove finite dimension-
ality and base change with coefficients on the affine line.

Theorem 2.1. Let E ∈ F-Isoc†(A1
k((t))/E

†
K ). Then

H i
rig(A1

k((t))/E
†
K ,E )

is finite dimensional for all i and the natural map

H i
rig(A1

k((t))/E
†
K ,E )⊗

E
†
K

EK → H i
rig(A1

k((t))/EK , Ê )

is an isomorphism.

First of all we will need to reinterpret this result à la Monsky-Washnitzer, in order to
be able to use the results of the previous section. The frame we will choose is the obvious
one (A1

k((t)),P
1
kJtK, P̂1

V JtK), and we will let ϕ denote any lift to this frame of the q-power

Frobenius on P1
kJtK compatible with the chosen Frobenius σ on V JtK. Let P1,an

SK
= (P̂1

V JtK)K

denote the analytic projective line over SK , with co-ordinate x, say.

Lemma 2.2. The open sets

Vm :=
{

P ∈P1,an
SK

∣∣∣ vP (π−1tm)≤ 1,vP (πxm)≤ 1
}

are an cofinal system of neighbourhoods of ]A1
k((t))[P̂1

V JtK
inside P1,an

SK
.

Proof. This is Proposition 2.6 of [9].

Note that each Vm is affinoid, corresponding to the adic spectrum of the ring

Em〈r−1/mx〉 := SK 〈x,S1,S2〉
(πS1 − tm,S2 −πxm)

.

We let E
†
K 〈x〉† = colimmEm〈r−1/mx〉, this has the alternative description as the ring

of power series
∑

i f ixi such that there exists η < 1 and r > 1 with f i ∈ Eη for all i
and ‖ f i‖η ri → 0 as i → ∞. In other words, E

†
K 〈x〉† = colimη<1,ρ>1Eη〈ρ−1x〉. We let

O
E

†
K
〈x〉† denote the ring of power series

∑
i f ixi in E

†
K 〈x〉† such that each f i ∈ O

E
†
K

, thus

O
E

†
K
〈x〉†/π∼= k((t))[x] is the polynomial ring in one variable over k((t)).

Definition 2.3. A Frobenius on E
†
K 〈x〉† is a homomorphism which is σ-linear over E

†
K ,

preserves O
E

†
K
〈x〉†, and induces the absolute q-power Frobenius on k((t))[x].

Note that any choice of Frobenius on the frame (A1
k((t)),P

1
kJtK, P̂1

V JtK) induces a compat-
ible collection of Frobenii, all of which we will denote by σ, on the rings in the diagram

E
†
K 〈x〉† x 7→y−1

//

��

R
E

†
K

��

EK 〈x〉† x 7→y−1
// REK .
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Definition 2.4. Let σ be a Frobenius on E
†
K 〈x〉†, and let ∂x : E

†
K 〈x〉† → E

†
K 〈x〉† be the

derivation given by differentiation with respect to x.

• A ϕ-module over E
†
K 〈x〉† is a finite E

†
K 〈x〉†-module M together with a Frobenius

structure, that is an σ-linear map

ϕ : M → M

which induces an isomorphism M⊗
E

†
K 〈x〉†,σ E

†
K 〈x〉† ∼= M.

• A ∇-module over E
†
K 〈x〉† is a finite E

†
K 〈x〉†-module M together with a connection,

that is an E
†
K -linear map

∇ : M → M

such that ∇( f m)= ∂x( f )m+ f∇(m) for all f ∈ E
†
K 〈x〉† and m ∈ M.

• A (ϕ,∇)-module over E
†
K 〈x〉† is a finite E

†
K 〈x〉†-module M together with a Frobenius

ϕ and a connection ∇, such that the diagram

M ∇ //

ϕ

��

M

∂x(σ(x))ϕ
��

M ∇ // M

commutes.

Now, suppose that E is an overconvergent F-isocrystal on A1
k((t))/E

†
K . Then for each

m À 0 there is a module with (integrable) connection Em on Vm giving rise to E , and
thus the direct limit over all the Γ(Vm,Em) will be a module with connection over E

†
K 〈x〉†,

that is a finitely generated E
†
K 〈x〉†-module M together with a connection ∇ : M → M.

Exactly as for E
†
K 〈x〉†, the Frobenius structure on E gives rise to a Frobenius structure

on M, thus we get a functor
E 7→ M :=Γ(P1,an

SK
,E )

from overconvergent F-isocrystals on A1
k((t)) to (ϕ,∇)-modules over E

†
K 〈x〉†.

Now let
EK 〈x〉† = colimmEK 〈r−1/mx〉

denote the 1-dimensional Monsky-Washnitzer algebra over EK . Since we have com-
patible Frobenii on E

†
K 〈x〉† and EK 〈x〉† we get a base extension functor M 7→ M′ :=

M ⊗
E

†
K 〈x〉† EK 〈x〉† from (ϕ,∇)-modules over E

†
K 〈x〉† to those over EK 〈x〉†. Letting H i(M′)

denote the cohomology of the complex M′ ∇→ M′ there is then a base change morphism

H i(M)⊗
E

†
K

EK → H i(M′).

Proposition 2.5. For any E ∈ F-Isoc†(A1
k((t))/E

†
K ) with associated (ϕ,∇)-module M over

E
†
K 〈x〉†, there is an isomorphism

H i
rig(A1

k((t))/E
†
K ,E )∼= H i(M)

Moreover, if we let M′ = M⊗
E

†
K 〈x〉† EK 〈x〉†, then the base change morphism

H i
rig(A1

k((t))/E
†
K ,E )⊗

E
†
K

EK → H i
rig(A1

k((t))/EK , Ê )

can be identified with the base change morphism

H i(M)⊗
E

†
K

EK → H i(M′).
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Proof. Once we have used the global differential dx make the identification

j†
A1

k((t))
Ω1
P

1,an
SK

/SK

∼= j†
A1

k((t))
O
P

1,an
SK

,

the complex M ∇→ M is then just the global sections of the complex

E → E ⊗ j†
A1

k((t))
Ω1
P

1,an
SK

/SK
.

Hence for the first claim it suffices to prove that coherent j†
A1

k((t))
O
P

1,an
SK

-modules are

Γ(P1,an
SK

,−) acyclic.

So let F be a coherent j†
A1

k((t))
O
P

1,an
SK

-module, and let jm : Vm →P
1,an
SK

denote the inclu-

sion of the cofinal system of neighbourhoods from Lemma 2.2. Since the tube ]P1
kJtK[P̂1

V JtK
∼=

P
1,an
SK

is quasi-compact, it follows from Lemma 1.15 of [9] that

H i(P1,an
SK

,F )∼= colimmÀ0H i(P1,an
SK

, jm∗Fm)

where Fm is a coherent OVm -module inducing F , for m À 0. Since each Vm is affinoid,
the pushforward jm∗ is acyclic, so we have

colimmÀ0H i(P1,an
SK

, jm∗Fm)∼= colimmÀ0H i(Vm,Fm).

Again, since Vm is affinoid, we have

H i(Vm,Fm)= 0

for i > 0, and the first claim is proven.
Since an entirely similar argument applies to show that

H i
rig(A1

k((t))/EK , Ê )

can be computed in terms of the global sections of Ê ⊗ j†
A1

k((t))
Ω∗
P

1,an
EK

/EK
, which is just the

restriction of E ⊗ j†
A1

k((t))
Ω∗
P

1,an
SK

/SK
to the open subset

P
1,an
EK

⊂P1,an
SK

,

to prove the second claim it suffices to show that for any coherent j†
A1

k((t))
O
P

1,an
SK

-module

F , there is an isomorphism

Γ(P1,an
EK

,F )∼=Γ(P1,an
SK

,F )⊗
E

†
K 〈x〉† EK 〈x〉†.

Let Wm :=Vm∩P1,an
EK

, these form a cofinal system of neighbourhoods of ]A1
k((t))[P1,an

EK
inside

P
1,an
EK

. Since Wm is an open affinoid subset of the affinoid Vm, we have that

Γ(Wm,Fm)∼=Γ(Vm,Fm)⊗Γ(Vm,OVm )Γ(Wm,OWm ).

for any coherent OVm -module Fm, and the claim follows from taking the colimit as
m →∞.

Hence we can rephrase Theorem 2.1 as follows.
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Theorem 2.6. Let M be a (ϕ,∇)-module over E
†
K 〈x〉†. Then H i(M) is finite dimensional

over E
†
K , and if M′ = M⊗

E
†
K 〈x〉† EK 〈x〉†, then the base change morphism

H i(M)⊗
E

†
K

EK → H i(M′)

is an isomorphism.

As in the previous section with the proof of a version of the monodromy theorem,
the proof will be inspired by the proof of generic finiteness and base change for rela-
tive Mosnky-Washnitzer cohomology by Kedlaya in [7], where for a dagger algebra A
he shows generic finiteness of the pushforward of a (ϕ,∇) module via A → A〈x〉† by
descending from the completion of the fraction field of A. Again, in our situation the
‘dagger algebra’ is E

†
K , and the completion of its fraction field is EK , and the idea behind

the proof easily adapts to our situation. Before we give the proof, however, we will need
to know that (ϕ,∇)-modules over E

†
K 〈x〉† are free, thus enabling us to apply the results

of the previous section to their base change to R
E

†
K

. This will need building up to.

Definition 2.7. i) If f =∑
i f ixi ∈ EK 〈x〉 then we say that f has order k if ‖ f i‖ ≤ ‖ fk‖

for i ≤ k and ‖ f i‖ < ‖ fk‖ for i > k, where ‖·‖ is the π-adic norm on EK . If A ⊂ EK 〈x〉
is a subring (for example A = E

†
K 〈x〉†) then we say f ∈ A has order k if it does so in

EK 〈x〉.
ii) If f = ∑

f ixi ∈ EK 〈x〉† and ρ > 1 then we say f has ρ-order k if f ∈ EK 〈ρ−1x〉,
‖ f i‖ρ i ≤ ‖ fk‖ρk for i ≤ k and ‖ f i‖ρ i < ‖ fk‖ρk for i > k. Again, we will also use
this terminology for subrings of EK 〈x〉†.

iii) If f = ∑
f ixi ∈ E

†
K 〈x〉† and η < 1,ρ > 1 then we say f has (η,ρ)-order k if f ∈

Eη〈ρ−1x〉, ‖ f i‖ηρ i ≤ ‖ fk‖ηρk for i ≤ k and ‖ f i‖ηρ i < ‖ fk‖ηρk for i > k. Here ‖·‖η is
the natural norm on Eη.

Lemma 2.8. i) Let f ∈ EK 〈x〉†, and suppose that f has order k. Then there exists
ρ0 > 1 such that for all 1< ρ ≤ ρ0, f has ρ-order k.

ii) Let f ∈ E
†
K 〈x〉†, and suppose that f has order k. Then there exists η< 1,ρ > 1 such

that f has (η,ρ)-order k.

Proof. i) First note that since the ρ-order of f can only decrease as ρ decreases, it
suffices to prove that there exits some ρ such that f has ρ-order k. Choose ρ

such that f ∈ EK 〈ρ−1x〉 and choose i0 ≥ k such that i ≥ i0 ⇒‖ f i‖ρ i < ‖ fk‖. Since
‖ fk‖ ≥ ‖ f i‖ for all i ≤ k, it follows that for any ρ′ > 1, ‖ fk‖ρ′s ≥ ‖ f i‖ρ′i for i ≤ k, and
if 1 < ρ′ < ρ and i ≥ i0, then ‖ f i‖ρ′i < ‖ f i‖ρ i < ‖ fk‖ < ‖ fk‖ρ′k. Hence it suffices
to find 1 < ρ′ < ρ such that ‖ f i‖ρ′i < ‖ fk‖ρ′k for k < i ≤ i0. But now just taking

ρ′ <mink<i≤i0
i−k
√ ‖ fk‖

‖ f i‖ will do the trick, since ‖ f i‖ < ‖ fk‖ for k < i ≤ i0.

ii) Choose ρ0 > 1 such that for all 1 < ρ ≤ ρ0, f has ρ-order k, after possibly decreas-
ing ρ0 we may choose η0 such that f ∈ Eη0〈ρ−1

0 x〉, that is ‖ f i‖η0 ρ
i
0 → 0. Choose i0

such that i ≥ i0 ⇒ ‖ f i‖η0 ρ
i
0 < ‖ fk‖, thus for all η0 ≥ η < 1, all 1 < ρ ≤ ρ0 and all

i ≥ i0 we have ‖ f i‖ηρ i < ‖ fk‖ηρk.
Now, since ‖ f i‖ ≤ ‖ fk‖ for all i ≤ k, then for all ε> 0 there exists some η such that
‖ f i‖η ≤ ‖ fk‖η+ε for all i ≤ k (since there are only a finite number of such i). Hence
by taking ε sufficiently small, we can find η0 ≤ η1 < 1 and 1 < ρ ≤ ρ0 such that
‖ f i‖ηρ i ≤ ‖ fk‖ηρk for i ≤ k and η1 ≤ η< 1. Similarly, since ‖ f i‖ρ i < ‖ f ‖ρk for all
k < i ≤ i0, we can find some η such that ‖ f i‖ηρ i < ‖ f ‖ηρk for all k < i ≤ i0. Hence
‖ f i‖ηρ i < ‖ f ‖ηρk for i > k and ‖ f i‖ηρ i ≤ ‖ f ‖ηρk for i ≤ k, i.e. f has (η,ρ)-order k.
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Lemma 2.9. i) Suppose that f , g ∈ E
†
K 〈x〉† and g has order k. Then there exist

unique q ∈ E
†
K 〈x〉† and r ∈ E

†
K [x] of degree < k such that f = qg+ r.

ii) Let f ∈ E
†
K 〈x〉†. Then there exists a polynomial h ∈ E

†
K [x] and a unit u ∈ (E †

K 〈x〉†)×
such that f = uh.

Proof. i) The Weierstrass Division Lemma in EK 〈x〉 tells us that there exist unique
q ∈ EK 〈x〉 and r ∈ EK [x] of degree < k with f = qg+ r, we need to show that in fact
q ∈ E

†
K 〈x〉† and r ∈ E

†
K [x].

To prove this, choose η,ρ such that g has (η,ρ)-order k and define the norm ‖·‖η,ρ
on Eη〈ρ−1x〉 by ∥∥∥∥∥∑

i
hixi

∥∥∥∥∥= sup
i

{
‖hi‖ηρ i

}
.

Then Eη〈ρ−1x〉 is complete with respect to this norm, and after scaling by some
constant in K we may assume that ‖g‖η,ρ = 1. Then exactly as in the proof of the
usual Weierstrass Division Lemma (see for example Theorem 8, §2.2 of [3]), since
g has (η,ρ)-order k, we can find a sequence of elements f i, q′

i ∈ Eη〈ρ−1x〉, r′i ∈ Eη[x]
of degree < k, such that

f i = q′
i g+ r′i + f i+1

‖ f i‖η,ρ ,
∥∥q′

i
∥∥
η,ρ ,

∥∥r′i
∥∥
η,ρ ≤ εi ‖ f ‖η,ρ

where ε = maxi>s

{
‖g i‖ηρ i

}
< 1. Hence the series

∑
i q′

i and
∑

i r′i converge to

elements q′ ∈ Eη〈ρ−1x〉 and r′ ∈ Eη[x] of degree < k such that

f = q′g+ r′.

Thus by the uniqueness of such a division inside EK 〈x〉, we get q = q′ and r = r′,
or in other words q ∈ E

†
K 〈x〉† and r ∈ E

†
K [x].

ii) Exactly as in the proof of the Weierstrass Preparation Lemma (see for example
Corollary 9, §2.2 of [3]), for any f ∈ E

†
K 〈x〉† we can write f = uh with h ∈ E

†
K [x] and

u ∈ E
†
K 〈x〉† such that u is a unit in EK 〈x〉, we need to show that in fact u is a unit

in E
†
K 〈x〉†. After scaling by some element of K , we may assume that ‖u‖ = 1, and

thus by Corollary 4, §2.2 of [3], that u has order 1. Hence there exits some (η,ρ)
such that u has (η,ρ)-order 1. So in the usual way we can write u = 1− v with
‖v‖η,ρ < 1 and hence

∑
i vi is an inverse for u in Eη〈ρ−1x〉.

Lemma 2.10. Let M be a (ϕ,∇)-module over E
†
K 〈x〉†. Then M is free as a E

†
K 〈x〉†-module.

Proof. Lemma 2.9 above implies that every ideal in E
†
K 〈x〉† is generated by some poly-

nomial h ∈ E
†
K [x], and hence in particular E

†
K 〈x〉† is a PID. Thus to prove that M is free

it suffices to prove that its torsion submodule Mtor is zero. Using the structure theo-
rem for modules over a PID, it suffices to prove that for every irreducible element f of
E

†
K 〈x〉†, the f -power torsion submodule M[ f ∞] is zero. Again using Lemma 2.9, we may

assume that f is in fact an irreducible polynomial over E
†
K , which remains irreducible

in E
†
K 〈x〉†.

So let m ∈ M[ f ∞], so that f km = 0 for some k. Then by the Leibniz rule, kf k−1 f ′m+
f k∇(m) = 0, and hence f k+1∇(m) = 0, i.e. ∇(m) ∈ M[ f ∞]. Moreover, if we choose k to
be such that f k annihilates M[ f ∞], but not f k−1, then we must have that f k∇(m) = 0,
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and hence that kf k−1 f ′m = 0. Since this holds for all m, we conclude that kf k−1 f ′
annihilates M[ f ∞], and hence by the choice of k, we must have that f k divides kf k−1 f ′.
Since f is irreducible, it thus follows that f must divide f ′.

Since f is irreducible in E
†
K [x], we know that we can write λ f +µ f ′ = 1 for some

polynomials λ,µ, and hence, since f divides f ′, it follows that f must also divide 1, i.e.
f is a unit and hence M[ f ∞]= 0.

Proof of Theorem 2.6. There is an Frobenius-compatible embedding E
†
K 〈x〉† →R

E
†
K

given

by x 7→ y−1, and we let Q
E

†
K

denote the quotient. The snake lemma applied to the dia-
gram with exact rows

0 // M //

∇
��

M⊗R
E

†
K

//

∇loc

��

M⊗Q
E

†
K

//

∇qu

��

0

0 // M // M⊗R
E

†
K

// M⊗Q
E

†
K

// 0

induces a long exact sequence

0→ H0(M)→ H0(M⊗R
E

†
K

)→ H0(M⊗Q
E

†
K

)

→ H1(M)→ H1(M⊗R
E

†
K

)→ H1(M⊗Q
E

†
K

)→ 0.

There is a similar long exact sequence associated to M′ = M ⊗EK 〈x〉† coming from the
exact sequence

0→ EK 〈x〉† →REK →QEK → 0

as in 7.3.2 of [7], and these exact sequences are compatible with base change, in that
there are morphisms

H i(M)⊗
E

†
K

EK → H i(M′)

H i(M⊗R
E

†
K

)⊗
E

†
K

EK → H i(M′⊗REK )

H i(M⊗Q
E

†
K

)⊗
E

†
K

EK → H i(M′⊗QEK )

which form a commutative diagram of long exact sequences. By Lemma 2.10, M is free
as an E

†
K 〈x〉†-module, and so we can apply Theorem 1.18 which tells us that the maps

H i(M⊗R
E

†
K

)⊗
E

†
K

EK → H i(M⊗REK ) are isomorphisms.

Claim. The map
H0(M⊗Q

E
†
K

)⊗
E

†
K

EK → H0(M′⊗QEK )

is injective, and the map
H1(M)⊗

E
†
K

EK → H1(M′)

is surjective.

Proof of Claim. For the claim about injectivity, it suffices to show that the natural map
Q

E
†
K
⊗

E
†
K

EK →QEK is injective, which boils down to the diagram

E
†
K 〈x〉† //

��

R
E

†
K

��

EK 〈x〉† // REK
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being Cartesian. This follows straight from the definitions, since the inclusions

E
†
K 〈x〉† →R

E
†
K

EK 〈x〉† →REK

identify E
†
K 〈x〉† and EK 〈x〉† with R

E
†
K
∩E

†
KJy−1K and REK ∩EKJy−1K respectively. For the

claim about surjectivity, topologise M′ with the fringe topology, arising from the direct
limit topology on EK 〈x〉† as in Definition 2.3.7 of [7]. Then since M ⊗

E
†
K

EK is dense

inside M′ for this topology, it follows that the map

H1(M)⊗
E

†
K

EK → H1(M′)

has dense image for the induced topology on M′. Since the fringe topology is Hausdorff,
and the image of

∇ : M′ → M′

is closed by Proposition 8.4.4 of loc. cit., it follows that H1(M′) is also Hausdorff for the
induced topology. Since H1(M′) is finite dimensional over EK , any dense subspace must
therefore be equal to the whole space, and hence the claim follows.

Hence we can apply Lemma 7.5.3 of [7] to conclude that the the maps H i(M)⊗
E

†
K

EK → H i(M′) must be isomorphisms, and it then follows that each H i(M) is finite di-
mensional over E

†
K .

We are now in a position to deduce finite dimensionality of H i
rig(X /E †

K ,E ) for smooth
curves X from finiteness for A1 just proven. The result we will therefore be spending
the rest of this section proving is the following.

Theorem 2.11. Let X /k((t)) be a smooth curve, and let E be an overconvergent F-
isocrystal on X /E †

K , with associated overconvergent F-isocrystal Ê on X /EK . Then the
cohomology groups

H i
rig(X /E †

K ,E )

are finite dimensional, and the base change maps

H i
rig(X /E †

K ,E )⊗
E

†
K

EK → H i
rig(X /EK , Ê )

are isomorphisms.

Note that since smooth curves are quasi-projective, there always exists an embed-
ding into a smooth and proper frame over V JtK. Exactly as the general strategy for
proving finiteness in [7], we will prove this by descending to A1 using (the one dimen-
sional case of) the main result from [6], namely the following.

Theorem 2.12 ( [6], Theorem 1). Let X /k be a smooth projective curve over a field k
of characteristic p > 0, and D ⊂ X any non-empty divisor . Then there exists a finite
morphism f : X →P1

k such that D∩ f −1(∞)=; and f is étale away from ∞.

For this to be useful for us we will need to know that we can ‘lift’ a finite étale map
between curves over k((t))-schemes to characteristic zero. Actually, since we will first
need to compactify over kJtK, the lifting problem is somewhat subtle, and we will need
to make extensions of the ground field k((t)) to ensure that we can pick ‘sufficiently nice’
models over kJtK. Our first result therefore will tell us that we may make such finite
extensions with impunity. So let us suppose that we have a finite separable extension
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F ∼= l((u)) of k((t)), with associated finite extensions SF
K /SK , E

†,F
K /E †

K and E F
K /EK . Recall

from §5 of [9] that in this situation we have a commutative diagram of base extension
functors

Isoc†(X /E †
K )

E 7→EF //

E 7→Ê

��

Isoc†(XF /E †,F
K )

E 7→Ê

��

Isoc†(X /EK )
E 7→EF // Isoc†(XF /E F

K ).

Lemma 2.13. Let X /k((t)) be an embeddable variety, and E ∈ Isoc†(X /E †
K ). The natural

base change morphisms (see §5 of [9])

H i
rig(X /E †

K ,E )⊗
E

†
K

E
†,F
K → H i

rig(XF /E †,F
K ,E F )

H i
rig(X /EK , Ê )⊗EK E F

K → H i
rig(XF /E F

K , Ê F )

are isomorphisms.

Proof. Let Db
F denote the rigid space Spa(SF

K ), and let (]Y [P)F denote ]Y [P×
Db

K
Db

F , with
f : (]Y [P)F →]Y [P the projection. It is easy to see that there is a natural isomorphism
of complexes

f ∗(E ⊗Ω∗
]Y [P/SK

)∼= EF ⊗Ω∗
(]Y [P)F /SF

K

and this together with the fact that for any sheaf E on ]Y [P the base change morphism

H i(]Y [P,E)⊗SK SF
K → H i((]Y [P)F , f ∗E)

is an isomorphism implies that H i
rig(X /E †

K ,E )⊗
E

†
K

E
†,F
K

∼= H i
rig(XF /E †,F

K ,E F ). Of course,
an entirely similar argument shows that

H i
rig(X /EK , Ê )⊗EK E F

K → H i
rig(XF /E F

K , Ê F )

is an isomorphism

Thus at any point during the proof of Theorem 2.11, we may always make a finite
separable extension of the ground field k((t)). We can therefore lift finite étale maps to
characteristic zero using the following proposition.

Proposition 2.14. Let f : X → P1
k((t)) be a finite morphism as in Theorem 2.12, and let

U = f −1(A1
k((t))). Then after replacing k((t)) by a finite separable extension, there exists a

p-adic formal scheme X, flat and proper over Spf(V JtK), and commutative diagram

U //

f
��

X

w
��

A1
k((t))

// P̂1
V JtK

such that w is étale in a neighbourhood of U .

Proof. By the semistable reduction theorem for curves, after making a finite separable
extension of k((t)) we may choose a model X →P1

kJtK such that X is semistable. Since X

is semistable, it is a local complete intersection over A, and thus, since P1
kJtK is smooth

over kJtK, the morphism X → P1
kJtK is a local complete intersection. Moreover, there
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exist finitely many points {Pi} of the generic fibre X and {Q i} of the special fibre X0
such that X is étale over P1

kJtK away from the closed affine subscheme {Pi}∪ {Q i} of X .
Hence we may inductively apply Lemma 2.15 below.

Lemma 2.15. Let R0 be a ring, X0 a flat curve over R0, and f0 : X0 → P1
R0

a l.c.i. mor-
phism. Suppose that there exists a closed affine subscheme Z0 ⊂ X0, with open comple-
ment U0, such that f0 is étale on U0. Let R1 → R0 be a square zero extension. Then there
exists a lifting of X0 to a curve X1, flat over R1, and a lifting of f0 to an l.c.i. morphism
f1 : X1 → P1

R1
. Moreover, if we let U1 ⊂ X1 denote the open subscheme corresponding to

U0, then f1 is étale on U1.

Proof. We follow closely the proof of Lemma 8.3 in [4]. The obstruction to the exis-
tence of a flat lifting is a class in Ext2

X0
(LX0/P1

R0
,OX0 ), where LX0/P1

R0
is the relative

cotangent complex. Since X0 → P1
R0

is l.c.i., LX0/P1
R0

has perfect amplitude in [−1,0].

Thus L∨
X0/P1

R0

:= RHom(LX0/P1
R0

,OX0 ) has perfect amplitude in [0,1], and in particular

H i(L∨
X0/P1

R0

) = 0 for i 6= 0,1. Since f0 is étale on U0, it follows that LX0/P1
R0
|U0 = 0, and

hence that H i(L∨
X0/P1

R0

) has support in Z0 for i = 0,1. Thus we have

H1(X0,H 1(L∨
X0/P1

R0

))= 0= H2(X0,H 0(L∨
X0/P1

R0

)),

hence Ext2
X0

(LX0/P1
R0

,OX0 ), and the obstruction must vanish. Since X1/R1 is flat, the

fact that f1 is l.c.i and étale over U1 follows from the same facts about f0.

This allows us to construct pushforwards of overconvergent F-isocrystals via a finite
étale morphism to A1, at least after making a finite separable extension of k((t)), as
follows. Let f : X → P1

k((t)) be a finite morphism as in Theorem 2.12, then after making
a finite separable extension of k((t)) we may assume that there exists a morphism of
smooth and proper frames

w : (U , X ,X)→ (A1
k((t)),P

1
kJtK, P̂1

V JtK),

where X ∼=X⊗V JtK kJtK, such that X is proper over P1
kJtK and X is étale over P̂1

V JtK in a

neighbourhood of U . Note that we have ]X [X=XK and ]P1
kJtK[P̂1

V JtK
=P1,an

SK
, and w induces

a morphism of ringed spaces

wK : (XK , j†
UOXK )→ (P1,an

SK
, j†
A1OP1,an

SK
).

Since w is étale in a neighbourhood of U , if we let Um denote the standard neighbour-
hoods of ]A1

k((t))[P̂1
V JtK

inside P1,an
SK

, then for all m À 0, the induced map w−1
K (Um)→Um is

finite étale. Moreover, since U = w−1(A1
k((t))), it follows that the w−1

K (Um) are exactly the
standard neighbourhoods U ′

m of ]U[X inside XK .
Now let E be an overconvergent isocrystal on U /E †

K , corresponding to a coherent
j†
UOXK -module with overconvergent connection which we will also denote by E . Since

wK is finite on Um for m À 0, for any coherent j†
UOXK -module F , RwK∗F ∼= wK∗F

is a coherent j†
A1OP1,an

SK
-module. Since wK is étale on Um for m À 0, it follows that
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w∗
K j†

A1Ω
1
P

1,an
SK

/SK

∼= j†
UΩ

1
XK /SK

, and hence, if E is coherent j†
UOXK with an overconvergent

integrable connection, the projection formula implies that

RwK∗(E → E ⊗ j†
UΩ

1
XK /SK

)∼= wK∗(E → E ⊗ j†
UΩ

1
XK /SK

)

∼= wK∗(E )→ wK∗(E )⊗ j†
A1Ω

1
P

1,an
SK

/SK

which gives an integrable connection on the coherent j†
A1OP1,an

SK
-module wK∗(E ).

Proposition 2.16. This connection is overconvergent, and the induced overconvergent
isocrystal on A1

k((t))/E
†
K depends only on f : U →A1

k((t)). This gives rise to a functor

f∗ : Isoc†(U /E †
K )→ Isoc†(A1

k((t))/E
†
K )

adjoint to f ∗ and commuting with finite extensions F/k((t)). Moreover, for any E ∈
Isoc†(U /E †

K ) we have
H i

rig(U /E †
K ,E )∼= H i

rig(A1
k((t))/E

†
K , f∗E ).

Proof. Suppose that w : X→ P̂1
V JtK and w′ : X′ → P̂1

V JtK are two choices of morphism of

formal V JtK-schemes lifting f : U →A1
k((t)) as in Proposition 2.14. Then after replacing

X′ by the fibre product X′ ×P̂1
V JtK

X and embedding U via the diagonal morphism, we

may assume that there exits a morphism v : X′ →X which is finite and étale in neigh-
bourhood of U . Let X

′
denote the Zariski closure of U in X′ ⊗V JtK kJtK, and let E ,E ′

denote the realisations of some isocrystal in Isoc†(U /E †
K ) on (U , X ,X) and (U , X

′
,X′) re-

spectively. Again, ]X
′
[X′=X′

K and by the Strong Fibration Theorem, i.e. Proposition 4.1
of [9], we have that

RvK∗(E ′⊗ j†
UΩ

∗
X′

K /SK
)∼= E ⊗ j†

UΩ
∗
XK /SK

from which we deduce the independence of the chosen lift w.
To show that this connection is overconvergent we use Proposition 5.15 of [9]. Let x

be the co-ordinate on P̂1
OF

, so that dx is a basis for Ω1
P̂1

V JtK/V JtK in a neighbourhood of A1,

as well as being a basis for Ω1
X/V JtK in a neighbourhood of U . Also note that in this case

the closed tubes [−]n are equal to XK and P1,an
SK

for all n. So let n ≥ 0 and let Um be one

of the standard neighbourhoods of ]A1
k((t))[P̂1

V JtK
inside P1,an

SK
such that w−1

K (Um) →Um is

finite étale, E extends to a module with integrable connection on w−1
K (Um), and∥∥∥∥∥∂k

x (e)
k!

∥∥∥∥∥ r−
k
n → 0

as k → 0 for all e ∈ Γ(w−1
K (Um),E ). Since the Banach norm on Γ(w−1

K (Um),E ) as an
Ow−1

K (Um)-module is equivalent to the Banach norm on Γ(w−1
K (Um),E ) = Γ(Um,wL∗E ) as

an OUm -module, it follows that ∥∥∥∥∥∂k
x (e)
k!

∥∥∥∥∥ r−
k
n → 0

for all e ∈Γ(Um,wK∗E ), in other words the connection on wK∗(E ) is overconvergent.
Finally, the fact that

RΓ(XK ,−)∼=RΓ(P1,an
SK

,RwK∗(−))

easily implies statement about the cohomology of the pushforward.
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The next stage is to show that f∗ is compatible with Frobenius structures. Since
f : U → A1

k((t)) is finite étale, the relative Frobenius FU /A1 : U → U ′ is an isomorphism,
where U ′ is the base change of U via the absolute (q-power) Frobenius of A1

k((t)). Hence
if ϕ is a σ-linear lift of the q-power Frobenius on P1

kJtK to P̂1
V JtK (such liftings always

exist), then the base change X′ := X×P̂1
V JtK,ϕ P̂

1
V JtK of X via ϕ together with its natural

map to X is a lifting of the q-power Frobenius on U .
Explicitly, let X

′
be the base change of X by the q-power Frobenius on P1

kJtK, then the

relative Frobenius FU /A1 : U →U ′ induces a closed immersion U → X
′
, and the induced

diagram of frames

(U , X
′
,X′)

ϕ′
//

w′

��

(U , X ,X)

w
��

(A1
k((t)),P

1
kJtK, P̂1

V JtK)
ϕ
// (A1

k((t)),P
1
kJtK, P̂1

V JtK)

is a lifting of the commutative diagram

U //

��

U

��

A1
k((t))

// A1
k((t))

where the horizontal morphisms are the q-power Frobenii. Hence by Lemma 5.22 of [9],
the Frobenius pullback functors

F∗ : Isoc†(U /E †
K )→ Isoc†(U /E †

K )

F∗ : Isoc†(A1
k((t))/E

†
K )→ Isoc†(A1

k((t))/E
†
K )

can be identified with ϕ′∗
K and ϕ∗

K respectively.

Proposition 2.17. Étale pushforward f∗ commutes with Frobenius pullback, in the
sense that the diagram

Isoc†(U /E †
K )

f∗
��

F∗
// Isoc†(U /E †

K )

f∗
��

Isoc†(A1
k((t))/E

†
K ) F∗

// Isoc†(A1
k((t))/E

†
K )

commutes up to natural isomorphism.

Proof. For any coherent j†
UOXK -module E with an integrable connection, there is a

natural base change morphism

ϕ∗
K wK∗E → w′

K∗ϕ
′∗
K E

which is horizontal for the induced connections, we must show that this morphism
is an isomorphism. Of course, we may forget the connection and simply prove the
corresponding statement for coherent j†

UOXK -modules.
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We can given this a Monsky-Washnitzer interpretation as follows, we have

Γ(P1,an
SK

, j†
A1OP1,an

SK
)= E

†
K 〈x〉†

and the Frobenius σ induces a Frobenius σ on E
†
K 〈x〉†. Then

Coh( j†
A1OP1,an

SK
)∼=Modfg(E †

K 〈x〉†)

and if we similarly let A†
K =Γ(XK , j†

UOXK ), then we get an equivalence

Coh( j†
UOXK )∼=Modfg(A†

K ).

There is a finite étale morphism of rings E
†
K 〈x〉† → A†

K such that the push forward f∗ is
identified with the forgetful functor

Modfg(A†
K )→Modfg(E †

K 〈x〉†).

We can identify Γ(X′
K , j†

UOX′
K

) with

B†
K := A†

K ⊗
E

†
K 〈x〉†,σ E

†
K 〈x〉†.

Then the base change morphism becomes the natural morphism

M⊗
E

†
K 〈x〉†,σ E

†
K 〈x〉† → M⊗A†

K
B†

K

associated to a finite A†
K -module M, which is an isomorphism.

Finally, since we want to be able to prove base change theorems as well as finiteness
theorems, we will need to know compatibility of f∗ with the étale pushforward functor
in ‘usual’ rigid cohomology, as constructed for example in §2.6 of [12]. Let OEK denote
the ring of integers of EK , and let w : (U , X ,X) → (A1

k((t)),P
1
kJtK, P̂1

V JtK) be a lifting of U →
A1

k((t)) as above. Write X k((t)) = X ⊗kJtK k((t)) and X̂=X⊗V JtK OEK . Then

w : (U , X k((t)),X̂)→ (A1
k((t)),P

1
k((t)), P̂

1
OEK

)

is a morphism of frames over OEK lifting U → A1
k((t)). Methods entirely similar to

those used in §11 of [9] show that overconvergent isocrystals on U /EK (resp. A1
k((t))/EK )

can be described as modules with overconvergent connection on ]X k((t))[X̂= X̂EK (resp.
]P1

k((t))[P̂1
OEK

=P1,an
EK

) as adic spaces, and that Tsuzuki’s étale pushforward functor can be

described as taking the module with connection

E → E ⊗ j†
UΩ

1
X̂EK /EK

to the module with connection corresponding to

RwK∗(E → E ⊗ j†
UΩ

1
X̂EK /EK

)∼= wK∗(E )→ wK∗(E )⊗ j†
A1Ω

1
P

1,an
EK

/EK

exactly as before. Since the natural morphisms of tubes appearing as the horizontal
arrows in the diagram

X̂EK
//

wK

��

XK

wK

��

P
1,an
EK

// P
1,an
SK
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are open immersions, and the diagram is Cartesian, it follows immediately that the
natural base change morphism arising from the diagram is an isomorphism, or in other
words that the diagram

Isoc†(U /E †
K ) E 7→Ê //

f∗
��

Isoc†(U /EK )

f∗
��

Isoc†(A1
k((t))/E

†
K ) E 7→Ê // Isoc†(A1

k((t))/EK )

commutes up to natural isomorphism. Of course, an entirely similar argument shows
that the same is true with Frobenius structures. We can summarise the results of this
section so far as follows.

Theorem 2.18. Let f : X → P1
k((t)) be a finite morphism, étale away from ∞, and let

U = f −1(A1
k((t))). Then after a finite separable extension of k((t)) there exists a pushforward

functor
f∗ : F-Isoc†(U /E †

K )→ F-Isoc†(A1
k((t))/E

†
K )

which commutes with further finite separable extensions F/k((t)), and is such that

H i
rig(U /E †

K ,E )∼= H i
rig(A1

k((t))/E
†
K , f∗E )

for any E ∈ F-Isoc†(U /E †
K ). Moreover, the diagram

F-Isoc†(U /E †
K ) //

f∗
��

F-Isoc†(U /EK )

f∗
��

F-Isoc†(A1
k((t))/E

†
K ) // F-Isoc†(A1

k((t))/EK )

commutes up to natural isomorphism.

We need one last lemma before we can prove Theorem 2.11.

Lemma 2.19. Let X /k((t)) be an embeddable variety, X =∪ j X j a finite open cover of X
and E ∈ Isoc†(X /E †

K ). For indices J = { j1, . . . , jn} of we set XJ = X j1 ∩ . . .∩X jn . Then there
exists a spectral sequence

Ep,q
1 = ⊕

|J|=p
Hq

rig(XJ /E †
K ,E )⇒ Hp+q

rig (XJ /E †
K ,E ).

Proof. Follows from Lemma 4.4 of [9].

Proof of Theorem 2.11. By Lemma 2.19 and the corresponding result for rigid cohomol-
ogy over EK (i.e. the spectral sequence resulting from Proposition 2.1.8 of [2]), the
question is local on X , and hence we may assume that there exists a finite étale map to
A1

k((t)). After making a finite separable extension of k((t)) we may assume therefore that
we have a pushforward functor

f∗ : F-Isoc†(X /E †
K )→ F-Isoc†(A1

k((t))/E
†
K )

as in Theorem 2.18. Hence we may reduce to the case of affine 1-space, i.e. Theorem
2.1.
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Definition 2.20. A ϕ-module over E
†
K is a finite dimensional E

†
K -vector space M, to-

gether with a Frobenius structure, that is a σ-linear map

ϕ : M → M

which induces an isomorphism M⊗
E

†
K ,σ E

†
K
∼= M.

Corollary 2.21. Let X be a smooth curve over k((t)), and E ∈ F-Isoc†(X /E †
K ). Then the

cohomology groups H i
rig(X /E †

K ,E ) are ϕ-modules over E
†
K .

Proof. The linearised Frobenius

ϕσ : H i
rig(X /E †

K ,E )⊗
E

†
K ,σ E

†
K → H i

rig(X /E †
K ,E )

becomes an isomorphism upon base-changing to EK , it must therefore be an isomor-
phism.

3 Cohomology with compact support and Poincaré duality for
curves

Although we cannot prove it at the moment, we fully expect that E
†
K -valued rigid coho-

mology forms an ‘extended’ Weil cohomology. By this we mean that together with all
the usual axioms for a Weil cohomology, we can define cohomology groups for arbitrary
varieties (not necessarily smooth and proper), as well as cohomology with compact sup-
port and support in a closed subscheme. All these should all not only be vector spaces,
but in fact (ϕ,∇)-modules over E

†
K , and there should be versions of the Künneth formula

and Poincaré duality.
In full generality this seems somewhat distant (for example, even finite dimension-

ality appears rather difficult). In this section we start towards this goal: we define
cohomology with compact support and prove Poincaré duality for smooth curves (as ϕ-
modules). To define cohomology with compact support requires a bit more care than
in the case of ‘usual’ rigid cohomology, since we are trying to capture sections having
support compact over k((t)), not kJtK. In fact this subtlety is acknowledged in le Stum’s
book on rigid cohomology [11], where he only defines the relative rigid cohomology with
compact support of a frame

(X ,Y ,P)→ (S,S,S)

under the assumption that S = S. Our goal is to define the ‘relative rigid cohomology
with compact supports’ of a smooth and proper morphism of frames

(X ,Y ,P)→ (
Spec(k((t))) ,Spec

(
kJtK

)
,Spf

(
V JtK

))
and so this problem cannot be side-stepped.

Let us first treat the case of constant coefficients, so suppose that we have a smooth
frame (X ,Y ,P) over V JtK. We set Z = Y \ X , Y ′ = Y ⊗kJtK k((t)) and Z′ = Y ′ \ X . Finally
we let W =Y ⊗kJtK k. Thus we have a diagram of tubes

]X [P
j′

{{

j
��

]Y ′[P
k // ]Y [P ]W[P

hoo

]Z′[P

i′
OO

k′
// ]Z[P

i

OO
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where j, j′,k and k′ are closed embeddings, i, i′ and h are open embeddings and the
lower left had square is Cartesian. For any sheaf F on ]Y [P we define

Γ]X [P (F ) := ker(k∗k−1F → i∗ i−1k∗k−1F ),

the total derived functor of Γ]X [P can then be computed as

RΓ]X [P (K ∗)= (
k∗k−1K ∗ →Ri∗ i−1k∗k−1K ∗)

[1].

We define the cohomology with compact support of (X ,Y ,P) to be

H i
c,rig((X ,Y ,P)/E †

K ) := H i(]Y [P,RΓ]X [P (Ω∗
]Y [P/SK

)).

To perhaps motivate this definition a bit better, or at least better demonstrate the anal-
ogy with compactly supported rigid cohomology, let us slightly recast our definition of
E

†
K -valued rigid cohomology. For any sheaf F on ]Y ′[P we define

j′†X F := j′∗ j′−1F

so that

H i
rig((X ,Y ,P)/E †

K )= H i(]Y [P, j∗ j−1Ω∗
]Y [P/SK

)

= H i(]X [P, j′−1k−1Ω∗
]Y [P/SK

)

= H i(]Y [P, j′∗ j′−1k−1Ω∗
]Y [P/SK

)

= H i(]Y [P, j′†X (k−1Ω∗
]Y [P/SK

))

and for any sheaf F on ]Y ′[P we define

Γ]X [P (F )= ker(F → i′∗ i′−1F ).

The total derived functor of Γ]X [P is therefore given by

RΓ]X [P (K ∗)= (
K ∗ →Ri′∗ i′−1K ∗)

[−1]

and it is straightforward to verify that we have

H i
c,rig((X ,Y ,P)/E †

K )∼= H i(]Y ′[P,RΓ]X [P (k−1Ω∗
]Y [P/SK

)).

These groups satisfy are functorial in two different ways. First, if (U ,Y ,P)→ (X ,Y ,P)
is a morphism of smooth and proper frames such that the induced maps on Y and P
are the identity, and U → X is an open immersion, then we get an induced morphism

H i
c,rig((U ,Y ,P)/E †

K )→ H i
c,rig((X ,Y ,P)/E †

K )

which arises from the natural morphism of functors Γ]U[P → Γ]X [P . Also, if we have a
morphism of smooth and proper frames

u : (X ′,Y ′,P′)→ (X ,Y ,P)

such that the diagram
X ′ //

��

Y ′

��

X // Y
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is Cartesian, then we get an induced morphism

H i
c,rig((X ,Y ,P)/E †

K )→ H i
c,rig((X ′,Y ′,P′)/E †

K )

arising from the natural morphism of functors Γ]X [PuK∗ → uK∗Γ]X ′[P′ . One also verifies
easily that compactly supported cohomology only depends on a neighbourhood of ]X [P
inside ]Y [P, since if jV : V →]Y [P is the inclusion of such a neighbourhood, then we
have a natural isomorphism of functors

jV∗Γ]X [P j−1
V

∼=Γ]X [P

where Γ]X [P on the LHS denotes the obvious analogous functor for sheaves on V . The

key step in proving that H i
c,rig((X ,Y ,P)/E †

K ) only depends on X is to show a Poincaré
lemma with compact supports. First, however, we need an excision sequence.

Lemma 3.1 (Excision). Let (X ,Y ,P) be a smooth frame, and U ⊂ X an open subvariety.
Let Z be a closed complement to U in X , Z =Y \U , and i :]Z[P→]Y [P the corresponding
open immersion. Then for any sheaf F on ]Y [P there is an exact triangle

RΓ]U[P (F )→RΓ]X [P (F )→Ri∗RΓ]Z[P (i−1F ) +1→

of sheaves on ]Y [P, and hence a long exact sequence

. . .→ H i
c,rig((U ,Y ,P)/E †

K )→ H i
c,rig((X ,Y ,P)/E †

K )→ H i
c,rig((Z, Z,P)/E †

K )→ . . .

in compactly supported cohomology.

Proof. First note that the natural map Z → Z is an open immersion, so that (Z, Z,P)
is indeed a smooth frame. Let Y ′ = Y ⊗kJtK k((t)) as usual, and also let Z

′ = Y ′ ∩ Z,
W =Y \ X . Consider the diagram of tubes

]Y ′[P
k // ]Y [P

]Z
′
[P

k′
//

i′
OO

]Z[P

i

OO

]W[P
j

oo

iW

bb

where the square is Cartesian, k,k′ are closed immersions, i, i′, j, iW are open immer-
sions, also note that we have W = Z \ Z. Thus we have

RΓ]U[P (F )' (
k∗k−1F →Ri∗ i−1k∗k−1F

)
[−1]

RΓ]X [P (F )' (
k∗k−1F →RiW∗ i−1

W k∗k−1F
)
[−1]

Ri∗RΓ]Z[P (i−1F )' (
Ri∗k′

∗k′−1 i−1F →Ri∗R j∗ j−1k′
∗k′−1 i−1F

)
[−1]

and hence it suffices to show that there is a quasi-isomorphism

Ri∗ i−1k∗k−1F →RiW∗ i−1
W k∗k−1 i−1F

'Ri∗k′
∗k′−1F →Ri∗R j∗ j−1k′

∗k′−1 i−1F .

But unpacking this all, setting G = i−1k∗k−1F , and noting that we have k′∗ i′−1 ∼= i−1k∗,
then both terms in this simply become

Ri∗G →Ri∗R j∗ j−1G

which proves the first claim. The second them immediately follows.
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Lemma 3.2 (Poincaré Lemma with compact supports). Let (X ,Y ,P) be a smooth frame
over V JtK, and consider the morphism of frames

u : (X ,Y ,Âd
P)→ (X ,Y ,P).

Then
RΓ]X [P (Ω∗

]Y [P/SK
)→RuK∗RΓ]X [

Âd
P

(Ω∗
]Y [

Â1
P

/SK
)

is a quasi-isomorphism.

Proof. The question is local on P, which we may thus assume to be affine, and by con-
sidering further localisations, it suffices to prove the statement after applying the de-
rived global sections functor. As in the proof of the excision theorem (but much simpler)
we have a quasi-isomorphism

RΓ(]Y [
Âd
P

,RΓ]X [
Âd
P

(Ω∗
]Y [

Âd
P

/SK
)'

(
RΓrig((Y ′,Y ,Âd

P)/E †
K )→RΓrig((Z, Z,Âd

P)/E †
K )

)
[−1]

where Y ′ =Y ⊗kJtK k((t)), Z =Y ′\ X and Z is the closure of Z inside Y , and, for example,

RΓrig((Y ′,Y ,Âd
P)/E †

K )=RΓ(]Y [
Âd
P

, j†
Y ′Ω

∗
]Y [

Âd
P

/SK
)

is the cohomology complex computing the rigid cohomology of the frame (Y ′,Y ,Âd
P

).
Similarly, we have

RΓ(]Y [P,RΓ]X [P (Ω∗
]Y [P/SK

)'
(
RΓrig((Y ′,Y ,P)/E †

K )→RΓrig((Z′, Z′,P)/E †
K )

)
[−1].

But the Poincaré Lemma without supports (Proposition 4.3 of [9]) shows that the maps

RΓrig((Y ′,Y ,P)/E †
K )→RΓrig((Y ′,Y ,Âd

P)/E †
K )

RΓrig((Z, Z,P)/E †
K )→RΓrig((Z, Z,Âd

P)/E †
K )

are quasi-isomorphisms (see also Remark 4.7 of loc. cit.) and the result follows.

Corollary 3.3. Let u : (X ,Y ′,P′) → (X ,Y ,P) be a smooth and proper morphism of
smooth frames, with u−1X ∩Y ′ = X . Then the natural map

H i
c,rig((X ,Y ,P)/E †

K )→ H i
c,rig((X ,Y ′,P′)/E †

K )

is an isomorphism.

Proof. Taking into account the Strong Fibration Theorem, that H i
c,rig((X ,Y ,P)/E †

K ) only
depends on a neighbourhood of ]X [P in ]Y [P, and that we may localise on X using the
excision sequence, this then follows exactly as in the proof of Theorem 4.5 of [9].

Hence we get the following.

Theorem 3.4. Up to natural isomorphism, H i
c,rig((X ,Y ,P)/E †

K ) only depends on X and
not on the choice of smooth and proper frame (X ,Y ,P), thus it makes sense to write
H i

c,rig(X /E †
K ). These compactly supported cohomology groups are covariant with respect

to open immersions and contravariant with respect to proper morphisms.
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Proof. The only thing that is not clear is functoriality with respect to proper mor-
phisms, but this just follows from the fact that if we have a diagram

X ′ //

��

Y ′

��

X // Y

with both vertical maps proper, and both horizontal maps open immersions, and X ′
dense inside Y ′, then the diagram is actually Cartesian.

For non-constant coefficients E ∈ Isoc†(X /E †
K ), we perform an entirely similar con-

struction, but simply replacing ]Y [P by some suitable neighbourhood of ]X [P to which
E extends. Specifically, if V is some neighbourhood of ]X [P inside ]Y [P, and F is a
sheaf of V , then denoting by iV the inclusion of the complement of ]X [P into V and by
kV the inclusion of V ′ :=V∩]Y ′[P into V , we define

Γ]X [P (F )= ker(kV∗k−1
V F → iV∗ i−1

V kV∗k−1
V F )

as above. If E ∈ Isoc†(X /E †
K ) extends to a module with connection EV on some such V ,

we define
H i

c,rig((X ,Y ,P)/E †
K ,EV ) := H i(V ,RΓ]X [P (EV ⊗Ω∗

V /SK
))

exactly as before. Of course, there is an entirely similarly defined functor Γ]X [P for
sheaves on V ′ we have

H i
c,rig((X ,Y ,P)/E †

K ,EV )∼= H i(V ′,RΓ]X [P (k−1
V (EV ⊗Ω∗

V /SK
)))

as before. This does not depend on the choice of neighbourhood V , or on the extension
EV of E , we will therefore write it as H i

c,rig((X ,Y ,P)/E †
K ,E )

Remark 3.5. If we define the endofunctor j′†X for sheaves on V ′ in the obvious way, then
we also have

H i
rig(X /E †

K ,E )∼= H i(V ′, j′†X (k−1
V (EV ⊗Ω∗

V /SK
)))

so the cohomology without supports of E can also be computed in terms of sheaves on
V ′.

Proposition 3.6. This does not depend on the choice of smooth and proper frame
(X ,Y ,P) containing X , in that if we have a smooth and proper morphism

u : (X ,Y ′,P′)→ (X ,Y ,P)

of smooth frames, such that u−1(X )∩Y ′ = X , then

H i
c,rig((X ,Y ′,P′)/E †

K ,E )→ H i
c,rig((X ,Y ,P)/E †

K ,E )

is an isomorphism.

Proof. This is similar to the constant coefficients case, although there is a slight sub-
tlety in the extension of the Poincaré Lemma to include coefficients. In the constant
case we knew we could extend to a module with connection on the whole of the tube
]Y [P, in general we will only be able to extend to some neighbourhood V of ]X [P. We
get round this as follows.
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First we note that it certainly suffices to prove the stronger statement that

RΓ]X [P (E ⊗Ω∗
]Y [P/SK

)→RuK∗RΓ]X [
Âd
P

(u∗E ⊗Ω∗
]Y [

Â1
P

/SK
)

is a quasi-isomorphism. We use the fact that this question is local on PK to base change
to some [Y ]n, and hence assume that ]Y [P= PK , which we may also assume to be
affinoid. We then use an excision sequence to reduce to the case when X =Y ∩D(g) for
some g ∈OP, thus we may assume that the neighbourhood V is affinoid, and thus has a
formal model. Again using the fact that compactly supported cohomology only depends
on some neighbourhood of ]X [P, we may further base change to this formal model of V
to then ensure that we do get a module with connection on the whole of ]Y [P.

Thus it makes sense to write these groups as H i
c,rig(X /E †

K ,E ), they are functorial in
E , as well as being covariant with respect to open immersions X → X ′ when E extends to
X ′ and contravariant with respect to proper morphisms. We also get the functorialities
with respect to finite separable extensions of k((t)) as well as Frobenius as in §55 of
[9] (we will come back to the issue of the extension E

†
K → EK shortly). Hence, as in

the case of cohomology without supports, if E ∈ F-Isoc†(X /E †
K ) we get a Frobenius on

H i
c,rig(X /E †

K ,E ), that is a σ-linear morphism

H i
c,rig(X /E †

K ,E )→ H i
c,rig(X /E †

K ,E ),

however, we do not know if this is a ϕ-module structure (i.e. linearises to an isomor-
phism) in general.

Since for any sheaf F on some open neighbourhood V ′ of ]X [P inside ]Y ′[P there is
an obvious map

Γ]X [PF → j′†X F

which is trivially an isomorphism when X = Y ′, for any embeddable variety there is a
natural ‘forget supports’ map

H i
c,rig(X /E †

K ,E )→ H i
rig(X /E †

K ,E )

which is an isomorphism when X is proper. This is compatible with Frobenius when
E ∈ F-Isoc†(X /E †

K ). We also have an excision sequence

. . .→ H i
c,rig(U /E †

K ,E |U )→ H i
c,rig(X /E †

K ,E )→ H i
c,rig(Z/E †

K ,E |Z)→ . . .

for any open immersion U ⊂ X of embeddable varieties over k((t)) with complement Z,
and any E ∈ Isoc†(X /E †

K ).
The next problem is to relate H i

c,rig(X /E †
K ,E ) to the ‘usual’ rigid cohomology with

compact supports H i
c,rig(X /EK , Ê ), or at least produce a canonical base change morphism

H i
c,rig(X /E †

K ,E )⊗
E

†
K

EK → H i
c,rig(X /EK , Ê ).

To do so, we suppose that we have a smooth and proper frame (X ,Y ,P), and we let
(X ,Y ′,P′) denote the base change of this frame to OEK . Let Z be the complement of
X in Y , and Z′ the complement of X in Y ′. For simplicity we will stick to the con-
stant coefficients case, the general case can be handled by replacing ]Y [P by a suitable
neighbourhood of ]X [P. We consider the diagram

]Z[P
i // ]Y [P ]Y ′[P

koo

]Z′[P′
i′ //

OO

]Y ′[P′

j

OO ;;
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so that we have
RΓ]X [P (F )∼= (

k∗k−1F →Ri∗ i−1k∗k−1F
)
[−1]

for any sheaf F on ]Y [P. Define the functor Γ]X [P′ = kerF → i′∗ i′−1F for sheaves on

]Y ′[P′ , so that we have

RΓ]X [′
P

(F )∼= (
F →Ri′∗ i′−1F

)
[−1].

Then we have a natural isomorphism of functors

j−1RΓ]X [P
∼=RΓ]X [′

P
j−1

which therefore induces an E
†
K -linear morphism

H i
c,rig(X /E †

K )→ H i(]Y ′[P′ ,RΓ]X [P′ (Ω
∗
]Y ′[P′ /EK

))

and hence an EK -linear morphism

H i
c,rig(X /E †

K )⊗
E

†
K

EK → H i(]Y ′[P′ ,RΓ]X [P′ (Ω
∗
]Y ′[P′ /EK

)).

It therefore suffices to show that the RHS computes compactly supported EK -valued
rigid cohomology of X . But since the underlying topoi of a Tate rigid space and the
corresponding adic space locally of finite type over EK coincide, and this equivalence is
functorial, it follows that the complex of sheaves RΓ]X [P′ (Ω

∗
]Y ′[P′ ) on ]Y ′[P′ gives rise to

the same object in the underlying topos of ]Y ′[P′ as the analogous construction given
by Berthelot in [1] in terms of Tate’s rigid spaces. Hence we have

H i(]Y ′[P′ ,RΓ]X [P′ (Ω
∗
]Y ′[P′ /EK

))∼= H i
c,rig(X /EK )

as expected, and this gives us our base change morphism. For smooth curves, and
with coefficients which extend to the compactification, we can easily see that this is an
isomorphism as follows.

Lemma 3.7. Let X /k((t)) be a smooth curve with compactification X and suppose that
E ∈ F-Isoc†(X /E †

K ) extends to an overconvergent F-isocrystal E on X . Then the base
change morphism

H i
c,rig(X /E †

K ,E )⊗
E

†
K

EK → H i
c,rig(X /EK , Ê )

is an isomorphism.

Proof. Of course, since smooth curves are always embeddable, H i
c,rig(X /E †

K ,E ) is actu-
ally defined. Let D be the closed complement of X . Since cohomology with and without
supports agree for X and D we have an exact sequence

0→ H0
c,rig(X /E †

K ,E )→ H0
rig(X /E †

K ,E )→ H0
rig(D/E †

K ,E |D)

→ H1
c,rig(X /E †

K ,E )→ H1
rig(X /E †

K ,E )→ 0

as well as an isomorphism

H2
c,rig(X /E †

K ,E )∼= H2
rig(X /E †

K ,E ).

Of course, there same holds over EK , and this exact sequence and isomorphism are
compatible with base change. Since we know that base change holds for H i

rig(X /E †
K ,E )

and H i
rig(D/E †

K ,E |D), it follows that it also must hold for H i
c,rig(X /E †

K ,E ).
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Actually, thanks to excision we now get finite dimensionality and base change for
compactly supported cohomology for any curve, without smoothness hypotheses.

Corollary 3.8. Let X be a curve over k((t)). Then the base change morphism

H i
c,rig(X /E †

K )⊗
E

†
K

EK → H i
c,rig(X /EK )

is an isomorphism.

Proof. Since every variety becomes generically smooth after a (possibly inseparable)
finite extension of k((t)), it suffices to prove that H i

c,rig(X /E †
K ,E ) commutes with finite

extensions of k((t)). The case of separable extensions is handled entirely similarly to
Lemma 2.13, it therefore suffices to treat the case of the extension k((t)) → k((t))1/p.
If we let E

†,σ−1

K denote a copy of E
†
K but with E

†
K -algebra given by the Frobenius lift

σ. This makes E
†,σ−1

K into a finite extension of E
†
K , and hence we can apply methods

entirely similar to those used in the proof of Lemma 2.13.

Hence, as usual, if X /k((t)) is a smooth curve, and E ∈ F-Isoc†(X /E †
K ) extends to

a compactification X , then H i
c,rig(X /E †

K ,E ) is a ϕ-module over E
†
K (that is, it is finite

dimensional and the linearised Frobenius is an isomorphism). If X is singular, then we
at least know that the same is true for H i

c,rig(X /E †
K ).

Now, if X /k((t)) is any Frobenius-embeddable variety, i.e. there exists smooth and
proper frame (X ,Y ,P) which admits a lifting of Frobenius, then we can construct a
Frobenius-compatible Poincaré pairing as follows. Suppose that X is purely of dimen-
sion n. Since for any sheaves F ,G of E

†
K -modules on some neighbourhood V ′ of ]X [P in

]Y ′[P there is a natural isomorphism

H om
E

†
K

( j′†X F ,G )∼=Γ]X [PH omSK (F ,G ),

we easily deduce the existence of a pairing

H i
rig(X /E †

K ,E )×H j
c,rig(X /E †

K ,F )→ H i+ j
c,rig(X /E †

K ,E ⊗F )

for any E ,F ∈ Isoc†(X /E †
K ). Hence we get a pairing

H i
rig(X /E †

K ,E )×H2n−i
c,rig (X /E †

K ,E∨)→ H2n
c,rig(X /E †

K )

where E∨ is the dual of E , which is Frobenius-compatible when E ∈ F-Isoc†(X /E †
K ).

Theorem 3.9. Suppose that X is a smooth curve. Then there is a trace morphism

Tr : H2
c,rig(X /E †

K )→ E
†
K (−1)

of ϕ-modules over E
†
K , which is an isomorphism when X is geometrically irreducible.

Moreover, for any E ∈ F-Isoc†(X /E †
K ) which extends to some E on a compactification X of

X , the induced Poincaré pairing

H i
rig(X /E †

K ,E )×H2−i
c,rig(X /E †

K ,E∨)→ E
†
K (−1)

is perfect.

Remark 3.10. i) Here E
†
K (−1) means the constant ϕ-module, but with the Frobenius

action multiplied by q.
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ii) Since a smooth curve is always Frobenius-embeddable, the statement of the theo-
rem makes sense.

Proof. Let us first suppose that X is geometrically irreducible. Then upon base-changing
to EK , H2

c,rig(X /E †
K ) becomes one-dimensional and the Poincaré pairing perfect, the same

is therefore true over E
†
K . Thus it suffices to show that H2

c,rig(X /E †
K ) ∼= E

†
K (−1), by exci-

sion we may assume that X is proper, and hence admits a finite map to P1. Thus we
get a natural map

H2
rig(P1

k((t))/E
†
K )→ H2

rig(X /E †
K )

which becomes an isomorphism upon base changing to EK , and is therefore an isomor-
phism. Thus it suffices to treat the case X =P1

k((t)). This can be computed directly.
In general, there exists a finite, Galois extension F/k((t)) over which X breaks up

into a disjoint union of geometrically irreducible components. Hence by summing the
trace maps on each component we get

Tr : H2
c,rig(XF /E †,F

K )= H2
c,rig(X /E †

K )⊗
E

†
K

E
†,F
K → E

†,F
K (−1)

and hence using the trace map E
†,F
K → E

†
K (since E

†,F
K /E †

K is a finite Galois extension),
we get an induced trace map

Tr : H2
c,rig(X /E †

K )→ E
†
K (−1).

That the induced pairing is perfect then follows again from base change to EK .
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