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ABSTRACT. In this article we study various forms of `-independence (including the case ` = p) for the coho-
mology and fundamental groups of varieties over finite fields and equicharacteristic local fields. Our first result
is a strong form of `-independence for the unipotent fundamental group of smooth and projective varieties over
finite fields, by then proving a certain ‘spreading out’ result we are able to deduce a much weaker form of
`-independence for unipotent fundamental groups over equicharacteristic local fields, at least in the semistable
case. In a similar vein, we can also use this to deduce `-independence results for the cohomology of semistable
varieties from the well-known results on `-independence for smooth and proper varieties over finite fields. As
another consequence of this ‘spreading out’ result we are able to deduce the existence of a Clemens–Schmid
exact sequence for formal semistable families. Finally, by deforming to characteristic p we show a similar weak
version of `-independence for the unipotent fundamental group of a semistable curve in mixed characteristic.
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1. INTRODUCTION

One intriguing aspect of the proof of the Weil conjectures by Grothendieck and his school, via the
theory of étale cohomology, is in the need to choose an auxiliary prime `; the field Q` of `-adic numbers
then providing the coefficient field for a Weil cohomology theory. (To fix terms, let F be a field, X/F an
algebraic variety, Fsep a separable closure and GF the corresponding absolute Galois group.) While a priori
it is not remotely clear how the cohomology groups H i

ét(XFsep ,Q`) (considered as representations of GF )
are related for different values of ` 6= char(F), the Riemann hypothesis [Del74] shows that at least over
finite fields, they essentially contain the same information. Indeed, for curves C (and again ` 6= char(F))
one essentially has H1

ét(CFsep ,Q`)∼= (Jac(CFsep)⊗Q`)
∨ (again as Galois representations), H1 being the only

group of real interest in this case.
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To account for this plethora of different but subtly related cohomology groups, Grothendieck proposed
the theory of pure motives, which for smooth and proper varieties at least should provide some form of
algebro-geometric object h∗(X) =

⊕
i hi(X) such that H i

ét(XFsep ,Q`) ∼= hi(X)⊗Q` (again, suitably inter-
preted). Thus the groups H i

ét(XFsep ,Q`) should be ‘independent of `’, since all information they contain
can be deduced from the ‘absolute’ cohomology groups hi(X). In particular for curves, we essentially have
h1(C) = Jac(CFsep)∨.

While the theory of motives, despite significant recent advances, is still incomplete, its prediction that
various cohomology groups should be ‘independent of `’ can, over certain ground fields, be precisely for-
mulated in ways which do not depend on such a theory. For example, one such statement is that for smooth
and proper varieties X over finite fields of characteristic p, the trace of Frobenius on H i

ét(XFsep ,Q`) (for
` 6= p) has values in Z and is independent of `. Since the absolute Galois group of finite fields is generated
by Frobenius, this tells us that, up to semisimplification, the various Galois representations H i

ét(XFsep ,Q`)

are, once restricted to FrobZ ⊂ GF , pairwise isomorphic (at least after base changing to any suitably large
field Ω).

Over more general fields, formulating similarly precise statements is somewhat tricky, since the Galois
representation H i

ét(XFsep ,Q`) depends on the interaction between the topology of Q` and the profinite topol-
ogy on GF . For local fields (i.e. complete, discretely valued fields with finite residue fields) one can, thanks
to the theory of Weil–Deligne representations and Grothendieck’s `-adic monodromy theorem (and at least
for ` different to the residue characteristic) package up the information contained in H i

ét(XFsep ,Q`) in a way
that only depends on Q` as an abstract field, it therefore makes sense to conjecture that these groups become
‘pairwise isomorphic’ over suitably large fields.

For `= p one needs a slightly different approach. Over finite fields, one needs to replace étale cohomol-
ogy by crystalline cohomology H i

cris(X/K), and over mixed characteristic local fields one needs to replace
the `-adic monodromy theorem by it’s p-adic analogue, stating that the étale cohomology of varieties over
mixed characteristic local fields is potentially semistable. Over finite fields, the formalism of crystalline
cohomology (including weights) shows that the ‘independence of `’ results can be extended to include the
case ` = p, and over mixed characteristic local fields it was shown in [Fon94] how to use p-adic Hodge
theory to attach Weil–Deligne representations to de Rham Galois representations, thus again making sense
of the `-independence conjectures ‘at p’. When F is an equicharacteristic local field, then a more subtle
use of crystalline cohomology allows one to view the cohomology of smooth and proper varieties over F
as (ϕ,∇)-modules over the Robba ring, and again the appropriate local monodromy theorem allows one
to construct associated Weil–Deligne representations (see for example §3 of [Mar08]). Thus following
Fontaine [Fon94] one can again formulate `-independence conjectures in this case, including at `= p.

One can also ask about other expected ‘motivic’ invariants, the most basic being the unipotent funda-
mental group. When ` 6= p then this can be defined as the Q`-pro-unipotent completion of the geometric
étale fundamental group. When F is finite and ` 6= p it is therefore acted on by Frobenius, and again we
can ask whether or not this ‘non-abelian’ representation of FrobZ is independent of `. When F is local (and
again when ` 6= p) it is acted on ‘continuously’ by GF , so we can apply Grothendieck’s monodromy theorem
and produce a ‘non-abelian’ Weil–Deligne representation. For `= p and F finite one again needs to take a
different approach to define the pro-unipotent fundamental group, using Tannakian duality and the theory
of isocrystals to produce a pro-unipotent group scheme on which Frobenius acts. When F is equicharac-
teristic local, one needs to appeal to the categories of overconvergent isocrystals introduced in [LP16] and
studied in [Laz16] in order to define the pro-unipotent fundamental group as a ‘non-abelian (ϕ,∇)-module’
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over the bounded Robba ring E †. Again, appealing to the p-adic local monodromy theorem allows us to
produce a non-abelian p-adic Weil–Deligne representations in this case. Hence in both these cases (i.e. F
finite or equicharacteristic local) one can formulate precise `-independence conjectures for the unipotent
fundamental group, including the case ` = p. When F is mixed characteristic local and ` = p things are
more tricky, since in order to apply Fontaine’s methods one first needs to know that the p-adic unipotent π1

is de Rham as a GF -representation. For semistable curves this follows from the results of [AIK15] and in
general from unpublished results of Déglise and Nizioł [DN].

The purpose of this article, then, is to prove various cases of these `-independence conjectures, all
including the case `= p. After recalling the various facts we need concerning cohomology and fundamental
groups in §2, the precise formulation of the conjectures is given in §3. In the rest of the article we will then
prove certain versions of them in the following four cases.

(1) Unipotent fundamental groups of smooth projective varieties over finite fields.
(2) Cohomology groups of smooth, proper varieties with semistable reduction over equicharacteristic

local fields.
(3) Unipotent fundamental groups of smooth projective varieties with semistable reduction over equichar-

acteristic local fields.
(4) Unipotent fundamental groups of smooth projective curves with semistable reduction over mixed

characteristic local fields.

In the first case, the subject of §4, we prove the strongest possible form of `-independence, stating that the
various unipotent πuni

1 ’s become isomorphic as ‘non-abelian’ Weil–Deligne representations over suitably
large fields. Here the basic idea behind the proof is formality, in that the rational homotopy type is a formal
consequence of the cohomology ring.

In the second case, treated in §5, we show a weaker form of `-independence, stating that the Frobenius
seimsimplifications of the various cohomology groups become isomorphic over suitably large fields. The
proof proceeds by first using a ‘spreading out’ result to reduce to the case of a global semistable family, and
then applying a result of Deligne in [Del80] stating that ‘`-independence’ of a suitable local system on an
open curve implies `-independence at the missing points. In fact Deligne’s result only applies for ` 6= p, but
it is not difficult to follow through his proof ‘at p’, as we do so in §6.

In the third case, the topic of §7, we prove a fairly weak form of `-independence, stating that the Frobe-
nius semisimplifications of the graded pieces of the universal enveloping algebra of the Lie algebra of πuni

1

(for the filtration coming from the augmentation ideal) become isomorphic over suitably large fields. The
proof here follows that of the second case, again reducing to the case of a global semistable family and
applying the same independence result of Deligne. Finally, in §8 we consider the last case, proving the
same result for curves in mixed characteristic by reducing to the equicharacteristic situation.

Notations and conventions. We will let F denote either a finite field k or a local field with residue field
k (usually equicharacteristic). As always, p will be the characteristic of k, and we will let q denote its
cardinality. The term ‘Frobenius’ without further qualification will always be understood to mean geometric
Frobenius, and Frobenius structures on isocrystals will, unless specified otherwise, mean q-power Frobenius
structures. We will let W = W (k) denote the ring of Witt vectors of k, K its fraction field and Kun the
maximal unramified extension of K. By ‘variety’ we will mean ‘separated scheme of finite type’. We will
denote a separable closure of F by Fsep, and the corresponding absolute Galois group by GF . We will
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denote by R the Robba ring over K, and by MΦ
∇

R the category of (ϕ,∇)-modules over R. We will denote
by E †

K ⊂RK the bounded Robba ring.

2. PRELIMINARIES ON FUNDAMENTAL GROUPS AND p-ADIC COHOMOLOGY

The purpose of this section is to recall some general facts about unipotent fundamental groups, as well as
some of the material from [LP16] concerning p-adic cohomology over equicharacteristic local fields. So let
X/F be smooth, geometrically connected, quasi-projective variety and x ∈ X(F). Then for any ` 6= char(F)

the `-adic version of the unipotent fundamental group has two different but equivalent interpretations. First
of all we may consider the étale fundamental group π ét

1 (X , x̄) based at a geometric point above x, together
with the homotopy exact sequence

1→ π
ét
1 (XFsep , x̄)→ π

ét
1 (X , x̄)→ GF → 1.

The point x induces a splitting of this exact sequence, and this gives rise to an action of GF on π ét
1 (XFsep , x̄).

Applying the Malcev completion functor over Q` then gives a pro-unipotent group scheme π ét
1 (XFsep , x̄)Q`

over Q` which by functoriality is acted on by GF .
Alternatively, we can use a Tannakian approach. That is, we consider the category UniQ`

(XFsep) of
unipotent lisse Q`-sheaves on X . The point x gives rise to a fibre functor x∗ : UniQ`

(XFsep)→ VecQ`
and

hence we may define π ét
1 (XFsep , x̄)Q`

to be the (pro-unipotent) affine group scheme representing automor-
phisms of x∗. By functoriality GF acts on UniQ`

(XFsep), preserving x∗, and hence by Tannaka duality on
π ét

1 (XFsep , x̄)Q`
. As the notation suggests, this coincides with the previous construction by [SGA5, Exposé

VI, §1.4.2].
While the first definition does not behave well when ` = char(F), the second has an clear analogue, at

least when F = k is finite, replacing lisse Q`-sheaves on XFsep by overconvergent isocrystals on X/K, the
category of which we will denote by Isoc†(X/K). Let UniK(X) denote its full subcategory of unipotent
objects. Again, the point x induces a fibre functor x∗ : UniK(X)→ VecK and by definition π

rig
1 (X/K,x)

is the (pro-unipotent) affine group scheme representating automorphisms of x∗. The Frobenius pullback
functor F∗ : UniK(X)→ UniK(X) is an autoequivalence, and induces an isomorphism F∗ : π

rig
1 (X/K,x)→

π
rig
1 (X/K,x).

When F = k((t)) is equicharacteristic local, we need to use the machinery of [LP16] to define the p-
adic unipotent fundamental groups. Since we will also need the results from loc. cit. concerning p-adic
cohomology for varieties over such F , we will take the opportunity now to quickly recap some of the
main points from [LP16]. There we constructed, for any variety X/F , cohomology groups H i

rig(X/E †
K) as

(ϕ,∇)-modules over the bounded Robba ring E †
K , satisfying all the expected properties of an ‘extended’

Weil cohomology theory. In other words, we have finite dimensionality, vanishing in the expected degrees,
versions with compact support or support in a closed subscheme, Poincaré duality, Künneth formula &c. We
also constructed a category Isoc†(X/E †

K) of overconvergent isocrystals on X relative to E †
K , and in [Laz16]

it was proved that this category is Tannakian. The point x provides a fibre functor

x∗ : Uni
E †

K
(X)→ Vec

E †
K

from the subcategory of unipotent isocrystals, and again we may define π
rig
1 (X/E †

K ,x) to be the correspond-
ing pro-unipotent group scheme over E †

K . It was also shown in [Laz16] how to put a canonical ‘(ϕ,∇)-
module structure’ on π

rig
1 (X/E †

K ,x), that is a (ϕ,∇)-module structure on its Hopf algebra, which simply
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as a (ϕ,∇)-module (i.e. forgetting the Hopf algebra structure) is a direct limit of its finite dimensional
sub-(ϕ,∇)-modules.

Base changing the whole situation to RK we therefore a ‘non-abelian’ (ϕ,∇)-module π
rig
1 (X/RK ,x)

over RK , as well as abelian ones H i
rig(X/RK). These should be considered the p-adic analogues of the

`-adic Galois representations π ét
1 (XFsep , x̄)Q`

and H i
ét(XFsep ,Q`) respectively.

3. THE FORMALISM OF `-INDEPENDENCE, STATEMENT OF THE CONJECTURES

In this section we will review some of the formalism behind the notion of `-independence over finite and
equicharacteristic local fields, following [Del80, Fon94]. For this section, F will stand for either a finite
field k or a local field with residue field k.

Definition 3.1. We define the Weil group WF ⊂ GF as follows.

• If F = k then we will let WF denote the subgroup of GF ∼= FrobẐk consisting of integer powers of
Frobenius.
• If F is local, then we will let WF denote the inverse image of Wk under the surjection GF � Gk.

It is topologised as follows: if F is finite then WF is given the discrete topology, if F is local then WF is
given the unique topology such that the inertia group IF is open.

Since WF is pro-discrete, we may form the associated group scheme W alg
F over Q by writing WF = lim←−i

Gi

in the category of groups, viewing each discrete group Gi as a group scheme over Q and then setting
W alg

F = lim←−i
Gi in the category of group schemes.

Lemma 3.2. For any field E of characteristic 0 there is an equivalence of categories between continuous
representations ρ : WF → GL(V ) in finite dimensional E-vector spaces and finite dimensional algebraic
representations ρalg : W alg

F → GL(V ) of the group scheme W alg
F over E.

If F is local then there is a natural action of W alg
F on the additive group Ga by setting

gxg−1 = q−v(g)x

where v(g) is such that g maps to Frobv(g)
k in Wk.

Definition 3.3. We define the Weil–Deligne group W ′F to be W alg
F if F = k is finite or W alg

F nGa if F is
local.

Note that the usage of the term ‘Weil–Deligne’ group to refer to W alg
F over finite fields is not at all

standard, and we employ it here only to be able to make uniform statements for finite and local fields.
We will now let E be a field of characteristic 0, and let C → AffE be a category fibred over the category

of affine E-schemes. In other words for every E-algebra R we have a category CR and for every morphism
R→ R′ we have a pullback (or ‘base extension’) functor CR→ CR′ . The examples the reader should keep
in mind are the following.

• the category of (quasi-)coherent O-modules;
• the category of pro-nilpotent Lie O-algebras;
• the category of (quasi-coherent) Hopf O-algebras;
• the category of pro-unipotent group schemes.

In particular, given an object X ∈ CE it makes sense to speak of the functor on E-algebras

AutE(X)(R) = AutCR(X⊗R).
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Definition 3.4. A CE -representation of W ′F is an object X ∈ CE together with a morphism of functors
W ′F → AutE(X). The category of such objects is denoted RepCE

(W ′F).

Note that when C is the category of coherent O-modules, then one recovers the usual notion of an E-
valued Weil(–Deligne) representation, in general the point of this slightly fiddly approach is in order to have
a well-defined notion for non-abelian objects such as Hopf algebras or group schemes. We can now finally
make precise the concept of `-independence for (not necessarily abelian) Weil–Deligne representations.

Definition 3.5 ( [Del73], §8). (1) Let E ′/E be a field extension X ∈ RepCE′
(W ′F) a CE ′ -valued Weil–

Deligne representation. Then we say that X is defined over E if for any algebraically closed field
Ω containing E ′, X⊗Ω ∈ RepCΩ

(W ′F) is isomorphic to all of its Aut(Ω/E)-conjugates.
(2) Let {Ei}i∈I be a family of field extensions of E, and {Xi}i∈I a family of CEi -valued Weil–Deligne

representations. Then we say that {Xi}i∈I is E-compatible if each Xi is defined over E, and for any
i, j and any algebraically closed field Ω containing Ei and E j, the objects Xi⊗Ω and X j ⊗Ω in
RepCΩ

(W ′F) are isomorphic.

When C is the category of coherent O-modules, then we also have a weaker notion of compatibility
described as follows. If F is finite then we define the ‘monodromy’ filtration M• on a representation V of
W ′F to be the trivial one, i.e. 0 in negative degrees and V otherwise. If F is local then we will let M• be the
usual monodromy filtration coming from viewing the Ga action as a nilpotent endomorphism N : V →V .

Definition 3.6. Let {Vi}i∈I be a family of finite dimensional Ei-valued Weil–Deligne representations as
above. We say that {Vi}i∈I is weakly E-compatible if for all k the character

Tr(−|GrM
k Vi) : WF → Ei

of the k-th graded piece of the monodromy filtration has values in E and is independent of i.

Note that the difference between weak compatibility and compatibility is essentially that of Frobenius
semisimplicity. For a representation V of W ′F , we will let V F-ss denote its Frobenius semisimplification.
Thus when F = k is finite this is just the semisimplification, and when F is local we semisimplify the
underlying WF -representation.

Lemma 3.7. Let {Vi} be a family of W ′F -representations. Then {Vi} is weakly E-compatible if and only if
{V F-ss

i } is E-compatible.

Proof. When F is finite this is clear, when F is local this is Proposition 8.9 of [Del73]. �

Now, if X/F is a variety and ` 6= p, then one can view the ith étale cohomology group H i
ét(XFsep ,Q`)

as a continuous representation of GF , and hence as an Q`-valued algebraic representation of W ′F , when we
consider it as the latter we will generally write H i

`(X). For `= p and F = k is finite, the natural Frobenius
action on the rigid cohomology H i

rig(X/K) allows us to consider it as a K-valued algebraic representation
H i

p(X) of W ′F . For `= p and F ∼= k((t)) equicharacteristic local, then we may consider the rigid cohomology
groups H i

rig(X/RK) of X as (ϕ,∇)-modules over the Robba ring RK . Using Marmora’s functor [Mar08]
from (ϕ,∇)-modules over RK to Kun-valued Weil–Deligne representations, we may therefore consider the
Weil–Deligne representation H i

p(X) associated to H i
rig(X/RK). When ` = p and F is mixed characteristic

local, then the étale cohomology H i
ét(XFsep ,Qp) is de Rham as a representation of GF , hence we may

follow Fontaine’s construction [Fon94] to produce a Kun-valued Weil–Deligne representation, which we
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will again denote H i
p(X). Of course, we may also consider versions H i

c,`(X) with compact support. For
cohomology, then, the `-independence conjectures (first formulated for F local in mixed characteristic by
Fontaine in [Fon94]) are as follows.

Conjecture 3.8. • C`(X ,H i): the system {H i
`(X)}` is Q-compatible.

• C`,w(X ,H i): the system {H i
`(X)}` is weakly Q-compatible.

• C`(X ,H i
c): the system {H i

c,`(X)}` is Q-compatible.
• C`,w(X ,H i

c): the system {H i
c,`(X)}` is weakly Q-compatible.

When F is finite, then C`,w(X ,H i) is known whenever X is smooth and proper (for ` 6= p this follows
from Deligne’s proof of the Riemann hypothesis [Del74], the fact that the same is true at `= p then follows
from Théorème 1.2 of [CLS98]). Even in this case, however, C`(X ,H i) is still wide open in general; by
Lemma 3.7 it would follow from the Frobenius semisimplicity conjecture. Hence for X proper and smooth
of dimension d we know C`(X ,H i) for i = 0,1,2d−1,2d, as well as for abelian varieties in all degrees. Let
us also remark that in [MO] the authors prove C`,w(X ,H i) and C`,w(X ,H i

c) whenever dimX ≤ 2.
When F is local, then a much weaker version of C`,w(X ,H i) and C`,w(X ,H i

c) forms part of the main
result of [Zhe09], however, even for smooth and projective varieties the fact that ‘purity’ for H i is more
complicated for local fields means that there is no straightforward deduction of C`,w(X ,H i) from Zheng’s
results. In [LP16] it was proved (Theorem 5.85) that when F ∼= k((t)) is equicharacteristic local, then
C`,w(X ,H i) holds for smooth (possibly open) curves and abelian varieties, or for smooth and proper varieties
with good reduction. In fact, it was claimed there that in fact C`(X ,H i) holds for smooth curves and abelian
varieties, however there is a gap in the proof which we shall correct in Lemma 3.12 below.

Next let us turn to the unipotent fundamental group π1, whose definition we recalled in the previous
section. When X/F is a geometrically connected variety with base point x∈ X(F), and ` 6= p, then again we
may consider the `-adic unipotent fundamental group π ét

1 (XFsep , x̄)Q`
as a GF -representation, we will write

π`
1(X ,x) for the associated W ′F -representation (with values in the fibred category of pro-unipotent group

schemes). When char(F) = ` = p we use the rigid fundamental group (π rig
1 (X/K,x) when F = k is finite,

π
rig
1 (X/RK ,x) when F ∼= k((t)) is local) to produce a p-adic representation of W ′F , with values in the fibred

category of pro-unipotent group schemes, which we will denote by π
p
1 (X ,x) (again using Marmora’s functor

from (ϕ,∇)-modules to Weil–Deligne representations when F ∼= k((t))). When char(F) = 0, ` = p and X
is a semistable curve we note that by Theorem 1.8 of [AIK15] the p-adic étale pro-unipotent fundamental
group π ét

1 (XFsep , x̄)Qp is de Rham as a non-abelian representation of GF , hence we may again associate to it a
Kun-valued (non-abelian) Weil–Deligne representation π

p
1 (X ,x). For more general X , there are unpublished

results of Déglise and Nizioł in [DN] which again state that π ét
1 (XFsep , x̄)Qp is de Rham.

We will write A`,X ,x for the Hopf algebra of π`
1(X ,x), L`,X ,x for its Lie algebra, Û`,X ,x for the completed

universal enveloping algebra of L`,X ,x and a`,X ,x for the augmentation ideal of Û`,X ,x (these are representa-
tions in Hopf algebras, pro-nilpotent Lie algebras and associative algebras respectively, and for each k ≥ 1
we may consider Û`,X ,x/a

k
`,X ,x as a Weil–Deligne representation in vector spaces). The strongest form of

`-independence one can state for fundamental groups is the following.

Conjecture 3.9 (C`(X ,πuni
1 )). The collection {π`

1(X ,x)}` of pro-unipotent groups with an action of W ′F is
Q-compatible. Equivalently the collection {A`,X ,x}` (resp. {L`,X ,x}`, {Û`,X ,x}`) of Hopf algebras (resp. Lie
algebra, resp. associative algebras) is Q-compatible.

We will also be interested in the following weakening of the above conjecture.
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Conjecture 3.10 (C`(X ,Û /a•),C`,w(X ,Û /a•)). For all k≥ 1 the collection {Û`,X ,x/a
k
`,X ,x}` of W ′F -representations

is (weakly) Q-compatible.

Remark 3.11. Note that in this conjecture we are only requiring compatibility as W ′F -representations,
i.e. we are saying nothing about the algebra structure. We clearly have C`(X ,πuni

1 )⇒ C`(X ,Û /a•)⇒
C`,w(X ,Û /a•).

We would like to finish this section by fixing a hole in the proof of Theorem 5.85 of [LP16], stating that
when F ∼= k((t)) is equicharacteristic local and X/F is a smooth curve or an abelian variety, then C`(X ,H i)

holds, in fact we only showed there that C`,w(X ,H i) holds, that is weak `-independence. Given Lemma 3.7,
the next result completes the proof of ‘strong’ `-independence in these cases.

Lemma 3.12. Let F ∼= k((t)) and X/F be either a smooth curve or an abelian variety. Then H1
` (X) is

Frobenius semisimple for all `.

Proof. First suppose X = A is an abelian variety, the proof of Theorem 5.88 of [LP16] shows that the graded
pieces of the monodromy filtration on H1

` (A) (for any `, including `= p) are given by the following:

• the cohomology H1
` (T ) of a torus over F ;

• the cohomology H1
` (B) of an abelian variety with potentially good reduction;

• the Weil–Deligne representation coming from a continuous representation GF→Zs for some s≥ 0.

Frobenius semisimplicity of the first and third are clear (since they both factor through a finite quotient of
GF ), the second follows from Frobenius semisimplicity for abelian varieties over finite fields. Since the
three graded pieces are of different weights, Frobenius semisimplicity of H1

` (A) follows. The deduction for
smooth (possibly open) curves now follows exactly as in §5.4 of [LP16]. �

4. UNIPOTENT FUNDAMENTAL GROUPS OVER FINITE FIELDS

In this section, we will prove the following result.

Theorem 4.1. Let F = k be a finite field, and X/F a smooth, projective variety. Then C`(X ,πuni
1 ) holds.

Let us first note the following consequence of the weak Lefschetz theorem.

Proposition 4.2. To prove Theorem 4.1 it suffices to consider X of dimension ≤ 2.

Proof. If dimX > 2 then choose an iterated hyperplane section Y ↪→ X passing through x with dimY =

2. The weak Lefschetz theorem [SGA2, Exposé XII, Corollaire 3.5] says that the map π ét
1 (YFsep , x̄)→

π ét
1 (XFsep , x̄) is an isomorphism, hence the same is true of their Q`-unipotent completions, in other words

π`
1(Y,x)→ π`

1(X ,x) is an isomorphism for ` 6= p.
When ` = p we use the weak Lefschetz theorem slightly differently. We claim that for any unipotent

isocrystal E on X/K, the induced map

H i
rig(X/K,E)→ H i

rig(Y/K,E|Y )

is an isomorphism for i = 0,1 and injective for i = 2, this suffices to prove π
p
1 (Y,x)→ π

p
1 (X ,x) is an

isomorphism by combining Propositions 1.2.2 and 1.3.1 of [CLS99] with Tannakian duality. If E is constant
then this is simply the usual weak Lefschetz, in general one inducts on the unipotence degree and uses the
five lemma. �

8
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The key ingredient in the proof of Theorem 4.1 is the following concrete description of the Lie algebra
Lie π`

1(X ,x), due to Pridham [Pri09].

Proposition 4.3. Let L(H1
` (X)∨) denote the free Lie algebra on the dual of H1

` (X), and I` the ideal gener-
ated by the image of the dual of the cup product

H2
` (X)∨

∪∨`→ H1
` (X)∨⊗H1

` (X)∨.

Then there is a WF -equivariant isomorphism

L`,X ,x = Lie π
`
1(X ,x)∼=

L(H1
` (X)∨)

I`
.

Proof. For ` 6= p this is Corollary 2.15 of [Pri09], when ` = p essentially exactly the same proof works,
using the p-adic formalism of weights (see for example [Ked06]). �

Since Frobenius semisimplicity is known for H1
` (X) for X smooth and projective of any dimension, and

any `, we deduce the following corollary.

Corollary 4.4. To prove Theorem 4.1, it suffices to show that the image of the cup product

H1
` (X)⊗H1

` (X)
∪`→ H2

` (X)

satisfies weak `-independence, in other words the family of representations {im(∪`)}` is weakly Q-compatible.

Clearly this holds when X is a smooth, projective curve, since then the cup product map is surjective.
When X is a surface, we use the existence of Künneth projectors on X .

Proposition 4.5 (Corollary 2A10 and Lemma 2.4, [Kle68]). Let X/F be a smooth projective surface.
Then there exist correspondences ϖi ∈ CH2(X ×X) such that for all `, the action of ϖi on cohomology
H∗` (X) =

⊕
i H i

`(X) is to project to the summand H i
`(X).

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. We may assume that dimX = 2. Choose ϖ1 ∈CH2(X×X) as above, and let ϖ1⊗1 :=
ϖ1×ϖ1 ∈ CH4(X4). Then the effect of ϖ1⊗1 on H∗` (X×X) is to project to the summand H1

` (X)⊗H1
` (X).

Now let ϖ1∪1 be the pullback of ϖ1⊗1 to CH2(X×X) via ∆×∆ : X2→ X4. The effect of ϖ1∪1 on H∗` (X)

is therefore to project onto the image of ∪` inside H2
` (X). Using Corollary 4.4 the result now follows

by composing ϖ1∪1 with the graph of (some power of) Frobenius and applying the Lefschetz fixed point
formula. �

5. COHOMOLOGY OVER EQUICHARACTERISTIC LOCAL FIELDS

The main result of this section is the following.

Theorem 5.1. Suppose that F ∼= k((t)) is equicharacteristic local, and let X/F be a smooth, proper variety
with semistable reduction. Then C`,w(X ,H i) holds.

The first key result we need essentially allows us to reduce to the ‘globally defined’ case, and in fact
works in slightly larger generality than we will need. So for now let S denote a Dedekind scheme, s ∈ S a
closed point and ÔS,s the completed local ring at s. By definition a semistable scheme over ÔS,s is one that

is étale locally smooth over Spec
(
ÔS,s[x1, . . . ,xr]/(x1 · · ·xr)

)
.

9



Around `-independence

Proposition 5.2. Let X → Spec
(
ÔS,s

)
be a semistable scheme of finite type and n ≥ 2 an integer. Then

there exists an étale neighbourhood (U,u)→ (S,s) of S and a flat scheme Y →U, smooth away from u
and semistable at u, such that

Y ×U
OU,u

mn
u

∼= X ×
ÔS,s

ÔS,s

mn
s

as schemes over OU,u/m
n
u
∼= ÔS,s/m

n
s .

Proof. Choose a local parameter t at s. After shrinking s we may assume that S = Spec(R) is affine
and t ∈ R. Then there exists an étale cover {Ui → X } of X such that each Ui is étale over some
Spec

(
ÔS,s[x1, . . . ,xd+1]/(x1 · · ·xr− t)

)
(with r and d allowed to vary with i.)

Choose some finitely generated, normal R-algebra A contained within ÔS,s such that everything in sight
is defined over A, i.e. X , the étale cover {Ui→X } and the étale maps

Ui→ Spec
(

A[x1, . . . ,xd+1]

(x1 · · ·xr− t)

)
.

Now by Artin’s approximation theorem, the point α : Spec
(
ÔS,s

)
→ Spec(A) of the finite type R-scheme

Spec(A), coming from the inclusion A⊂ ÔS,s, can be approximated modulo tn by a Henselian point, in other

words there exists a morphism αh,n : Spec
(
Oh

S,s

)
→ Spec(A) which agrees with α modulo tn. Then pulling

back via αh,n and using the fact that t is a local parameter at s we can see that there exists a semistable
family Y → Spec

(
Oh

S,s

)
which agrees with X modulo tn.

Now finally we note that there must be some finitely generated sub-algebra B ⊂ Oh
S,s, étale over S such

that Y is defined over B and smooth away from s, setting U = Spec(B) then completes the proof. �

To apply this result, we will specialise, and let R∼= kJtK be the ring of integers inside F ∼= k((t)). Suppose
that we are given a semistable scheme X /R. We will let X × denote X endowed with the log structure
given by the special fibre, and X×0 the special fibre endowed with the inverse image log structure from X .
Let X denote the generic fibre of X . Then we may consider, as in [Nak98], the log-étale cohomology
H i

ét(X
×,tame
0 ,Q`) of the log scheme X×0 , as an `-adic representation of GF (on which the wild inertia group

PF ⊂ IF acts trivially). We have the following logarithmic analogue of the smooth and proper base change
theorem.

Proposition 5.3 ( [Nak98], Proposition (4.2)). There is an isomorphism

H i
ét(X

×,tame
0 ,Q`)∼= H i

ét(XFsep ,Q`)

of GF -representations.

Of course, there is a similar result for p-adic cohomology, which goes as follows. Let MΦ
N
K denote

the category of (ϕ,N)-modules over K, that is finite dimensional vector spaces together with a semilinear,
bijective Frobenius ϕ and a nilpotent endomorphism N, such that Nϕ = qϕN. Given such a (ϕ,N)-module
V , we can put a connection on V ⊗K RK by setting ∇(v⊗1) = N(v)⊗ t−1, and this induces a fully faithful
functor

−⊗K RK : MΦ
N
K →MΦ

∇

RK

from (ϕ,N)-modules over K to (ϕ,∇)-modules over RK , whose essential image is exactly the objects for
which the connection acts unipotently. For X as above, we may consider the log-crystalline cohomology
H i

log-cris(X
×
0 /K×) := H i

log-cris(X
×
0 /W×)⊗K of its special fibre as a (ϕ,N)-module over K, as in [HK94]

10
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(the notation W×, K× refers to the fact that we are endowing W with the Teichmüller lift of the log structure
of the punctured point).

Proposition 5.4 ( [LP16], Theorem 5.46). There is an isomorphism

H i
log -cris(X

×
0 /K×)⊗K R ∼= H i

rig(X/RK)

inside MΦ
∇

RK
.

We therefore obtain the following.

Corollary 5.5. Let X → Spec(R) be a proper, semistable scheme with generic fibre X. Then there exists
a smooth, geometrically connected curve C/k, a k-rational point c ∈ C(k), a proper, semistable scheme
Y →C, smooth away from c, and an isomorphism R∼= ÔC,c (inducing F ∼= k̂(C)c) such that

H i
ét(XFsep ,Q`)∼= H i

ét(YFsep ,Q`)

as GF representations for all i, ` 6= p, and

H i
rig(X/RK)∼= H i

rig(YF/RK)

as (ϕ,∇)-modules, for all i. In particular, C`,w(X ,H i) is equivalent to C`,w(YF ,H i)

Proof. By Theorem 5.2 we know that there exists a globally defined semistable scheme which agrees with
X up to order 2, hence the special fibres coincide as log schemes. Hence by Propositions 5.3 and 5.4 the
cohomologies also coincide. �

Our primary interest here is in `-independence results, however, let us note in passing that Corollary 5.5
implies that the Clemens–Schmid exact sequence, obtained by the first author in collaboration with Tsuzuki
in [CT14], exists for X .

Corollary 5.6. Let d = dim(X /R) = dimX −1. There is a Clemens–Schmid long exact sequence

. . .→ Hm
rig(X0/K)→ Hm

log -cris(X
×
0 /K×) N→ Hm

log -cris(X
×
0 /K×)(−1)→ H2d−m

rig (X0/K)∨(−d−1)→ . . .

Proof. When X extends to a global semistable family, this is the main result of [CT14]. Given Theorem
5.2 it therefore suffices to note that all terms in the exact sequence only depend on the log scheme X×0 . �

To return to our main focus, then, to prove Theorem 5.1 it suffices to do so in the ‘globally defined’
case, i.e. we may assume that we have a smooth geometrically connected curve C/k, c ∈ C(k) such that
F = k̂(C)c, and a semistable scheme X →C, smooth away from c, such that X = XF .

Let U =C\c, and consider a collection {F`}` of local systems on U , where F` is a lisse Q` sheaf on U
for ` 6= p and Fp is an overconvergent F-isocrystal on U/K (here F is the q = #k-power Frobenius). Then
for any closed point x ∈U the action of geometric Frobenius on F`,x̄ for ` 6= p, plus the action of Fdeg(x) on
Fp,x, defines a collection {F`,x}` of representations of the Weil group Wk(x).

Definition 5.7. (1) We say that the system {F`} is weakly Q-compatible if {F`,x}` is so for all closed
points x ∈U .

(2) We say that the system {F`} is pure of weight n if for each closed point x ∈U the eigenvalues of
Frobk(x) (resp. Fdeg(x)) on F`,x̄ (resp. Fp,x) are Weil numbers of weight n.

11
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Given such a system, we may also restrict to the Weil–Deligne group at c. When ` 6= p, this is fairly
standard, since we may consider the Galois group GF as a decomposition group at c, and hence restrict the
`-adic representation π1(U, η̄)→F`,η̄ of the fundamental group of U (based at some geometric generic
point) to get an `-adic representation of GF , and hence a Weil–Deligne representation, which we shall call
F`,c. When ` = p we use the construction of §6.1 of [Tsu98]. Pulling back to an appropriate tubular
neighbourhood of c gives a functor

F-Isoc†(U/K)→MΦ
∇

Rc

where Rc is a copy of the Robba ring at c. Then applying Marmora’s functor from (ϕ,∇)-modules over the
Robba ring to Weil–Deligne representations [Mar08] gives us a Kun-valued representation of W ′F which we
shall call Fp,c. The key result is then the following, whose proof we will defer to the next section.

Proposition 5.8. If {F`}` is a pure, weakly Q-compatible system on U, then {F`,c}` is a weakly Q-
compatible system of Weil–Deligne representations.

We can now complete the proof of Theorem 5.1

Proof of Theorem 5.1. We may assume that X is globally defined, i.e. we have C,c,U,X as above such
that F = k̂(C)c and XF ∼= X . We will apply Proposition 5.8, taking F` to be the ith higher direct image
of the constant sheaf under the map f : X |U →U . Hence for ` 6= p we take F` = Ri f∗Q`, and for ` = p
we take Fp to be the overconvergent F-isocrystal Ri f∗O

†
X/K on U/K constructed by Matsuda and Trihan

in [MT04]. By smooth and proper base change in étale cohomology we have, for any closed point x ∈U

F`,x = H i
ét(Xx̄,Q`)

and by the same result for Ogus’ convergent cohomology we have

Fp,x = H i
rig(Xx/K(x))

where K(x) is the fraction field of the Witt vectors of k(x). Hence by C`,w(Xx,H i) we know that {F`}`
is a Q-compatible system on U , and by Proposition 5.8 it follows that {F`,c}` is a Q-compatible system
of Weil–Deligne representations. But again applying smooth and proper base change in étale cohomology
tells us that F`,c ∼= H i

`(X) for ` 6= p, and the proof of Proposition 5.52 of [LP16] tells us that Fp,c = H i
p(X).

The result follows. �

6. L-FUNCTIONS AND THE PROOF OF PROPOSITION 5.8

The purpose of this section is to prove Proposition 5.8, as well as give an application of Theorem 5.1
showing that the Hasse–Weil L-functions of semistable varieties over global function fields (including those
defined using p-adic cohomology) are independent of `. The basic idea is that away from `= p Proposition
5.8 follows from Théorème 9.8 of [Del73], and in fact Deligne’s proof also works at ` = p once certain
facts about p-adic cohomology of smooth curves are in place. The deduction of `-independence for the
Hasse–Weil L-function is then entirely straightforward. In fact, it is not entirely accurate to describe this
as an application of Theorem 5.1, since it is in fact a version of `-independence for local L-functions that
forms a key component of the proof of Proposition 5.8, and therefore of Theorem 5.1. However, we thought
it worth isolating this special case. All the results presented in this section are more or less special cases
of more general results of Abe–Caro proved in [AC14], however, in the simple case that we are interested
in one can give proofs using simpler machinery from the theory of arithmetic D-modules on curves and
formal curves, in particular that from [Car06] and [Cre12].

12
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Since the situation we are interested in in this section is somewhat different to that in the rest of the
article, we will change notation slightly (only for this section, we will return to the usual notations in the
next section). So we will let F be a global function field with field of constants k, and let X be a smooth,
projective model for F . We will let U be an open subset of X , and let S = X \U . For any place v ∈ |X |
(with some fixed local parameter tv) we will let kv denote the residue field at v, Kv the unique unramified
extension of K with residue field kv, Wv its ring of integers and Rv a copy of the Robba ring at v, considered
as a subring of KvJtv, t−1

v K. Let ϕv denote a #kv-power Frobenius on Rv. We will also denote #kv-power
Frobenius operators by Fv.

If we are given an overconvergent F-isocrystal F ∈ F-Isoc†(U/K) and a point v ∈ X we can consider
Tsuzuki’s functor

i∗v : F-Isoc†(U/K)→MΦ
∇

Rv

to the category of (ϕv,∇)-modules over Rv, and therefore define the local L-factor of F at v by

Lv(F , t) := det(1− tdegv
ϕv | (i∗vF )∇=0).

The global L-function of F is then defined to be

L̂(F , t) := ∏
v∈|X |

Lv(F , t),

the notation L̂ used here is in order to distinguish it from the Etesse–Le Stum L-function LEL defined
in [ÉLS93], which is defined by only considering local L-factors at points of U . Note that at places v ∈U
the local L-factor can also be described (by Dwork’s trick) as the inverse characteristic polynomial det(1−
tdegvFdegv |Fv) of the linearised Frobenius of F acting on the stalk Fv of F at v. Our first task will be
to prove a function equation for L̂(F , t), and to do so we will need to interpret the local factors Lv(F , t) in
terms of arithmetic D-modules on X .

So we will denote by X a lift of X to a smooth projective formal curve over W , by D†
X ,Q Berthelot’s ring

of arithmetic differential operators on X , and by F-Modhol(D
†
X ,Q) (resp. F-Db

hol(D
†
X ,Q)) the category of

holonomic F-D†
X ,Q-modules (resp. the bounded derived category of D†

X ,Q-modules equipped with Frobe-

nius structure, whose cohomology sheaves are holonomic). For any complex K ∈ F-Db
hol(D

†
X ,Q) we will

denote by L(K , t) the L-function of K as defined in the introduction to [Car06]; let us quickly recall his
definition. For v ∈ |X | we may lift v to a morphism iv : Spf(Wv)→X , and for any K ∈ F-Db

hol(D
†
X ,Q) we

can consider the pullback i+v K ∈ F-Db
hol(D

†
Spf(Wv),Q). Its cohomology sheaves are therefore F-isocrystals

over Kv, we may therefore consider Fdegv as a K-linear operator on these cohomology sheaves. Caro then
defines

Lv(K , t) := ∏
i∈Z

detK(1− tdegvFdegv|H i(i+v K ))
(−1)r
degv

L(K , t) := ∏
v∈|X |

Lv(K , t).

The functional equation that we require will follow from the existence of the ‘intermediate extension’
functor

j!+ : F-Isoc(U/K)→ F-Modhol(D
†
X ,Q)

which will be such that:

(1) L̂(F , t) = L( j!+F , t);
(2) D( j!+F )∼= j!+(F∨), where D is the dual functor for D-modules, and (−)∨ that for isocrystals.
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As noted at the beginning of this section, this is a special case of much more general results of [AC14], how-
ever, we thought it worthwhile to go through the construction in detail in the simple case that we are inter-
ested in. To construct j!+, first let us consider Berthelot’s ring D†

X ,Q(
†S) of arithmetic differential operators

on X with overconvergent singularities along S, and the corresponding categories F-Modhol(D
†
X ,Q(

†S))

and F-Db
hol(D

†
X ,Q(

†S)) of (complexes of) holonomic F-D†
X ,Q(

†S)-modules. Then thanks to Théorème

2.3.3 of [Car06] we may consider any F ∈ F-Isoc†(U/K) as a holonomic F-D†
X ,Q(

†S)-module, which we
shall do. We have canonical functors

j+ : F-Db
hol(D

†
X ,Q(

†S))→ F-Db
hol(D

†
X ,Q)

j+ : F-Db
hol(D

†
X ,Q)→ F-Db

hol(D
†
X ,Q(

†S))

given by restriction and extension of scalars along D†
X ,Q → D†

X ,Q(
†S) respectively, these are both exact

for the natural t-structures on both sides. Define j! to be D j+D where D is the duality functor, note that
this is exact for holonomic F-D-modules by (the proof of) Proposition III.4.4 of [Vir00]. By Proposition
I.4.4 of [Vir00] we have j+D = D j+ and hence we get adjoint pairs ( j+, j+) and ( j!, j+). Also by 1.1.8
of [Car06] we have j+ j! ∼= j+ j+ ∼= id.

The closed immersion i : S→ X lifts to a closed immersion i : S →X and hence we obtain Berthelot’s
pullback and pushforward functors

i! : F-Db
hol(D

†
X ,Q)→ F-Db

hol(D
†
S ,Q)

i+ : F-Db
hol(D

†
S ,Q)→ F-Db

hol(D
†
X ,Q),

we define i+ = Di!D. It follows from Théorème 4.3.13 of [Ber02] that i+D = Di+ and hence by Théorème
1.2.21 of [Car06] we have two adjoint pairs (i+, i+) and (i+, i!). Also by Théorème 5.3.3 of [Ber02] we get
i!i+ ∼= i+i+ ∼= id. By (1.1.6.5) of [Car06] we have, for any E ∈ F-Db

hol(D
†
X ,Q), exact triangles

j! j+E →E → i+i+E
+1→

i+i!E →E → j+ j+E
+1→ .

In particular taking E = j+F we get an exact triangle j!F → j+F → i+i+ j+F
+1→, and we define j!+F :=

im( j!F → j+F ), note that this makes sense as a D†
X ,Q-module because j+ and j! are exact. By exactness

of D for holonomic F-D†-modules we have D j!+F ∼= j!+DF , and hence using the main result of [Car05]
we deduce that D( j!+F )∼= j!+(F∨). To compare the L-functions of F and j!+F essentially boils down
to the following local calculation from [Cre12].

Proposition 6.1. Let v ∈ X, and let iv : Spf(Wv)→X be a lifting of the inclusion v→ X.

(1) If v ∈U then (i+v j!+F )[−1]∼= Fv as Fv-isocrystals over Kv.
(2) If v ∈ S then (i+v j!+F )[−1]∼= (i∗vF )∇=0 as Fv-isocrystals over Kv.

Remark 6.2. (1) In both cases, i+v j!+F is naturally an F-isocrystal, taking a suitable power of the
Frobenius lets us regard it as a Fv-isocrystal. In the second case, i∗vF is the (ϕv,∇)-module over
Rv associated to F as above. Note also that implicit in both claims is that i+v j!+F is concentrated
in degree −1.

(2) The proposition implies that the local L-factors of F and j!+F agree at all places of X , hence that
L̂(F , t) = L( j!+F , t).

(3) By Dwork’s trick, the formula in the second case is in fact also valid in the first.
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Proof. The first case is noted in the proof of Proposition 3.3.1 of [Car06] (in combination with the main
result from [Car05]), we will consider the second. The key point is to show that we may calculate j! and
j+ entirely locally. So let iv : Xv := Spf(WvJtvK)→X be a lifting of the map Spf(kvJtvK)→ X of the
completed local ring at v into X (previously, i∗v was simply notation, however shortly we shall see how to
interpret it as a genuine pullback via iv). Let D†

v denote the ring of arithmetic differential operators on Xv

as constructed by Crew in [Cre12], D†
v (v) the version with overconvergent singularities along the closed

point of Xv. Then (unlike the usual case in D-module theory), the map iv is actually a map of ringed spaces
(Xv,D†

v )→ (X ,D†
X ,Q) (resp. (Xv,D†

v (v))→ (X ,D†
X ,Q(

†S))) and hence we have a natural pullback
functors

E 7→ E ⊗
D†

X ,Q
D†

v =: i∗vE

E 7→ E ⊗
D†

X ,Q(
†S) D

†
v (v) =: i∗vE

from holonomic F-D†
X ,Q-modules (resp. F-D†

X ,Q(
†S)-modules) to holonomic F-D†

v -modules (resp. F-D†
v (v)-

modules). Note that we now have i∗v denoting three distinct functors, however, we shall shortly see that they
are all compatible, so no essential confusion should arise.

As in the global case, we may define functors jv+ and j+v to be restriction and extension of scalars
respectively along the natural map D†

v → D†
v (v), as well as a duality functor D using the machinery of

[Vir00]. Defining jv! = D jv+D we then get adjoint pairs ( j+v , jv+) and ( jv!, j+v ) as before, and hence we can
define jv!+E = im( jv!E → jv+E ) for holonomic F-D†

v (v)-module E . Applying Proposition I.4.4 of [Vir00]
to the map of rings i−1

v D†
X ,Q→D†

v (resp. i−1
v D†

X ,Q(
†S)→D†

v (v)) we get Di∗v ∼= i∗vD.

Claim. For any coherent D†
X ,Q(

†S)-module E we have

i∗v j+E ∼= jv+i∗vE .

Proof of Claim. In the usual manner we may reduce to the case of coherent D
(m)
Xn

(S)-modules E , where
Xn = X ⊗W W/pn+1 and

D
(m)
Xn

(S) := B(tS, pm+1)⊗D
(m)
Xn

is the ring of differential operators constructed in §4.2.5 of [Ber96] (here tS is a section of OX cutting out
S). Defining the local version

D
(m)
v,n (v) := B(tv, pm+1)⊗D

(m)
v,n

entirely similarly, one easily verifies the isomorphism

D
(m)
v,n (v)∼= D

(m)
v,n ⊗i−1

v D
(m)
Xn

i−1
v D

(m)
Xn

(S)

and the claim follows. �

Combining this with flatness of i−1
v D†

X ,Q→D†
v we can see that we get an isomorphism

jv!+(i∗vE )∼= i∗v( j!+E )

for any holonomic F-D†
X ,Q(

†S)-module E . Let iv : Spf(Wv)→X denote the composition of iv with the
inclusion of the zero section Spf(Wv)→ Xv, so that i+v factors through i∗v . If we let E †

v ⊂Rv denote a copy
of the bounded Robba ring at v, then the pullback functor

i∗v : F-Isoc†(U/K)→MΦ
∇

Rv
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factors through the category MΦ
∇

E †
v

of (ϕv,∇)-modules over E †
v , and the diagram

F-Isoc†(U/K)
i∗v

//

��

MΦ
∇

E †
v

��

F-Modhol(D
†
X ,Q(

†S))
i∗v
// Fv-Modhol(D

†
v (v))

commutes, where the right hand vertical arrow is that viewing a (ϕv,∇)-module as a holonomic Fv-D†
v (v)-

module. The upshot of all these complicated trivialities is that to prove (2), we may reduce to the local case;
in other words we may replace X by Xv.

We may therefore suppose that we are given a (ϕv,∇)-module M over E †
v , and we must show that

(i+v jv!+M)[−1]∼= (M⊗Rv)
∇=0

as Fv-isocrystals over Kv. Note that by Proposition 5.1.3 of [Cre12] the complex i+v j+M is concentrated in

degrees 0 and -1. From the exact triangle jv!M→ jv+M→ iv+i+v jv+M +1→ we therefore deduce the exact
sequence

0→ jv!+M→ jv+M→ iv+H0(i+v jv+M)→ 0

of F-D†
v -modules. Now applying i+v and looking at the long exact sequence in cohomology we can see that

i+v jv!+M is concentrated in degree −1 and that i+v j!+M[−1]∼= H−1(i+v jv+M). Now the claim follows from
again applying Proposition 5.1.3 of [Cre12]. �

Hence applying Poincaré duality for F-D†
X ,Q-modules (Theorem 1.3.5 of [Car06]) together with the

cohomological formula for L-functions (Théorème 3.3.4 of [Car06]) gives the following.

Corollary 6.3. For any F ∈ F-Isoc†(U/K) we have

L̂(F , t) = ε(F , t)L̂(F∨(1), t−1)

where ε(F , t) is a monomial in t.

The next key ingredient in the proof of Proposition 5.8 is the ability to twist overconvergent F-isocrystals
by characters of the idèle class group. So let χ : A∗F/F∗→ C∗ be a finite order character, unramified at all
places of U . Via the isomorphism A∗F/F∗ ∼=W ab

F of global class field theory, we may view χ as a character
of the Weil group WF of F , and since the image of χ consists of roots of unity we may choose a finite
extension L/K and view χ as a continuous character χ : GF → L∗, unramified at all places of U . Hence we
obtain a character χ : π ét

1 (U, η̄)→ L∗ where η̄ is some choice of geometric generic point.
Now, by Theorem 2.1 of [Cre87] there is an equivalence of categories between continuous L-valued

representations of π ét
1 (U, η̄) which have finite local monodromy at all places of S and the extension of

scalars F-Isoc†(U/K)⊗K L of the K-linear category F-Isoc†(U/K) to L. Hence we may associate to χ a
rank one isocrystal Eχ ∈ F-Isoc†(U/K)⊗K L. While we defined L-functions for objects in F-Isoc†(U/K),
essentially the same definition works for F-Isoc†(U/K)⊗K L, and hence it makes sense to speak of the
twisted L-function L(F χ, t) := L(F ⊗Eχ , t).

To prove Proposition 5.8 we now proceed exactly as in the proof of Théorème 9.8 of [Del73], which
shows that the semisimplifications {F ss

`,c} (as Weil–Deligne representations, i.e. not just their Frobenius
semisimplifications) are weakly Q-compatible. Hence the traces of WF of the graded pieces of the weight
filtration have values in Q independence of `, and we can then conclude using the weight monodromy
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theorem (Théorème 1.8.4 of [Del80] for ` 6= p, Theorem 10.8 of [Cre98] for ` = p), since this states that
the weight filtration coincides with the monodromy filtration.

Before moving on to unipotent fundamental groups over local fields, let us give an ‘application’ of
Theorem 5.1 to give a new proof of a result of Abe and Caro in [AC14] concerning Hasse–Weil L-functions
of varieties over global function fields (at least in the semistable case). Of course, as remarked earlier this
‘application’ is more of a special case of the proof of Proposition 5.8, however, we thought it was worth
isolating as a separate result in its own right. So suppose that we have a smooth and proper variety Y/F ,
then for any place v of F , we can base change Y to the completion Fv, and consider the rigid cohomology
groups H i

rig(YFv/Rv) as (ϕv,∇)-modules over Rv.

Definition 6.4. Define

LHW,v(F,H i
rig(Y ), t) := det(1−ϕvtdegv | H i

rig(YFv/Rv)
∇=0)

LHW(F,H i
rig(Y ), t) = ∏

v
LHW,v(F,H i

rig(Y ), t).

There is another p-adic definition of the Hasse–Weil L-function given by Abe and Caro in §4.3 of [AC14],
which they denote LHW(F,H i(Y/K), t). To see that these two definitions coincide, given Proposition 6.1
above, it suffices to note that if we have a smooth projective model Y →U over some open subset of U ,
and let H i denote Matsuda and Trihan’s overconvergent pushforward Ri f∗O

†
Y/K , then for any place v of

X , we have i∗vH i ∼= H i
rig(YFv/Rv). This was noted in the proof of Proposition 5.52 of [LP16]. We have the

following ‘corollary’ of Theorem 5.1.

Corollary 6.5. Let X/F be a smooth and proper variety with everywhere semistable reduction. Then
LHW(F,H i

rig(Y ), t) agrees with the Hasse–Weil L-function LHW(F,H i
ét(YFsep ,Q`), t) attached to the `-adic

cohomology of Y .

7. UNIPOTENT FUNDAMENTAL GROUPS OVER EQUICHARACTERISTIC LOCAL FIELDS

We will now suppose that we have F ∼= k((t)) equicharacteristic local, the main result of this section is
the following.

Theorem 7.1. Let X/F be smooth and projective, with semistable reduction, and let x ∈ X(F). Then
C`,w(X ,Û /a•) holds.

Of course, the basic strategy of proof will be identical to that in §5, the first step will be in showing an
appropriate analogue of Propositions 5.3 and 5.4 holds for unipotent fundamental groups. So let X , X ×,
X×0 be as in the paragraph before Proposition 5.3, let x0 ∈ X sm

0 (k) denote the specialisation of our given
point x ∈ X(F), and choose a geometric point x̄0 above it. For ` 6= p we will consider π

log-ét
1 (X×,tame

0 , x̄0),
the log-étale fundamental group of X×,tame

0 as defined in §2 of [Lep13]. This has a natural GF -action (trivial
on PF ), and hence so does its Q`-pro-unipotent completion π

log-ét
1 (X×,tame

0 , x̄0)Q`
.

Proposition 7.2 ( [Lep13], Theorems 2.5, 2.7). There is an isomorphism

π
log -ét
1 (X×,tame

0 , x̄0)Q`
∼= π

ét
1 (XFsep , x̄)Q`

of pro-unipotent groups with GF -action.
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For ` = p we will consider the category UniK(X×0 /K×) of unipotent log-isocrystals on X×0 , relative to
W equipped with the Teichmüller lift of the log structure on k defined by N→ k, 1 7→ 0, as defined in §4 of
of [Shi00]. This is a Tannakian category by Proposition 4.14. of loc. cit., and x0 defines a fibre functor

x∗0 : UniK(X×0 /K×)→ VecK

We let π
log-cris
1 (X×0 /K×,x0) denote the corresponding pro-unipotent group. To put a Frobenius and mon-

odromy operator on this pro-unipotent group, i.e. to turn this into a ‘non-abelian’ (ϕ,N)-module, we follow
the approach of [Laz16].

In other words, we consider the Tannakian category N F-Isoc(X×0 /K) of relatively unipotent F-log-
isocrystals on X0, relative to W equipped with the trivial log structure. That is, we consider log F-isocrystals
which are iterated extensions of the ‘constant’ ones associated to (ϕ,N)-modules over K. We therefore have
a pair of functors

N F-Isoc(X×0 /K)� MΦ
N
K

and using the results recalled in §5 of [Laz16] we may define a relative unipotent fundamental group as an
affine group scheme over the category MΦ

N
K of (ϕ,N)-modules over K. To show that the underlying group

scheme of this non-abelian (ϕ,N)-module is just π
log-cris
1 (X×0 /K×,x0) boils down to showing the exactness

of the ‘homotopy sequence’

1→ π
log-cris
1 (X×0 /K×,x0)→ G(N F-Isoc(X×0 /K),η ◦ x∗0)→ G(MΦ

N
K ,η)→ 1,

where η : MΦ
N
K → VecK forgets the extra structure, and G(T ,ω) denotes the fundamental group of a Tan-

nakian category T with respect to a fibre functor ω . This exactness can be translated into Tannakian terms
as in the proof of Theorem 6.3 of [Laz16], and then follows from the general formalism of absolute and rela-
tive crystalline cohomology as outlined in §7 of loc. cit. In other words, this procedure produces a canonical
(ϕ,N)-module structure on this pro-unipotent group. Hence we may view π

log-cris
1 (X×0 /K×,x0)⊗K RK as

a ‘non-abelian (ϕ,∇)-module’ over RK .

Proposition 7.3. There is a natural isomorphism

π
log -cris
1 (X×0 /K×,x0)⊗K RK ∼= π

rig
1 (X/RK ,x)

of non-abelian (ϕ,∇)-modules.

Proof. In [Laz16] (see §11) we showed how to construct a relative unipotent fundamental group π
log-cris
1 (X /E +,x)

as a non-abelian log-(ϕ,∇)-module over E + :=W JtK⊗W K, such that

π
log-cris
1 (X /E +,x)⊗E+ RK ∼= π

rig
1 (X/RK ,x).

Bearing in mind Proposition 5.43 of [LP16], it therefore suffices to show that we have a ‘base change’
isomorphism

π
log-cris
1 (X /E +,x)⊗E+ K ∼= π

log-cris
1 (X×0 /K×,x0)

of non-abelian (ϕ,N)-modules (the monodromy operator on the former being the residue of the connection
at t = 0). There is an obvious map

π
log-cris
1 (X×0 /K×,x0)→ π

log-cris
1 (X /E +,x)⊗E+ K

and to prove it is an isomorphism we may forget the ‘extra structures’ and show that it is an isomorphism
of pro-unipotent group schemes over K.
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Let MΦ
∇,log
E+ denote the category of logarithmic (ϕ,∇)-modules over E +, N F-Isoc(X ×/K) the cat-

egory of relatively unipotent logarithmic F-isocrystals on X × on the log crystalline site of X ×/W (i.e.
relative to W with the trivial log structure) and η : MΦ

∇,log
E+ →VecK the functor M 7→M⊗E+ K of evaluation

at t = 0. Then the ‘base change’ result we require boils down to showing that the ‘homotopy sequence’

1→ π
log-cris
1 (X×0 /K×,x0)→ G(N F-Isoc(X ×/K),η ◦ x∗)→ G(MΦ

∇,log
E+ ,η)→ 1

is exact. Again after translating this into Tannakian terms, this is proved exactly as in §7 of [Laz16]. �

Now following the argument of the previous section, and given Theorem 4.1, to prove Theorem 7.1 it
suffices to show the following: suppose we are given a smooth, geometrically connected curve C/k, c∈C(k)
such that F ∼= k̂(C)c, and a semistable scheme X →C, smooth away from c, such that X = XF . Suppose
further that x comes from a section s : C→X . Let U =C \ c. Then we want to show that there exist local
systems F`,k on U for all ` prime and k ≥ 1 such that:

(1) for any closed point y∈U the fibre of F`,k at y is isomorphic (as a Wk(y)-representation) to the quo-
tient of the universal enveloping algebra of Lie π`

1(Xy,s(y)) by the kth power of its augmentation
ideal;

(2) the fibre of F`,k at c is isomorphic (as a W ′F -representation) to the quotient of the universal envelop-
ing algebra of Lie π`

1(X ,x) by the kth power of its augmentation ideal.

For `= p these follow from the results of §3 of [Laz15] and §7 of [Laz16]. For ` 6= p they follow from
Grothendieck’s homotopy exact sequence: we know that π ét

1 (U, η̄) acts on π ét
1 (Xη̄ ,s(η̄)), hence on its pro-

unipotent completion π ét
1 (Xη̄ ,s(η̄))Q`

and therefore on the universal enveloping algebra Û (Lie π ét
1 (Xη̄ ,s(η̄))Q`

)

of the associated Lie algebra (again, here η̄ is any geometric generic point). Hence there is a natural action
of π ét

1 (U, η̄) on Û (Lie π ét
1 (Xη̄ ,s(η̄))Q`

)/ak for any k (a being the augmentation ideal), and this gives a the
required lisse Q`-sheaf on U .

The astute reader will object that there is a slight gap in the argument outlined above, in that while we
can certainly assume that our variety is globally defined, we have not explained why we can assume the
existence of a global section. Examining the proof of Proposition 5.2, it suffices to observe that again the
given formal section can be arbitrarily well approximated by a Henselian section, which must descend to
some étale neighbourhood of s. While this will not agree with our given formal section, it will do so on the
special fibre, which suffices by Propositions 7.2 and 7.3.

8. CURVES IN MIXED CHARACTERISTIC

Finally, we will use the results of the previous section to deduce an `-independence result for the unipo-
tent fundamental group of a semistable curve in mixed characteristic. So for this section F will be assumed
to be a mixed characteristic local field, with ring of integers R, and our main result is as follows.

Theorem 8.1. Let X /R be a proper, semistable curve with generic fibre X, and x∈X (R). Then C`,w(X ,Û /a•)

holds.

Proof. The basic idea is that (Û /ak)` (as a Weil–Deligne representation) only depends on the special fibre
X×0 of X as a log scheme, and since X0 is a curve, this deforms to equicharacteristic. More concretely,
when ` 6= p we consider the log-unipotent fundamental group π ét

1 (X
×,tame
0 ,x0)Q`

of the log scheme X×,tame
0

as a GF -representation, then again applying Theorems 2.3 and 2.5 of [Lep13] we have

π
ét
1 (X

×,tame
0 ,x0)Q`

∼= π
ét
1 (XFsep ,x)Q`
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as GF -representations. When `= p then we consider the log-crystalline fundamental group π
log-cris
1 (X×0 /K×,x0)

as in §7 above. There is another description of the (ϕ,∇)-module structure on this group, obtained by taking
the residue of the connection at Z = 0 of Andreatta–Iovita–Kim’s objects E cris,∨

n,b constructed in [AIK15],
then Theorem 1.8 of loc. cit. (specifically, apply (3) and take the residue of the connection at Z = 0) implies
that

Dst(π
ét
1 (XFsep ,x)Qp)

∼= π
log-cris
1 (X×0 /K×,x0)

as (ϕ,N)-modules over K (after forgetting the Hodge filtration on the former).
But now since the log-smooth deformation theory of curves is unobstructed (by Proposition 8.6 of

[Kat96]), we may deform X×0 to characteristic p, in other words there exists a semistable family Y →
Spec(kJtK) whose special fibre is isomorphic to X×0 as a log scheme. Hence by applying Theorem 7.1 we
know that the Weil–Deligne representations associated to the completed universal envelopping algebras of
π ét

1 (X
×,tame
0 ,x0)Q`

and π
log-cris
1 (X×0 /K×,x0) are weakly independent of `, and we may conclude. �
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