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1 Motivation

Suppose that F' is a ‘p-adic’ local field (i.e. a finite extension of Q, or F,((#)), and that ¢ is a
prime different from p.

Theorem (Grothendieck). Let (p, V) be a continuous ¢-adic representation of G := Gal(FSP/F).
Then (p,V) is potentially semi-stable, that is there exists a finite extension F'/F such that the
inertia group Ip' < GF acts unipotently.

This allows one to attach Weil-Deligne representations to /-adic Galois representations,
and these Weil-Deligne representations determine the Galois representation uniquely.

If ¢ = p, then this theorem is no longer true, for example, when F has characteristic zero,
then the inertia action on Q,(1) is never quasi-unipotent. This also tells us that even if we
restrict to representations ‘coming from geometry’ then we don’t get potentially semistable
representations in the naive sense - we need a different notion.

This is provided by p-adic Hodge theory - we have a certain ‘ring of semistable periods’
By, this is a Q,-algebra together with a Gg-action, and we say that V is semistable if

dimp, (B ®g, V)" = dimg, V

where Fy is the maximal absolutely unramified subfield of F. A representation is then
potentially semistable if there exists some finite extension F'/F such that it is semistable
as a Gpr-representation.

Theorem (Faltings, Berger, Kedlaya, André, Mebkhout). All p-adic representations coming
from geometry are potentially semistable.

As before, if a representation is potentially semistable, then one can attach a Weil—
Delinge representation to it, although now the Galois representation is no longer uniquely
determined by its associated Weil-Deligne representation.

This still leaves open the case of what happens in the p-adic case when F is of charac-
teristic p, i.e. F = k(%)) for some finite field 2. But what sort of objects should we even be
looking at? What sort of objects arise as the p-adic cohomology of varieties over k((¢))?

Consider the Amice ring

Ex = { Z aiti
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where K is complete discrete valuation field with residue field k2. This is a complete dis-
crete valuation field of mixed characteristic, with residue field £((#)), and Berthelot’s rigid
cohomology gives, for any k((¢))-variety X, a graded ¢-module
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a; €K, supla;| <oo, |la;| — 0 as i—»—oo}
i

1



over &g, that is a finite dimensional graded vector space together with a ‘Frobenius struc-
ture’. Actually, we get more - §x has a natural differential structure (differentiation with
respect to ¢) and one can show that rigid cohomology groups naturally come with a connec-
tion, that is they are (¢, V)-modules over &x.

Definition. A (¢,V)-module over &x is a finite dimensional vector space M together with
a Frobenius structure ¢ and a connection V such that ¢ is horizontal with respect to the
connection.

These objects also arise in a closely related context - if G is a p-divisible group over (%)),
then crystalline Diedonné theory constructs an associated (¢,V)-module over x, D(G),
which completely determines G up to isogeny.

So we have the following natural questions:

* What is the right notion of ‘potential semistability’ for (¢, V)-modules over &?

* Can we prove that H, g(X /8x) satisfies this condition for all £((¢))-varieties X?

2 Potential Semistability

To answer the first question, we introduce a certain subring of %, the bounded Robba ring
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this is a Henselian discrete valuation field, again with residue field 2((¢)). We can similarly
define the notion of a (¢, V)-module over &l , and there is an obvious base extension functor
from (¢, V)-modules over é";{ to those over k. Actually, thanks to a theorem of Kedlaya, this
base extension functor is fully faithful, so it makes sense to speak of a (¢, V)-module over
&x being overconvergent, that is coming from one over é";} We have the following results.

Theorem (Trihan). Let G be a p-divisible group over k((t)) with semistable reduction. Then
the Dieudonné module D(G) is overconvergent.

Theorem (Pal, unpublished). Let G be a semistable p-divisible group over k((t)), and Hc G
a sub-p-divisible group. Then H is semistable if and only if D(H) is overconvergent.

In addition, it is not hard to see that if F/k((¢)) is a finite separable extension, with
corresponding extension é’g/&{, then a (¢,V)-module M over &x is overconvergent if and
only if M ®¢, 8}; is. We are therefore tempted to make the following definition.

Definition. Say a (¢,V)-module over &k is potentially semistable if it is overconvergent,
i.e. admits an é’lz-lattice.

Another clue that this is the correct notion is that for such overconvergent modules we
can form associated Weil-Deligne representations. Let Zx denote the Robba ring
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then we have é";{ = Rk N&Ex, and so we can base change (¢, V)-modules over 6";{ to those over
Rk.

The p-adic local monodromy theorem then tells us that every such module over the
Robba ring is quasi-unipotent, just as in the ¢ # p case, and Marmora used this to show
that actually the category of such modules is actually equivalent to the category of Weil—
Deligne representations of G ;). Thus to an overconvergent (¢, V)-module one can associate
a Weil-Deligne representation, although again this does not determine the module, it only
determines its base change to Zx.

3 (¢,V)-modules coming from geometry

Our approach to showing that the (¢, V)-modules H. g(X /8x) are overconvergent is to build
a new cohomology theory H:ig(X /6’;{) taking values in é";{ rather than x. If we can show

that this gives an 6";2. lattice inside H; g(X /&x) (ignoring the (¢, V)-structures) then it will
actually follow almost entirely straightforwardly from the construction that it will form a
lattice as a (¢, V)-module, so we forget about this extra structure for now.

Let us first explain how to construct ‘classical’ rigid cohomology. One takes a scheme
X over k((#)), one embeds it into a proper scheme Y over k((¢)), and then embeds Y into a
smooth formal scheme 3 over Gg, . There is a specialisation map

sp: Peax — Po
from the generic fibre of i3 to the special fibre, and we consider the tubes
1X[p=sp '(X), Y [p=sp (Y,

as well as the natural inclusion

J X [p—1Y [.

One looks at the subsheaf jT@]Y[,p of j.O)xy,, consisting of functions which converge on some
strict neighbourhood of 1X[¢; inside 1Y [s3, the rigid cohomology of X is then the ‘overconver-
gent’ de Rham cohomology

H* (1Y [,/ Oy ® Qpyy),

this only depends on X and not on the choice of Y or 8. Our observation as to how to
construct an éa;{—valued theory is that 6";{ itself can be viewed as an overconvergent algebra
of the form jT@]Y[m, if we are prepared to work with slightly more general formal schemes
and rigid varieties.

The triple we want to take is X = Spec(k((#)), Y = Spec (k[¢]), B = Spf(¥[t]), where ¥
is the valuation ring of K, and 7 [¢] is equipped with the p-adic, rather than maximal adic
topology. Luckily, in Huber’s world of adic space, or equivalently Fujuwara/Kato’s world
of ‘rigid Zariski/Riemann spaces’, we can make sense of things like the generic fibre of
Spf(¥[t]), i-e. as Spa(Sk, 7 [¢]) where Sk = ¥ [t] ®» K. We can similarly form the construc-
tion jT@’]Y[,B, of ‘functions which converge on a strict neighbourhood of 1Spec 2(¢)gpe(y 1) >
and we find the following:

* The global sections of ij@’]y[m (with X,Y 13 as above) is 6’;{



* The global sections functor is an equivalence between coherent jJ'@’]Y[QF3 -modules and

finite dimensional é";{—vector spaces.

This suggests that what we should be looking for is a ‘relative’ version of rigid coho-
mology, where we work relative to the triple (2(2)),%[t], 7 [¢]). Thus we make the following
definition

Definition. A smooth and proper frame over 7[¢] is a triple (X,Y,B3) where X — Y is
an open immersion of a k() variety into a proper k[t]-scheme, and Y — P is a closed
immersion of Y into a smooth, p-adic, formal 7 [[¢]-scheme.

Exactly as in the classical case, we can then define the ‘overconvergent’ de Rham coho-
mology
H* (1Y, ' Oy, ® Qfyys,)

using Huber’s theory of adic spaces to be able to systematically work on the generic fibres
of p-adic formal schemes over 7 [[t].

Theorem (L., Pal). These groups only depend on X, and not on Y or *3, we therefore get
well-defined cohomology groups H g(X /é";{) which are vector spaces over (5"};

The proof is exactly the same as in classical rigid cohomology. Of course the main thing
we would like to prove is that H;‘ig(X/é’IT{) is a lattice inside H:ig(X /Ek). At the moment, we
can only do this in dimension 1.

Theorem (L., Pal). Let X/k((t)) be a smooth curve. Then the natural map
* t *
Hﬁg(X/éaK) ®g;{ Ex — Hﬁg(X/éz’K)
is an isomorphism.

The proof goes by locally using a pushforward construction via a finite étale map to A!,
which reduces to the case of Al, but with coefficients. We then prove a version of the p-adic
local monodromy theorem, which then implies base change via a direct computation.

4 Applications/Speculations

Let X/k(t)) be a smooth and proper curve, we can therefore attach a p-adic Weil-Deligne
representation to its cohomology

H}, (XI%K) := Hyyo(XI6)) 0,1 R

Conjecture (Independence of ¢). The family of Weil-Deligne representations attached to

{ {Hét(Xk((t))Sep ) @é)}ﬁp , Hiig(X/%K)}

is a compatible family.
We can also formulate a version of the weight-monodromy conjecture.

Conjecture. The kth graded part of the monodromy filtration on H;'ig(X/.%K) is pure of
weight i + k.

These should both be theorems soon!
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