p-adic cohomology over local fields of characteristic p

Christopher Lazda

1 Motivation

Suppose that *F* is a '*p*-adic' local field (i.e. a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((t))$), and that ℓ is a prime different from *p*.

Theorem (Grothendieck). Let (ρ, V) be a continuous ℓ -adic representation of $G_F := \text{Gal}(F^{\text{sep}}/F)$. Then (ρ, V) is potentially semi-stable, that is there exists a finite extension F'/F such that the inertia group $I_{F'} \subset G_F$ acts unipotently.

This allows one to attach Weil–Deligne representations to ℓ -adic Galois representations, and these Weil–Deligne representations determine the Galois representation uniquely.

If $\ell = p$, then this theorem is no longer true, for example, when *F* has characteristic zero, then the inertia action on $\mathbb{Q}_p(1)$ is never quasi-unipotent. This also tells us that even if we restrict to representations 'coming from geometry' then we don't get potentially semistable representations in the naive sense - we need a different notion.

This is provided by *p*-adic Hodge theory - we have a certain 'ring of semistable periods' \mathbf{B}_{st} , this is a \mathbb{Q}_p -algebra together with a G_K -action, and we say that *V* is semistable if

$$\dim_{F_0} \left({{{f B}_{{
m{st}}}} \otimes _{{{\Bbb Q}_p}} V}
ight)^{G_F} = \dim_{{{\Bbb Q}_p}} V$$

where F_0 is the maximal absolutely unramified subfield of F. A representation is then potentially semistable if there exists some finite extension F'/F such that it is semistable as a $G_{F'}$ -representation.

Theorem (Faltings, Berger, Kedlaya, André, Mebkhout). *All p-adic representations coming from geometry are potentially semistable.*

As before, if a representation is potentially semistable, then one can attach a Weil– Delinge representation to it, although now the Galois representation is no longer uniquely determined by its associated Weil-Deligne representation.

This still leaves open the case of what happens in the *p*-adic case when *F* is of characteristic *p*, i.e. $F \cong k((t))$ for some finite field *k*. But what sort of objects should we even be looking at? What sort of objects arise as the *p*-adic cohomology of varieties over k((t))?

Consider the Amice ring

$$\mathscr{E}_K := \left\{ \sum_{i \in \mathbb{Z}} a_i t^i \, \middle| \, a_i \in K, \, \sup_i |a_i| < \infty, \, |a_i| \to 0 \text{ as } i \to -\infty \right\}$$

where K is complete discrete valuation field with residue field k. This is a complete discrete valuation field of mixed characteristic, with residue field k((t)), and Berthelot's rigid cohomology gives, for any k((t))-variety X, a graded φ -module

 $H^*_{\mathrm{rig}}(X/\mathscr{E}_K)$

over \mathscr{E}_K , that is a finite dimensional graded vector space together with a 'Frobenius structure'. Actually, we get more - \mathscr{E}_K has a natural differential structure (differentiation with respect to *t*) and one can show that rigid cohomology groups naturally come with a connection, that is they are (φ, ∇) -modules over \mathscr{E}_K .

Definition. A (φ, ∇) -module over \mathscr{E}_K is a finite dimensional vector space M together with a Frobenius structure φ and a connection ∇ such that φ is horizontal with respect to the connection.

These objects also arise in a closely related context - if G is a p-divisible group over k((t)), then crystalline Diedonné theory constructs an associated (φ, ∇) -module over \mathscr{E}_K , D(G), which completely determines G up to isogeny.

So we have the following natural questions:

- What is the right notion of 'potential semistability' for (φ, ∇) -modules over \mathscr{E} ?
- Can we prove that $H^*_{rig}(X/\mathscr{E}_K)$ satisfies this condition for all k((t))-varieties X?

2 Potential Semistability

To answer the first question, we introduce a certain subring of \mathscr{E}_K , the bounded Robba ring

$$\mathcal{E}_{K}^{\dagger} = \left\{ \sum_{i \in \mathbb{Z}} a_{i} t^{i} \in \mathcal{E}_{K} \middle| \exists \eta < 1 \text{ s.t. } |a_{i}| \eta^{i} \to 0 \text{ as } i \to -\infty \right\},$$

this is a Henselian discrete valuation field, again with residue field k((t)). We can similarly define the notion of a (φ, ∇) -module over $\mathscr{E}_{K}^{\dagger}$, and there is an obvious base extension functor from (φ, ∇) -modules over $\mathscr{E}_{K}^{\dagger}$ to those over \mathscr{E}_{K} . Actually, thanks to a theorem of Kedlaya, this base extension functor is fully faithful, so it makes sense to speak of a (φ, ∇) -module over \mathscr{E}_{K} being overconvergent, that is coming from one over $\mathscr{E}_{K}^{\dagger}$. We have the following results.

Theorem (Trihan). Let G be a p-divisible group over k((t)) with semistable reduction. Then the Dieudonné module D(G) is overconvergent.

Theorem (Pal, unpublished). Let G be a semistable p-divisible group over k((t)), and $H \subset G$ a sub-p-divisible group. Then H is semistable if and only if D(H) is overconvergent.

In addition, it is not hard to see that if F/k((t)) is a finite separable extension, with corresponding extension $\mathscr{E}_K^F/\mathscr{E}_K$, then a (φ, ∇) -module M over \mathscr{E}_K is overconvergent if and only if $M \otimes_{\mathscr{E}_K} \mathscr{E}_K^F$ is. We are therefore tempted to make the following definition.

Definition. Say a (φ, ∇) -module over \mathscr{E}_K is potentially semistable if it is overconvergent, i.e. admits an \mathscr{E}_K^{\dagger} -lattice.

Another clue that this is the correct notion is that for such overconvergent modules we can form associated Weil–Deligne representations. Let \mathscr{R}_K denote the Robba ring

$$\mathscr{R}_{K} = \left\{ \sum_{i} a_{i} t^{i} \in K[[t, t^{-1}]] \middle| \begin{array}{l} \exists \eta < 1 \text{ s.t. } |a_{i}| \eta^{i} \to 0 \text{ as } i \to -\infty \\ \forall \rho < 1, |a_{i}| \rho^{i} \to 0 \text{ as } i \to \infty \end{array} \right\}$$

then we have $\mathscr{E}_{K}^{\dagger} = \mathscr{R}_{K} \cap \mathscr{E}_{K}$, and so we can base change (φ, ∇) -modules over $\mathscr{E}_{K}^{\dagger}$ to those over \mathscr{R}_{K} .

The *p*-adic local monodromy theorem then tells us that every such module over the Robba ring is quasi-unipotent, just as in the $\ell \neq p$ case, and Marmora used this to show that actually the category of such modules is actually equivalent to the category of Weil–Deligne representations of $G_{k((t))}$. Thus to an overconvergent (φ, ∇) -module one can associate a Weil–Deligne representation, although again this does not determine the module, it only determines its base change to \mathscr{R}_K .

3 (φ, ∇) -modules coming from geometry

Our approach to showing that the (φ, ∇) -modules $H^*_{rig}(X/\mathscr{E}_K)$ are overconvergent is to build a new cohomology theory $H^*_{rig}(X/\mathscr{E}_K^{\dagger})$ taking values in \mathscr{E}_K^{\dagger} rather than \mathscr{E}_K . If we can show that this gives an \mathscr{E}_K^{\dagger} lattice inside $H^*_{rig}(X/\mathscr{E}_K)$ (ignoring the (φ, ∇) -structures) then it will actually follow almost entirely straightforwardly from the construction that it will form a lattice as a (φ, ∇) -module, so we forget about this extra structure for now.

Let us first explain how to construct 'classical' rigid cohomology. One takes a scheme X over k((t)), one embeds it into a proper scheme Y over k((t)), and then embeds Y into a smooth formal scheme \mathfrak{P} over $\mathscr{O}_{\mathscr{E}_{K}}$. There is a specialisation map

$$\operatorname{sp}:\mathfrak{P}_{\mathscr{E}_K}\to\mathfrak{P}_0$$

from the generic fibre of $\mathfrak P$ to the special fibre, and we consider the tubes

$$]X[_{\mathfrak{V}} = \mathrm{sp}^{-1}(X),]Y[_{\mathfrak{V}} = \mathrm{sp}^{-1}(Y),$$

as well as the natural inclusion

$$j:]X[_{\mathfrak{P}}\rightarrow]Y[_{\mathfrak{P}}.$$

One looks at the subsheaf $j^{\dagger}\mathcal{O}_{]Y[_{\mathfrak{P}}}$ of $j_*\mathcal{O}_{]X[_{\mathfrak{P}}}$ consisting of functions which converge on some strict neighbourhood of $]X[_{\mathfrak{P}}$ inside $]Y[_{\mathfrak{P}}$, the rigid cohomology of X is then the 'overconvergent' de Rham cohomology

$$H^*(]Y[_{\mathfrak{P}}, j^{\dagger}\mathcal{O}_{]Y[_{\mathfrak{P}}} \otimes \Omega^*_{]Y[_{\mathfrak{P}}}),$$

this only depends on X and not on the choice of Y or \mathfrak{P} . Our observation as to how to construct an $\mathscr{E}_{K}^{\dagger}$ -valued theory is that $\mathscr{E}_{K}^{\dagger}$ itself can be viewed as an overconvergent algebra of the form $j^{\dagger}\mathscr{O}_{]Y[\mathfrak{P}}$, if we are prepared to work with slightly more general formal schemes and rigid varieties.

The triple we want to take is $X = \operatorname{Spec}(k((t)))$, $Y = \operatorname{Spec}(k[[t]])$, $\mathfrak{P} = \operatorname{Spf}(\mathcal{V}[[t]])$, where \mathcal{V} is the valuation ring of K, and $\mathcal{V}[[t]]$ is equipped with the p-adic, rather than maximal adic topology. Luckily, in Huber's world of adic space, or equivalently Fujuwara/Kato's world of 'rigid Zariski/Riemann spaces', we can make sense of things like the generic fibre of $\operatorname{Spf}(\mathcal{V}[[t]])$, i.e. as $\operatorname{Spa}(S_K, \mathcal{V}[[t]])$ where $S_K = \mathcal{V}[[t]] \otimes_{\mathcal{V}} K$. We can similarly form the construction $j^{\dagger}\mathcal{O}_{]Y[\mathfrak{P}}$, of 'functions which converge on a strict neighbourhood of] $\operatorname{Spec} k((t))[_{\operatorname{Spf}(\mathcal{V}[[t]])}'$, and we find the following:

• The global sections of $j^{\dagger} \mathcal{O}_{|Y|_{\mathfrak{N}}}$ (with X, Y, \mathfrak{P} as above) is $\mathscr{E}_{K}^{\dagger}$.

• The global sections functor is an equivalence between coherent $j^{\dagger}\mathcal{O}_{]Y[_{\mathfrak{P}}}$ -modules and finite dimensional $\mathscr{E}_{K}^{\dagger}$ -vector spaces.

This suggests that what we should be looking for is a 'relative' version of rigid cohomology, where we work relative to the triple $(k((t)), k[[t]], \mathcal{V}[[t]])$. Thus we make the following definition

Definition. A smooth and proper frame over $\mathcal{V}[\![t]\!]$ is a triple (X, Y, \mathfrak{P}) where $X \hookrightarrow Y$ is an open immersion of a k((t)) variety into a proper $k[\![t]\!]$ -scheme, and $Y \hookrightarrow \mathfrak{P}$ is a closed immersion of Y into a smooth, p-adic, formal $\mathcal{V}[\![t]\!]$ -scheme.

Exactly as in the classical case, we can then define the 'overconvergent' de Rham cohomology

$$H^*(]Y[_{\mathfrak{P}}, j^{\dagger}\mathscr{O}_{]Y[_{\mathfrak{P}}} \otimes \Omega^*_{]Y[/S_{\mathcal{K}}})$$

using Huber's theory of adic spaces to be able to systematically work on the generic fibres of *p*-adic formal schemes over $\mathcal{V}[\![t]\!]$.

Theorem (L., Pal). These groups only depend on X, and not on Y or \mathfrak{P} , we therefore get well-defined cohomology groups $H^*_{rig}(X/\mathscr{E}^{\dagger}_K)$ which are vector spaces over \mathscr{E}^{\dagger}_K .

The proof is exactly the same as in classical rigid cohomology. Of course the main thing we would like to prove is that $H^*_{rig}(X/\mathscr{E}_K^{\dagger})$ is a lattice inside $H^*_{rig}(X/\mathscr{E}_K)$. At the moment, we can only do this in dimension 1.

Theorem (L., Pal). Let X/k((t)) be a smooth curve. Then the natural map

$$H^*_{\operatorname{rig}}(X/\mathscr{E}_K^{\dagger}) \otimes_{\mathscr{E}_K^{\dagger}} \mathscr{E}_K \to H^*_{\operatorname{rig}}(X/\mathscr{E}_K)$$

is an isomorphism.

The proof goes by locally using a pushforward construction via a finite étale map to \mathbb{A}^1 , which reduces to the case of \mathbb{A}^1 , but with coefficients. We then prove a version of the *p*-adic local monodromy theorem, which then implies base change via a direct computation.

4 Applications/Speculations

Let X/k((t)) be a smooth and proper curve, we can therefore attach a *p*-adic Weil–Deligne representation to its cohomology

$$H^i_{\mathrm{rig}}(X/\mathscr{R}_K) := H^i_{\mathrm{rig}}(X/\mathscr{E}_K^\dagger) \otimes_{\mathscr{E}_K^\dagger} \mathscr{R}_K.$$

Conjecture (Independence of ℓ). The family of Weil–Deligne representations attached to

$$\left\{\left\{H^{i}_{\text{\'et}}(X_{k((t))^{\text{sep}}}, \mathbb{Q}_{\ell})\right\}_{\ell \neq p}, H^{i}_{\text{rig}}(X/\mathscr{R}_{K})\right\}$$

is a compatible family.

We can also formulate a version of the weight-monodromy conjecture.

Conjecture. The kth graded part of the monodromy filtration on $H^i_{rig}(X/\mathscr{R}_K)$ is pure of weight i + k.

These should both be theorems soon!