Rigid cohomology over Laurent series fields

Christopher Lazda Ambrus Pál

23rd June 2015

Christopher Lazda Ambrus Pál *p*-adic cohomology

F = global function field, char(F) = p, G_F := Gal(F^{sep}/F), k = field of constants of F.

 $\begin{aligned} \text{\{algebraic varieties } X \text{ over } F \} &\to \{\ell\text{-adic Galois representations } \ell \neq p \} \\ X &\mapsto H^*_{\text{\'et}}(X_{F^{\text{sep}}}, \mathbb{Q}_{\ell}) \curvearrowleft G_F \end{aligned}$

Question

- Can we describe the Galois representation H^{*}_{ét}(X_{F^{sep}}, Q_ℓ)?
- What arithmetic properties of X are reflected in *H*^{*}_{ét}(X_{F^{sep}}, ℚ_ℓ)?

If v is a place of F, then we can also consider the restriction of these Galois representations to a decomposition group $G_{F_v} \subset G_F$ at v.

Question

- Can we describe $H^*_{\text{ét}}(X_{F^{\text{sep}}}, \mathbb{Q}_{\ell})$ as a representation of G_{F_v} ?
- What about varieties X/F_{v} ?

Recall that we say a Galois representation is unramified/unipotent if the inertia group $I_{F_v} \subset G_{F_v}$ acts trivially/unipotently.

Example

- Weight monodromy conjecture describe the eigenvalues of Frobenius elements acting on H^{*}_{ét}(X_{F^{sep}}, Q_l).
- If X (smooth and proper over F_v) has good/semistable reduction at v then H^{*}_{ét}(X_{F^{sep}}, Q_ℓ) is unramified/unipotent. There exist partial converse results.

Key fact about $\ell\text{-adic}$ Galois representations is the following.

Theorem (Grothendieck's *l*-adic local monodromy theorem)

Let $\rho : G_{F_v} \to GL(V)$ be an ℓ -adic Galois representation. Then there exists a finite separable extension F' of F_v such that $\rho|_{G_{F'}}$ is unipotent, i.e. $I_{F'}$ acts unipotently.

- This is a 'cohomological' version of semistable reduction.
- It also allows us to compare $H^*_{\text{\acute{e}t}}(X_{F^{\text{sep}}_{\nu}}, \mathbb{Q}_{\ell})$ for different ℓ (as $G_{F_{\nu}}$ -representations) by attaching Weil–Deligne representations to them.

What is the *p*-adic analogue of this story? C = smooth projective curve whose function field is *F*.

 $\{\text{geometric Galois representations}\} \leftrightarrow \{\mathbb{Q}_{\ell} \text{ sheaves on some } U \subset C\}$

The correct p-adic analogue of the objects appearing on the RHS is well-known, these are *overconvergent* F-isocrystals on U.

K = W(k)[1/p], $\mathfrak{C} = \text{lift of } C$ to a rigid analytic curve over K. Have $\text{sp} : \mathfrak{C} \to C$, each fibre $]x[\mathfrak{C}$ is an open unit disc over K. An overconvergent F-isocrystal on U is then a vector bundle with integrable connection on

$$\mathfrak{C}\setminus \bigcup_{x\in C\setminus U}]x[\mathfrak{C}]$$

which extends slightly into the missing discs, together with a 'Frobenius structure'.

To any variety X/F, take a flat model $f : \mathcal{X} \to C$ and lift to a morphism $\mathfrak{X} \to \mathfrak{C}$ of analytic varieties. Then $\mathbf{R}^q_{dR} f_*(\mathcal{O}_{\mathfrak{X}})$ becomes an overconvergent isocrystal on some $U \subset C$.

 $\{p\text{-adic cohomology of } Y\} \leftrightarrow \{\text{de Rham cohomology of a lift } \mathfrak{Y}\}$

Local analogues will be modules with connection over an appropriate lift of F_v , they should also arise by taking the fibre of an overconvergent *F*-isocrystal near a 'missing' residue disc $]x[\mathfrak{c}]$.

Assume the residue field of v is k, and fix an isomorphism $F_v \cong k((t))$.

Definition

The Robba ring $\mathcal{R}_{\mathcal{K}}$ over \mathcal{K} is the ring of analytic functions over \mathcal{K} convergent on some half-open annulus $\{\eta \leq |z| < 1\}$.

So it is the ring of series $\sum_{i=-\infty}^{\infty} a_i z^i$ with $a_i \in K$ such that $|a_i| \rho^i \to 0$ as $i \to +\infty$ for all $\rho < 1$, and $|a_i| \eta^i \to 0$ as $i \to -\infty$ for some $\eta < 1$. Let $\mathcal{R}_K^{\text{int}} \subset \mathcal{R}_K$ denote the series with $a_i \in W(k)$ for all *i*.

Lemma

The map $z \mapsto t$ induces an isomorphism $\mathcal{R}_{K}^{int}/p \cong k((t))$.

Let $\partial_z : \mathcal{R}_K \to \mathcal{R}_K$ denote differentiation with respect to z, and $\sigma : \mathcal{R}_K \to \mathcal{R}_K$ the map $\sum_i a_i z^i \mapsto \sum_i \sigma(a_i) z^{ip}$.

Definition

A (φ, ∇) -module over \mathcal{R}_K is a finite free \mathcal{R}_K -module M together with:

• a K-linear map abla : M o M such that

$$\nabla(fm) = \partial_z(f)m + f\nabla(m)$$

for all $f \in \mathcal{R}_K, m \in M$;

• a horizontal isomorphism $\varphi: M \otimes_{\mathcal{R}_{K},\sigma} \mathcal{R}_{K} \to M$.

These are *p*-adic analogues of ℓ -adic representations of G_{F_v} .

One reason that these are good candidates for p-adic analogues of Galois representations is the following.

Theorem (Andre–Mebkhout, Kedlaya)

Let *M* be a (φ, ∇) -module over \mathcal{R}_K . Then after making a finite separable extension of k((t)), the connection ∇ acts via a unipotent matrix.

Just as in the ℓ -adic case, we can use this result to attach *p*-adic Weil–Deligne representations to (φ, ∇) -modules over $\mathcal{R}_{\mathcal{K}}$ (this was originally done by Marmora).

Question

- How can we associate (φ, ∇)-modules over R_K to varieties X over k((t))?
- What can we say about the relationship between these (φ, ∇)-modules and the arithmetic of X?
- Can we compare these (φ, ∇)-modules to the ℓ-adic representations H^{*}_{ét}(X_{F^{sep}}, Q_ℓ)?

Rigid cohomology is a *p*-adic cohomology theory for varieties over fields of characteristic *p*, constructed via de Rham cohomology in characteristic 0. We'll work over *k* for simplicity, and write W = W(k).

Definition

A frame over W is a triple (X, Y, \mathfrak{P}) with $X \hookrightarrow Y$ an open immersion of k-varieties, and $Y \hookrightarrow \mathfrak{P}$ a closed immersion of formal W-schemes. We say that the frame is proper if Y is proper over kand smooth if \mathfrak{P} is smooth over W.

 $\mathfrak{P}_{\mathcal{K}}$ = generic fibre of \mathfrak{P} , considered as an adic space over \mathcal{K} .

$$\begin{split} & \mathrm{sp}:\mathfrak{P}_{\mathcal{K}}\to\mathfrak{P}\\]\mathcal{Y}[_{\mathfrak{P}}=\mathrm{sp}^{-1}(\mathcal{Y})^{\circ}, \]X[_{\mathfrak{P}}:=\overline{\mathrm{sp}^{-1}(X)}\subset]\mathcal{Y}[_{\mathfrak{P}}\\ & \quad j:]X[_{\mathfrak{P}}\to]\mathcal{Y}[_{\mathfrak{P}} \end{split}$$

Example

$$\begin{array}{l} (\mathbb{A}_{k}^{1},\mathbb{P}_{k}^{1},\widehat{\mathbb{P}}_{W}^{1}). \text{ Then }]Y[_{\mathfrak{P}}=\mathfrak{P}_{K}=\mathbb{P}_{K}^{1,\mathrm{an}} \text{ and } \\]X[_{\mathfrak{P}}=\overline{\mathbb{D}_{K}(0,1^{+})}. \end{array} \end{array}$$

 $(\operatorname{Spec}(k), \operatorname{Spec}(k), \widehat{\mathbb{A}}^1_W). \text{ Then }]X[_{\mathfrak{P}} =]Y[_{\mathfrak{P}} = \mathbb{D}_{\mathcal{K}}(0, 1^-).$

Definition

$$j_X^{\dagger}\mathcal{O}_{]Y[_{\mathfrak{P}}} := j_* j^{-1}\mathcal{O}_{]Y[_{\mathfrak{P}}}$$
 $H^i_{\mathrm{rig}}(X/K) := H^i(]Y[_{\mathfrak{P}}, j_X^{\dagger}\mathcal{O}_{]Y[_{\mathfrak{P}}} \otimes \Omega^*_{]Y[_{\mathfrak{P}}/K})$

Then $j_X^{\dagger} \mathcal{O}_{]Y[_{\mathfrak{P}}}$ consists of 'overconvergent functions', that is functions which converge on some open neighbourhood V of $]X[_{\mathfrak{P}}$ inside $]Y[_{\mathfrak{P}}$. If (X, Y, \mathfrak{P}) is smooth and proper then the rigid cohomology $H_{\mathrm{rig}}^i(X/K)$ doesn't depend on any of the choices.

Example

- (A¹_k, P¹_k, P¹_W). Then j[†]_X O_{]Y[p} is the ring of functions f = ∑_{i≥0} a_izⁱ which converge on some disc |z| ≤ ρ with ρ > 1 (depending of f). This has trivial de Rham cohomology. If we just took a lift of X without worrying about overconvergence, then we would get the ring of functions which converge on |z| ≤ 1, which has infinite dimensional de Rham cohomology.
- (Spec(k), Spec(k), $\widehat{\mathbb{A}}^1_W$). Then $j^{\dagger}_X \mathcal{O}_{]Y[_{\mathfrak{P}}} = \mathcal{O}_{]Y[_{\mathfrak{P}}} = \mathcal{O}_{\mathbb{D}_K(0,1^-)}$. Again, this has trivial de Rham cohomology.

In Berthelot's theory, we can replace k with any field L of characteristic p, as long as we replace K with a complete, discretely valued field of characteristic 0 whose residue field L.

So what about k((t))? Unfortunately the Robba ring \mathcal{R}_K is *not* a complete discretely valued *p*-adic field (it's not even a field). What we can use instead is the Amice ring.

Definition

The Amice ring \mathcal{E}_K over K consists of series $\sum_i a_i z^i$ with $a_i \in K$ such that $\sup_i |a_i| < \infty$ and $a_i \to 0$ as $i \to -\infty$.

This is a complete, discretely valued field with residue field k((t))(via $z \mapsto t$), and rigid cohomology gives (φ, ∇) -modules $H^{i}_{rig}(X/\mathcal{E}_{\mathcal{K}})$ associated to X/k((t)). We have $\mathcal{E}_{K}, \mathcal{R}_{K} \subset K[\![t, t^{-1}]\!]$ but $\mathcal{R}_{K} \not\subset \mathcal{E}_{K}$ and $\mathcal{E}_{K} \not\subset \mathcal{R}_{K}$.

Definition

We define the bounded Robba ring $\mathcal{E}_{K}^{\dagger} := \mathcal{E}_{K} \cap \mathcal{R}_{K}$, this is also equal to $\mathcal{R}_{K}^{int}[1/\rho]$.

 $\mathcal{E}_{K}^{\dagger}$ is a henselian d.v.f. whose residue field is k((t)), but is no longer complete.

Aim

Define a version of rigid cohomology taking values in vector spaces over $\mathcal{E}_{K}^{\dagger}$.

Main idea: interpret $\mathcal{E}_{\mathcal{K}}^{\dagger}$ as something of the form $j_{\mathcal{X}}^{\dagger}\mathcal{O}_{]\mathcal{Y}[_{\mathfrak{P}}}$, then our theory will just be a relative version of rigid cohomology.

- The Robba ring R_K consists of functions which converge 'on some neighbourhood of the boundary' of the open unit disc {|z| < 1}.
- The bounded Robba ring $\mathcal{E}_{K}^{\dagger}$ is exactly the functions in \mathcal{R}_{K} which are bounded on some annulus $\eta \leq |z| < 1$.

So we want to consider a space which looks like the open unit disc $\mathbb{D}_{\mathcal{K}}(0,1^{-})$ over \mathcal{K} , but which has 'boundary points' and whose functions look like functions on $\mathbb{D}_{\mathcal{K}}(0,1^{-})$ which are actually bounded.

Define the formal scheme $\mathbb{D}_{W}^{b} := \operatorname{Spf}(W[\![t]\!])$, using the *p*-adic topology. We let $\mathbb{D}_{K}^{b} = \operatorname{Spec}(S_{K}, W[\![t]\!])$ denote its generic fibre, where $S_{K} = W[\![t]\!] \otimes_{W} K$ is the ring of bounded analytic functions on $\mathbb{D}_{K}(0, 1^{-})$.

Then $\mathbb{D}_{K}^{b} = \mathbb{D}_{K}(0, 1^{-}) \cup \{\xi_{-}, \xi\}$ where ξ is an open point such that $\overline{\{\xi\}} = \{\xi_{-}, \xi\}$. Moreover, for any open subset $U \supset \{\xi_{-}, \xi\}$, $\Gamma(U, \mathcal{O}_{\mathbb{D}_{K}^{b}}) = \{f \in \Gamma(U \cap \mathbb{D}_{K}(0, 1^{-}), \mathcal{O}_{\mathbb{D}_{K}(0, 1^{-})}) \mid f \text{ bounded}\}$

The frame we will consider is therefore the triple

$$\left(\operatorname{Spec}(k((t))), \operatorname{Spec}(k[t]), \mathbb{D}^b_W\right)$$

and we have a specialisation map

$$\mathrm{sp}:\mathbb{D}^b_K\to\mathbb{D}^b_W$$

such that

$$]\operatorname{Spec}(k((t)))[_{\mathbb{D}_{K}^{b}} = \overline{\operatorname{sp}^{-1}(\operatorname{Spec}(k((t))))} = \{\xi_{-},\xi\}.$$

Lemma

 $\Gamma(\mathbb{D}_{K}^{b}, j_{\mathrm{Spec}(k((t)))}^{\dagger}\mathcal{O}_{\mathbb{D}_{K}^{b}}) = \mathcal{E}_{K}^{\dagger}, \text{ and } \Gamma(\mathbb{D}_{K}^{b}, -) \text{ induces an equivalence of categories between coherent } j_{\mathrm{Spec}(k((t)))}^{\dagger}\mathcal{O}_{\mathbb{D}_{K}^{b}}^{-} \text{-modules and finite dimensional } \mathcal{E}_{K}^{\dagger} \text{-vector spaces.}$

Therefore the key definition is the following.

Definition

A frame over W[[t]] is a triple (X, Y, \mathfrak{P}) where $X \hookrightarrow Y$ is an open immersion of a k((t))-variety into a k[[t]]-scheme of finite type, and $Y \hookrightarrow \mathfrak{P}$ is a closed immersion of Y into a p-adic formal scheme, topologically of finite type over W[[t]]. We say that the frame is proper if Y is so over k[[t]], and smooth if \mathfrak{P} is so over W[[t]].

Then everything proceeds as in the classical case. We have a closed immersion

$$j:]X[_{\mathfrak{P}} \rightarrow]Y[_{\mathfrak{P}}$$

of tubes, and we define

$$H^i_{\mathrm{rig}}(X/\mathcal{E}^\dagger_{\mathcal{K}})=H^i(]Y[_{\mathfrak{P}},j_*j^{-1}\mathcal{O}_{]Y[_{\mathfrak{P}}}\otimes\Omega^*_{]Y[_{\mathfrak{P}}/\mathcal{S}_{\mathcal{K}}}).$$

whenever (X, Y, \mathfrak{P}) is smooth and proper.

Theorem (L., Pál)

The groups $H^i_{rig}(X/\mathcal{E}^{\dagger}_K)$ are well-defined and finite dimensional over \mathcal{E}^{\dagger}_K . Moreover, they are naturally equipped with the structure of (φ, ∇) -modules over \mathcal{E}^{\dagger}_K and there is a natural base change isomorphism

$$H^{i}_{\mathrm{rig}}(X/\mathcal{E}^{\dagger}_{K})\otimes_{\mathcal{E}^{\dagger}_{K}}\mathcal{E}_{K} \to H^{i}_{\mathrm{rig}}(X/\mathcal{E}_{K}).$$

The following definition thus makes sense.

Definition

We define
$$H^{i}_{\operatorname{rig}}(X/\mathcal{R}_{K}) := H^{i}_{\operatorname{rig}}(X/\mathcal{E}^{\dagger}_{K}) \otimes_{\mathcal{E}^{\dagger}_{K}} \mathcal{R}_{K}$$
. These are (φ, ∇) -modules over \mathcal{R}_{K} .

We can now attach *p*-adic Weil–Deligne representations to varieties over k((t)), using the local monodromy theorem.

Theorem (L., Pál)

Let X/k((t)) be a curve. Then the p-adic Weil–Deligne representation attached to $H^i_{rig}(X/\mathcal{R}_K)$ satisfies the weight-monodromy conjecture.

Theorem (L., Pál)

Let X/k((t)) be a curve. Then the p-adic Weil–Deligne representation attached to $H^i_{rig}(X/\mathcal{R}_K)$ is 'compatible' with the family of ℓ -adic ones attached to $H^i_{\acute{e}t}(X_{k((t))^{sep}}, \mathbb{Q}_{\ell})$ for $\ell \neq p$.