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Basic questions

Let F → E → B be a topological fibre bundle.

Then there exists a long exact sequence

. . .→ πn+1(B)→ πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ . . .

of homotopy groups.

Question

What is the analogue of the in algebraic geometry?

Question

1 What is the algebraic analogue of a fibre bundle?

2 What is the algebraic analogue of πn? Even π1?
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What is an algebraic fibre bundle?

Basic answer: a smooth and proper morphism X → S of schemes.

Example

If S/C is a variety, and X → S is smooth and proper, then X (C)→ S(C) is a
topological fibre bundle.

More sophisticated answer: a morphism X → S admitting a proper hypercover
X• → X and a compactification X• → X• such that X• → S is smooth and proper
and X• \ X• is a relative NCD.

Basic Setup

f : X → S is a smooth and projective morphism of varieties over a field k, with
geometrically connected base and fibres. Fix x ∈ X (k) and set s = f (x).

Thus we expect to see a right exact sequence

π1(Xs , x)→ π1(X , x)→ π1(S , s)→ 1

of fundamental groups (whatever they are!).
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The étale fundamental group

If Y is a normal, connected, Noetherian scheme, and ȳ → Y is a geometric point,
then Grothendieck defined the étale fundamental group πét

1 (Y , ȳ).

It is uniquely
characterised by the existence of an equivalence of categories

FÉt(Y ) ∼= πét
1 (Y , ȳ)-FSet

between finite étale covers of Y and finite (discrete) πét
1 (Y , ȳ)-sets, such that the

forgetful functor
πét

1 (Y , ȳ)-FSet→ FSet

corresponds to the ‘fibre over ȳ ’ functor

FÉt(Y )→ FSet.

Theorem (Grothendieck)

Assume the Basic Setup, and let x̄ → x be a geometric point over x , with
corresponding geometric point s̄ over s. Then the sequence

πét
1 (Xs̄ , x̄)→ πét

1 (X , x̄)→ πét
1 (S, s̄)→ 1

of pro-finite fundamental groups is exact.
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Tannakian duality

Basic idea is that a pro-algebraic group G can be reconstructed from its category of
representations Rep(G).

Definition

A Tannakian category over a field F is a F -linear, abelian, rigid tensor category T ,
such that:

1 End(1) = F ;

2 there exist a faithful, exact, F -linear tensor functor ω : T → VecF ′ for some field
extension F ′/F .

Such a functor is called a fibre functor. If we can choose F ′ = F then we say that T is
neutral Tannakian.

Theorem (Saavedra)

Let T be a neutral Tannakian category over F , with fibre functor

ω : T → VecF .

Then there exists a unique pro-algebraic group G = G(T , ω) over F , and an
equivalence Rep(G) ∼= T which identifies ω : T → VecF with the forgetful functor
Rep(G)→ VecF .

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals
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Examples

1 Let Y be a normal, connected, Noetherian scheme, and Locét
Q`

(Y ) the category

of lisse Q`-sheaves on Yét. Then Locét
Q`

(Y ) is neutral Tannakian over Q`, and
any geometric point ȳ → Y provides a fibre functor

Locét
Q`

(Y )→ VecQ`

F 7→ Fȳ .

The corresponding fundamental group πét
1 (Y , ȳ)Q`

is the Q`-pro-algebraic

completion of πét
1 (Y , ȳ). This is ‘well-behaved’ only when ` is invertible on Y .

2 Y /k a smooth, geometrically connected variety over a field k of characteristic 0.
Then the category MIC(Y /k) of vector bundles with integrable connection on Y
is Tannakian over k. If there exists a rational point y ∈ Y (k) it is moreover
neutral Tannakian, and

y∗ : MIC(Y /k)→ Veck

is a fibre functor. This gives rise to the de Rham fundamental group πdR
1 (Y , y).
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Examples (contd.)

3 More generally, if Y /k is a smooth, geometrically connected variety over any field
k, then the category Strat(X/k) of OX -coherent DX -modules is Tannakian over
k. If there exists a rational point y ∈ Y (k), then it is moreover neutral
Tannakian, and

y∗ : Strat(Y /k)→ Veck

is a fibre functor. This gives rise to the stratified fundamental group πstrat
1 (Y , y).

If char(k) = 0 then πdR
1 (Y , y) = πstrat

1 (Y , y).

4 If K is a complete, valued field of characteristic 0, and Y /K is a smooth,
geometrically connected analytic variety, then the category MIC(Y /K) of analytic
vector bundles with integrable connection on Y is Tannakian over K . If
y ∈ Y (K) is a rational point, then it is neutral Tannakian, and

y∗ : MIC(Y /K)→ VecK

is a fibre functor. The corresponding fundamental group is denoted πdR
1 (Y , y).
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Homotopy exact sequences

Assume the Basic Setup.

1 If ` 6= char(k) then exactness of

πét
1 (Xs̄ , x̄)Q`

→ πét
1 (X , x̄)Q`

→ πét
1 (S, s̄)Q`

→ 1

follows from ‘right exactness’ of the pro-algebraic completion functor.

2 If char(k) = 0 and the base S is smooth, then exactness of

πdR
1 (Xs , x)→ πdR

1 (X , x)→ πdR
1 (S , s)→ 1

can be deduced over C (more or less) using the Riemann–Hilbert correspondence.
In general, it was proved using transcendental methods by Zhang.

3 Again, if the base S is smooth, but now char(k) is arbitrary, then exactness of

πstrat
1 (Xs , x)→ πstrat

1 (X , x)→ πstrat
1 (S , s)→ 1

was proved by dos Santos. This gives a proof of exactness for πdR
1 in char 0 using

only algebraic methods.

4 We’ll come back to this one!
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4 We’ll come back to this one!
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Now suppose k is perfect and char(k) = p > 0. A p-adic analogue of MIC(Y /k) or
Strat(Y /k) is given by the category of overconvergent isocrystals.

To describe this category, let V be a complete DVR with residue field k and fraction
field K of characteristic 0. Assume that Y is smooth, and that there exists a
projective formal scheme Y over V and an open embedding Y ↪→ Yk such that:

Y is smooth over V in a neighbourhood of Y ;

the complement Yk \ Y is a Cartier divisor on Yk .

Definition

Let us call such an embedding Y ↪→ Y a ‘good embedding’.

Thus locally we have Y = {t 6= 0} for some t ∈ OY. Let

sp : YK → Yk

be the ‘reduction mod p map’, so, again locally, the tube

]Y [:= sp−1(Y )

is defined by {|t| ≥ 1}. We can therefore consider the ‘strict neighbourhoods’
]Y [⊂ Vλ ⊂ YK defined locally by {|t| ≥ λ} for λ→ 1−.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals



Introduction
Pro-algebraic fundamental groups

Overconvergent isocrystals
Proof of p-adic HES

Now suppose k is perfect and char(k) = p > 0. A p-adic analogue of MIC(Y /k) or
Strat(Y /k) is given by the category of overconvergent isocrystals.

To describe this category, let V be a complete DVR with residue field k and fraction
field K of characteristic 0. Assume that Y is smooth, and that there exists a
projective formal scheme Y over V and an open embedding Y ↪→ Yk such that:

Y is smooth over V in a neighbourhood of Y ;

the complement Yk \ Y is a Cartier divisor on Yk .

Definition

Let us call such an embedding Y ↪→ Y a ‘good embedding’.

Thus locally we have Y = {t 6= 0} for some t ∈ OY. Let

sp : YK → Yk

be the ‘reduction mod p map’, so, again locally, the tube

]Y [:= sp−1(Y )

is defined by {|t| ≥ 1}. We can therefore consider the ‘strict neighbourhoods’
]Y [⊂ Vλ ⊂ YK defined locally by {|t| ≥ λ} for λ→ 1−.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals



Introduction
Pro-algebraic fundamental groups

Overconvergent isocrystals
Proof of p-adic HES

Now suppose k is perfect and char(k) = p > 0. A p-adic analogue of MIC(Y /k) or
Strat(Y /k) is given by the category of overconvergent isocrystals.

To describe this category, let V be a complete DVR with residue field k and fraction
field K of characteristic 0. Assume that Y is smooth, and that there exists a
projective formal scheme Y over V and an open embedding Y ↪→ Yk such that:

Y is smooth over V in a neighbourhood of Y ;

the complement Yk \ Y is a Cartier divisor on Yk .

Definition

Let us call such an embedding Y ↪→ Y a ‘good embedding’.

Thus locally we have Y = {t 6= 0} for some t ∈ OY. Let

sp : YK → Yk

be the ‘reduction mod p map’, so, again locally, the tube

]Y [:= sp−1(Y )

is defined by {|t| ≥ 1}. We can therefore consider the ‘strict neighbourhoods’
]Y [⊂ Vλ ⊂ YK defined locally by {|t| ≥ λ} for λ→ 1−.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals



Introduction
Pro-algebraic fundamental groups

Overconvergent isocrystals
Proof of p-adic HES

Now suppose k is perfect and char(k) = p > 0. A p-adic analogue of MIC(Y /k) or
Strat(Y /k) is given by the category of overconvergent isocrystals.

To describe this category, let V be a complete DVR with residue field k and fraction
field K of characteristic 0. Assume that Y is smooth, and that there exists a
projective formal scheme Y over V and an open embedding Y ↪→ Yk such that:

Y is smooth over V in a neighbourhood of Y ;

the complement Yk \ Y is a Cartier divisor on Yk .

Definition

Let us call such an embedding Y ↪→ Y a ‘good embedding’.

Thus locally we have Y = {t 6= 0} for some t ∈ OY. Let

sp : YK → Yk

be the ‘reduction mod p map’, so, again locally, the tube

]Y [:= sp−1(Y )

is defined by {|t| ≥ 1}. We can therefore consider the ‘strict neighbourhoods’
]Y [⊂ Vλ ⊂ YK defined locally by {|t| ≥ λ} for λ→ 1−.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals



Introduction
Pro-algebraic fundamental groups

Overconvergent isocrystals
Proof of p-adic HES

Now suppose k is perfect and char(k) = p > 0. A p-adic analogue of MIC(Y /k) or
Strat(Y /k) is given by the category of overconvergent isocrystals.

To describe this category, let V be a complete DVR with residue field k and fraction
field K of characteristic 0. Assume that Y is smooth, and that there exists a
projective formal scheme Y over V and an open embedding Y ↪→ Yk such that:

Y is smooth over V in a neighbourhood of Y ;

the complement Yk \ Y is a Cartier divisor on Yk .

Definition

Let us call such an embedding Y ↪→ Y a ‘good embedding’.

Thus locally we have Y = {t 6= 0} for some t ∈ OY. Let

sp : YK → Yk

be the ‘reduction mod p map’, so, again locally, the tube

]Y [:= sp−1(Y )

is defined by {|t| ≥ 1}. We can therefore consider the ‘strict neighbourhoods’
]Y [⊂ Vλ ⊂ YK defined locally by {|t| ≥ λ} for λ→ 1−.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals



Introduction
Pro-algebraic fundamental groups

Overconvergent isocrystals
Proof of p-adic HES

Now suppose k is perfect and char(k) = p > 0. A p-adic analogue of MIC(Y /k) or
Strat(Y /k) is given by the category of overconvergent isocrystals.

To describe this category, let V be a complete DVR with residue field k and fraction
field K of characteristic 0. Assume that Y is smooth, and that there exists a
projective formal scheme Y over V and an open embedding Y ↪→ Yk such that:

Y is smooth over V in a neighbourhood of Y ;

the complement Yk \ Y is a Cartier divisor on Yk .

Definition

Let us call such an embedding Y ↪→ Y a ‘good embedding’.

Thus locally we have Y = {t 6= 0} for some t ∈ OY.

Let

sp : YK → Yk

be the ‘reduction mod p map’, so, again locally, the tube

]Y [:= sp−1(Y )

is defined by {|t| ≥ 1}. We can therefore consider the ‘strict neighbourhoods’
]Y [⊂ Vλ ⊂ YK defined locally by {|t| ≥ λ} for λ→ 1−.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals



Introduction
Pro-algebraic fundamental groups

Overconvergent isocrystals
Proof of p-adic HES

Now suppose k is perfect and char(k) = p > 0. A p-adic analogue of MIC(Y /k) or
Strat(Y /k) is given by the category of overconvergent isocrystals.

To describe this category, let V be a complete DVR with residue field k and fraction
field K of characteristic 0. Assume that Y is smooth, and that there exists a
projective formal scheme Y over V and an open embedding Y ↪→ Yk such that:

Y is smooth over V in a neighbourhood of Y ;

the complement Yk \ Y is a Cartier divisor on Yk .

Definition

Let us call such an embedding Y ↪→ Y a ‘good embedding’.

Thus locally we have Y = {t 6= 0} for some t ∈ OY. Let

sp : YK → Yk

be the ‘reduction mod p map’, so, again locally, the tube

]Y [:= sp−1(Y )

is defined by {|t| ≥ 1}.

We can therefore consider the ‘strict neighbourhoods’
]Y [⊂ Vλ ⊂ YK defined locally by {|t| ≥ λ} for λ→ 1−.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals



Introduction
Pro-algebraic fundamental groups

Overconvergent isocrystals
Proof of p-adic HES

Now suppose k is perfect and char(k) = p > 0. A p-adic analogue of MIC(Y /k) or
Strat(Y /k) is given by the category of overconvergent isocrystals.

To describe this category, let V be a complete DVR with residue field k and fraction
field K of characteristic 0. Assume that Y is smooth, and that there exists a
projective formal scheme Y over V and an open embedding Y ↪→ Yk such that:

Y is smooth over V in a neighbourhood of Y ;

the complement Yk \ Y is a Cartier divisor on Yk .

Definition

Let us call such an embedding Y ↪→ Y a ‘good embedding’.

Thus locally we have Y = {t 6= 0} for some t ∈ OY. Let

sp : YK → Yk

be the ‘reduction mod p map’, so, again locally, the tube

]Y [:= sp−1(Y )

is defined by {|t| ≥ 1}. We can therefore consider the ‘strict neighbourhoods’
]Y [⊂ Vλ ⊂ YK defined locally by {|t| ≥ λ} for λ→ 1−.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals



Introduction
Pro-algebraic fundamental groups

Overconvergent isocrystals
Proof of p-adic HES

Overconvergent fundamental groups

If λ is close enough to 1, then the Vλ are smooth over K , and by definition

Isoc†(Y /K) ⊂ 2-colimλMIC(Vλ)

is a full subcategory defined by certain convergence conditions on the Taylor series.

This doesn’t depend on any of the choices involved.

Theorem (Crew)

If Y /k is geometrically connected, Isoc†(Y /K) is Tannakian over K . If y ∈ Y (k) is a
rational point, then it is neutral Tannakian, and

y∗ : Isoc†(Y /K)→ VecK

is a fibre functor.

We define the overconvergent fundamental group π†1 (Y , y) to be the associated
pro-algebraic group over K .

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals
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HES for isocrystals

Assume the Basic Setup, with ground field k perfect of characteristic p > 0, and
smooth base S .

Theorem (L., Pál)

The sequence

π†1 (Xs , x)→ π†1 (X , x)→ π†1 (S, s)→ 1

of pro-algebraic groups is exact.

Christopher Lazda The homotopy exact sequence for overconvergent isocrystals
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Applications

In particular, this implies a weak form of the Lefschetz hyperplane theorem for p-adic
fundamental groups.

Corollary

Let X be smooth, projective and geometrically connected, Y ⊂ X a hyperplane
section of dimension ≥ 1 and y ∈ Y (k). Then the induced map

π†1 (Y , y)→ π†1 (X , x)

is surjective.

Proof.

Put Y into a Lefschetz pencil X̃ → P1
k with a section P1

k → X̃ , where X̃ → X is a

blowup. Now apply the HES over the smooth locus of X̃ → P1
k .
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Applications (contd.)

We can also use the HES to compare π†1 with πét
1 .

So assume that k = k̄, and that
X/k is smooth, projective and connected. Fix x ∈ X (k). Then we have a natural map

π†1 (X , x)→ πét
1 (X , x)

induced by sending a finite étale cover f : Y → X to f∗O†Y/K ∈ Isoc†(X/K).

Since πét
1 (X , x) is pro-finite this has to factor through the component group

π0(π†1 (X , x))→ πét
1 (X , x).

Corollary

This induces an isomorphism π0(π†1 (X , x)) ∼= πét
1 (X , x).

Proof.

We want to show that any E ∈ Isoc†(X/K) with finite monodromy group is trivialised
by a finite étale cover of X . By a result of Crew, it suffices to show that E admits a
Frobenius structure. Using the Lefschetz theorem, this can be reduced to the case of
curves, where in fact it suffices to show that E can be trivialised by a finite separable
map. We can now argue by lifting to characteristic 0.
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Two main steps:

1 Prove that for a smooth and projective morphism W → V of smooth analytic
varieties over K , with geometrically connected fibres and base, the homotopy
sequence

πdR
1 (Wv ,w)→ πdR

1 (W ,w)→ πdR
1 (V , v)→ 1

is exact.

2 Show how to reduce the algebraic result for isocrystals over k to the analytic
result for vector bundles with integrable connection.

The first can be achieved by transporting dos Santos’ methods from algebraic
geometry to analytic geometry. I will focus on explaining the second.
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Tannakian criteria

Since G can be recovered from Rep(G), it is natural to ask if we can phrase exactness
of a sequence

K
a→ G

b→ H → 1

in terms of the associated categories of representations.

Theorem (Esnault, Hai, Sun)

Let

K
a→ G

b→ H → 1

be a sequence of pro-algebraic groups, such that b ◦ a is trivial and b is surjective.
Then the sequence is exact iff the following three conditions hold.

1 For any V ∈ Rep(G), a∗(V ) is trivial if and only if V ∼= b∗(W ) for some
W ∈ Rep(H).

2 If V ∈ Rep(G), and U0 ⊂ a∗(V ) is the largest trivial sub-object, then there exists
some V0 ⊂ V such that a∗(V0) = U0.

3 If U ∈ Rep(K) is a sub-quotient of an object in the essential image of a∗, then it
is a sub-object of such an object.

In practise, (1) and (2) are rather straightforward to check, but (3) almost impossible.
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In practise, (1) and (2) are rather straightforward to check, but (3) almost impossible.
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Weak exactness

What happens if we drop condition (3)?

Definition

We say that a sequence

K
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b→ H → 1
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closure of a(K) is ker b.
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Geometric push-forwards

In geometric situations, (1) and (2) essentially boil down to the existence of a
well-behaved push-forward functor.

Proposition

Assume the Basic Setup, with k perfect of characteristic p > 0, and S smooth. Then
there exists a push-forward functor

f∗ : Isoc†(X/K)→ Isoc†(S/K)

right adjoint to f ∗, such that

s∗f∗E ∼= H0
rig(Xs/K ,E |Xs )

for all E ∈ Isoc†(X/K).

Corollary

The sequence

π†1 (Xs , x)→ π†1 (X , x)→ π†1 (S, s)→ 1

is weakly exact.
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We can now use this to reduce the proof of the HES to the case of curves.

Take
f : X → S as in the Basic Setup, and and fix X ↪→ Pn

S . Let d be the relative

dimension, and assume that d ≥ 2. Let S̃ = P̌n
S be the dual projective space, and set

X̃ :=
{

(x ,H) ∈ X ×S P̌n
S

∣∣ x ∈ H
}
⊂ X ×S S̃.

Let U ⊂ S̃ be the smooth locus of

f̃ : X̃ → S̃

and X̃U the base change. Lift x to a rational point x̃ ∈ X̃U , and set s̃ = f̃ (x̃). Then
we have a commutative diagram

X̃s̃
// X̃U

��

// U

��

X̃s̃
//

��

X̃

��

// S̃

��

Xs // X // S

where (X̃U , x̃)→ (U, s̃) is as in the Basic Setup, but with relative dimension d − 1.
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We therefore have the diagram

π†1 (X̃s̃ , x̃) // π†1 (X̃U , x̃)

����

// π†1 (U, s̃)

����

// 1

π†1 (X̃s̃ , x̃) //

��

π†1 (X̃ , x̃)

∼=
��

// π†1 (S̃ , s̃)

∼=
��

// 1

π†1 (Xs , x) // π†1 (X , x) // π†1 (S , s) // 1

of fundamental groups.

Lemma

The normal closure of the image of π†1 (X̃s̃ , x̃)→ π†1 (Xs , x) is the whole of π†1 (Xs , x).

By some diagram chasing we can therefore deduce that if the homotopy sequence for
X̃U → U is exact, then so is the homotopy sequence for X → S . By induction we may
therefore assume that d = 1.
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Now assume the Basic Setup, with f of relative dimension 1 and S smooth. Suppose
that U ⊂ S is a Zariski open containing s.

Then we have a diagram

π†1 (Xs , x) // π†1 (XU , x) //

����

π†1 (U, s) //

����

1

π†1 (Xs , x) // π†1 (X , x) // π†1 (S , s) // 1

of fundamental groups. Using weak exactness, we can see that exactness of the
homotopy sequence for XU → U implies exactness of the homotopy sequence for
X → S. Hence we can assume that the base S = Spec (A0) is affine.

In particular, we can lift S to a smooth affine V-scheme Spec (A), and the family
X → S to a smooth projective family of curves over Spec (A).
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Thus there exist good embeddings S ↪→ S and X ↪→ X and a commutative, Cartesian
diagram

X //

��

X

��

S // S

such that the map X→ S is smooth around X .

Let x̃ be a lift of x to a K -point of
]X [, and s̃ the image of x̃ in ]S[.

If we now let Wλ the associated ‘strict neighbourhoods’ of ]X [ and Vλ those of ]S[,
then for λ closed enough to 1 there are induced smooth and projective maps
Wλ → Vλ. So by assumption there is an exact sequence

πdR
1 (XK ,s̃ , x̃)→ πdR

1 (Wλ, x̃)→ πdR
1 (Vλ, s̃)→ 1

of pro-algebraic groups over K , for all λ close enough to 1.
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such that the map X→ S is smooth around X . Let x̃ be a lift of x to a K -point of
]X [, and s̃ the image of x̃ in ]S[.

If we now let Wλ the associated ‘strict neighbourhoods’ of ]X [ and Vλ those of ]S[,
then for λ closed enough to 1 there are induced smooth and projective maps
Wλ → Vλ. So by assumption there is an exact sequence

πdR
1 (XK ,s̃ , x̃)→ πdR

1 (Wλ, x̃)→ πdR
1 (Vλ, s̃)→ 1

of pro-algebraic groups over K , for all λ close enough to 1.
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Since we definition we have

Isoc†(X/K) ⊂ 2-colimλMIC(Wλ/K)

Isoc†(S/K) ⊂ 2-colimλMIC(Vλ/K)

Isoc†(Xs/K) ⊂ MIC(XK ,s̃/K)

stable by sub-quotients, we get a commutative diagram

πdR
1 (XK ,s̃ , x̃) //

����

lim←−λ π
dR
1 (Wλ, x̃) //

����

lim←−λ π
dR
1 (Vλ, s̃) //

����

1

π†1 (Xs , x) // π†1 (X , x) // π†1 (S , s) // 1

with exact top row. Again, some diagram chasing together with weak exactness lets
us deduce exactness of the bottom row.
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Thank-you!
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