# A semistable Lefcshetz (1,1) theorem in equicharacteristic joint with Ambrus Pál

#### Christopher Lazda Università di Padova



28th March 2017

#### Introduction Proof of the main result

Global results



Proof of the main result

p-adic cohomology in equicharacteristic



General problem: X/k smooth, projective variety. Want to describe the image of

 $\mathsf{cl}: \mathsf{CH}^n(X) \to H^{2n}(X)(n)$ 

for  $H^*$  a well-behaved cohomology theory.

Example (Hodge conjecture)

 $k = \mathbb{C}$ ,  $H^* =$  Betti cohomology. Then

$$\operatorname{CH}^n(X)_{\mathbb{Q}} \twoheadrightarrow H^{2n}_B(X, \mathbb{Q}) \cap H^{n,n}.$$

When n = 1 this follows easily from the exponential sequence.

#### Example (Tate conjecture)

 $k = \mathbb{F}_q$  (or more generally a finite generated field),  $H^* =$  étale cohomology. Then

$$\operatorname{CH}^n(X)_{\mathbb{Q}_\ell} \twoheadrightarrow H^{2n}_{\operatorname{\acute{e}t}}(X_{\overline{k}}, \mathbb{Q}_\ell(n))^{G_k}$$

for any  $\ell \neq \operatorname{char}(k)$ . Wide open even for n = 1.

Variational version:  $f : X \to S$  smooth projective morphism,  $\alpha \in \Gamma(S, \mathcal{H}^{2n}(X/S)(n))$  a section of some 'relative cohomology sheaf'.

Conjecture (Grothendieck)

If  $\alpha_s \in H^{2n}(X_s)(n)$  is algebraic for some s, then  $\alpha_s$  is algebraic for all s.

#### Example (Variational Hodge conjecture)

If  $S/\mathbb{C}$  then  $\mathcal{H}^{2n}(X/S) = \mathbb{R}^{2n} f_* \mathbb{Q}_X$ , with its natural VHS. In this case we take  $\Gamma(S, \mathcal{H}^{2n}(X/S)) := \operatorname{Hom}_{VHS_S}(\mathbb{Q}_S, \mathbb{R}^{2n} f_* \mathbb{Q}_X(n)).$ 

#### Example (Variational Tate conjecture)

If  $S/\mathbb{F}_q$  (or over a finitely generated field) then we take  $\mathcal{H}^{2n}(X/S) = \mathbb{R}^{2n} f_* \mathbb{Q}_{\ell,X}$ . In this case we take  $\Gamma(S, \mathcal{H}^{2n}(X/S)(n)) = \Gamma(S_{\text{\'et}}, \mathbb{R}^{2n} f_* \mathbb{Q}_{\ell,X}(n))$ .

As stated, these trivially follow from their absolute versions (e.g. the variational Hodge conjecture is known for n = 1) but we are interested in going the other way.

#### Introduction

Proof of the main result *p*-adic cohomology in equicharacteristic Global results

Today we'll look at:

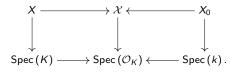
- a variational Tate conjecture,
- for divisors;
- in *p*-adic cohomology,
- over a local base.

#### Notation

- k = perfect field, char(k) = p
- $\mathcal{O}_{\mathcal{K}} = \mathsf{complete} \; \mathsf{DVR}, \; \mathcal{O}_{\mathcal{K}}/\varpi = k$
- $K = \operatorname{Frac}(\mathcal{O}_K)$ ,  $\operatorname{char}(K) = 0$

- R = complete DVR, R/t = k
- $F = \operatorname{Frac}(R)$ ,  $\operatorname{char}(F) = p$
- *W* = *W*(*k*), *K*<sub>0</sub> = Frac(*W*)

Now take  $\mathcal{X}/\mathcal{O}_{\mathcal{K}}$  smooth and projective



For any  $\mathcal{L} \in \operatorname{Pic}(X_0)_{\mathbb{O}}$  we can consider

 $c_1(\mathcal{L})\otimes 1\in H^2_{\mathsf{cris}}(X_0/W)\otimes_W K\cong H^2_{\mathsf{dR}}(X/K).$ 

# Theorem (Berthelot–Ogus)

 $\mathcal{L}$  lifts to  $\operatorname{Pic}(\mathcal{X})_{\mathbb{Q}}$  if and only if  $c_1(\mathcal{L}) \otimes 1 \in F^1H^2_{dR}(X/K)$ .

Consider the category of '*p*-adic Hodge structures' on Spec ( $\mathcal{O}_K$ ), that is:

- finite dimensional vector spaces  $V/K_0$ ,
- plus a Frobenius  $\varphi: V \to V$ ,
- plus a decreasing filtration  $F^{\bullet}$  on  $V \otimes_{K_0} K$ .

crystalline cohomology comparison theorems  $\Rightarrow \exists$  natural *p*-adic Hodge structure on  $H^2_{cris}(X_0/W)_{\mathbb{Q}}$ , which plays the role of  $\mathcal{H}^2(\mathcal{X}/\mathcal{O}_K)$ . A 'global section' of this sheaf is then a morphism

$$K_0 
ightarrow H^2_{ ext{cris}}(X_0/W)_{\mathbb{Q}}(1)$$

of p-adic Hodge structures, in other words an element

$$\alpha \in H^2_{\operatorname{cris}}(X_0/W)^{\varphi=p}_{\mathbb{Q}} \cap F^1 H^2_{\operatorname{dR}}(X/K).$$

Such an element can be restricted to give cohomology classes  $\alpha_0 \in H^2_{cris}(X_0/W)_{\mathbb{Q}}$  on the special fibre and  $\alpha_\eta \in H^2_{dR}(X/K)$  on the generic fibre.

# Corollary

If  $\alpha_0$  is algebraic, i.e. is in the image of  $cl : CH^1(X_0)_{\mathbb{Q}} \to H^2_{cris}(X_0/W)_{\mathbb{Q}}$  then  $\alpha_\eta$  is algebraic, i.e. is in the image of  $cl : CH^1(X)_{\mathbb{Q}} \to H^2_{dR}(X/K)$ .

There also exists a semistable version: if  $\mathcal{X} \to \text{Spec}(\mathcal{O}_{\mathcal{K}})$  is projective and semistable, then for any  $\mathcal{L} \in \text{Pic}(X_0)_{\mathbb{Q}}$  (resp.  $\text{Pic}(X_0^{\times})_{\mathbb{Q}}$ ), we have

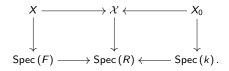
$$c_1(\mathcal{L})\otimes 1\in H^2_{\mathsf{log-cris}}(X_0^{ imes}/W^{ imes})\otimes_W K\cong H^2_{\mathsf{dR}}(X/K).$$

#### Theorem (Yamashita)

 $\mathcal{L}$  lifts to  $\operatorname{Pic}(\mathcal{X})_{\mathbb{Q}}$  (resp.  $\operatorname{Pic}(\mathcal{X}^{\times})_{\mathbb{Q}}$ ) if and only if  $c_1(\mathcal{L}) \otimes 1 \in F^1H^2_{d\mathbb{R}}(X/K)$ .

Again, this can be phrased in terms of *p*-adic Hodge structures, stating that a 'global section' of the 'relative cohomology' is algebraic iff its special fibre is.

Now suppose we have  $\mathcal{X}/R$  smooth and projective.



Then for  $\mathcal{L} \in \operatorname{Pic}(X_0)_{\mathbb{Q}}$  we have  $c_1(\mathcal{L}) \in H^2_{\operatorname{cris}}(X_0/W)_{\mathbb{Q}}$ .

# Theorem (Morrow)

 $\mathcal{L}$  lifts to  $\operatorname{Pic}(\mathcal{X})_{\mathbb{Q}}$  if and only if  $c_1(\mathcal{L})$  lifts to  $H^2_{\operatorname{cris}}(\mathcal{X}/W)_{\mathbb{Q}}$ .

Today's goals:

- Give a new proof of Morrow's result that easily generalises to the semistable case.
- **(2)** Explain how this result is the precise analogue of Berthelot-Ogus/Yamashita.
- Oeduce some global results.



# Proof of the main result

p-adic cohomology in equicharacteristic



Christopher Lazda A semistable Lefcshetz (1, 1) theorem in equicharacteristic

Fix  $R \cong k[\![t]\!]$ ,  $\mathcal{X}/R$  smooth projective,  $X_0/k$ , X/F as before. Set  $R_n = R/(t^{n+1})$ ,  $X_n/R_n$  the base change,  $\mathfrak{X} = \operatorname{colim}_n X_n$  the formal completion.

$$\begin{cases} \mathsf{motivic \ cohomology} \\ \mathsf{Pic}(X_0)_{\mathbb{Q}}, \ \mathsf{Pic}(\mathcal{X})_{\mathbb{Q}} \end{cases} \leftarrow \begin{cases} \mathsf{de \ Rham-Witt} \\ \mathsf{complex} \end{cases} \rightarrow \begin{cases} \mathsf{crystalline \ cohomology} \\ H^2_{\mathsf{cris}}(X_0/W)_{\mathbb{Q}}, \ H^2_{\mathsf{cris}}(\mathcal{X}/W)_{\mathbb{Q}} \end{cases} \end{cases}$$

Let  $W_{ullet}\Omega^*_{X_n}$  denote the de Rham–Witt complex of  $X_n$ , then  $\forall r, n$  we have

$$d \log : \mathcal{O}_{X_n}^* o W_r \Omega^1_{X_r}$$

with image  $W_r \Omega^1_{X_n, \log}$ .

# Proposition

Fix  $n \ge 0$ . Then for  $r \gg 0$  (depending on n) the commutative diagram

$$\begin{array}{c|c} 1 \longrightarrow 1 + t\mathcal{O}_{X_n} \longrightarrow \mathcal{O}_{X_n}^* \longrightarrow \mathcal{O}_{X_0}^* \longrightarrow 1 \\ & & \\ & & \\ 1 \longrightarrow 1 + t\mathcal{O}_{X_n} \xrightarrow{d \log} W_r \Omega_{X_n,\log}^1 \longrightarrow W_r \Omega_{X_0,\log}^1 \longrightarrow 1 \end{array}$$

has exact rows.

#### Proof.

Exactness of the top row is well-known; since

$$d \log : \mathcal{O}^*_{X_0} / p^r \stackrel{\sim}{
ightarrow} W_r \Omega^1_{X_0, \log}$$

and the vertical maps are surjective by definition, the only thing that needs checking is injectivity of

$$d \log : 1 + t\mathcal{O}_{X_n} o W_r \Omega^1_{X_n}.$$

By induction on *n* it suffices to prove that for  $r \gg 0$  the map

$$d \log : 1 + t^n \mathcal{O}_{X_0} \to W_r \Omega^1_{X_n}$$

is injective. Vanishing of a section of  $\mathcal{O}_{X_0}$  can be checked at closed points, so we may reduce to the case  $\mathcal{X} = \text{Spec}(R)$ . Now a straightforward calculation shows that

$$d \log : 1 + t^n k \to W_r \Omega^1_{R_n}$$

is injective for  $r \gg 0$ .

# Corollary

- $\mathcal{L} \in \operatorname{Pic}(X_0)$  lifts to  $\operatorname{Pic}(\mathfrak{X})$  iff  $c_1(\mathcal{L}) \in H^1_{\operatorname{cont}}(X_0, W_{\bullet}\Omega^1_{X_0, \log})$  lifts to  $H^1_{\operatorname{cont}}(\mathfrak{X}, W_{\bullet}\Omega^1_{\mathfrak{X}, \log})$ .
- $\mathcal{L} \in \operatorname{Pic}(X_0)$  lifts to  $\operatorname{Pic}(\mathcal{X})$  iff  $c_1(\mathcal{L}) \in H^1_{\operatorname{cont}}(X_0, W_{\bullet}\Omega^1_{X_0, \log})$  lifts to  $H^1_{\operatorname{cont}}(\mathcal{X}, W_{\bullet}\Omega^1_{\mathcal{X}, \log})$ .

Now we use the exact sequences

$$\begin{split} 0 &\to W_{\bullet} \Omega^{1}_{X_{0}, \log} \to W_{\bullet} \Omega^{1}_{X_{0}} \stackrel{1-F}{\to} W_{\bullet} \Omega^{1}_{X_{0}} \to 0 \\ 0 &\to W_{\bullet} \Omega^{1}_{\mathcal{X}, \log} \to W_{\bullet} \Omega^{1}_{\mathcal{X}} \stackrel{1-F}{\to} W_{\bullet} \Omega^{1}_{\mathcal{X}} \to 0 \end{split}$$

to deduce that

$$\begin{split} & H^{1}_{\mathrm{cont}}(X_{0}, W_{\bullet}\Omega^{1}_{X_{0}, \log})_{\mathbb{Q}} \cong H^{2}_{\mathrm{cris}}(X_{0}/W)_{\mathbb{Q}}^{\varphi=p} \\ & H^{1}_{\mathrm{cont}}(\mathcal{X}, W_{\bullet}\Omega^{1}_{\mathcal{X}, \log})_{\mathbb{Q}} \twoheadrightarrow H^{2}_{\mathrm{cris}}(\mathcal{X}/W)_{\mathbb{Q}}^{\varphi=p}. \end{split}$$

# Corollary (Morrow)

 $\mathcal{L}$  lifts to  $\operatorname{Pic}(\mathcal{X})_{\mathbb{Q}}$  if and only if  $c_1(\mathcal{L})$  lifts to  $H^2_{\operatorname{cris}}(\mathcal{X}/W)_{\mathbb{Q}}$ .

For  $\mathcal{X}/R$  projective, semistable: replace  $W_{\bullet}\Omega^*$  everywhere by its logarithmic analogue  $W_{\bullet}\omega^*$  (in this generality introduced by Matsuue).

#### Notation

- X<sup>×</sup> = (X, M) log structure from special fibre
- $X_n^{\times} = (X_n, M_n)$  base change to  $R_n$
- $\mathsf{Pic}(\mathcal{X}^{\times}) = H^1(\mathcal{X}_{\acute{e}t}, M^{\mathsf{gp}})$

•  $\operatorname{Pic}(X_n^{\times}) = H^1(X_{n,\operatorname{\acute{e}t}}, M_n^{\operatorname{gp}})$ 

• 
$$R_n^{\times} = \log$$
 structure from  $\{t = 0\}$ 

•  $k^{\times} =$ punctured point

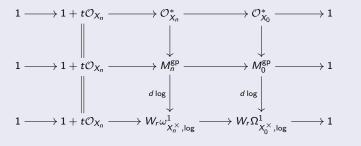
Then for all n, r we have

$$d \log: M_n^{\mathrm{gp}} \to W_r \omega_{X_n^{\times}}^1$$

with image  $W_r \omega^1_{X_n^{\times}, \log}$ .

#### Proposition

Fix  $n \ge 0$ . Then for  $r \gg 0$  (depending on n) the commutative diagram



#### has exact rows.

Main difficulty is proving 'logarithmic' analogues of standard properties of the de Rham–Witt complex.

#### Corollary

If we let  $\mathcal{K}_{n,r}$  denote the kernel of the surjective map

$$W_r \omega^1_{X_n^{ imes}, \log} o W_r \Omega^1_{X_0^{ imes}/k^{ imes}, \log}$$

then there is a split exact sequence

$$1 \to 1 + t\mathcal{O}_{X_n} \to \{\mathcal{K}_{n,r}\}_r \to \{\mathbb{Z}/p^r\mathbb{Z}\}_r \to 0$$

of pro-sheaves on  $X_{n,\text{ét}}$ .

# Corollary (L.–Pál)

$$\begin{array}{l} \mathcal{L} \in \mathsf{Pic}(X_0)_{\mathbb{Q}} \ (\textit{resp.Pic}(X_0^{\times})_{\mathbb{Q}}) \ \textit{lifts to } \mathsf{Pic}(\mathcal{X})_{\mathbb{Q}} \ (\textit{resp.Pic}(\mathcal{X}^{\times})_{\mathbb{Q}}) \Leftrightarrow \\ c_1(\mathcal{L}) \in H^2_{\mathsf{log-cris}}(X_0^{\times}/W^{\times})_{\mathbb{Q}} \ \textit{lifts to } H^2_{\mathsf{log-cris}}(\mathcal{X}^{\times}/W)_{\mathbb{Q}} \end{array}$$

Again, to obtain this we need to prove 'logarithmic' analogues of well–known results concerning  $W_{\bullet}\Omega^*.$ 

#### Question

Does the result hold for line bundles with  $\mathbb{Q}_p$ -coefficients?

Unfortunately, the answer is no.

The reason is that if the answer were yes, then for any elliptic curves  $E_1, E_2/F$  with semistable reduction, the map

$$\operatorname{Hom}(E_1, E_2)_{\mathbb{Q}_p} \to \operatorname{Hom}_{\mathsf{BT}_F}(E_1[p^{\infty}], E_2[p^{\infty}])_{\mathbb{Q}}$$

would be an isomorphism. This is well-known to be false.

# Introduction

Proof of the main result

9 p-adic cohomology in equicharacteristic

# Global results

 $\mathcal{X}/R$  semistable,  $X_0/k$ , X/F as before. Want to understand the *p*-adic cohomology of X, and how it relates to  $H^n_{\log - cris}(X_0^{\times}/W^{\times})_{\mathbb{Q}}$ . Let

$$\mathsf{\Gamma} = W[\![t]\!] \langle t^{-1} \rangle = \left\{ \left. \sum_{i} \mathsf{a}_{i} t^{i} \right| \mathsf{a}_{i} \in W, \ \mathsf{a}_{i} \to \mathsf{0} \text{ as } i \to -\infty \right\},$$

this is a Cohen ring for F. Since X/F is smooth, projective we get finite dimensional cohomology groups

$$H^n_{\operatorname{cris}}(X/\mathcal{E}) := H^n_{\operatorname{cris}}(X/\Gamma)_{\mathbb{Q}}$$

over the *p*-adic field  $\mathcal{E} := \Gamma_{\mathbb{Q}}$ .

Now choose a Frobenius lift  $\sigma: \mathcal{E} \to \mathcal{E}$  and let  $\Omega^1_{\mathcal{E}}$  denote the module of *p*-adically continuous differentials.

#### Definition

A  $(\varphi,\nabla)\text{-module over }\mathcal E$  is a finite dimensional vector space M together with a connection

$$\nabla: M \to M \otimes \Omega^1_{\mathcal{E}}$$

and a *horizontal* Frobenius  $\sigma^*M \xrightarrow{\sim} M$ . The category of these objects will be denoted  $\underline{M}\Phi_{\mathcal{E}}^{\nabla}$ .

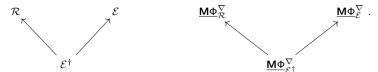
Standard constructions in crystalline cohomology:

$$H^n_{\operatorname{cris}}(X/\mathcal{E}) \in \underline{\mathsf{M}}\Phi^{\nabla}_{\mathcal{E}}.$$

Now let

$$\mathcal{E}^{\dagger} = \left\{ \sum_{i} a_{i} t^{i} \in \mathcal{E} \middle| \exists \lambda < 1 \text{ s.t. } |a_{i}| \lambda^{i} \to 0 \text{ as } i \to -\infty \right\}$$
$$\mathcal{R} = \operatorname{colim}_{\lambda < 1} \mathcal{O}(\lambda < |t| < 1)$$

Therefore we have diagrams



# Theorem (Kedlaya)

• The functor  $\underline{\mathbf{M}} \Phi_{\mathcal{E}^{\uparrow}}^{\nabla} \to \underline{\mathbf{M}} \Phi_{\mathcal{E}}^{\nabla}$  is fully faithful.

Base change in log-crystalline cohomology  $\Rightarrow H^n_{\rm cris}(X/\mathcal{E})$  descends to  $H^n_{\rm cris}(X/\mathcal{E}^{\dagger}) \in \underline{\mathbf{M}} \Phi^{\nabla}_{\mathcal{E}^{\dagger}}.$ 

Now can base change to get  $H^n_{cris}(X/\mathcal{R}) := H^n_{cris}(X/\mathcal{E}^{\dagger}) \otimes \mathcal{R}$ . Can construct a connection on

$$H^n_{\mathsf{log}\operatorname{-}\mathsf{cris}}(X_0^{ imes}/W^{ imes})_{\mathbb{Q}}\otimes \mathcal{R}$$

using the monodromy operator N. Concretely

$$abla (v \otimes r) = v \otimes dr + N(v) \otimes rd \log t.$$

#### Theorem

There exists an isomorphism

$$H^n_{\operatorname{cris}}(X/\mathcal{R})\cong H^n_{\operatorname{log}\operatorname{-cris}}(X_0^{\times}/W^{\times})_{\mathbb{Q}}\otimes \mathcal{R}$$

in  $\underline{\mathbf{M}} \Phi_{\mathcal{R}}^{\nabla}$ . In particular

$$H^n_{\operatorname{cris}}(X/\mathcal{R})^{
abla=0}\cong H^n_{\operatorname{log}\operatorname{-}\operatorname{cris}}(X_0^{ imes}/W^{ imes})^{N=0}_{\mathbb{Q}}.$$

Now take  $\mathcal{L} \in \text{Pic}(X_0)_{\mathbb{Q}}$  (resp.  $\text{Pic}(X_0^{\times})_{\mathbb{Q}}$ ). Since  $c_1(\mathcal{L})$  is killed by N, we can therefore view

$$c_1(\mathcal{L})\otimes 1\in H^2_{\operatorname{cris}}(X/\mathcal{R})^{
abla=0}\subset H^2_{\operatorname{cris}}(X/\mathcal{R}).$$

#### Theorem

 ${\cal L}$  lifts to  ${\rm Pic}({\cal X})_{\mathbb Q}$  (resp.  ${\rm Pic}({\cal X}^{\times})_{\mathbb Q})$  if and only if

$$c_1(\mathcal{L}) \in H^2_{\mathrm{cris}}(X/\mathcal{E}^{\dagger}) \subset H^2_{\mathrm{cris}}(X/\mathcal{R}).$$

#### Proof.

Hard Lefschetz  $\Rightarrow$  the Leray spectral sequence

$$E_2^{p,q} = H^q_{\mathsf{log-cris}}(\mathsf{Spec}\left(R\right)/W, \mathsf{R}^p f_{\mathsf{log-cris}*}\mathcal{O}_{\mathcal{X}^{\times}/W})_{\mathbb{Q}} \Rightarrow H^{p+q}_{\mathsf{log-cris}}(\mathcal{X}^{\times}/W)_{\mathbb{Q}}$$

degenerates and we have a surjective edge map

$$H^2_{\mathsf{log-cris}}(\mathcal{X}^{\times}/W)_{\mathbb{Q}} \twoheadrightarrow H^0_{\mathsf{log-cris}}(\mathsf{Spec}\,(R)\,/W, \mathsf{R}^2 f_{\mathsf{log-cris}} \ast \mathcal{O}_{\mathcal{X}^{\times}/W})_{\mathbb{Q}} \cong H^2_{\mathsf{cris}}(X/\mathcal{E}^{\dagger})^{\nabla=0}.$$

Mixed characteristic - deformations of lines bundles controlled by the Hodge filtration  $F^{\bullet}$  on  $H^2_{\log-cris}(X_0^{-}/W^{\times})_{\mathbb{Q}} \otimes K$ 

This is reminiscent of Serre–Tate theory:

Mixed characteristic - deformations of abelian varieties controlled by the Hodge filtration  $F^{\bullet}$  on  $H^{1}_{cris}(A_{0}/W)_{\mathbb{Q}} \otimes K$ 

Equicharacteritic - deformations of line bundles controlled by the  $\mathcal{E}^{\dagger}$ -lattice  $H^2_{cris}(X/\mathcal{E}^{\dagger}) \subset H^2_{\log-cris}(X_0^{\times}/W^{\times})_{\mathbb{Q}} \otimes \mathcal{R}$ 

Equicharacteritic - deformations of abelian varieties controlled by  $\mathcal{E}^{\dagger}$ -lattices in  $H^{1}_{crie}(A_{0}/W)\otimes \mathcal{R}$ 

 $\left\{ \begin{array}{l} \mathsf{Hodge filtrations} \ \mathcal{F}^{\bullet} \\ \mathsf{on} \ (\varphi, \mathcal{G}_{\mathcal{K}}, N) \text{-modules} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \mathcal{E}^{\dagger}\text{-lattices in} \\ (\varphi, \nabla) \text{-modules over } \mathcal{R} \end{array} \right\}$ 

In equicharacteristic, relative cohomology  $\mathcal{H}^2(X/S)(1)$  is given by

 $H^2_{\operatorname{cris}}(X/\mathcal{E}^{\dagger})(1) \in \underline{\mathsf{M}} \Phi^{
abla}_{\mathcal{E}^{\dagger}}.$ 

A global section  $\Gamma(S, \mathcal{H}^2(X/S)(1))$  is a homomorphism

$$\mathcal{E}^{\dagger} 
ightarrow H^2_{\operatorname{cris}}(X/\mathcal{E}^{\dagger})(1).$$

Concretely, this is some  $\alpha \in H^2_{cris}(X/\mathcal{E}^{\dagger})^{\nabla=0,\varphi=p}$ . Can 'specialise' such an element via

$$H^2_{\operatorname{cris}}(X/\mathcal{E}^{\dagger})^{
abla=0} \subset H^2_{\operatorname{cris}}(X/\mathcal{R})^{
abla=0} \cong H^2_{\operatorname{log-cris}}(X_0^{ imes}/W^{ imes})^{N=0}_{\mathbb{Q}}$$

to obtain  $\alpha_0 \in H^2_{\log \operatorname{-cris}}(X_0^{\times}/W^{\times})_{\mathbb{Q}}.$ 

# Corollary

 $\alpha$  is algebraic iff  $\alpha_0$  is algebraic.



Proof of the main result

p-adic cohomology in equicharacteristic



# Notation

k, W as before, K = W[1/p] C/k smooth, projective, geom. conn. curve, F = k(C)  $v \in |C|, F_v = \text{completion}, k_v = \text{residue field}$  $W_v = W(k_v), K_v = W_v[1/p], \mathcal{E}_v^{\dagger}, \mathcal{R}_v$  (bounded) Robba ring 'at v'

X/F smooth projective, have

$$\mathcal{H}^{i}_{\mathrm{rig}}(X/K) \in 2\text{-colim}_{U \subset \mathcal{C}}F\text{-lsoc}^{\dagger}(U/K)$$

Since  $\operatorname{Isoc}^{\dagger}(U/K) \to \operatorname{Isoc}^{\dagger}(V/K)$  is fully faithful, we get

$$H^i_{\mathsf{rig}}(X/K) := \mathcal{H}^i_{\mathsf{rig}}(X/K)^{
abla = 0} \in F ext{-lsoc}(K)$$

well-defined. There exists a Chern class map

$$c_1: \operatorname{Pic}(X)_{\mathbb{Q}} \to H^2_{\operatorname{rig}}(X/K).$$

Now suppose that X has semistable reduction  $X_v^{\times}/k_v$  at v. Then we have

Theorem (L.–Pál)

Let  $\alpha \in H^2_{rig}(X/K)$ . The following are equivalent:

 $each sp_{\nu}(\alpha) \in c_1(\operatorname{Pic}(X_{\nu})_{\mathbb{Q}});$ 

#### Proof.

(1)  $\Rightarrow$  (2)  $\Leftrightarrow$  (3) is straightforward. (3)  $\Rightarrow \exists \mathcal{L} \in \operatorname{Pic}(X_{F_{\nu}})_{\mathbb{Q}}$  such that  $c_1(\mathcal{L}) = r_{\nu}(\alpha)$ . Standard approximations arguments  $\Rightarrow$  descend  $\mathcal{L}$  to X.

# Question

Does this theorem hold with  $\mathbb{Q}_p$ -coefficients?

# Thank-you!