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Suppose that X/K is a smooth and proper variety over a number field, and x ∈
X(K) is a rational point. Then we can consider the geometric étale fundamental
group πét

1 (XK , x) of X, which is a pro-finite group together with a continuous
action of the Galois group GK . For each prime ` we can consider the pro-unipotent
completion πét

1 (XK , x)Q`
of this group, which is a pro-unipotent group over Q` with

a Galois action, continuous in the sense that its Hopd algebraA`(x) is a direct limits
of finite dimensional, continuous `-adic representations of GK . Also note that this
group can be interpreted as classifying unipotent `-adic sheaves on XK .

These unipotent groups for varying ` in some sense form a ‘compatible’ system,
for example the pieces of the filtration coming from the lower central series form
compatible collections of `-adic Galois representations. We expect that they should
all come from ‘realising’ an appropriate motivic fundamental group πmot

1 (X,x), the
definition of which (in this generality) is currently not quite within reach.

If we now take a variety X/F over a global function function field of characteristic
p instead, then we can play the same game and consider the family {πét

1 (XF )Q`
}

of pro-unipotent groups with Galois action, however, there is an anomaly in this
family at ` = p. Of course, this phenomenon can be seen already at the level of
cohomology: the `-adic cohomology only behaves well for ` 6= p. The question
I want to ask in this talk (at least for X smooth and proper) is what should be
the correct p-adic unipotent fundamental group of a variety over a global function
field.

To answer this question, let us examine the `-adic case once more. If v is a place of
good reduction for X, not dividing `, then this Galois action is unramified at v, so if
X → C is a smooth and proper model for X, with C some smooth (possibly open)
curve over a finite field k, then A`(x) can be considered as a direct limit of `-adic
sheaves on C. In other words, we can consider πét

1 (XF , x)Q`
as an `-adic sheaf of

pro-unipotent groups on C. We know that the stalk of this sheaf at a geometric
generic point is exactly the geometric fundamental group of the corresponding fibre,
but this also holds for closed points too. Note as well that the rational point which
we used as a base point extends uniquely to a section of X → C which is the
‘base-point’ for this `-adic sheaf of unipotent fundamental groups.

It is this reformulation that we can find an analogue of in the p-adic case - it is
saying that we should try to construct a p-adic local system of unipotent groups on
C whose stalks are exactly the p-adic unipotent groups of the fibres of f . The point
is that we now know exactly what should constitute a p-adic local system - namely
an overconvergent F -isocrystal, and what the p-adic analogue of the unipotent
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fundamental group of a variety over a finite field is - namely the rigid fundamental
group.

To explain what this latter object is recall that we could also view the `-adic fun-
damental group as classifying unipotent lisse Q`-sheaves on our variety. This is a
general phenomena - whenever we have a fundamental group, it’s representations
will correspond to certain local systems. In the p-adic world, we turn this on its
head and the theorem becomes a definition. If Y/k is a variety over a finite field,
the category of unipotent overconvergent isocrystals on X is Tannakian, and hence,
given a point y ∈ Y which acts as a fibre functor for this Tannakian category, is
equivalent to the category of representations of some affine group scheme, which
we call the rigid fundamental group of Y , πrig

1 (Y, y). We can also look at other cat-
egories of local systems, for example, by taking the full category of overconvergent

isocrystals, which gives rise to the full pro-algebraic fundamental group πalg
1 (Y, y).

Note that the rigid fundamental group arises as the maximal pro-unipotent quotient

of πalg
1 (Y, y).

So to summarise - given a smooth and proper morphism f : X → C of varieties
over a finite field, with a section p, we would like to show that there is a natural

action of πalg
1 (C, c) on πrig

1 (Xc, p(c)), which will encode the fact that πrig
1 (Xc, p(c))

arises as the stalk of a p-adic local system on C.

How should such an object be constructed? The most straightforward analogy is
probably the case of a topological fibration, although the same phenomenon can
be seen for étale fundamental groups. So suppose we are given a Serre fibration
X → B of topological spaces, and let F be the homotopy fibre. Assume that both
B and F are connected. Then there is an exact sequence of homotopy groups

π2(B)→ π1(F )→ π1(X)→ π1(B)→ 1

and a section B → X splits this sequence, giving an action of π1(B) on π1(F ). This
gives rise to a locally constant sheaf of groups π1(X/B) on B, whose stalk at any
point b ∈ B is just the fundamental group of the fibre Fb over b.

Thus for a smooth and proper morphism X → C of varieties over a finite field,
with fibre Xc over some c ∈ C, we should look for an appropriate homotopy exact
sequence of p-adic fundamental groups

πrig
1 (Xc, p(c))→ π?

1(X , p(c))→ πalg
1 (C, c)→ 1

which, given a section, is both left exact and split. The key question is then which
fundamental group of the total space X will fit into such an exact sequence, since
neither the unipotent nor full pro-algebraic will do. The correct fundamental group
to look at on the total space X will be that classifying overconvergent isocrystals
which are relatively unipotent, that is those which are iterated extensions of isocrys-
tals pulled back from C. For a base-point x ∈ X , let πrel

1 (X , x) denote the Tannaka
dual of this category.

Theorem. Let f : X → C be a smooth and proper morphism of varieties over a
finite field k, and let x ∈ X (k) be a rational point, mapping to c ∈ C(k). Assume
that both C and Xc are geometrically connected. Then there is an exact sequence
of fundamental groups

πrig
1 (Xc, x)→ πrel

1 (X , x)→ πalg
1 (C, c)→ 1.
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If p : C → X is a section, and x = p(c) then this induces a split exact sequence

1→ πrig
1 (Xc, x)→ πrel

1 (X , x) � πalg
1 (C, c)→ 1.

Proof. I’ll stick to the second claim. The existence of a section immediately implies
surjectivity of the right hand map, and it is clear that the composite of the two
maps is trivial. The remaining claims of exactness can be phrased in Tannakian
terms as follows:

(1) If E is a relatively unipotent isocrystal on X , whose restriction to Xc is
constant, then E is the pullback of an isocrystal on C.

(2) If E is relatively unipotent, the there exists a sub-isocrystal E0 ⊂ E such
that for every c ∈ C, E0|Xc ⊂ EXc is the largest constant sub-isocrystal.

(3) Every unipotent isocrystal on Xc is a sub-quotient of one which extends to
X .

(1) and (2) are essentially proved by defining a push-forward functor f∗ on isocrys-
tals, which is right adjoint to the pull-back f∗, and satisfies a base change for-
mula. This uses Caro’s theory of overholonomic D-modules. The point is that then
f∗f∗E ⊂ E is the largest sub-isocrystal which is constant on fibres.

(3) is proved by constructing ‘universal’ unipotent isocrystals {Un} on the fibre
Xc and then extending these universal isocrystals to the total space X . These
universal isocrystals are constructed inductively, each Un+1 is the extension of Un

by O†Xc
⊗K H1

rig(Xc, U
∨
n )∨ given by choosing the object of

Ext1(Un,O†Xc
⊗K H1

rig(Xc, U
∨
n )∨) ∼= End(H1

rig(Xc, U
∨
n ))

corresponding to the identity. Then the extensions of these are constructed by
letting Wn+1 be an appropriate extension of Wn by (f∗R1f∗W

∨
n )∨. The Leray

spectral sequence gives

H1
rig(X ,W∨n ⊗ (f∗R1f∗W

∨
n )∨) // H0

rig(C,R1f∗W
∨
n ⊗ (R1f∗W

∨
n )∨) // H2

rig(C, (R1f∗W
∨
n )∨)

��

Ext(Wn, (f
∗R1f∗W

∨
n )∨) // End(R1f∗W

∨
n ) H2

rig(X ,W∨n ⊗ (R1f∗W
∨
n )∨)

andWn+1 will extend Un+1 if the extension class maps to the identity in End(R1f∗W
∨
n ).

We can now use the section to split the map

H2
rig(C, (R1f∗W

∨
n )∨)→ H2

rig(X ,W∨n ⊗ (R1f∗W
∨
n )∨)

and hence show that the map

Ext(Wn, (f
∗R1f∗W

∨
n )∨)→ End(R1f∗W

∨
n )

is surjective. Hence we can choose an appropriate Wn+1. �

Corollary. Let f : X → C be as above, and p a section. Then there exists an affine
group scheme πrig

1 (X/C, p) in the category of overconvergent isocrystals on C such

that for every closed point c ∈ C, the stalk πrig
1 (X/C, p)c is naturally isomorphic to

the rigid fundamental group πrig
1 (Xc, pc) of the fibre.
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This is our p-adic analogue of the unipotent fundamental group of a smooth and

proper variety over function field F - note that the action of πalg
1 (C, c) on πrig

1 (Xc, p(c))
is exactly analogous to the action of the unramified Galois groupGF,S on πét

1 (XF , x)Q`
.

The fact that πrig
1 (X/C, p) is an overconvergent F -isocrystal, i.e. comes with a

Frobenius structure follows simply from functoriality.

As an application of why I am interested in these sorts of ideas, note that we can
use entirely similar ideas to construct path torsors - namely if we take another
section q ∈ X (C), then we can construct πrig

1 (X/C; p, q) which is a torsor under

the relative fundamental group πrig
1 (X/C, p). Thus we get a period map

X (C)→ H1
F,rig(C, πrig

1 (X/C, p))
which should be viewed as a function field analogue of Kim’s global period map.


