l-independence over local function fields

Christopher Lazda

Università di Padova

10th November 2016

- 2 p-adic cohomology over local function fields
- 3 Spreading out and ℓ-independence
- 4 Fundamental groups

 $k = \text{field}, k^s = \text{separable closure}, G_k = \text{Gal}(k^s/k)$ X/k variety (separated scheme of finite type) $\ell \neq \text{char}(k)$ prime \rightsquigarrow

$$egin{aligned} & \mathcal{H}^i_\ell(X) := \mathcal{H}^i_{ extsf{e} extsf{t}}(X_{k^s}, \mathbb{Q}_\ell) \ &
ho_\ell : \mathcal{G}_k o \operatorname{\mathsf{GL}}(\mathcal{H}^i_\ell(X)) \end{aligned}$$

Question

How does ρ_{ℓ} depend on ℓ ? It it 'independent of ℓ ' in some sense?

Example (Deligne)

Suppose that $k = \mathbb{F}_q$ is finite, and that X/k is smooth and proper. Then for all $n \in \mathbb{Z}$

 $\operatorname{Tr}(\operatorname{Frob}_{k}^{n}|H_{\ell}^{i}(X))$

is in \mathbb{Q} and is independent of $\ell \neq p$.

Can also phrase this as follows: let $W_k \subset G_k$ consist of integral powers of Frob_k . Then $\forall \ell, \ell' \neq p$, and any alg. closed field $\Omega \supset \mathbb{Q}_\ell, \mathbb{Q}_{\ell'}$,

$$(\rho_\ell|_{W_k})^{ss}\otimes\Omega\cong(\rho_{\ell'}|_{W_k})^{ss}\otimes\Omega$$

Remark

Conjecturally
$$(\rho_{\ell}|_{W_k})^{ss} = (\rho_{\ell}|_{W_k}).$$

<(P) > (P) > (P)

In general, should exist an abelian category $\mathcal{MM}_{k,\mathbb{Q}}$ of (rational) mixed motives over k, cohomology groups $H^{i}_{mot}(X) \in \mathcal{MM}_{k,\mathbb{Q}}$ and realisation functors

$$-\otimes \mathbb{Q}_\ell:\mathcal{MM}_{k,\mathbb{Q}} o \mathsf{Rep}_{\mathbb{Q}_\ell}(\mathcal{G}_k)$$

for all $\ell \neq \operatorname{char}(k)$ such that

$$H^i_{\mathrm{mot}}(X)\otimes \mathbb{Q}_\ell\cong H^i_\ell(X)$$

Example

Can construct a category of 1-motives $\mathcal{MM}_{k,\mathbb{Q}}^{\leq 1}$ 'by hand' \rightsquigarrow independence results for curves and abelian varieties.

Now take F a local field with finite residue field k, $\ell \neq \operatorname{char}(k)$.

Theorem (Grothendieck)

Every ℓ -adic representation of G_F is quasi-unipotent.

Can use this to construct

$$\mathsf{WD}: \mathsf{Rep}_{\mathbb{Q}_\ell}(G_F) \to \mathsf{Rep}_{\mathbb{Q}_\ell}(\mathsf{WD}_F)$$

with target the category of Weil–Deligne representations. These are continuous representations

$$\rho: W_F \to \mathrm{GL}(V)$$

of the Weil group (for the discrete topology on V) together with a nilpotent map $N: V \to V(1)$.

Conjecture (Fontaine $C_{WD}(X, i)$)

X/F variety, $i \ge 0$. Then for any $\ell, \ell' \ne p$ and any alg. closed field $\Omega \supset \mathbb{Q}_{\ell}, \mathbb{Q}_{\ell'}$ we have

$$\mathsf{WD}(H^i_\ell(X))\otimes\Omega\cong\mathsf{WD}(H^i_{\ell'}(X))\otimes\Omega$$

as object of $WD_{\Omega}(W_F)$.

Conjecture (Fontaine $C_{WD}(X, i)_{faible}$)

Same, but replacing WD($H^i_{\ell}(X)$) with WD($H^i_{\ell}(X)$)^{F-ss}.

For any family of Weil–Deligne representations $\{E_\ell\}_{\ell\in\mathbf{P}}$ we will say that they are (weakly) independence of ℓ if they satisfy the above conjecture.

- 4 同 6 4 日 6 4 日 6

If V is a Weil–Deligne representation, $\exists !$ increasing filtration $M_{\bullet}V$ such that

$$N^k:\operatorname{Gr}^M_kV\stackrel{\sim}{ o}\operatorname{Gr}^M_{-k}V(k)$$

Lemma (Deligne)

A family $\{E_{\ell}\}_{\ell \in \mathbf{P}}$ of Weil–Deligne representations is weakly independent of ℓ iff $\forall k \in \mathbb{Z}$

$$\mathsf{Tr}(-\mid \mathit{Gr}_k^M \mathit{E}_\ell): \mathit{W}_{\mathit{F}}
ightarrow \mathbb{Q}_\ell$$

takes values in \mathbb{Q} and is independent of ℓ .

Today: concentrate on the case when $F \cong k((t))$ is a local field of equicharacteristic.

- **1** How to extend these conjectures to include $\ell = p$?
- 2 Prove them when X/F is smooth and proper.

2 p-adic cohomology over local function fields

3 Spreading out and ℓ -independence

4 Fundamental groups

 $k = \text{finite field, characteristic } p, F \cong k((t)), K = W(k)[1/p], \sigma = \text{Frobenius. For } \ell \neq p \text{ the functor}$

$$\mathsf{WD}: \mathsf{Rep}_{\mathbb{Q}_\ell}(G_F) \to \mathsf{Rep}_{\mathbb{Q}_\ell}(\mathsf{WD}_F)$$

arises from the ℓ -adic local monodromy theorem \rightsquigarrow want to replace this with the *p*-adic monodromy theorem.

Definition

The Robba ring \mathcal{R} over K is the ring of analytic functions over K convergent on some half-open annulus $\{\eta \leq |t| < 1\}$.

Have a Frobenius $\sigma : \mathcal{R} \to \mathcal{R}$ and a derivation $\partial_t : \mathcal{R} \to \mathcal{R} \rightsquigarrow$ notion of a (φ, ∇) -module over \mathcal{R} . Denote the category $\underline{\mathsf{M}} \Phi_{\mathcal{R}}^{\nabla}$.

Theorem (André, Mebkhout, Kedlaya)

Every (φ, ∇) -module M over \mathcal{R} is quasi-unipotent.

The theorem means that after making a finite separable extension of F = k((t)), and formally adjoining log t, M admits a basis of horizontal sections.

Corollary

Let K^{un} denote the maximal unramified extension of K. Then there exists an exact, faithful functor

 $\underline{\mathsf{M}}\Phi^\nabla_{\mathcal{R}}\to \mathsf{Rep}_{\mathcal{K}^{\mathsf{un}}}(\mathsf{WD}_{\mathcal{F}})$

▲□ ► < □ ► </p>

So what we want a theory of *p*-adic cohomology landing in the category $\underline{M}\Phi_{\mathcal{R}}^{\nabla}$, modelled on rigid/crystalline cohomology.

Set

$$\mathcal{E} := \widehat{W[t][t^{-1}][1/p]}$$

this is a complete DVF with residue field F = k((t)). \Rightarrow rigid cohomology for varieties over F is a functor

$$H^*_{\mathsf{rig}}(-/\mathcal{E}): \mathsf{Var}_F o \underline{\mathsf{M}} \Phi^{\nabla}_{\mathcal{E}}$$

to (φ, ∇) -modules over \mathcal{E} .

Note that we can write

$$\mathcal{R} = \left\{ \sum_{i \in \mathbb{Z}} a_i t^i \middle| \begin{array}{c} \forall \rho < 1, \ |a_i| \ \rho^i \to 0 \text{ as } i \to \infty \\ \exists \lambda < 1 \text{ s.t. } |a_i| \ \lambda^i \to 0 \text{ as } i \to -\infty \end{array} \right\}$$
$$\mathcal{E} = \left\{ \sum_{i \in \mathbb{Z}} a_i t^i \middle| \begin{array}{c} \sup_{i \mid \lambda \mid} a_i | < \infty \\ |a_i| \to 0 \text{ as } i \to -\infty \end{array} \right\}$$

So that $\mathcal{E} \nsubseteq \mathcal{R}$ and $\mathcal{R} \nsubseteq \mathcal{E}$.

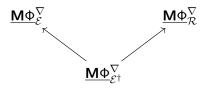
Definition

$$\mathcal{E}^{\dagger} := \mathcal{E} \cap \mathcal{R} = \left\{ \sum_{i \in \mathbb{Z}} a_i t^i \middle| \begin{array}{c} \sup_i |a_i| < \infty \\ \exists \lambda < 1 \text{ s.t. } |a_i| \lambda^i \to 0 \text{ as } i \to -\infty \end{array} \right\}$$

< □ > <

æ

 \mathcal{E}^{\dagger} is a Henselian DVF with residue field F, and we have



Theorem (Kedlaya)

The functor $\underline{\mathbf{M}} \Phi_{\mathcal{E}^{\dagger}}^{\nabla} \to \underline{\mathbf{M}} \Phi_{\mathcal{E}}^{\nabla}$ is fully faithful, and if $X \in \operatorname{Var}_{F}$ is smooth and proper, $H_{\operatorname{rig}}^{i}(X/\mathcal{E})$ is in the essential image.

Should think of $\underline{\mathbf{M}} \Phi_{\mathcal{E}^{\uparrow}}^{\nabla} \to \underline{\mathbf{M}} \Phi_{\mathcal{E}}^{\nabla}$ as analogous to the inclusion $\operatorname{Rep}_{\mathbb{Q}_p}^{\operatorname{pst}}(\mathcal{G}_{\mathcal{K}}) \subset \operatorname{Rep}_{\mathbb{Q}_p}(\mathcal{G}_{\mathcal{K}}).$

Theorem (L., Pál)

Rigid cohomology descends to the bounded Robba ring $\mathcal{E}^{\dagger},$ in other words \exists functor

$$H^*_{\mathsf{rig}}(-/\mathcal{E}^{\dagger}): \mathsf{Var}_F o \underline{\mathsf{M}} \Phi^{
abla}_{\mathcal{E}^{\dagger}}$$

satisfying all the axioms of an 'extended' Weil cohomology theory, whose base change to \mathcal{E} is isomorphic to $H^*_{rig}(-/\mathcal{E}^{\dagger})$.

There also are versions with compact support, as well as support in a closed subscheme, and categories of coefficients (F-)lsoc[†] $(X/\mathcal{E}^{\dagger})$ and (F-)lsoc[†] (X/\mathcal{K}) for this theory.

Corollary

Let X/F be a variety, then we can define a p-adic Weil–Deligne representation $H_p^i(X)$ associated to X via

$$H^i_{\operatorname{rig}}(X/\mathcal{R}) := H^i_{\operatorname{rig}}(X/\mathcal{E}^{\dagger}) \otimes \mathcal{R}.$$

Hence we can extend Fontaine's conjectures $C_{WD}(X, i)$ and $C_{WD}(X, i)_{faible}$ to include $\ell = p$.

Note that the *p*-adic Weil–Deligne representations are defined over $\mathbb{Q}'_p := \mathcal{K}^{\mathrm{un}}$. Set $\mathbb{Q}'_{\ell} = \mathbb{Q}_{\ell}$ if $\ell \neq p$.

2 p-adic cohomology over local function fields

3 Spreading out and ℓ -independence

Theorem (Chiarellotto, L.)

Let X/F be smooth and proper, and $i \ge 0$. Then $C_{WD}(X, i)_{faible}$ holds.

The first key step consists of reducing to the following case.

Definition

Let X/F be smooth and proper, with semistable reduction. We say that F is globally defined if there exists a smooth curve C over k, a rational point $c \in C(k)$ with $\widehat{k(C)}_c \cong F$ and a proper, flat scheme $\mathcal{X} \to C$, smooth away from c and semistable at c, such that $\mathcal{X} \times_C \operatorname{Spec}(F) \cong X$.

Proposition

Suppose that $C_{WD}(X, i)_{faible}$ holds for all smooth and proper *F*-varieties which are semistable and globally defined. Then $C_{WD}(X, i)_{faible}$ holds for all smooth and proper *F*-varieties.

Ingredients:

- Alterations
- Weight-monodromy conjecture
- Ohomological descent

Spreading out' lemma

Image: A image: A

 Uniqueness of 'geometric weight filtrations'

Lemma

Assume that $\mathfrak{X} \to \operatorname{Spec}(\mathcal{O}_F)$ is semistable, and $n \ge 1$. Then there exists a globally defined semistable scheme $\mathfrak{Y} \to \operatorname{Spec}(\mathcal{O}_F)$ such that $\mathfrak{X} \otimes \mathcal{O}_F/t^n \cong \mathfrak{Y} \otimes \mathcal{O}_F/t^n$.

The proof of $C_{WD}(X, i)_{faible}$ for smooth and proper *F*-varieties therefore reduces to the following.

Theorem

Let C/k be a smooth curve $c \in C(k)$, $U = C \setminus c$, $F = \hat{k}(C)_c$. Suppose that $\{\mathcal{F}_\ell\}_\ell$ is a collection of local systems on U, such that for all $u \in U$

$$\mathsf{Tr}(-\mid\mathcal{F}_{\ell,ar{u}}):\mathsf{Frob}^{\mathbb{Z}}_u o\mathbb{Q}'_\ell$$

takes values in \mathbb{Q} and is independent of ℓ . Then for all $k \ge 0$

$$\mathsf{Tr}(- \mid \mathit{Gr}_k^M \mathcal{F}_{\ell, \bar{c}}) : W_F \to \mathbb{Q}'_\ell$$

takes values in \mathbb{Q} and is independent of ℓ .

This was proved by Deligne for $\ell \neq p$; to include $\ell = p$ we use the theory of arithmetic \mathcal{D}^{\dagger} -modules.

What about mixed characteristic local fields? The weight monodromy conjecture is used in two key places, but the rest of the proof should work. So for smooth and proper varieties, $C(X, i)_{\text{faible}}$ would follow from the weight monodromy conjecture for X.

There are also results for proper varieties.

Theorem

Let X/F be proper, and $k \in \mathbb{Z}$. Then

$$\sum_{i} (-1)^{i} \operatorname{Tr}(- |\operatorname{Gr}_{k}^{M} H_{\ell}^{i}(X)) : W_{F} \to \mathbb{Q}_{\ell}^{\prime}$$

has values in \mathbb{Q} and is independent of ℓ .

2 p-adic cohomology over local function fields

3 Spreading out and ℓ -independence

What about other invariants such as homotopy groups?

Example

Unipotent π_1 is expected to be 'motivic' \rightsquigarrow should have ' ℓ -independence' results for this.

So let X be a pointed variety over F.

Definition

For $\ell \neq p$ define $\pi_1^{\ell}(X)$ to be the \mathbb{Q}_{ℓ} -pro-unipotent completion of $\pi_1^{\text{ét}}(X_{\overline{F}})$. This comes with an action of G_F .

When $\ell = p$ need to use Tannakian methods.

Definition

We define $\pi_1^p(X)$ to be the Tannaka dual of the category \mathcal{N} Isoc[†] $(X/\mathcal{E}^{\dagger})$ of unipotent overconvergent isocrystals on X/\mathcal{E}^{\dagger} .

Thus $\pi_1^p(X)$ is a (pro-unipotent) affine group scheme over \mathcal{E}^{\dagger} .

Theorem (L.)

The group scheme $\pi_1^p(X)$ has a canonical structure as a 'non-abelian' (φ, ∇) -module over \mathcal{E}^{\dagger} .

Let ℓ be any prime. Set $L_{\ell} := \operatorname{Lie}(\pi_1^{\ell}(X))$, $\mathcal{U}_{\ell} := \mathcal{U}(L_{\ell})$, $\mathfrak{a}_{\ell} :=$ augmentation ideal.

$$\Rightarrow \mathcal{U}_{\ell}/\mathfrak{a}_{\ell}^{k} \in \operatorname{Rep}_{\mathbb{Q}_{\ell}}(G_{F}) \ (\ell \neq p)$$
$$\mathcal{U}_{p}/\mathfrak{a}_{p}^{k} \in \underline{\mathbf{M}}_{\mathcal{E}^{\dagger}}^{\nabla}$$

Conjecture ($C_{WD}(X, \pi_1)$)

For all $k \ge 1$ the Weil Deligne representations associated to $\mathcal{U}_{\ell}/\mathfrak{a}_{\ell}^k$ are independent of ℓ .

Over finite fields, can prove Frobenius semisimplicity for $\mathcal{U}_{\ell}/\mathfrak{a}_{\ell}^k$.

Theorem (Chiarellotto, L.)

Assume that X is smooth and proper over F with semistable reduction. Then $C_{WD}(X, \pi_1)$ holds.

As before, we reduce to the 'globally defined' case, and then show that the $\mathcal{U}_{\ell}/\mathfrak{a}_{\ell}^{k}$ can be 'spread out' to local systems on some global model C of F.

Questions

- On we remove the semistable hypothesis?
- Does the argument work for mixed characteristic local fields? (We know the weight-monodromy conjecture for H¹.)

Thank-you!

æ

Э

1 ▶ ▲