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k = field, ks = separable closure, Gk = Gal(ks/k)
X/k variety (separated scheme of finite type)
` 6= char(k) prime  

H i
`(X ) := H i

ét(Xks ,Q`)

ρ` : Gk → GL(H i
`(X ))

Question

How does ρ` depend on `? It it ‘independent of `’ in some sense?
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Example (Deligne)

Suppose that k = Fq is finite, and that X/k is smooth and proper.
Then for all n ∈ Z

Tr(Frobnk |H i
`(X ))

is in Q and is independent of ` 6= p.

Can also phrase this as follows: let Wk ⊂ Gk consist of integral
powers of Frobk . Then ∀ `, `′ 6= p, and any alg. closed field
Ω ⊃ Q`,Q`′ ,

(ρ`|Wk
)ss ⊗ Ω ∼= (ρ`′ |Wk

)ss ⊗ Ω

Remark

Conjecturally (ρ`|Wk
)ss = (ρ`|Wk

).
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In general, should exist an abelian category MMk,Q of (rational)
mixed motives over k , cohomology groups H i

mot(X ) ∈MMk,Q
and realisation functors

−⊗Q` :MMk,Q → RepQ`
(Gk)

for all ` 6= char(k) such that

H i
mot(X )⊗Q`

∼= H i
`(X )

Example

Can construct a category of 1-motives MM≤1
k,Q ‘by hand’  

independence results for curves and abelian varieties.
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Now take F a local field with finite residue field k , ` 6= char(k).

Theorem (Grothendieck)

Every `-adic representation of GF is quasi-unipotent.

Can use this to construct

WD : RepQ`
(GF )→ RepQ`

(WDF )

with target the category of Weil–Deligne representations. These
are continuous representations

ρ : WF → GL(V )

of the Weil group (for the discrete topology on V ) together with a
nilpotent map N : V → V (1).
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Conjecture (Fontaine CWD(X , i))

X/F variety, i ≥ 0. Then for any `, `′ 6= p and any alg. closed field
Ω ⊃ Q`,Q`′ we have

WD(H i
`(X ))⊗ Ω ∼= WD(H i

`′(X ))⊗ Ω

as object of WDΩ(WF ).

Conjecture (Fontaine CWD(X , i)faible)

Same, but replacing WD(H i
`(X )) with WD(H i

`(X ))F -ss.

For any family of Weil–Deligne representations {E`}`∈P we will say
that they are (weakly) independence of ` if they satisfy the above
conjecture.
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If V is a Weil–Deligne representation, ∃! increasing filtration M•V
such that

Nk : GrMk V
∼→ GrM−kV (k)

Lemma (Deligne)

A family {E`}`∈P of Weil–Deligne representations is weakly
independent of ` iff ∀k ∈ Z

Tr(− | GrMk E`) : WF → Q`

takes values in Q and is independent of `.

Today: concentrate on the case when F ∼= k((t)) is a local field of
equicharacteristic.

1 How to extend these conjectures to include ` = p?

2 Prove them when X/F is smooth and proper.

Christopher Lazda `-independence



Motivation
p-adic cohomology over local function fields

Spreading out and `-independence
Fundamental groups

1 Motivation

2 p-adic cohomology over local function fields

3 Spreading out and `-independence

4 Fundamental groups

Christopher Lazda `-independence



Motivation
p-adic cohomology over local function fields

Spreading out and `-independence
Fundamental groups

k = finite field, characteristic p, F ∼= k((t)), K = W (k)[1/p],
σ = Frobenius. For ` 6= p the functor

WD : RepQ`
(GF )→ RepQ`

(WDF )

arises from the `-adic local monodromy theorem  want to
replace this with the p-adic monodromy theorem.

Definition

The Robba ring R over K is the ring of analytic functions over K
convergent on some half-open annulus {η ≤ |t| < 1}.

Have a Frobenius σ : R → R and a derivation ∂t : R → R  
notion of a (ϕ,∇)-module over R. Denote the category MΦ∇R.
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Theorem (André, Mebkhout, Kedlaya)

Every (ϕ,∇)-module M over R is quasi-unipotent.

The theorem means that after making a finite separable extension
of F = k((t)), and formally adjoining log t, M admits a basis of
horizontal sections.

Corollary

Let Kun denote the maximal unramified extension of K . Then
there exists an exact, faithful functor

MΦ∇R → RepKun(WDF )
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So what we want a theory of p-adic cohomology landing in the
category MΦ∇R, modelled on rigid/crystalline cohomology.
Do you believe in ghosts?
Set

E := ̂W JtK[t−1][1/p]

this is a complete DVF with residue field F = k((t)).
⇒ rigid cohomology for varieties over F is a functor

H∗rig(−/E) : VarF →MΦ∇E

to (ϕ,∇)-modules over E .

Christopher Lazda `-independence



Motivation
p-adic cohomology over local function fields

Spreading out and `-independence
Fundamental groups

Note that we can write

R =

{∑
i∈Z

ai t
i

∣∣∣∣∣ ∀ρ < 1, |ai | ρi → 0 as i →∞
∃λ < 1 s.t. |ai |λi → 0 as i → −∞

}

E =

{∑
i∈Z

ai t
i

∣∣∣∣∣ supi |ai | <∞
|ai | → 0 as i → −∞

}

So that E * R and R * E .

Definition

E† := E ∩ R =

{∑
i∈Z

ai t
i

∣∣∣∣∣ supi |ai | <∞
∃λ < 1 s.t. |ai |λi → 0 as i → −∞

}
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E† is a Henselian DVF with residue field F , and we have

MΦ∇E MΦ∇R

MΦ∇E†

;;cc

Theorem (Kedlaya)

The functor MΦ∇E† →MΦ∇E is fully faithful, and if X ∈ VarF is
smooth and proper, H i

rig(X/E) is in the essential image.

Do you believe in ghosts?
Should think of MΦ∇E† →MΦ∇E as analogous to the inclusion

Reppst
Qp

(GK ) ⊂ RepQp
(GK ).
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Theorem (L., Pál)

Rigid cohomology descends to the bounded Robba ring E†, in
other words ∃ functor

H∗rig(−/E†) : VarF →MΦ∇E†

satisfying all the axioms of an ‘extended’ Weil cohomology theory,
whose base change to E is isomorphic to H∗rig(−/E†).

There also are versions with compact support, as well as support in
a closed subscheme, and categories of coefficients (F -)Isoc†(X/E†)
and (F -)Isoc†(X/K ) for this theory.
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Corollary

Let X/F be a variety, then we can define a p-adic Weil–Deligne
representation H i

p(X ) associated to X via

H i
rig(X/R) := H i

rig(X/E†)⊗R.

Hence we can extend Fontaine’s conjectures CWD(X , i) and
CWD(X , i)faible to include ` = p.
Do you believe in ghosts?
Note that the p-adic Weil–Deligne representations are defined over
Q′p := Kun. Set Q′` = Q` if ` 6= p.
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Theorem (Chiarellotto, L.)

Let X/F be smooth and proper, and i ≥ 0. Then CWD(X , i)faible

holds.

The first key step consists of reducing to the following case.

Definition

Let X/F be smooth and proper, with semistable reduction. We say
that F is globally defined if there exists a smooth curve C over k ,

a rational point c ∈ C (k) with k̂(C )c
∼= F and a proper, flat

scheme X → C , smooth away from c and semistable at c , such
that X ×C Spec (F ) ∼= X .
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Proposition

Suppose that CWD(X , i)faible holds for all smooth and proper
F -varieties which are semistable and globally defined. Then
CWD(X , i)faible holds for all smooth and proper F -varieties.

Ingredients:

1 Alterations

2 Weight-monodromy conjecture

3 Cohomological descent

4 ‘Spreading out’ lemma

5 Uniqueness of ‘geometric
weight filtrations’

Lemma

Assume that X→ Spec (OF ) is semistable, and n ≥ 1. Then there
exists a globally defined semistable scheme Y→ Spec (OF ) such
that X⊗OF/t

n ∼= Y⊗OF/t
n.
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The proof of CWD(X , i)faible for smooth and proper F -varieties
therefore reduces to the following.

Theorem

Let C/k be a smooth curve c ∈ C (k), U = C \ c , F = k̂(C )c .
Suppose that {F`}` is a collection of local systems on U, such that
for all u ∈ U

Tr(− | F`,ū) : FrobZ
u → Q′`

takes values in Q and is independent of `. Then for all k ≥ 0

Tr(− | GrMk F`,c̄) : WF → Q′`

takes values in Q and is independent of `.

This was proved by Deligne for ` 6= p; to include ` = p we use the
theory of arithmetic D†-modules.
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What about mixed characteristic local fields? The weight
monodromy conjecture is used in two key places, but the rest of the
proof should work. So for smooth and proper varieties, C (X , i)faible
would follow from the weight monodromy conjecture for X .
Do you believe in ghosts?
There are also results for proper varieties.

Theorem

Let X/F be proper, and k ∈ Z. Then∑
i

(−1)iTr(− | GrMk H i
`(X )) : WF → Q′`

has values in Q and is independent of `.
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What about other invariants such as homotopy groups?

Example

Unipotent π1 is expected to be ‘motivic’  should have
‘`-independence’ results for this.

So let X be a pointed variety over F .

Definition

For ` 6= p define π`1(X ) to be the Q`-pro-unipotent completion of
πét

1 (XF ). This comes with an action of GF .
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When ` = p need to use Tannakian methods.

Definition

We define πp1 (X ) to be the Tannaka dual of the category
N Isoc†(X/E†) of unipotent overconvergent isocrystals on X/E†.

Thus πp1 (X ) is a (pro-unipotent) affine group scheme over E†.

Theorem (L.)

The group scheme πp1 (X ) has a canonical structure as a
‘non-abelian’ (ϕ,∇)-module over E†.
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Let ` be any prime. Set L` := Lie(π`1(X )), U` := U(L`),
a` := augmentation ideal.

⇒ U`/ak` ∈ RepQ`
(GF ) (` 6= p)

Up/akp ∈MΦ∇E†

Conjecture (CWD(X , π1))

For all k ≥ 1 the Weil Deligne representations associated to U`/ak`
are independent of `.

Over finite fields, can prove Frobenius semisimplicity for U`/ak` .
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Theorem (Chiarellotto, L.)

Assume that X is smooth and proper over F with semistable
reduction. Then CWD(X , π1) holds.

As before, we reduce to the ‘globally defined’ case, and then show
that the U`/ak` can be ‘spread out’ to local systems on some global
model C of F .

Questions

1 Can we remove the semistable hypothesis?

2 Does the argument work for mixed characteristic local fields?
(We know the weight-monodromy conjecture for H1.)
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Thank-you!
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