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1. Motivation: search for a p-adic cohomology theory

Let k be a perfect field of characteristic p > 0,W = W (k) the ring of Witt vectors of
k, and K = W (k)[1/p] its fraction field. Let σ denote the Frobenius automorphism
of K. Then for any variety X/k and any prime ` 6= p, we can consider the `-adic
étale cohomology groups

Hi
ét(Xk,Q`)

which are finite dimensional over Q` and in fact form a Weil cohomology theory.
Tshe basic aim of p-adic cohomology is to fill the gap in this family at ` = p, in
other words to produce a well behaved cohomology theory with coefficients in a
p-adic field.

The first attempt to do this was the theory of crystalline cohomology, which
works well for smooth and proper schemes over k. The fundamental comparison
theorem making this cohomology computable is the following.

Theorem. Let X/W be a smooth and proper scheme, with special fibre X. Then
there is a canonical isomorphism

Hi
cris(X/W )⊗W K ∼= Hi

dR(XK).

This result was the start of the general philosophy

{p-adic cohomology in char p} ↔ {de Rham cohomology of a lift to char 0}

Crystalline cohomology works well for smooth and proper varieties, what about
non-proper ones? For example, what can we do for smooth affine varieties?

By a result of Elkik, smooth affine varieties always lift to char 0, that is given such
an X, there always exists a flat, smooth affine scheme X → Spec (W ) whose special
fibre is X. One might then guess that we should take the de Rham cohomology
Hi

dR(XK) as the p-adic cohomology of X.

Problem. This depends on the lift X !

Example. The affine schemes

X = Spec
(
W [z, z−1]

)
, Y = Spec

(
W [z, z−1, (z − p)−1]

)
both have the same special fibre, but generic fibres with different de Rham coho-
mology.

To get around this problem, we could try to complete. That is we replace X
by it’s p-adic completion, which is a formal scheme X̂ over Spf (W ). Then the de
Rham cohomology Hi

dR(X̂K) of the rigid analytic space X̂K associated to X̂ turns
out to be functorial in X, however, we have introduced another problem.
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Problem. The spaces Hi
dR(X̂K) are not finite dimensional in general.

Example. If X = A1
W then X̂K

∼= DK(0, 1) = Sp(K〈z〉), the closed unit disc over
K. Then one can check that H1

dR(DK(0.1)) is infinite dimensional.

To get around this problem, we introduce the notion of overconvergence. Instead
of considering the de Rham cohomology of K〈z〉, we look instead at the subring
K〈z〉† consisting of series which converge on some strictly larger disc |z| ≤ ρ for
ρ > 1. Check: the de Rham cohomology of this ring is trivial i.e. isomorphic to K
is degree 0 and 0 in all other degrees.

This general method of considering ‘overconvergent function’ turns out to give a
good theory for smooth affine schemes over k, although the eventual proof of finite
dimensionality was only achieved through the theory of rigid cohomology.

So, what about singular schemes? Here we take our cue from the theory of alge-
braic de Rham cohomology in characteristic 0, which works well in the ‘naive’ way
for smooth schemes, but for singular schemes X we must first taking an embedding
X ↪→ P into a smooth scheme, and consider de Rham cohomology of the formal
completion of X in P .

So to construct a good p-adic theory, there are three core ingredients that we
need to incorporate into our definition.

• should be related to de Rham cohomology of a lift to characteristic 0;
• need to take account of ‘overconvergence’;
• for singular schemes, we should embed in smooth schemes that lift.

Berthelot’s definition of de Rham cohomology fuses all these ingredients into a
single construction.

2. Rigid cohomology: definitions and basic facts

Definition 2.1. A frame over W is a triple T := (X,Y,P) where X ↪→ Y is an
open embedding of k-varieties, and Y ↪→ P is a closed embedding of p-adic formal
W -schemes. We say that T is proper if Y is proper over k, and smooth if there
exists an open subscheme U of P containing X which is smooth over W .

For a frame T = (X,Y,P) we will usually write Z = Y \X . We can consider the
generic fibre PK , which is a rigid analytic space over K. There is a specialisation
map

sp : PK → P

and we define the ‘tubes’

]Y [P:= sp−1(X), ]X[P:= sp−1(X), ]Z[P= sp−1(Z).

Example. i) Let (X,Y,P) = (A1
k,P1

k, P̂1
W ). Then ]Y [P= P1,an

K is the analytic
projective line, and ]X[P= DK(0, 1) is the closed unit disc over K.

ii) Let (X,Y,P) = (Spec (k) ,Spec (k) , Â1
W ). Then ]X[P=]Y [P is the open

unit disc DK(0, 1−) over K.

The systematic way of working ‘overconvergence’ into the definition is via Berth-
elot’s j† construction. Note that if (X,Y,P) is a frame, then we have ]Y [P=
]X[P∪]Z[P, but this covering is not admissible.

Example. If (X,Y,P) = (Spec (k) ,A1
k, Â1

W ) then ]Y [P= DK(0, 1), ]X[= {z ∈
D1

K | |z| < 1} and ]Z[P= {z ∈ DK(0, 1) | |z| = 1}.
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Definition 2.2. A strict neighbourhood of ]X[P inside ]Y [P is an open subset
]X[P⊂ V ⊂]Y [P such that the covering ]Y [P= V ∪]Z[P is admissible.

Example. Let (X,Y,P) = (A1
k,P1

k, P̂1
W ). Then the closed disc {z ∈ A1,an

K | |z| ≤ ρ}
of radius ρ > is a strict neighbourhood of ]X[P inside P1,an

K . In fact, these form a
cofinal system of such strict neighbourhoods.

Definition 2.3. Let F be a sheaf on ]Y [P. Then we define

j†XF := colimV jV ∗j
−1
V F

where the colimit is over all strict neighbourhoods jV : V →]Y [P of ]X[P inside
]Y [P.

Example. Let (X,Y,P) = (A1
k,P1

k, P̂1
W ). Then Γ(]Y [P, j

†
XO]Y [P) = K〈z〉†.

We are now in a position to define rigid cohomology.

Definition 2.4. Let X be a k-variety and choose a smooth and proper frame
(X,Y,P). Then we define the rigid cohomology of X to be

Hi
rig(X/K) := Hi(]Y [P, j

†
XΩ∗]Y [P/K).

Of course, we must show that this does not depend on the choice of frame
(X,Y,P). The key ingredient in the proof of this fact are the following.

Theorem (Strong Fibration Theorem). Let

X // Y ′

��

// P′

f

��

X // Y // P

be a morphism of frames such that Y ′ → Y is proper, and P′ → P is étale in a
neighbourhood of X. Then for all sufficiently small strict neighbourhoods V of ]X[P
in ]Y [P, the induced map f−1(V )→ V is an isomorphism.

Theorem (Poincaré Lemma). Let (X,Y,P) be a frame, and consider the natural
morphism of frames

X // Y // Â1
P

��

X // Y // P

Then the induced map

Hi(]Y [P, j
†
XΩ∗]Y [P/K)→ Hi(]Y [Â1

P
, j†XΩ∗]Y [Â1

P
/K)

is an isomorphism.

The proof that Hi
rig(X/K) is independent of the frame now proceeds (roughly

speaking) as follows. Suppose that we have two smooth and proper frames (X,Y,P)
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and (X,Y ′,P′). Then after replacing P′ by P×W P′ we may assume that we have
a morphism

X // Y ′ //

��

P′

��

X // Y // P

such that Y ′ → Y is proper, and P′ → P is smooth in a neighbourhood of X.
Since a smooth morphism P′ → P locally factors through an étale map P′ → Ân

P,
for some n, we can repeatedly apply the previous results to conclude that

Hi(]Y [P, j
†
XΩ∗]Y [P/K)→ Hi(]Y ′[P′ , j†XΩ∗]Y ′[P′/K)

is an isomorphism.
We can also use similar ideas to show that these spaces are functorial in X,

in particular using this functoriality with respect to Frobenius puts a ‘Frobenius
structure’ on Hi

rig(X/K), that is a σ-linear isomorphism

ϕ : Hi
rig(X/K)→ Hi

rig(X/K).

It is not known whether we can always find smooth and proper frames (X,Y,P)
containing our variety X of interest. However, we can always do this locally on X,
and then use Zariski descent to define rigid cohomology in general. The details are
a bit tedious.

3. Finite dimensionality

To show that Hi
rig(X/K) is finite dimensional, there are two main steps:

i) prove that Hi
rig(X/K) is finite dimensional when X is smooth over k;

ii) use cohomological descent to reduce to this case.
The second of these is due to Tsuzuki and Chiarellotto–Tsuzuki, and is incredibly

long and involved. I won’t say anything about it. The idea behind the first of these
is to reduce to the smooth and proper case by developing enough formalism of rigid
cohomology. The key ingredient is the excision exact sequence.

Theorem (Berthelot). Let X be a smooth k-variety, and Z ⊂ X a smooth closed
subscheme of constant codimension c and complement U = X \Z. Then there exists
a long exact sequence

. . .→ Hi−2c
rig (Z/K)→ Hi

rig(X/K)→ Hi
rig(U/K)→ . . .

We can then use this to feed into an induction argument which reduces to the
case of X smooth and proper. Now we apply Berthelot’s comparison theorem.

Theorem (Berthelot). Let X/k be smooth and proper. Then

Hi
rig(X/K) ∼= Hi

cris(X/W )⊗W K.

4. Why bother?

The original motivation for the search for Weil cohomology theories was in order
to prove the Weil conjectures. Since the `-adic theory for ` 6= p acheives this, why
should we even bother with constructing a p-adic theory?
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Well, one reason is that p-adic cohomology is much more amenable to computer
calculation, for example, there are now algorithms due to Lauder and Kedlaya that
can calculate the zeta function of a variety over a finite field, using rigid cohomology.
No-one has any idea how to do this using `-adic étale cohomology.

Another reason is connected with one of the big open questions in p-adic cohomol-
ogy theory. In the `-adic world, we don’t just have a rational theory Hi

ét(Xk,Q`),
but also an integral theory Hi

ét(Xk,Z`) which crucially can explain `-torsion phe-
nomena. If we are to be able to explain p-torsion, then we need an integral p-adic
theory. Crystalline cohomology Hi

cris(X/W ) works well for smooth and proper va-
rieties, but it is not really clear at the moment what the ‘right’ approach is for open
or singular varieties.
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