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Last time, I talked about the construction of rigid cohomology for varieties over
a perfect field k, taking values in vector spaces over K = W (k)[1/p]. Actually the
construction works in much more generality than this. We can actually take any
field k of characteristic p, and any complete, discretely valued field K of character-
istic 0 whose residue field is k, and we still have a good theory

X/k 7→ Hi
rig(X/K)

which satisfies all the same properties as we saw last time. However, when k is
not perfect there are good reasons to expect that this is not the whole story of
p-adic cohomology, and that actually there should be refinements of this theory
that reflect better arithmetic properties of X/k. Today I’m going to talk about
what this story looks like for varieties over a Laurent series field k((t)) where k is a
perfect field.

1. `-adic cohomology over local function fields and the monodromy
theorem

To explain what we really expect from our p-adic theory, let us go back and review
what happens in the `-adic situation, ` 6= p. Fix a separable closure k((t))sep of k((t)),
and let G := Gal(k((t))sep/k((t))) denote the corresponding absolute Galois group.
Then for any variety X/k((t)) the `-adic cohomology groups Hi

ét(Xk((t))sep ,Q`) are
naturally Galois representations, that is finite dimensional Q`-vector spaces to-
gether with a continuous action of G. Up to a finite amount of error, these can be
captured by quite simple linear algebra data thanks to Grothendieck’s `-adic local
monodromy theorem.

Theorem (Grothendieck). Let V be an `-adic representation of G. Then V is
quasi-unipotent, that is there exists a finite separable extension F/k((t)) such that
the corresponding inertia group IF ⊂ G acts unipotently on V .

In fact, this can be viewed as a cohomological version of the ‘semistable reduction
conjecture’.

X has semistable reduction↔ Hi
ét(Xk((t))sep ,Q`) is unipotent

potentially semistable reduction for varieties↔ Galois representations are quasi-unipotent

We can also use the monodromy theorem to compare the various cohomologies
Hi

ét(Xk((t))sep ,Q`) for different values of `. The ‘simple linear algebra data’ that we
can use to describeHi

ét(Xk((t))sep ,Q`) is what is called a Weil–Deligne representation
of G (with values in Q`). These objects are then algebraic enough (in particular,
they do not use the topology of Q`) that it makes sense to compare them as ` varies.
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2. The monodromy theorem in p-adic cohomology

What are the analogues of the Galois representations that are produced in p-adic
cohomology over k((t))? To see, let us look more closely at how rigid cohomology
works for varieties over k((t)).

Consider the ring

EK :=

{ ∞∑
i=−∞

ait
i

∣∣∣∣∣ sup
i
|ai| <∞, ai → 0 as i→ −∞

}
Then it turns out that EK is a complete, discretely valued field whose residue field is
k((t)). Moreover, we may endow EK with a ‘Frobenius’ lifting the absolute Frobenius
of k((t)) by setting

σ(
∑
i

ait
i) =

∑
i

σ(ai)t
ip

where σ is the Frobenius on K.
Then for X/k((t)) a variety, we can consider its rigid cohomology Hi

rig(X/EK),
these are finite dimensional vector spaces over EK , and come endowed with a Frobe-
nius structure, that is an isomorphism

ϕ : Hi
rig(X/EK)⊗EK ,σ EK → Hi

rig(X/EK).

But these objects also come with extra structure: we may ‘differentiate with respect
to t’ to put a connection on these vector space, which is compatible with the
Frobenius structure in a suitable sense. This is formalised in the notion of a (ϕ,∇)-
module over EK .

Definition. Let ∂t : EK → EK denote the derivation given by ‘differentiation with
respect to t’. A (ϕ,∇)-module over EK is a finite dimensional vector space M
together with:

• a connection, that is a K-linear map ∇ : M → M such that ∇(fm) =
f∇(m) = ∂t(f)m for all f ∈ EK ,m ∈M ;

• a horizontal isomorphism σ∗M := M ⊗EK ,σ EK →M .

So for X/k((t)), the vector spaces Hi
rig(X/EK) are naturally (ϕ,∇)-modules over

EK . It is these (ϕ,∇)-modules over EK that are our first candidate for the p-adic
analogues of Galois representations, however, the category of such objects turn out
to be not well behaved, in particular there is no analogue of the local monodromy
theorem in this context.

There is a version of the p-adic local monodromy theorem, but it does not apply
to (ϕ,∇)-modules over EK , but instead to (ϕ,∇)-modules over a closely related
ring, the Robba ring RK .

RK =

{∑
i

ait
i ∈ KJt, t−1K

∣∣∣∣∣ ∃η < 1 s.t. |ai| ηi → 0 as i→ −∞
∀ρ < 1, |ai| ρi → 0 as i→∞

}
Then exactly as before, we may define a Frobenius σ onRK and a derivation ∂t, and
we have the notion of a (ϕ,∇)-module over RK . The analogue of the monodromy
theorem is then the following.

Theorem (André–Mebkhout, Kedlaya). LetM be a (ϕ,∇)-module over RK . Then
M is quasi-unipotent, that is after making a finite étale extension of RK , the con-
nection ∇ acts via a unipotent matrix.
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The problem if we want to relate this to the rigid cohomology Hi
rig(X/EK) is

that we have EK 6⊂ RK and RK 6⊂ EK , so there is no obvious way to pass back and
forth between (ϕ,∇)-modules over one and (ϕ,∇)-modules over the other.

Dumb Idea. try to work instead with the intersection E†K = RK ∩ EK , known as
the bounded Robba ring

This is concretely described as follows.

E†K =

{∑
ait

i
∣∣∣ sup

i
|ai| <∞, ∃η < 1 s.t. |ai| ηi → 0 as i→ −∞

}
,

This is a henselian discrete valuation field with residue field k((t)), but it is not
complete (its completion is EK). It is stable under Frobenius σ and the derivation
∂t, and we may therefore speak of (ϕ,∇)-modules over EK .

Aim. Show that the (ϕ,∇)-modules Hi
rig(X/EK) ‘descend’ to (ϕ,∇)-modules over

E†K .

Since these (ϕ,∇)-modules over EK can be base changed to RK , they satisfy
a certain version of a monodromy theorem, although it is slightly complicated to
state in a precise form.

Here’s another analogy for what we’re trying to do: the p-adic cohomology of
varieties over local fields in mixed characteristic are naturally p-adic Galois repre-
sentations, and in general this category contains far too many objects to be easily
amenable to study. In p-adic Hodge theory one isolates a particular class of p-adic
representations (those that are ‘de Rham’) that are much better behaved. In our
case, we view the category of (ϕ,∇)-modules over EK as the analogue of the cate-
gory of all p-adic Galois representations, and the category of (ϕ,∇)-modules over
E†K as the analogue of category of de Rham representations. Note that by a result
of Kedlaya, the base extension functor from (ϕ,∇)-modules over E†K to those over
EK is fully faithful, so this analogy does make sense! Showing that Hi

rig(X/EK)

descends to E†K can therefore be viewed as an equicharacteristic analogue of the
theorem in p-adic Hodge theory saying that all Galois representations coming from
geometry are de Rham.

3. E†K-valued rigid cohomology

The way that we going to show that the (ϕ,∇)-modules Hi
rig(X/EK) descend to E†K

is to construct new rigid cohomology groups Hi
rig(X/E†K) taking values in vector

spaces over E†K , these will naturally be endowed with (ϕ,∇)-module structures.
The key result with then be the existence of a base change isomorphism

Hi
rig(X/E†K)⊗E†K EK → Hi

rig(X/EK).

Remember that rigid cohomology is defined as the de Rham cohomology of certain
‘overconvergent’ structure sheaves j†XO]Y [P . The way that we will construct our
new theory over E†K is by interpreting E†K as j†XO]Y [P for a suitable frame (X,Y,P),
then the cohomology groups we seek will be expressed using a version of rigid
cohomology relative to this base frame.
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Recall that E†K is defined to be the set of series
∑
i ait

i such that supi |a|i < ∞
and |ai| ηi → 0 as i → −∞ for some η < 1. More geometrically, these consist of
analytic functions, convergent and bounded on some half open annulus η ≤ |t| < 1.

Thinking about Berthelot’s j†X construction, we want to view these half open
annuli as ‘strict neighbourhoods’ of the ‘non-existent’ boundary of the open unit
disc. So we are looking for a rigid analytic space X such that:

• X looks like the open unit disc but with some extra boundary points;
• strict neighbourhoods of these boundary points correspond to half open

annuli η ≤ |t| < 1;
• functions on these strict neighbourhoods are exactly the bounded functions

on η ≤ |t| < 1.
Define SK = K ⊗W W JtK, the ring of bounded power series, or equivalently the

ring of bounded analytic functions on the open unit disc. Then the space we want
to consider should then be something like Sp(SK), except that this doesn’t make
sense in the world of Tate’s rigid analytic spaces. Instead we move to the world of
adic spaces.

Definition. DbK := Spa(SK ,W JtK), the bounded open unit disc over K.

Then DbK = DK(0, 1−) ∪ {ξ, ξ−} looks like the open unit disc with a couple of
extra points added. ξ is an open point, and its closure is the ‘boundary’ ∂ = {ξ, ξ−}.

If we let Uη denote {t ∈ DK(0, 1−) | |t| ≥ η}, and Uη = Uη ∪ ∂, then the Uη are
a cofinal system of neighbourhoods of ∂ inside DbK , and we have

Γ(Uη,OUη ) = {f ∈ Γ(Uη,OUη ) | f bounded}.

So if we endow W JtK with the p-adic topology, and look at the frame

(X,Y,P) = (Spec (k((t))) ,Spec (kJtK) ,Spf (W JtK))

then PK = DbK and the above considerations show that

Γ(PK , j
†
XOPK ) ∼= E†K .

This therefore motivates the following definition of a frame.

Definition. A frame over VJtK is a triple T = (X,Y,P) where X ↪→ Y is an open
immersion of a k((t)) variety into a proper kJtK-scheme, and Y ↪→ P is a closed
immersion of Y into a smooth, p-adic, formal VJtK-scheme. We say that T is proper
if Y is proper over kJtK, and smooth if P is smooth over VJtK in a neighbourhood
of X.

If (X,Y,P) is a frame, then the generic fibre PK is an adic space, locally of finite
type over DbK , and we have a specialisation map

sp : PK → P.

We may therefore define the tubes

]Y [P:= sp−1(Y )◦, ]X[P= sp−1(X)

and we have j :]X[P→]Y [P. We may therefore define

j†XF := j∗j
−1F

for any sheaf F on ]Y [P.
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Definition. Let X/k((t)) be a variety, and choose a smooth and proper frame
(X,Y,P). Then we define

Hi
rig(X/E†K) = Hi(]Y [P, j

†
XΩ∗]Y [/SK

).

As before, this turns out to be independent of the choice of frame (X,Y,P).
There are natural Frobenius structures and connections on these cohomology groups,
as well as a natural base change map

Hi
rig(X/E†K)⊗E†K EK → Hi

rig(X/EK).

Theorem (L., Pál). This map is an isomorphism.

In the next talk, Dr. Pál will explain the proof of this theorem, as well as
hopefully discussing some nice arithmetic consequences/applications.
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