
FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY

CHRISTOPHER LAZDA

Let C be a projective, non-singular curve defined over Q. Then C(C) is a compact Riemann
surface, topologically classified by its genus g.

(1) If g = 0 then topologically we get the sphere S2.
(2) If g = 1 then we get the torus T.
(3) For larger g, we get a surface that looks like g-holed torus.

Theorem (Faltings). If g ≥ 2 then #C(Q) is finite.

So the topology of C(C) is controlling the arithmetic properties of C.

Question. What happens if we work over fields which don’t embed into C, for example finite
fields Fq?

The genus is simple enough to be captured algebraically, but a study of the ‘topology’ of va-
rieties over Fq can lead to very deep results, for example the Weil conjectures. The motivating
question for these lectures is that of how we might be able to define the fundamental group
algebraically.

1. Fundamental groups and covering spaces
For us, a topological space will be a locally path connected, locally simply connected.

Example. manifolds, CW complexes, X (C) for X an algebraic variety over C.

For a connected, pointed topological space (X , x) recall that we define the fundamental group
π1(X , x) = {

loops based at x
}
/homotopy. A loop is a continuous map γ : [0,1] → X such that

γ(0) = γ(1) = x, and a homotopy from γ0 to γ1 is a continuous family of paths H : [0,1]× [0,1] →
X such that γ0 = H(0,∗) and γ1 = H(1,∗). The fundamental group π1(X , x) is a group under
concatenation of paths.

Note that algebraic varieties (with the Zariski topology) are not locally path connected or
locally simply connected in general, so we will need a different approach to define π1.

Example. How do we calculate π1(S1,1). We use the map p :R→ S1, x 7→ exp(2πix).

Fact. There exists an open cover {Ui} of S1 such that p−1(Ui) ∼= ∐
n∈ZUi, each mapped homeo-

morphically onto Ui by p.

This is the key ingredient in the proof of the following.

Proposition. Let f : Y × [0,1]→ S1 be continuous and f̃0 : Y × {0}→R a lift of f |Y×{0}. The ∃! map
f̃ : Y × [0,1]→R such that f̃ |Y×{0} = f̃0 and f = p f̃ .

Proof. Divide Y × I into small pieces Vα such that f (Vα) ⊂Ui(α). Then we may lift uniquely to
some copy of Ui(α) in p−1(Ui(α)) and glue together to give a map f̃ : Y × [0,1]→R. �

Corollary. (1) For any loop γ : [0,1] → S1 based at 1 there exists a unique path γ̃ : [0,1] → R

lifting γ with γ̃(0)= 0.
(2) For any homotopy H : [0,1]× [0,1] → §1 from γ0 to γ1 there exists a unique homotopy H̃

lifting H from γ̃0 to γ̃1.
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Corollary. The map Z→ π1(S1,1) defined by n 7→ γn := pγ̃n, where γ̃n : [0,1] → R is defined by
γ̃n(t)= nt, is an isomorphism.

Inspired by this example, we make the following definition.
Definition. (1) A map p : Y → X is a covering space if there exists an open cover X =∪iUi

such that p−1(Ui)∼=∐
Ui, each mapped homeomorphically onto Ui by p.

(2) A covering space is universal if Y is simply connected.
Example. (1) R→ S1 is a universal covering space.

(2) S1 → S1 defined by z 7→ zn is a covering space.
(3) R2 → T := R2/Z2 is a universal covering space.
(4) T → T defined by (x, y) 7→ (nx,my) is a covering space.

Exactly the same proof as before gives:
Proposition. Let p : Y → X be a covering space, f : Z × I → X continuous, f̃0 a lift of f |Z×{0}.
Then there exists a unique lfit f̃ of f such that f̃ |Z×{0} = f̃0.

Now fix a universal covering space p : X̃ → X , choose a point x̃ ∈ X̃ and set p(x̃) = x. Let
Aut(X̃ /X ) denote the group of automorphisms of X̃ which preserve p. Given any g ∈ Aut(X̃ /X )
choose a path γ̃g from x̃ to g(x̃), so that γg := pγ̃g is a loop in X based at x. As X̃ is simply
connected, this is well defined up to homotopy, and we get a homomorphism

Aut(X̃ /X )→π1(X , x)

Theorem. This map is an isomorphism.

Example. (1) Aut(R/S1)∼=Z via gn(x)= x+n.
(2) Aut(R2/T)∼=Z2 via gn,m(x, y)= (x+n, y+m).

Example. IF we want something to work for algebraic varieties, we need something more
that the link between universal covering spaces and fundamental groups. For example, if
X =Gm(C)∼=C∗, the universal cover of X is exp(2πi·) :C→C∗ is not an algebraic map. However,
the ‘finite level’ maps C∗ z 7→xn

−→ C∗ are algebraic.
Question. What can we deduce about π1 using only ‘finite level’ covering spaces?

Fix a pointed, connected covering space p : (Y , y) → (X , x). Then π1(X , x) acts on the fibre
p−1(x) via (γ, y′) 7→ γ̃(1) where γ̃ is the unique lift of γ starting at y′. We therefore get a sub-
group H =Stabπ1(X ,x)(y)= {

γ | γ̃(0)= γ̃(1)= y
}
. Conversely, given H ⊂π1(X , x)=Aut(X̃ /X ) we get a

covering space (Y , y)= (X̃ /H, image of x̃).
Theorem. This sets up a bijection{

pointed connected cov. spaces (Y , y)→ (X , x)
}
/'↔ {

subgroups H ⊂π1(X , x)
}
.

Example. (1) The covering space S1 z 7→zn
−→ S1 corresponds to the subgroup nZ⊂Z.

(2) The map T → T defined by (x, y) 7→ (nx,my) is a covering space, and corresponds to the
subgroup nZ×mZ⊂Z2.

Definition. (1) Say that p : (Y , y)→ (X , x) is finite if p−1(x) is finite.
(2) Say that p : (Y , y)→ (X , x) is Galois if Aut(Y /X ) acts transitively on p−1(x).

Proposition. (1) p is finite iff H ⊂π1(X , x) is of finite index.
(2) p is Galois iff H is a normal subgroup of π1(X , x), in this case we have Aut(Y /X ) ∼=

π1(X , x)/H.

In algebraic geometry, it is exactly the finite covering spaces that we expect to see. There-
fore, we expect to be able to see all finite quotients of π1.
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Example. (1) Since every finite index subgroup of Z is nZ for some n ≥ 1, the maps C∗ Z 7→Zn
−→

give us all possible finite covering spaces of C∗, each with automorphism group Z/nZ.
So algebraically, while we can’t see Z, we can see the collection {Z/nZ}.

(2) If we identify T with C/Z2, then there exists a unique projective non-singular curve E/C
(an elliptic curve) such that T ∼= E(C). The maps pn : T → T given by (x, y) 7→ (nx,ny) are
determined by holomorphic (regular) maps pn : E → E. We have Aut(E

pn−→ E)∼= (Z/nZ)2,
so algebraically we can recover the collection {(Z/nZ)2}.

Remark. There exists an algebraic way to ‘bundle together’ the finite quotients {G/N}N of a
given group G to obtain a new group of a particular flavour - a ‘pro-finite’ group. This retains
a lot of information about G, but not all. If we let π̂1(X , x) be this new group, then for algebraic
varieties over k ⊂C we will be able to capture π̂1(X (C), x) algebraically.

2. Local isomorphisms and étale maps
How can we transport the notion of a covering space into algebraic geometry? In other

words when should a map Y → X be considered a covering space? We’ll start with a slightly
weaker notion.
Definition. A map f : Y → X of topological spaces is a local isomorphism if ∀y ∈Y there exist
y ∈V ⊂Y and f (y) ∈U ⊂ X open such that f : V ∼→U.
Example. p :R\{0}→ §1 is a local isomorphism, but is not a covering space.

Now fix an algebraically closed field k, and a morphism of algebraic varieties f : Y → X over
k. Then the above notion of local isomorphism os far too rigid to transport naïvely. If we say
that f is a ‘naïve’ local isomorphism if ∀y ∈ Y there exists y ∈ V ⊂ Y and f (y) ∈U ⊂ X Zariski
opens with f : V ∼→U, then f is in fact a birational map.

Example. The map Gm
z 7→zn
−→ Gm is ‘topologically’ a covering space (i.e. is one over C) but is not

birational.
The problem is that Zariski neighbourhoods are far too ‘large’. The solution is to work with

formal neighbourhoods instead.
Recall that if x ∈ X is a point on an algebraic variety, we define the local ring of X at x

to be OX ,x := limU Γ(U ,OX ), the limit being taken over all Zariski open neighbourhoods of x.
Concretely, elements of OX ,x are represented by pairs (U , f ) where x ∈U and f is a function on
U. There is a canonical ideal mx ⊂OX ,x which consists of those ‘germs’ (U , f ) such that f (x)= 0.
Fact. OX ,x is a Noetherian ring with maximal ideal mx.

We can use mx to define a topology on OX ,x, where a basis for the topology is given by the
‘open sets’ Vf ,n = f +mn

x for f ∈ OX ,x. We can complete OX ,x with respect to this topology, and
define

ÔX ,x = lim←−−n
OX ,x/mn

x

to be this ‘mx-adic’ completion. The intuition is that ÔX ,x captures information about an ‘in-
finitesimally small’ neighbourhood of x.
Proposition. Let X be a non-singular variety of dimension n, and x ∈ X . Then ÔX ,x ∼= k�t1, . . . , tn�
is a power series ring over k.

Thus the differential geometric statement “all points on smooth manifolds have isomorphic
local neighbourhoods" becomes the algebro-geometric statement “all points on non-singular
varieties have isomorphic formal neighbourhoods". This motivates the following.
Definition. A morphism f : Y → X is said to be étale at y ∈ Y (or a local isomorphism) if the
induced map f ∗ : ÔX , f (y) → ÔY ,y of completed local rings is an isomorphism.
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If we want to capture the notion of a covering space, we need to impose an addition condition
to rule out examples like Gm ,→A1.

Definition. A map f : Y → X is said to be finite if for all U ⊂ X Zariski open, Γ( f −1(U),OY ) is a
finitely generated Γ(U ,OX )-module. (When f is a map between projective varieties, this boils
down to simply having finite fibres.)

Then a finite étale map f : Y → X is our sought after algebro-geometric analogue of a cover-
ing space map in topology. For a variety X , then, the “fundamental group" of X is defined to
be the collection of groups {Aut(Y /X )} as Y ranges over all finite étale maps Y → X . As before,
there exists an algebraic way to package these all together into a single group πét

1 (X , x).

Theorem. Let X /C be an algebraic variety. Then every finite covering space of X (C) arises via
a finite étale map of algebraic varieties Y → X . Hence πét

1 (X , x)∼= π̂1(X (C), x).

3. Algebraic curves, ramification and étale covers
Now let us fix an algebraically closed field k, a curve will ben a non-singular variety over k

of dimension 1, not necessarily projective (i.e. we will allow affine curves).

Fact. Let C be a curve, and P ∈ C. Then the local ring OC,P of C at P is a discrete valuation
ring, i.e. a Noetherian ring with a unique non-zero prime ideal.

We call an element tP ∈ OC sucht hat tP ∈ mP \m2
P a local parameter at P. It follows that

mP = (tP ), and we define a discrete valuation vP : k(C)∗ → Z by extending multiplicatively the
map vP : OC,P →Z defined by vP ( f ) :=max

{
n | f ∈mn

P
}
.

Example. (1) Let C =V ( f )⊂A2
k be a plane curve defined by some f (x, y) ∈ k[x, y]. Then the

non-singularity of C is equivalent to the fact that at any P ∈ C either ∂ f
∂x

∣∣∣
P
6= 0 or ∂ f

∂y

∣∣∣
P
6=

0.Write P = (a,b), then ∂ f
∂x

∣∣∣
P
6= 0⇒ (y−b) is a local parameter at P, and ∂ f

∂y

∣∣∣
P
6= 0⇒ (x−a)

is a local parameter at P.
(2) P =λ ∈A1

k = k. Then (x−λ) is a local parameter at P.
(3) Let C = V (y2 − x3 + x) ⊂ A2

k. Then ∂ f
∂x = 1−3x2 and ∂ f

∂y = 2y. Hence if y 6= 0 then x− a is
a local parameter, and y is a local parameter whenever y = 0. Near P = (0,0) we have
y2 = x(x2 −1), and (x2 −1) is non-zero at P, hence invertible there. Therefore vP (x)= 2.

Now let f : C → C′ be a non-constant morphism of curves, P ∈ C and Q = f (P). Then we get
an induced map f ∗ : OC′,Q →OC,P .

Definition. The ramification index of f at P is defined to be eP := vP ( f ∗(tQ)) where tQ is a
local parameter at Q. This is the order of vanishing of f ∗(tQ) at P.

Example. (1) Let C = V ( f ) ⊂ A2
k be a plane curve, P = (a,b). Then ∂ f

∂y

∣∣∣
P
6= 0 ⇒ (x− a) is a

local parameter at P, and hence the projection map f : C →A1
k defined by (x, y) 7→ x has

eP = 1, since f ∗(x−a)= x−a.
(2) Let C = V (y2 − x3 + x) ⊂A2

k, P = (0,0) and f : C →A1
k the projection (x, y) 7→ x. Then y is a

local parameter ar p, x is a local parameter at Q = f (P) and yv(x)= 2. Hence eP = 2. Note
that for Q 6= 0,1,−1 there are exactly 2 points P,P ′ mapping to Q each with ramification
index 1, but for Q = 0,1,−1 there is only 1, with ramification index 2.

(3) Consider the map f : P1
k → P1

k defined by [X : Y ] 7→ [X3(X −Y )2 : Y 5]. Let P = [0 : 1],
P ′ = [1,1] so that f (P)= f (P ′)=Q = [0 : 1]. Restricting f toA1

k gives themap x 7→ x3(x−1)2,
so eP = 3, eP ′ = 2. Notice that eP + eP ′ = 5.

(4) C = A1
k, char(k) = p, and F : A1

k → A1
k the Frobenius map x 7→ xp. Let P = λ ∈ A1

k, Q =
F(P)=λp. Then tQ = x−λp and F∗(tQ)= xp −λp = (xλ)p. Hence eP = p for all P.
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Say a non-constant map f : C → C′ of curves has degree d = [k(C) : k(C′)].
Theorem. Let f : C → C′ be a finite morphism of curves, and Q ∈ D. Then ∑

P∈ f −1(Q) eP = deg( f ).

To see the relation between ramification and the notion of an étale morphism, suppose that
we have P ∈ C and tP a local parameter at P. Then we can identify ÔC,P with the power series
ring k�t� with the variable tP . SO if f : C → C′ is unramified at P, Q = f (P), then vP ( f ∗(tQ)) =
1 ⇒ f ∗(tQ) is a local parameter for C at P. Hence ÔC,P ∼= k� f ∗(tQ)� and f ∗ : ÔC′,Q → ÔC,P is an
isomorphism, i.e. f is étale at P.

Conversely, if eP > 1 then f ∗(tQ) = te
P u for some e ≥ 1 and u ∈ O∗

C,P and so tP is not in the
image of f ∗ : ÔC′,Q → ÔC,P . Hence f is not étale at P.
Proposition. f : C → C′ a non-constant morphism of curves. Then f is étale at P ∈ C ⇔ it is
unramified at P.
Example. (1) A polynomial f (x) ∈ k[x] defines a map f : A1

k → A1. If λ ∈ A1
k then x− f (λ)

is a local parameter at f (λ), and f ∗(x− f (λ)) = f (x)− f (λ). Hence f is unramified at
λ⇔ f (x)− f (λ) has a simply root at λ⇔ f ′(λ) 6= 0.

(2) Suppose char(k)= 0 and let f :Gm →Gm be defined by z 7→ f (z)= zn. Since f ′(z)= nzn−1 6=
0 for any z ∈ Gm, it follows that f is everywhere étale. It is much harder to see that f
is finite and moreover every finite étale map X → Gm is of this form. Hence πét

1 (Gm,1)
is determined by the collection of finite groups {Z/nZ}n≥1.

(3) Suppose char(k)= p and let f :A1
k →A1

k be defined by f (x)= xp−x. Then f ′(x)=−1 6= 0, so
f is everywhere étale. The affine line in characteristic p has lots of finite étale covers!

4. Projective, non-singular curves
Fact. Any non-constant morphism C → C′ of projective non-singular curves is finite.

Why? Because for projective varieties finite⇔ each preimage f −1(Q) is finite. But for curves,
preimages are either finite or the whole curve. Hence in this case finite étale ⇔ everywhere
unramified.
Example. Let f :P1

k →P1
k extend A1

k →A1
k defined by p(x) ∈ k[x], so f (∞)−∞ and a local param-

eter at ∞ is u := 1/x. Then near ∞, f is defined by un

an+an−1un−1+...+a0un where p = anxn + . . .+a0.
Hence f is ramified at ∞, with e∞ = deg( f ). We can beef up this example to show that even in
positive characteristic, there don’t exist any non-trivial finite étale maps P1

k →P1
k.

A divisor on a projective curve C is a finite formal linear combination D =∑
P nP [P] of points

on C. We define the degree of a divisor to be ∑
P nP . Given a divisor D we define

L (D)= { f ∈ k(C)|vP ( f )≥−nP ∀P ∈ C}

to be the k-vector space of functions only having poles at points of D, with prescribed order.
We also define `(D)= dimk L (D).
Example. (1) Let C = P1

k, D = [0]. Then f = p(x)/q(x) ∈ L (D) iff f is regular away from 0,
and v0( f ) ≥ −1. If f is regular away from 0,∞ then we must have q(x) = xn for some
n ∈N, and if f is regular at ∞ we must have deg(p) ≤ deg(q). Moreover, if f has a pole
of order ≤ 1 at 0 implies that n ≤ 1. Hence f = λ+µ(1/x) for some λ,µ ∈ k and therefore
`(D)= 2.

(2) Let E = V (Y 2Z − X3 + X Z2) ⊂ P2
k, P = [0 : 1 : 0] and D = 2[P]. Then k(E) ∼= k(x)[y]

y2−x3+x where
y = Y /Z and x = X /Z. Hence any f ∈ k(E) is uniquely of the form p(x)+ q(x)y with p, q ∈
k(x). Then f being regular on the affine patch defined by Z = 1 is equivalent to both p
and q actually being polynomials. Now let u = X /Y and v = Z/Y , so P corresponds to
the point (u,v)= (0,0) and we have x = u/v, y= 1/v. Can check that vP (x)= 2 and vP (y)= 3
and hence f = p(x)+ q(x)y ∈L (D)⇔ f =λ+µx for some λ,µ ∈ k. Therefore `(D)= 2.
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Theorem. Let C be a non-singular, projective curve. Then ∃! integer g ≥ 0, called the genus of
C, such that `(D)≥ deg(D)+1− g for all divisors D.

Example. • The only example for g = 0 in P1
k. In the above example, we had deg(D) = 1,

`(D)= 2.
• Every projective curve of genus g = 1 is isomorphic to V (Y 2Z − X (X −Z)(X −λZ)) ⊂ P2

k
for some λ ∈ k \{0,1}. These are called elliptic curves, and are the algebraic analogues
of complex tori C/Λ, with Λ∼=Z⊕Z. Above we had deg(D)= 2, `(D)= 2.

• Curve of genus g ≥ 2 are harder to classify.

We have some control over how the genus grows under a finite map of curves, given by
the Riemann-Hurwitz formula. Recall that a non-constant morphism of curves f : C → C′ is
separable if the corresponding extension k(C′)⊂ k(C) of function fields is.

Theorem. Let f : C → C′ be a finite, separable morphism of projective curves of degree n. Then
eP = 1 for all but finitely many P, and if char(k) - eP for all P, then

2g(C)−2= n(2g(C′)−2)+ ∑
P∈C

(eP −1).

Example. (1) Let f : C → P1 be a finite étale cover of degree n. Then eP = 1 for all P ∈ C,
and hence 2g(C)−2 =−2n. The only way this can happen is if n = 1 and g(C) = 0, i,e, f
is an isomorphism. Hence P1

k has no non-trivial finite étale covers, and πét
1 (P1

k)= {1}.
(2) Let f : C → E be a finite étale cover and suppose g(E) = 1, i.e. E is an elliptic curve.

Then 2g(C)−2 = 0 ⇒ g(C) = 1. Hence C is also an elliptic curve. This is an algebraic
analogue of the fact that every finite covering space of the torus R2/Z2 is another torus.

(3) Let E =V (Y 2Z−X3+X Z2)⊂P2
k. Let f : E →P1

k be defined by [X : Y : Z] 7→ [X : Z]. On the
affine patch Z = 1 we have ramification at (x, y)= (0,0), (1,0) and (−1,0) of degree 2, and
on the affine patch Y = 1 we have additional ramification at (u,v)= (0,0) of degree 2. So
we have 2g(E)−2= 0, 2g(P1

k)−2=−2, and ∑
P∈E(eP −1)= 4. Hence this map is of degree

2.

5. Higher dimensional varieties
We could understand finite étale covers of curves essentially for two reasons:
(1) Every non-constant morphism of curves was finite.
(2) Being étale is equivalent to being everywhere unramified, which in principle (and often

in practise) can be checked.
What happens in higher dimensions, for example for projective algebraic surfaces S? Now

a morphism S → S′ might not be finite.

Example. S = V (y2 − x(x−w)(x− z)) ⊂ P3
k, then ϕ : S 99K P2

k defined by [x−w : y : z−w] contracts
the line [s : t : s : s] to the point [0 : 1 : 0].

Therefore finiteness really is a condition that we need to check. More seriously, if P ∈ S,
then the local ring OS,P of S at P is no longer a DVR, so ‘ramification theory’ for points no
longer makes sense.

Definition. Let C ⊂ S be a curve inside S (irreducible, but not necessarily non-singular). Then
we define the local ring of S at C to be

OS,C := lim
U∩C 6=;

Γ(U ,OS),

elements of OS,C are therefore represented by pairs (U , f ) where U ⊂ S is open, U ∩C 6= ; and
f is a regular function on U.
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It turns out that when S is non-singular, and C ⊂ S is a curve, then OS,C is a discrete
valuation ring. Hence we obtain a theory of ramification along curves inside surfaces, rather
than at points. The point is that if f : S → S′ is finite, and C ⊂ S is curve, then C′ := f (C) ⊂ S
is also a curve. We therefore get a map f ∗ : OS′,C′ → OS,C and can define eC := vC( f ∗tC′ ) where
tC′ ∈OS′,C′ is a local parameter along C, i.e. generates the maximal ideal of OS′,C′ . We say that
f is unramified along C if eC = 1.
Theorem (Very deep!). Let f : S → S′ be a finite morphism of projective, non-singular algebraic
surfaces over k. Then f is étale iff f is unramified along all curves C ⊂ S.
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