
Weil conjectures and Betti numbers of moduli spaces

Christopher Lazda

1 Lecture 1

Let’s start with an object you’ll hopefully all be reasonably familiar with.

ζ(s)= ∑
n≥1

n−s, s ∈C, Re(s)> 1.

Conjecture (RH). If ζ(s)= 0 and 0<Re(s)< 1, then Re(s)= 1
2 .

This has an Euler product expansion

ζ(s)= ∏
p prime

(1− p−s)−1

and we note that
{prime numbers}↔ {closed points of Spec(Z)}

so we can write
ζ(s)= ∏

x∈|Spec(Z)|
(1−#k(x)−s)−1

where k(x) is the residue field at x.

Definition. For any scheme X of finite type over Z, (i.e. any “arithmetic scheme") we define

ζX (s)= ∏
x∈|X |

(1−#k(x)−s)−1

the product being taken over all closed points, and k(x) denotes the residue field.

Exercise. Show that in this situation k(x) is always a finite field, so the definition makes
sense.

Example. Suppose that K /Q is finite, with ring of integers OK . Then taking X = Spec(OK )
we get

ζSpec(OK )(s)= ∏
p⊂OK

(1−Np−s)−1

which is the usual Dedekind zeta function ζK (s) of K . There is also a Riemann hypothesis
for ζK , again stating that zeroes of ζK with 0<Re(s)< 1 satisfy Re(s)= 1

2 .

Example. X =A1
Fp

=Spec
(
FpJtK

)
.{

closed points of A1
Fp

}
↔ {

irreducible polynomials over Fp
}

⇒ ζA1
Fp

(s)= ∏
d≥1

(1− p−ds)−Nd
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where Nd = # irreducible polynomials of degree d. Let’s try the following trick: set u = p−s

and compute uZ′(u)/Z(u) where Z(u)=∏
d(1−ud)−Nd . We get

u
d

du
log Z(u)= ∑

d≥1

dNdud

1−ud

= ∑
d,m≥1

dNdumd

= ∑
n≥1

∑
d|n

dNdun

= ∑
n≥1

pnun

since (recall from Galois theory)
∑

d|n dNd = pn. Note that pn = #A1
Fp

(Fpn ) and that we also
have

d
du

log Z(u)= p
1− pu

⇒ Z(u)= 1
1− pu

⇒ ζA1
Fp

(s)= 1
1− p1−s .

This trivially satisfies the ‘Riemann Hypothesis’, since it has no zeroes.

Lemma. Let q be a prime power, and X a scheme of finite type over Fq (therefore X is a
scheme of finite type over Z and has a zeta function). Write Bn = #X (Fqn ). Then we have

ζX (s)= exp

( ∑
n≥1

Bn

n
un

)

where u = q−s

Proof. Let Nd be the number of closed points of X of degree d over Fq, i.e. such that the
residue field k(x) is Fqd . Then we have the formula∑

d|n
dNd = Bn

since every closed point of degree d gives rise to exactly d points in X (Fqn ) for d | n. Then
exactly as in the calculation we’ve just done we can show

ζX (s)= ∏
d≥1

(1−ud)−Nd

where u = q−s and that if we let Z(u) =∏
d≥1(1−ud)−Nd then we have an identity of power

series
u

d
du

log Z(u)= ∑
n≥1

Bnun

and the lemma follows.
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Exercise. By showing that when X /Fq has dimension d, #X (Fqn ) = O(qnd) as d →∞, show
that ζX (s) converges for Re(s)> dim X .

So zeta function of schemes over finite fields ‘encode’ the numbers of points over all finite
extension fields, in that if you know one, you know the other. It’s in practise often easier to
work with the power series

Z(X ,u) := exp

( ∑
n≥1

#X (Fqn )
n

un

)
∈QJuK.

Note that while the ζ-function ζX (s) doesn’t ‘see’ the base field Fq, the Z-function Z(X ,u)
does, since we have set u = q−s.

1.1 Abelian Varieties

Now let’s take A/Fq an abelian variety of dimension g, that is a smooth, projective, (geo-
metrically) connected group variety over Fq. We’ll let A = A ×Fq Fq, and F : A → A be the
q-power linear Frobenius morphism, that is if we have some projective embedding

A →PN
Fq

then in homogeneous co-ordinates we have F(x0 : . . . : xN )= (xq
0 : . . . : xq

N ).
Therefore A(Fqn ) is exactly the (closed) fixed points of Fn, or in other words, if we con-

sider the isogeny
Φn = id−Fn : A → A

then A(Fqn )= ker(Φn)(Fq). Since id−Fn separable, we therefore have

#A(Fqn )= deg(id−Fn).

To calculate this, we’ll introduce the Tate module of A. Let ` - q be a prime, so that A[`n] is
an étale group scheme over Fq of order `n2g, and

A[`n](Fq)∼= (Z/`nZ)2g

(non-canonically). The multiplication by ` induces transition maps

[`] : A[`n](Fq)→ A[`n−1](Fq)

so we can form the inverse limit

T`(A) := lim←−−n
A[`n](Fq),

this is a free Z`-module of rank 2g, and every endomorphism ψ ∈ End(A) of A induces an
endomorphism ψ` of T`(A), and hence of V`(A) := T`(A)⊗Z` Q`.

Theorem (See Mumford’s “Abelian Varieties”). For every endomorphism ψ ∈ End(A) there
exists a unique polynomial Pψ(t) ∈Z[t] (the characteristic polynomial of ψ) such that for all
integers n we have

Pψ(n)= deg([n]−ψ).
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Moreover for any ` - q we have that

Pψ(t)= det(t−ψ`)

is the characteristic polynomial of ψ` acting on V`(A).

We’re now going to take ψ= F, the Frobenius endomorphism, this tells us that if we let

PF (t)=
2g∏
i=1

(t−ω j)

be the characteristic polynomial of F acting on V`(A), and n ≥ 1, then

PFn (t)=
2g∏
i=1

(t−ωn
j )

is the characteristic polynomial of Fn acting on V`(A) and hence we can count the number
of Fqn -rational points on A as

#A(Fqn )= deg(id−Fn)= PFn (1)=
2g∏
i=1

(1−ωn
j )

= 1−∑
j1

ωn
j1
+ ∑

j1, j2

ωn
j1
ωn

j2
− . . .+ωn

j1
. . .ωn

j2g
.

Actually, some simple linear algebra tells us that∑
j1,..., jk

ωn
j1

. . .ωn
jk

is exactly the trace of Fn acting on ΛkV`(A), so we can write

#A(Fqn )=
2g∑

k=0
(−1)kTr(Fn |ΛkV`(A)).

Substituting this in to the expression for Z(A,u) gives us

Z(A,u)=
2g∏

k=0
exp

(
− ∑

n≥1
Tr(Fn |ΛkV`(A)

un

n

)(−1)k+1

Lemma. Let V be a finite dimensional vector space over a field K, and ϕ : V → V and
endomorphism. Then

det
(
id−ϕu

)= exp

(
− ∑

n≥1
Tr(ϕn)

un

n

)
.

Proof. Exercise (hint: express both sides in terms of the eigenvalues of ϕ).

So we can therefore write the Z-function of A as

Z(A,u)=
2g∏

k=0
det(id−Fu |ΛkV`(A))(−1)k+1

= P1(t) . . .P2g−1(u)
P0(u) . . .P2g(u)
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where
Pk(t)= det(id−Fu |ΛkV`(A)) ∈Z[u]

can be written as
∏

i(1−αiku) with αik running over things of the form ω j1 . . .ω jk .

Theorem (Riemann Hypothesis). Each ω j has norm q1/2.

Exercise. What does this tell us about the zeroes of ζA(s)= Z(A, q−s)?

Exercise. We expect a functional equation

Z(A, (qgu)−1)= Z(A,u)

can you interpret this in terms of a statement about the ω j?

2 Lectures 2 & 3

James told you about the Weil conjectures, and said that a ‘good’ cohomology theory for
varieties over Fq would imply them more or less formally. Let’s look at that in a bit more
detail.

Weil cohomology theories

Definition. Fix an algebraically closed field k and let Vk be the category of smooth, pro-
jective, connected varieties over k, that is non-singular, connected varieties cut out by ho-
mogenous equations in some PN (k). Let K be a field of characteristic 0. A K-valued Weil
cohomology theory is a contravariant functor

H∗(−) : Vk → {graded vector spaces over K}

X 7→ H∗(X )

f : X →Y 7→ f ∗ : H∗(Y )→ H∗(X )

together with a graded commutative product

∪ : H i(X )⊗K H j(X )→ H i+ j(X )

a trace morphism
Tr : H2dim X (X )→ K

and a cycle class map
cl : Cr(X )→ H2r(X )

such that:

i) H i(X ) is finite dimensional, and zero outside the range [0,2dim X ].

ii) (Künneth formula) if we let p1, p2 : X ×Y → X ,Y denote the two projections, then the
natural map

H∗(X )⊗K H∗(Y )→ H∗(X ×Y )

α⊗β 7→α�β := p∗
1(α)∪ p∗

2(β) :

is an isomorphism.
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iii) (Poincaré duality) For X of dimension n, cup product follows by the trace map induces
a perfect pairing

H i(X )⊗K H2n−i(X )→ H2n(X )∼= K

iv) For X , Y of dimension n,m respectively, and α ∈ H2n(X ), β ∈ H2m(Y ) we have

TrX×Y (α�β)=TrX (α)TrY (β)

v) Suppose that Z ⊂ X and W ⊂Y are irreducible closed subvarieties. Then

cl(Z×W)= cl(Z)�cl(W)

vi) Let f : X →Y be a morphism in Vk, and Z ⊂ X irreducible. Let m = deg(Z/ f (Z)). Then
for all α ∈ H2dim Z(Y ) we have

TrX (cl(Z)∪ f ∗(α))= mTrY (cl( f (Z))∪α)

vii) f : X →Y and Z ⊂ X as above. Then under suitable conditions on f , Z we have

f ∗cl(Z)= cl( f −1(Z))

viii) If X = x is a point, then Trx(cl(x))= 1.

Remark. Actually one can show from the axioms that the cycle class map induces a ring
homomorphism

A∗(X )→ H∗(X )

where A∗(X ) is cycles module rational equivalence.

Example. i) The prototypical example is for k = C, K = Q and H i(X ) is just the usual
singular cohomology of algebraic varieties over C (with the topology induced by the
natural topology on An(C)∼=Cn).

ii) For abelian varieties and k arbitrary, then V`(A) is a way to construct a Q`-valued
version of H1(A), for ` 6= char(k), we therefore take H1(A) := V`(A)∨. Any abelian
variety over C is ∼= Cg/L for some lattice L ∼= Z2g and topologically we have H i(A) ∼=
ΛiH1(A). For general A/k we therefore set H i(A) = ΛiV`(A)∨. Then our expression
for the zeta function of A defined over Fq last week looked like

Z(A,u)=
2g∏

k=0
det(1−Fu | Hk(A))(−1)k+1

and ‘Poincaré duality’ allows us to write this as

Z(A,u)=
2g∏

k=0
det(1−Fu | Hk(A))(−1)k+1

.

Actually, A 7→ H i(A) can be extended to a Weil cohomology theory with values in Q`

for any algebraically closed field of characteristic 6= `. This involves a huge amount of
hard work!
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The basic approach is to completely redefine what constitutes a topology - the idea is
that for the purposes of sheaf theory it is the ‘category’ of open sets of a topological
space that matter more than the actual space itself. The main object of study in this
approach is then the ‘étale topology for schemes’ where an ‘open set’ of some variety
X is a morphism U → X which locally looks like an unramified cover. We can do sheaf
theory for this topology, and hence define the ‘étale cohomology H i

ét(X , A) of varieties’
which for finite coefficients like Z/nZ behaves very much like the singular cohomology
of complex manifolds. Actually for complex varieties, it gives exactly the same answer
as singular cohomology.

To get well behaved groups over Q`, we take

H i
ét(X ,Z`)= lim←−−n

H i
ét(X ,Z/`n)

H i
ét(X ,Q`)= H i

ét(X ,Z`)⊗Z` Q`
giving a characteristic zero theory.

iii) Suppose that k has characteristic zero, and let X be a smooth affine variety over k, so
that X is the zero set inside An(k) of some polynomials f1, . . . , fr. Let A =O (X ) be the
ring of functions on X , that is k[x1, . . . , xn]/( f1, . . . , fr).

Define the module of differentials

Ω1
A = Adx1 ⊕ . . .⊕ Adxn

(d f1, . . . ,d fr)

where for f some polynomial we set d f =∑
i

d f
dxi

dxi. This is an ‘algebraic’ construction
of differential forms on X , and is a finitely generated A-module by construction. There
is a natural map d : A →Ω1

A given again by d f =∑
i

d f
dxi

dxi. Let Ωp
A =ΛpOmega1

A be
the pth exterior power, then the Leibniz rule

d( fω1 ∧ . . .∧ωp)= d f ∧ω1 ∧ . . .∧ωp, f ∈ A,ωi ∈Ω1
A

gives a map
Ω

p
A →Ω

p+1
A

and we get a complex
0→ A →Ω1

A → . . . .

We define the de Rham cohomology

H i
dR(X )= H i(Ω∗

A).

Example. Let X = A1(k), so that A = k[x]. Then Ω1
A = k[x]dx and Ωi

A = 0 for i > 0.
Then the cohomology of the complex

0→ k[x]
f 7→ d f

dx dx→ k[x]dx → 0

is just k in degree 0, so that

H0
dR(A1(k))= k, H i

dR(A1(k))= 0 for i > 0
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Example. Now suppose that X = V (xy−1) ⊂A2(k) ∼=A1(k) \ {0}, so that A = k[x, x−1].
Then we have Ω1

A = k[x, x−1]dx and the de Rham cohomology of X is the cohomology
of

0→ k[x, x−1]→ k[x, x−1]dx → 0.

Again we have H0
dR(X )= k, but we can’t integrate x−1 algebraically, so H1

dR(X ) is non-
zero. In fact, you can check that H1

dR(X ) is one dimensional, generated by the class of
x−1.

To extend this to projective varieties, we need to glue. I’ll show you how to do this for
P1. First of all we write P1(k) =U0 ∪U1, where Ui is a copy of A1(k) with co-ordinate
xi, say. Let A i =O (Ui) and B =O (U0 ∩U1), so that there are ‘restriction maps’

Ω∗
A i

→Ω∗
B.

Then the general formula for calculating the de Rham cohomology of P1(k) is as the
cohomology of the total complex

Ω∗
A0

⊕Ω∗
A1

→Ω∗
B

So the de Rham cohomology of P1(k) is the cohomology of

0→ k[x0]⊕k[x1]→ k[x0]dx0 ⊕k[x1]dx1 ⊕k[x0, x−1
0 ]→ k[x0, x−1

0 ]dx0 → 0,

recall that on U0 ∩U1 we have x1 = x−1
0 so the map k[x1]dx1 → k[x0, x−1

0 ]dx0 sends x1
to x−1

0 and dx1 to −x−2
0 dx0. So we can calculate this as

H0
dR(P1(k))= k, H1

dR(P1(k))= 0, H2(P1(k))= k.

iv) Now suppose that k = Fq. Then the approach we’re going to try to take to give a Weil
cohomology theory for varieties over k is to ‘lift’ them to characteristic 0 and then use
de Rham cohomology. Actually, we’re going to work with finitely generated algebras
A ∼= k[x1, . . . , xn]/( f1, . . . , fr) over Fq such that the associated affine variety over Fq is
non-singular to get a theory for smooth affine varieties defined over Fq, we can then
‘glue’ to get a theory for projective varieties.

Weil cohomologies ⇒ Weil conjectures

Theorem. Suppose that a Weil cohomology theory exists for k = Fq. Then the rationality
and functional equation part of the Weil conjectures are true.

The difficult part of this is in proving the following version of the Lefschetz trace for-
mula.

Proposition. Let H∗(−) be a Weil cohomology theory over some algebraically closed field k,
and f : X → X an endomorphism of some X ∈ Vk. Let ∆,Γ f ⊂ X × X be the diagonal and the
graph of f respectively. Then

∆ ·Γ f =
∑

i
(−1)iTr( f | H i(X )),

and if Γ f and ∆ intersect properly (‘ f has isolated fixed points’) then the LHS is just the
number of fixed points of f .
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Remark. This is why we need K of characteristic 0 - if K had characteristic p, we would
only be able to count fixed points mod p.

Proof. Let n = dim X and fix a basis ei
j of H i(X ), with dual basis f 2n−i

j of H2n−i(X ), that is

TrX (ei
j ∪ f 2n−i

k )= δ jk.

The class of Γ f lies in H2n(X × X ) = ⊕2n
i=0 H i(X )⊗K H2n−i(X ) and it can be shown that we

can calculate this class as

cl(Γ f )=
2n∑
i=0

∑
j

f ∗(ei
j)� f 2n−i

j .

We can therefore similarly (using graded commutativity) write

cl(∆)=
2n∑
i=0

(−1)i ∑
j

f 2n−i
j � ei

j.

Now, for any point x ∈ X we have TrX (cl(x)) = Trx(cl(x)) = 1 from the axioms for a Weil
cohomology theory, and hence the fact that A∗(X )→ H∗(X ) is a ring homomorphism implies
that for any two subvarieties Z,W ⊂ X of complementary codimension that

Z ·W =TrX (cl(Z)∪cl(W))

and hence applying this to ∆,Γ f ⊂ X × X we get

∆ ·Γ f =
2n∑
i=0

(−1)iTrX×X

(∑
j,k

( f ∗(ei
j)∪ f 2n−i

k )� ( f 2n−i
j ∪ ei

k)

)

=
2n∑
i=0

(−1)i ∑
j,k

TrX ( f ∗(ei
j)∪ f 2n−i

k )δ jk

=
2n∑
i=0

(−1)i ∑
j

TrX ( f ∗(ei
j)∪ f 2n−i

j )

=
2n∑
i=0

(−1)iTr( f | H i(X ))

where the last equality follows from a simple statement in linear algebra.

So (modulo showing that Frobenius ‘has isolated fixed points’) this proposition implies
that

X (Fqn )=∑
i

(−1)iTr(Fn | H i(X ))

and exactly the same manipulation that we did last time then shows that

Z(X ,u)=∏
i

det(1−Fu | H i(X ))(−1)i+1
.

Before we prove the functional equation, we need a linear algebra lemma.
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Lemma. Let V ×W → K be a perfect pairing of K-vector spaces of dimension r, and ψ,φ,λ
endomorphisms of V ,W ,K respectively compatible with the pairing (note that λ ∈ K). Then

det(1−ψu|W)= (−λu)r

det(φ|V )
det(1−φ(λu)−1|V )

and
det(ψ |W)=λr det(φ|V )−1.

Proof. Exercise.

Corollary. Suppose that a Weil cohomology theory exists over Fq. Then the Z-function of
any smooth and projective variety X defined over Fq satisfies a functional equation.

Proof. This more or less follows immediately from Poincaré duality. Let X be of dimension
n. Since Frobenius is a finite morphism of degree qn, it follows from the axioms that it
acts as multiplication by qn on H2n(X )∼= K . Now the previous lemma applied to the perfect
pairing

H i(X )×H2n−i(X )→ H2n(X )∼= K

says that

det(1−Fu | H2n−i(X ))= (−qnu)bi

det(F | H i(X ))
det(1−F(qnu)−1|H i(X ))

and

det(F | H2n−i(X ))= qnbi

det(F | H i(X ))

where bi = dimK H i(X ). Now set ε=∑
i(−1)ibi, then substituting into the expression

Z(X ,u)=∏
i

det(1−Fu | H i(X ))(−1)i+1

for the Z-function gives

Z(X , (qnu)−1)=∏
i

det(1−Fu | H2n−i(X ))(−1)i+1 (−qnu)(−1)i bi

det(F∗ | H i(X ))(−1)i

= Z(X ,u)(−qnu)ε∏
i det(F | H i(X ))(−1)i

and since det(F | H i(X ))det(F | H2n−i(X ))= qnbi we have∏
i

det(F | H i(X ))(−1)i =±qnε/2

and hence
Z(X , (qnu)−1)=±qnε/2uεZ(X ,u)

as required.
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In this course we’re not actually going to prove that a Weil cohomology exists. Instead
we’re going to construct something that behaves very much like a Weil cohomology theory
and prove the Leftschetz trace formula directly. In fact, our starting point is actually going
to be a theory for smooth affine varieties over Fq, i.e. closed subsets of An(Fq) defined by
polynomials with coefficients in Fq, rather than smooth projective varieties over Fq.

The main theme of the number theory part of the course is that the Weil conjectures
give a way of passing back and forth between topological and arithmetic information. For
example, knowledge of the topological behaviour of Riemann surfaces tells us the following
estimate for the number of points on a curve of genus g over a finite field.

Proposition. Let C/Fq be a curve of genus g defined over a finite field Fq. Then we have∣∣#C(Fqn )− qn −1
∣∣≤ 2gqn/2.

Proof. We can write the Z-function of C as

Z(C,u)= P(u)
(1−u)(1− qu)

where P(u) is a polynomial of degree 2g, and P(u)=∏2g
i=1(1−ωiu) with |ωi| = q1/2. Therefore

we have
#C(Fqn )= qn +1−∑

i
ωn

i

and since |ωi| ≤ q1/2 we have
∣∣∑iω

n
i

∣∣≤ 2gqn/2 by the triangle inequality.

We’ll be concerned with going in the other direction - by counting the number of vector
bundles on a curve over a finite field, we can calculate the Betti numbers of the moduli
space of stable bundles.

“Standard Conjectures”

Actually, we can add in some extra axioms for Weil cohomology theories that would (amongst
other things) imply the Riemann hypothesis. These are known as the standard conjectures.
To explain them, we note that the Künneth formula together with Poincaré duality give an
isomorphism

H∗(X ×Y )∼=Hom(H∗(X ),H∗(Y ))

of graded K-algebras. We can therefore talk of a morphism H∗(X )→ H∗(Y ) being algebraic,
that is induced by an algebraic cycle on X ×Y

• (Lefschetz) Let W be a hyperplane section in X , for some projective embedding X ,→
PN , and let L : H i(X )→ H i+2(X ) denote cup product with cl(W) ∈ H2(X ). Then

Ln−i : H i(X ) ∼→ H2n−i(X ).

is an isomorphism. Moreover, if we define operatorsΛ : H i(X )→ H i−2(X ) as the ‘trans-
port’ of L via these isomorphisms, then Λ : H∗(X )→ H∗(X ) is algebraic.
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• (Künneth) Projection followed by inclusion

H∗(X )→ H i(X )→ H∗(X )

is induced by some algebraic cycle πi on X × X .

• (Hom vs. Num) A cycle Z ∈ A∗(X ) is numerically equivalent to zero iff cl(Z)= 0.

• Another one that’s too complicated to explain.

These are not known for any Weil cohomology theory! The known proofs of the Riemann
Hypothesis come via the ‘yoga of weights’.

Outline for the rest of the course

• 27/11 Thursday 9-11, South Wing Garwood LT. James Newton will talk about Monsky-
Washnitzer cohomology, which will be the Weil cohomology theory we’ll try to con-
struct over Fq by lifting to characteristic zero.

• 1/12 Monday 10-11 (usual place) and 4/12 Thursday 9:30-10:30 (Imperial seminar
Room). Luis Garcia will talk about proving the Lefschetz trace formula for MW coho-
mology.

• 8/12 Monday 10-12 (usual place) Olivier Taïbi will talk about Tamagawa numbers for
algebraic groups, and Siegel’s formula for counting vector bundles over finite fields.

• 11/12 Thursday 9:30-10:30 (Imperial seminar room) Try to put things together to com-
pute some Betti number of the moduli space of bundles.

3 Lecture 10

References:

• Attiyah-Bott, Yang-Mills equations over Riemann surfaces

• Harder-Narasimhan, On the cohomology groups of moduli spaces.....

• Desale-Ramanan, Poincaré polynomials of the variety of stable bundles

Let’s start with a quick calculation. Suppose X /Fq is smooth and projective, of dimension
n. Then by the Weil conjectures we can write

Z(X ,u)= P1(u) . . .P2n−1(u)
P0(u) . . .P2n(u)

where Pi(u) = ∏bi
j=1(1−αi ju), bi is the ith Betti number of X , and each αi j has ‘weight’ i.

This is equivalent to being able to write

#X (Fqm )=∑
i

(−1)i ∑
j
αm

i j
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for all m ≥ 1. Now, note that if we consider this as a formal expression in the αi j, and
substitute in ti for (−1)iαi j in the formula for #X (Fq) we get∑

i
bi ti

that is the Poincaré polynomial for X .

Example. X = Pn. Then #X (Fq) = 1+ q+ . . .+ qn and qi has weight 2i, so we substitute in
qi = t2i to get 1+ t2 + . . .+ t2n, the Poincaré polynomial for Pn.

We want to do this for the moduli space of stable bundles - count the number of points,
and then make a substitution to get the Poincaré polynomial.

So let Y /Fq be a smooth, projective curve of genus g, and fix a line bundle L on Y of
degree (Chern class) k. Then for n ≥ 1 coprime to both q and k we have the moduli space

N0(n,L)

of stable, rank n vector bundles on Y with determinant L. This is the ‘reduction mod p’ of
the moduli space you saw in the geometry part of the course, so its Betti numbers are the
same as the Betti numbers of the object over C. After enlarging Fq, we may assume that
N0(n,L) is actually defined over Fq, and we want to count points, that is calculate

#N0(n,L)(Fq)= #{deg n stable bundles on Y w/ det L}/∼= .

The main ingredient we’re going to use to do this is the following.

Theorem (Siegel’s formula).

∑
E

1
#Aut(E)

= q(n2−1)(g−1)

q−1
ζY (2) . . .ζY (n)

where the sum is over all isomorphism classes of rank n bundles on Y with determinant L
(not necessarily stable). We also do not assume that n is coprime to the degree of L.

To use this formula, define for any n′,L′

β(n′,L′)= ∑
E semi-stable

1
#Aut(E)

.

the sum being over semi-stable E of rank n′ and determinant L′. Since (n,k) = 1, a vector
bundle of rank n and determinant L is stable iff it is semi-stable, and stable vector bundles
have #Aut(E)= q−1, we get

#N0(n,L)(Fq)=β(n,L)(q−1)

so to compute the former it suffices to compute β(n,L). To do this, we use the Harder-
Narasimhan filtration, and the type of the vector bundle.

13



Recap on HN-filtrations and the inductive formula for β(n,L)

Recall that every vector bundle E on Y has a canonical filtration

0= F0 ( F1 ( . . .( Fr = E

such that each D i := Fi/Fi−1 is semi-stable and we have

µ(D1)>µ(D2)> . . .>µ(Dr)

(when E is semi-stable we have r = 1). We let ni be the rank of each D i, L i its determinant,
and ki the degree of L i. We refer to the collection of pairs (ni,ki) as the type of E, note that
if E has rank n and determinant L of degree k then we have

∑
i ki = k and

∑
i ni = n. We

then group the terms in Siegel’s formula according to their type:

∑
E

1
#Aut(E)

= ∑
{(ni ,ki)}i

∑
type E={(ni ,ki)}i

1
#Aut(E)

the terms of type {(n,k)} are exactly the semi-stable bundles which contribute β(n,L) to this
sum. The point is that now we can express the terms corresponding to the type {(ni,ki)}i in
terms of β(ni,L i), as follows.

Theorem (Desale-Ramanan). The numbers β(n,L) only depend on the degree k of L, we
therefore write β(n,k). Moreover, we have

∑
type E={(ni ,ki)}i

1
#Aut(E)

= #Jr−1(Fq)
qχ

r∏
i=1

β(ni,ki)

where J is the Jacobian of Y , and χ is an integer depending only on the type {(ni,ki)}i.

Now looking at Siegel’s formula

∑
{(ni ,ki)}i

∑
type E={(ni ,ki)}i

1
#Aut(E)

= q(n2−1)(g−1)

q−1
ζY (2) . . .ζY (n)

we can split off one ‘grouping’ corresponding to β(n,k), the term we are interested in, and
the other terms all have ni < n, so this leads to an inductive formula for the β(n,k) in terms
of the β(ni,ki) for ni < n.

Detailed case n = 2, k = 1

Let’s look in detail at the case n = 2, k = 1 to see what’s actually going on, we’ll also keep
the assumption that (2, q)= 1. Then we have

β(2,1)+ ∑
E unstable

1
#Aut(E)

= q3(g−1)

q−1
ζY (2)

If E is unstable, then we get a canonical filtration

0→ L1 → E → L2 → 0
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with L i line bundles such that L1⊗L2 = L has degree 1, therefore there exists some unique
integer r ≥ 0 such that deg(L1) = r +1, deg(L2) = −r, since we have µ(L1) > µ(L2). Such
extensions correspond to cohomology classes in

H1(Y ,L∨
2 ⊗L1)

and proportional (over Fq) classes give the same bundle, we therefore get∑
E unstable

1
#Aut(E)

=
∞∑

r=0

∑
degL1=r+1

∑
c∈H1(Y ,L∨

2⊗L1)/F∗q

1
#Aut(Ec)

where Ec is the extension corresponding to a cohomology class, and L2 = L∨
1 ⊗L. Now, to

calculate #Aut(Ec), we consider trivial and non-trivial extensions separately. In the trivial
case, E ∼= L1 ⊕L2, any automorphism has to preserve L1, and hence has the form(

α ψ

0 β

)
for α,β ∈ F∗q and ψ ∈Hom(L2,L1)= H0(Y ,L∨

2 ⊗L1). Hence we get exactly (q−1)2h0 automor-
phisms, where h0 = #H0(Y ,L∨

2 ⊗L1).
When the extension is non-trivial, a slightly more tricky (but still elementary) calcula-

tion gives #Aut(Ec) = (q−1)h0 where h0 = #H0(Y ,L∨
2 ⊗L1). Plugging this into the above

expression gives ∑
E unstable

1
#Aut(E)

=
∞∑

r=0

∑
degL1=r

h1

(q−1)2h0

where h1 = #H1(Y ,L∨
2 ⊗L1). Now Riemann-Roch gives h0/h1 = q2r+2−g so we can write this

as ∑
E unstable

1
#Aut(E)

=
∞∑

r=0

1
(q−1)q2r+2−g

∑
degL1=r+1

1
q−1

=
∞∑

r=0

1
(q−1)q2r+2−gβ(1, r)

so we can see the inductive part coming in. But β(1, r) is just the number of Fq-rational
points on the Jacobian J of Y divided by (q−1), so this sum is equal to

∞∑
r=0

1
(q−1)2q2r+2−g #J(Fq).

If we write the Z-function of Y as ∏2g
j=1(1−ω ju)

(1−u)(1− qu)
then we have

#J(Fq)=
2g∏
i=1

(1−ω j)

and hence Siegel’s formula gives

#N0(n,L)+
∏2g

i=1(1−ω j)qg−2

(q−1)

∞∑
r=0

1
q2r = q3(g−1)

∏2g
j=1(1−ω j q−2)

(1− q−2)(1− q−1)
.

Now summing the infinite series, and substituting in q = t2 and −ω j = t will give an expres-
sion for the Poincaré polynomial of N0(n,L).
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Similarities with topological approach

number theoretic topological

count all bundles using Siegel’s formula look at the space of all complex structures on a given bundle
split this sum by the type of the bundle stratify this space according to the type of the bundle

inductive formula for β(n,L) inductive formula for the Poincaré polynomial
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