NOTES ON MONSKY-WASHNITZER COHOMOLOGY

1. DE RHAM COHOMOLOGY OF SMOOTH AFFINE VARIETIES

Let K be a field, and A a finitely generated K-algebra.

Definition 1.1. $\Omega_{A/K}$ is the A-module of Kähler differentials. This is the A-module generated by symbols da for $a \in A$ and relations:

•
$$dk = 0$$
 for $k \in K$

• d(a+b) = da + db and $d(ab) = a \cdot db + b \cdot da$ for all $a, b \in A$.

More explicitly, if we have

$$A = K[x_1, \ldots, x_n]/(f_1, \ldots, f_r)$$

then $\Omega_{A/K}$ has a presentation:

 $\Omega_{A/K} = Adx_1 \oplus \cdots Adx_n / (df_i : i = 1, \dots, r)$

where df is the total derivative $\sum_{j=1}^{n} \frac{\partial f}{\partial x_{i}} dx_{j}$.

There is a natural derivation

$$d: A \to \Omega_{A/K}$$

sending a to da.

Remark 1.2. $\Omega_{A/K}$ is characterised by a universal property: any K-linear derivation $D: A \to M$ factors uniquely as

$$A \xrightarrow{d} \Omega_{A/K} \to M$$

If A/K is smooth ¹ then $\Omega_{A/K}$ is locally free of rank dim(A).

Definition 1.3. Set $\Omega_{A/K}^i = \bigwedge^i \Omega_{A/K}$. In particular $\Omega_{A/K}^0 = A$ and $\Omega_{A/K}^1 = \Omega_{A/K}$. Abusing notation, we write d for each of the K-linear maps

$$d: \Omega^i_{A/K} \to \Omega^{i+1}_{A/K}$$

given by mapping $f_0 df_1 \wedge \ldots df_i$ to $df_0 \wedge df_1 \wedge \ldots df_i$.

Denote by $\Omega^{\bullet}_{A/K}$ the resulting complex. This is the *de Rham complex* for A/K. Finally, set $H_{dR}^{i}(A/K) = H^{i}(\Omega_{A/K}^{\bullet})$.

Note that if $i > \dim(A)$ then $\Omega^i_{A/K} = 0$ and so $H^i_{dR}(A/K) = 0$.

Remark 1.4. It would be better to write $H^i_{dR}(A/K)$ as $H^i_{dR}(X/K)$, where X = Spec(A). The definition of $\Omega^{\bullet}_{A/K}$ globalises to the case of finite type schemes X/K, but then to define $H^i_{dR}(X/K)$ one needs to take hypercohomology of the resulting complex of coherent sheaves on X. Things simplify in the affine case because $H^i(U, \mathscr{F}) = 0$ for i > 0 for coherent sheaves \mathscr{F} on affine schemes U.

Example 1.5. One very simple example: suppose K has characteristic 0 and let $A = K[x_1, \ldots, x_n]$ (i.e. $X = \mathbb{A}_{K}^{n}$). Then $H_{dR}^{0}(A/K) = K$ and $H_{dR}^{i}(A/K) = 0$ for i > 0. For $K = \mathbb{C}$ there is a natural isomorphism $H_{dR}^{i}(X/\mathbb{C}) = H_{dR}^{i}(X^{an}/\mathbb{C})$ where X^{an} is the complex

manifold associated to X = Spec(A).

Date: November 28, 2014.

¹Here is a definition of smooth: there are elements $a_1, ..., a_n$ generating A as an ideal, such that for each i the localisation $A_{(a_i)}/K$ can be written as $K[x_1, \ldots, x_n]/(f_1, \ldots, f_r)$ with Jacobian matrix $(\frac{\partial f_i}{\partial x_j})_{i,j=1,\ldots,r}$ having non-zero determinant in $A_{(a_i)}$. In other words, A Zariski locally satisfies the Jacobian criterion for smoothness.

2. Cohomology in characteristic p

From now on we fix a finite field k of characteristic p and cardinality $q = p^f$. We would like to define some sort of cohomology theory for varieties over k. Today we will define a cohomology theory, with coefficients in a characteristic 0 field, for smooth affine varieties over k. First let's consider the de Rham cohomology of such a variety.

Suppose A = k[x]. Then $H^1_{dR}(A/k)$ is not a finite-dimensional k-vector space: if n is a positive integer divisible by p, then $x^{n-1}dx \in \Omega_{A/k}$ is not in the image of d. This suggests we should stick to characteristic 0 coefficients.

We set R to be the Witt vectors of k. This is the ring of integers in the (unique, up to isomorphism) unramified extension of \mathbb{Q}_p with residue field k. We have R/pR = k. We set $K = \operatorname{Frac}(R)$. If $k = \mathbb{F}_p$ then R is the ring of p-adic integers \mathbb{Z}_p .

Suppose we have a smooth k-algebra A. Then, if we can find a smooth R-algebra \tilde{A} with $\tilde{A} \otimes_R k \cong A$, we could consider the de Rham cohomology of the smooth K-algebra $\tilde{A}_K := \tilde{A} \otimes_R K$. Here is an example which shows this is not such a good idea:

Example 2.1. Set A = k[x], $\tilde{A}_1 = R[x]$, $\tilde{A}_2 = R[x, y]/((1 + px)y - 1)$. Then $H^1_{dR}(\tilde{A}_{1,K}/K)$ is zero, whilst $H^1_{dR}(\tilde{A}_{2,K}/K)$ is one-dimensional.

So there are many lifts of A to smooth R-algebras, which can give different cohomology groups. In fact, there is a way to get a unique lift of A, but we need to work with R-algebras which are only topologically finitely generated (for the p-adic topology).

Proposition 2.2. Suppose A is a smooth k-algebra. Then there is a unique (up to isomorphism) R-algebra \hat{A} which is complete in the p-adic topology, flat over R, and with

$$A \otimes_R k \cong A.$$

Proof. For each $n \ge 1$ there is a unique lift of A to a flat $R/p^n R$ -algebra A_n , since obstructions to lifting and the set of lifts are classified by H^2 and H^1 of a coherent sheaf on Spec(A) (see Hartshorne, Deformation Theory, Section 10), which vanish. We then have $\hat{A} = \lim_{n \to \infty} A_n$.

Example 2.3. For A = k[x] we can take

$$\hat{A} = R \langle x \rangle := \{ \sum_{n=0}^{\infty} a_n x^n : |a_n|_p \to 0 \text{ as } n \to \infty \}.$$

For rings like $R\langle x \rangle$ and $R\langle x \rangle \otimes_R K$ which are only *topologically* finitely generated, we need to work with continuous differentials, for example $\Omega_{R\langle x \rangle/R} = R\langle x \rangle dx$. These are universal with respect to continuous *R*-linear derivations $A \to M$ from *A* to a topological *A*-module *M*.

uous *R*-linear derivations $A \to M$ from *A* to a topological *A*-module *M*. But now we still have a problem: we have $(\sum_{n\geq 0} p^n x^{p^n-1}) dx \in \Omega_{\hat{A}_K/K}$ which *should* integrate to $\sum_{n\geq 0} x^{p^n}$, but this is not in \hat{A} . The idea of Monsky and Washnitzer is to use a subring $A^{\dagger} \subset \hat{A}$ defined by

$$A^{\dagger} = \{\sum a_n x^n : \exists C > 0, \rho \in (0, 1) \text{ with } |a_n|_p \le C \rho^n \forall n\}$$

Remark 2.4. Elements of $f \in \hat{A}$ are functions on the closed unit disc $|x| \leq 1$. If we have $f = \sum a_n x^n$ with $|a_n|_p \leq C\rho^n$, then f extends to a function on the open disc $|x| < \rho^{-1}$.

This means that A^{\dagger} consists of functions on the closed unit disc which in fact converge on some bigger disc. Therefore A^{\dagger} is sometimes referred to as a ring of overconvergent functions on the closed unit disc.

You can check that the coefficients of $\sum_{n\geq 0} p^n x^{p^n-1}$ tend to zero too slowly for this element to lie in A^{\dagger} .

Exercise 2.5. The map $d: A_K^{\dagger} \to \Omega_{A_K^{\dagger}/K}$ is surjective.

The lifting from A = k[x] to A_K^{\dagger} is a model for what we are going to do in general.

3. WEAKLY COMPLETE LIFTS

Definition 3.1. We define the weakly complete power series ring

$$W_n := R\langle x_1, \dots, x_n \rangle^{\dagger} = \left\{ \sum a_{\alpha} x^{\alpha} : \exists C > 0, \rho \in (0, 1) \text{ with } |a_{\alpha}|_p \le C \rho^{|\alpha|} \forall \alpha \right\}.$$

In the above, α runs over tuples $(\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ and $|\alpha| = \sum_{i=1}^n \alpha_i$.

Theorem 3.2. W_n is Noetherian.

Proof. One way to show Noetherianity is to use the Weierstrass division and preparation theorems. See [2] Theorems 3.1.1 and 3.2.1 for the case of $K\langle x_1, \ldots, x_n \rangle$, which can be adapted to the weakly complete situation.

Alternatively, the note of Fulton [3] gives the original proof this lemma.

Definition 3.3. A WCFG (weakly complete, finitely generated) *R*-algebra is a quotient of W_n . Suppose *A* is a finitely generated *k*-algebra. A WCFG *R*-algebra \tilde{A}^{\dagger} is a *lift* of *A* if it is flat over *R* and $\tilde{A}^{\dagger} \otimes_R k \cong A$.

Theorem 3.4 (Elkik, Theorem 6 [1]). Suppose A is a smooth finitely generated k-algebra. Then there exists a finitely generated smooth R-algebra \tilde{A} with $\tilde{A}/p\tilde{A} = \tilde{A} \otimes_R k \cong A$.

The above theorem is easy to see when $A = k[x_1, \ldots, x_n]/(f_1, \ldots, f_r)$ satisfies the Jacobian criterion. Choose some lifts $\tilde{f}_1, \ldots, \tilde{f}_r$ of the f_i to $R[x_1, \ldots, x_n]$ and consider $R[x_1, \ldots, x_n]/(\tilde{f}_1, \ldots, \tilde{f}_r)$. This R-algebra is smooth in a Zariski open neighbourhood of $V(pR) \subset \text{Spec}(R)$ (since the determinant of the Jacobian matrix is non-zero modulo p), so some localisation gives a smooth lift of A.

Corollary 3.5. Suppose A is a smooth finitely generated k-algebra. Then there is a lift of A to a WCFG R-algebra.

Proof. Take \tilde{A} as in the above Theorem and write $\tilde{A} = R[x_1, \ldots, x_n]/(f_1, \ldots, f_r)$. Set

$$\dot{\mathbf{A}}^{\dagger} = R\langle x_1, \dots, x_n \rangle^{\dagger} / (f_1, \dots, f_r).$$

Then we claim \tilde{A}^{\dagger} is a lift of A. It is clear that $\tilde{A}^{\dagger} \otimes_R k = \tilde{A} \otimes_R k$, so we just need to check that \tilde{A}^{\dagger} is flat over R. But $\tilde{A}^{\dagger}/p^n \tilde{A}^{\dagger} = \tilde{A}/p^n \tilde{A}$ is flat over $R/p^n R$ for all n, so this follows from [4, Theorem 2.4] (see also [5, Tag 0523]).

4. MONSKY-WASHNITZER COHOMOLOGY

We will now simplify our notation a bit. From now on \overline{A} will be a smooth k-algebra and A will be a lift to a WCFG algebra over R. As mentioned before, when we discuss differentials of A we will want to take *continuous* differentials.

Definition 4.1. For $A = R\langle x_1, \ldots, x_n \rangle / (f_1, \ldots, f_r)$, set $D^1(A/R)$ to be the A-module $D^1(A/R) := Adx_1 \oplus \cdots \oplus Adx_n / (df_i : i = 1, \ldots, r)$

The more abstract description of $D^1(A/R)$ as continuous differentials shows that it is well-defined, independently of the presentation of A.

Lemma 4.2. $D^1(A/R)$ is a locally free A-module of rank dim (\overline{A}) .

Proof. Since A/R is flat and and $A/pA = \overline{A}$ is smooth over k, A/p^nA is smooth over R/p^nR for all $n \ge 1$ [5, Tag 031L]. Therefore $D^1(A/R) \otimes_A A/p^nA = \Omega_{(A/p^nA)/(R/p^nR)}$ is flat over A/p^nA for all $n \ge 1$. Now [4, Lemma 2.1] (see also [5, Tag 0523]) shows that $D^1(A/R)$ is flat over A. Since it is also finitely generated, it is locally free. The statement about the rank follows from $D^1(A/R) \otimes_A \overline{A} \cong \Omega_{\overline{A}/k}$.

Definition 4.3. Set $D^i(A/R) = \bigwedge_A^i D^1(A/R)$, and $D^i(A/K) = D^i(A/R) \otimes_R K = \bigwedge_{A_K}^i D^1(A/K)$. Abusing notation, we write d for each of the K-linear maps

$$d: D^i(A/K) \to D^{i+1}(A/K)$$

given by mapping $f_0 df_1 \wedge \ldots df_i$ to $df_0 \wedge df_1 \wedge \ldots df_i$.

Denote the resulting complex by $D^{\bullet}(A/K)$. Finally, set $H^i_{MW}(A/K) = H^i(D^{\bullet}_{A/K})$.

In the next section, we will show that $H^i_{MW}(A/K)$ only depends on the smooth k-algebra \overline{A} , so we may instead write $H^i_{MW}(\overline{A}/K)$.

5. FUNCTORIALITY AND UNIQUENESS OF LIFTING

Theorem 5.1. Suppose \overline{A} , \overline{B} are smooth k-algebras. Let A/R and B/R be WCFG lifts of \overline{A} , \overline{B} respectively (which exist by Corollary 3.5). Then:

(1) Every lift of \overline{A} is isomorphic (over R) to A.

(2) Suppose

$$\overline{f}:\overline{A}\to\overline{B}$$

is a k-algebra map. Then there exists an R-algebra map

 $f: A \to B$

lifting \overline{f} .

Proof. We just explain part (1). The second part is proved by the same argument. First we show that $A/p^n A$ is smooth over $R/p^n R$ for all $n \ge 1$. Indeed, since A/R is flat, and $A/pA = \overline{A}$ is smooth over R/pR = k, it follows that $A/p^n A$ is smooth ([5, Tag 031L]).

In particular $A/p^n A$ is formally smooth over $R/p^n R$, so we have the following lifting property:

Suppose C is another R-algebra. Then any R-algebra map $A/p^nA \to C/p^nC$ lifts (not necessarily uniquely) to an R-algebra map $A/p^{n+1}A \to C/p^{n+1}C$.

Now we assume that C is another lift of \overline{A} . Denoting the p-adic completions of A and C by \hat{A} and \hat{C} , we apply the above lifting property to get a map $\hat{f} : \hat{A} \to \hat{C}$, lifting the identity map mod p. Applying a form of Artin approximation (see [6, 2.4.1]) gives a map $f : A \to C$ which is an isomorphism mod p. Finally, the map f must be an isomorphism. Indeed, A and C are flat R-algebras, so there are isomorphisms $A/pA \cong p^n A/p^{n+1}A$ and $C/pC \cong p^n C/p^{n+1}C$. Therefore f induces isomorphisms $p^n A/p^{n+1}A \cong p^n C/p^{n+1}C$ so ker $(f) \subset \bigcap_{n \ge 1} p^n A = \{0\}$. Hence f is injective. Surjectivity is given by the following lemma.

Lemma 5.2. Suppose $f : A \to B$ is a map between WCFG R-algebras, which is surjective mod p. Then f is surjective.

Proof. First note that we may assume that $A = W_n$ for some n (just write A as a quotient of W_n).

For some m, we have a surjective map $f': A' = A\langle x_{n+1}, \ldots, x_{n+m} \rangle^{\dagger} \to B$. Suppose m is minimal. If m = 0 we are done, so assume m > 0. There is an $a \in A$ such that $x_{n+m} - a$ is in the kernel of \overline{f} . Now we have $x_{n+m} - a = a' + pr$ for some $a' \in \ker(f)$ and $r \in A'$. Weierstrass division implies that $A\langle x_{n+1}, \ldots, x_{n+m-1} \rangle^{\dagger} \to A'/(a')$ is an isomorphism, so $A\langle x_{n+1}, \ldots, x_{n+m-1} \rangle^{\dagger}$ surjects onto B, contradicting minimality of m.

Finally, we want to show that the map on Monsky-Washnitzer cohomology induced by lifts $f : A \to B$ of a map $\overline{f} : A \to B$ depends only on \overline{f} (i.e. it does not depend on the choice of lifting f, which is not unique).

Theorem 5.3. Suppose A, B are lifts of two smooth k-algebras \overline{A} , \overline{B} , and f_0 , f_1 are two maps from A to B lifting a single map $\overline{f} : \overline{A} \to \overline{B}$. Then the induced maps

$$f_{0,*}, f_{1,*}: D^{\bullet}(A/K) \to D^{\bullet}(B/K)$$

are homotopic. In other words, for $q \ge 0$ there exist K-linear maps $\delta_q : D^{q+1}(A/K) \to D^q(B/K)$ such that (with $\delta_{-1} = 0$)

$$f_{1,*} - f_{0,*} = d\delta_{q-1} + \delta_q d : D^q(A/K) \to D^q(B/K)$$

In particular, f_0 and f_1 induce the same map $H^i_{MW}(A/K) \to H^i_{MW}(B/K)$.

Proof. We first suppose that there is a map $f : A \to B\langle T \rangle^{\dagger}$ such that, if $\alpha_0, \alpha_1 : B\langle T \rangle^{\dagger} \to B$ are defined by sending T to 0, 1 respectively, then $\alpha_0 \circ f = f_0, \alpha_1 \circ f = f_1$. This is an analogue of the topological definition of homotopy. It is sufficient to prove that $\alpha_{0,*}$ and $\alpha_{1,*}$ are homotopic.

Now

$$D^{q+1}(B\langle T\rangle^{\dagger}/K) = B\langle T\rangle^{\dagger} \otimes_B D^{q+1}(B/K) \oplus B\langle T\rangle^{\dagger} dT \otimes_B D^q(B/K)$$

and we define δ_q to be 0 on the first factor in the direct sum, and

$$g\otimes\omega\mapsto\left(\int\limits_{0}^{1}gdT
ight)\omega$$

on the second.

Now we just need to show the existence of f. We want to define it by sending a to $(1-T)f_0(a)+Tf_1(a)$. This will not in general be an algebra homomorphism, so instead we approximate it, slightly indirectly. Set S = pT and define

$$h: A \to \hat{B}[[S]]/(S^2 - pS)$$

by

$$a \mapsto (1-T)f_0(a) + Tf_1(a) = f_0(a) + \frac{f_1(a) - f_0(a)}{p}S.$$

You can check that h is an R-algebra homomorphism.

Formal smoothness allows us to lift h to

$$\hat{h}: \hat{A} \to \hat{B}[[S]] \subset \hat{B} \langle T \rangle$$

since $\hat{B}[[S]] = \lim_n \hat{B}[[S]]/(p^n, (S^2 - pS)^n)$. Now Artin approximation gives the desired map $A \to B\langle T \rangle^{\dagger}$.

The previous two theorems establish that $H^i_{MW}(A/K)$ depends only on \overline{A} , and is functorial in maps of smooth k-algebras $\overline{A} \to \overline{B}$.

An important result (proved by Berthelot long after Monsky and Washnitzer's work) is that the K-vector spaces $H^i_{MW}(A/K)$ are *finite-dimensional*.

6. FROBENIUS

Recall that k is a finite field of cardinality q. For a smooth k-algebra \overline{A} , denote by $F : \overline{A} \to \overline{A}$ the q-power Frobenius map.

Theorem 6.1. F_* is bijective on $H^i_{MW}(\overline{A}/K)$.

Proof. We just sketch the proof. Recall that F lifts to an endomorphism of A which we again call F. F induces an isomorphism $A \cong F(A)$. It is possible to define a trace map $S_{A/F(A)} : D^{\bullet}(A/R) \to D^{\bullet}(F(A)/R)$.

We define a map ψ by composing $S_{A/F(A)}$ with the inverse of the isomorphism $D^{\bullet}(A/R) \cong D^{\bullet}(F(A)/R)$ induced by F.

The composition $\psi \circ F$ induces multiplication by $[A : F(A)] = [\overline{A} : \overline{A}^q] = q^{\dim(\overline{A})}$ on $D^{\bullet}(A/R)$. This shows that F_* is injective on $H^i_{MW}(\overline{A}/K)$. Another argument involving the Galois closure of $\operatorname{Frac}(A)/\operatorname{Frac}(F(A))$ shows that $S_{A/F(A)}$ is injective on $H^i_{MW}(\overline{A}/K)$, which implies that ψ_* is injective and hence F_* is surjective on $H^i_{MW}(\overline{A}/K)$. \Box

Finally, we can state the Lefschetz fixed point formula:

Let \overline{A} be a smooth k-algebra which is an integral domain of dimension n. Let $N(\overline{A})$ denote the number of k-algebra maps $\overline{A} \to k$. In other words, this is the number of k-points of $\text{Spec}(\overline{A})$.

Theorem 6.2.

$$N(\overline{A}) = \sum_{i=0}^{n} (-1)^{i} \operatorname{Tr} \left(q^{n} F_{*}^{-1} | H^{i}(\overline{A}/K) \right)$$

NOTES ON MONSKY-WASHNITZER COHOMOLOGY

REFERENCES

- [1] R. Elkik. Solutions d'équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4), 6:553–603 (1974), 1973.
- [2] J. Fresnel and M. van der Put. Rigid analytic geometry and its applications, volume 218 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2004.
- [3] W. Fulton. A note on weakly complete algebras. Bull. Amer. Math. Soc., 75:591–593, 1969.
- [4] P. Monsky and G. Washnitzer. Formal cohomology. I. Ann. of Math. (2), 88:181–217, 1968.
- [5] The Stacks Project Authors. Stacks project. http://stacks.math.columbia.edu, 2014.
- [6] M. van der Put. The cohomology of Monsky and Washnitzer. Mém. Soc. Math. France (N.S.), (23):4, 33–59, 1986. Introductions aux cohomologies p-adiques (Luminy, 1984).