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 Inter-University Committee on Computing. All rights reserved.No part of this article may be reproduced for commercial purposes.1 IntroductionGenetic Algorithms (GAs) are adaptive methods which may be used to solve search and optimisation problems.They are based on the genetic processes of biological organisms. Over many generations, natural populationsevolve according to the principles of natural selection and \survival of the �ttest", �rst clearly stated by CharlesDarwin in The Origin of Species. By mimicking this process, genetic algorithms are able to \evolve" solutionsto real world problems, if they have been suitably encoded. For example, GAs can be used to design bridgestructures, for maximum strength/weight ratio, or to determine the least wasteful layout for cutting shapesfrom cloth. They can also be used for online process control, such as in a chemical plant, or load balancing ona multi-processor computer system.The basic principles of GAs were �rst laid down rigourously by Holland [Hol75], and are well describedin many texts (e.g. [Dav87, Dav91, Gre86, Gre90, Gol89a, Mic92]). GAs simulate those processes in naturalpopulations which are essential to evolution. Exactly which biological processes are essential for evolution, andwhich processes have little or no role to play is still a matter for research; but the foundations are clear.In nature, individuals in a population compete with each other for resources such as food, water and shelter.Also, members of the same species often compete to attract a mate. Those individuals which are most successfulin surviving and attracting mates will have relatively larger numbers of o�spring. Poorly performing individualswill produce few of even no o�spring at all. This means that the genes from the highly adapted, or \�t"individuals will spread to an increasing number of individuals in each successive generation. The combinationof good characteristics from di�erent ancestors can sometimes produce \super�t" o�spring, whose �tness isgreater than that of either parent. In this way, species evolve to become more and more well suited to theirenvironment.GAs use a direct analogy of natural behaviour. They work with a population of \individuals", each repre-senting a possible solution to a given problem. Each individual is assigned a \�tness score" according to howgood a solution to the problem it is. For example, the �tness score might be the strength/weight ratio for agiven bridge design. (In nature this is equivalent to assessing how e�ective an organism is at competing forresources.) The highly �t individuals are given opportunities to \reproduce", by \cross breeding" with other�email: David.Beasley@cm.cf.ac.ukyemail: Dave.Bull@bristol.ac.ukzemail: Ralph.Martin@cm.cf.ac.uk 1



individuals in the population. This produces new individuals as \o�spring", which share some features takenfrom each \parent". The least �t members of the population are less likely to get selected for reproduction, andso \die out".A whole new population of possible solutions is thus produced by selecting the best individuals from thecurrent \generation", and mating them to produce a new set of individuals. This new generation contains ahigher proportion of the characteristics possessed by the good members of the previous generation. In this way,over many generations, good characteristics are spread throughout the population, being mixed and exchangedwith other good characteristics as they go. By favouring the mating of the more �t individuals, the mostpromising areas of the search space are explored. If the GA has been designed well, the population will convergeto an optimal solution to the problem.GAs are not the only algorithms based on an analogy with nature. Neural networks are based on thebehaviour of neurons in the brain. They can be used for a variety of classi�cation tasks, such as patternrecognition, machine learning, image processing and expert systems. Their area of application partly overlapsthat of GAs. The use of GAs for the design of neural networks is a current research area [HS91]. Simulatedannealing is a search technique which is based on physical, rather than biological processes, and this is describedin Section 3.4.The power of GAs comes from the fact that the technique is robust, and can deal successfully with a widerange of problem areas, including those which are di�cult for other methods to solve. GAs are not guaranteedto �nd the global optimum solution to a problem, but they are generally good at �nding \acceptably good"solutions to problems \acceptably quickly". Where specialised techniques exist for solving particular problems,they are likely to out-perform GAs in both speed and accuracy of the �nal result. The main ground forGAs, then, is in di�cult areas where no such techniques exist. Even where existing techniques work well,improvements have been made by hybridising them with a GA.In Section 2 we outline the basic principles of GAs, then in Section 3 we compare GAs with other searchtechniques. Sections 4 and 5 describe some of the theoretical and practical aspects of GAs, while Section 6 listssome of the applications GAs have been applied to.Part 2 of this article will appear in the next issue of this journal. This will go into more detail, and discussthe problems which GA designers must address when faced with very di�cult problems. We will also show howthe basic GA can be improved by the use of problem-speci�c knowledge.2 Basic PrinciplesThe standard GA can be represented as shown in Figure 1.Before a GA can be run, a suitable coding (or representation) for the problem must be devised. We alsorequire a �tness function, which assigns a �gure of merit to each coded solution. During the run, parents mustbe selected for reproduction, and recombined to generate o�spring. These aspects are described below.2.1 CodingIt is assumed that a potential solution to a problem may be represented as a set of parameters (for example, thedimensions of the beams in a bridge design). These parameters (known as genes) are joined together to form astring of values (often referred to as a chromosome). (Holland [Hol75] �rst showed, and many still believe, thatthe ideal is to use a binary alphabet for the string. Other possibilities will be discussed in Part 2 of this article.)For example, if our problem is to maximise a function of three variables, F (x; y; z), we might represent eachvariable by a 10-bit binary number (suitably scaled). Our chromosome would therefore contain three genes,and consist of 30 binary digits.In genetics terms, the set of parameters represented by a particular chromosome is referred to as a genotype.The genotype contains the information required to construct an organism|which is referred to as the phenotype.The same terms are used in GAs. For example, in a bridge design task, the set of parameters specifying aparticular design is the genotype, while the �nished construction is the phenotype. The �tness of an individualdepends on the performance of the phenotype. This can be inferred from the genotype|i.e. it can be computedfrom the chromosome, using the �tness function. 2



BEGIN /* genetic algorithm */generate initial populationcompute fitness of each individualWHILE NOT finished DOBEGIN /* produce new generation */FOR population_size / 2 DOBEGIN /* reproductive cycle */select two individuals from old generation for mating/* biassed in favour of the fitter ones */recombine the two individuals to give two offspringcompute fitness of the two offspringinsert offspring in new generationENDIF population has converged THENfinished := TRUEENDEND Figure 1: A Traditional Genetic Algorithm2.2 Fitness functionA �tness function must be devised for each problem to be solved. Given a particular chromosome, the �tnessfunction returns a single numerical \�tness," or \�gure of merit," which is supposed to be proportional to the\utility" or \ability" of the individual which that chromosome represents. For many problems, particularlyfunction optimisation, it is obvious what the �tness function should measure|it should just be the value of thefunction. But this is not always the case, for example with combinatorial optimisation. In a realistic bridgedesign task, there are many performance measures we maywant to optimise: strength/weight ratio, span, width,maximum load, cost, construction time|or, more likely, some combination of all these.2.3 ReproductionDuring the reproductive phase of the GA, individuals are selected from the population and recombined, pro-ducing o�spring which will comprise the next generation. Parents are selected randomly from the populationusing a scheme which favours the more �t individuals. Good individuals will probably be selected several timesin a generation, poor ones may not be at all.Having selected two parents, their chromosomes are recombined , typically using the mechanisms of crossoverand mutation. The most basic forms of these operators are as follows:Crossover takes two individuals, and cuts their chromosome strings at some randomly chosen position, toproduce two \head" segments, and two \tail" segments. The tail segments are then swapped over to producetwo new full length chromosomes (see Figure 2). The two o�spring each inherit some genes from each parent.This is known as single point crossover.Crossover is not usually applied to all pairs of individuals selected for mating. A random choice is made,where the likelihood of crossover being applied is typically between 0.6 and 1.0. If crossover is not applied,o�spring are produced simply by duplicating the parents. This gives each individual a chance of passing on itsgenes without the disruption of crossover.Mutation is applied to each child individually after crossover. It randomly alters each gene with a smallprobability (typically 0.001). Figure 3 shows the �fth gene of the chromosome being mutated.The traditional view is that crossover is the more important of the two techniques for rapidly exploring asearch space. Mutation provides a small amount of random search, and helps ensure that no point in the search3
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Figure 2: Single-point Crossover
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Mutation pointFigure 3: A single mutationspace has a zero probability of being examined. (An alternative point of view is explored in Part 2 of thisarticle.)An example of two individuals reproducing to give two o�spring is shown in Figure 4. The �tness functionis an exponential function of one variable, with a maximum at x = 0:2. It is coded as a 10-bit binary number.Table 1 shows two parents and the o�spring they produce when crossed over after the second bit (for clarity,no mutation is applied). This illustrates how it is possible for crossover to recombine parts of the chromosomesof two individuals and give rise to o�spring of higher �tness. (Of course, crossover can also produce o�springof low �tness, but these will not be likely to get selected for reproduction in the next generation.)2.4 ConvergenceIf the GA has been correctly implemented, the population will evolve over successive generations so thatthe �tness of the best and the average individual in each generation increases towards the global optimum.Convergence is the progression towards increasing uniformity. A gene is said to have converged when 95% ofthe population share the same value [DeJ75]. The population is said to have converged when all of the geneshave converged.Figure 5 shows how �tness varies in a typical GA. As the population converges, the average �tness willapproach that of the best individual.3 Comparison with other techniquesA number of other general purpose techniques have been proposed for use in connection with search andoptimisation problems. Like a GA, they all assume that the problem is de�ned by a �tness function, whichmust be maximised. (All techniques can also deal with minimisation tasks|but to avoid confusion we willassume, without loss of generality, that maximisation is the aim.)There are a great many optimisation techniques, some of which are only applicable to limited domains, forexample, dynamic programming [Bel57]. This is a method for solving multi-step control problems which is onlyapplicable where the overall �tness function is the sum of the �tness functions for each stage of the problem,and there is no interaction between stages. Some of the more general techniques are described below.4



Individual x Fitness ChromosomeParent 1 0.08 0.05 00 01010010Parent 2 0.73 0.000002 10 11101011O�spring 1 0.23 0.47 00 11101011O�spring 2 0.58 0.00007 10 01010010Table 1: Details of individuals in Figure 4
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3.1 Random SearchThe brute force approach for di�cult functions is a random, or an enumerated search. Points in the searchspace are selected randomly, or in some systematic way, and their �tness evaluated. This is a very unintelligentstrategy, and is rarely used by itself.3.2 Gradient methodsA number of di�erent methods for optimising well-behaved continuous functions have been developed [Bun84]which rely on using information about the gradient of the function to guide the direction of search. If thederivative of the function cannot be computed, because it is discontinuous, for example, these methods oftenfail.Such methods are generally referred to as hillclimbing . They can perform well on functions with only onepeak (unimodal functions). But on functions with many peaks, (multimodal functions), they su�er from theproblem that the �rst peak found will be climbed, and this may not be the highest peak. Having reached thetop of a local maximum, no further progress can be made. A 1-dimensional example is shown in Figure 6.The hillclimb starts from a randomly-chosen starting point, X. \Uphill" moves are made, and the peak at B islocated. Higher peaks at A and C are not found.
Fitness

A

C

X

B

HillclimbFigure 6: The hillclimbing problem3.3 Iterated SearchRandom search and gradient search may be combined to give an iterated hillclimbing search. Once one peak hasbeen located, the hillclimb is started again, but with another, randomly chosen, starting point. This techniquehas the advantage of simplicity, and can perform well if the function does not have too many local maxima.However, since each random trial is carried out in isolation, no overall picture of the \shape" of the domainis obtained. As the random search progresses, it continues to allocate its trials evenly over the search space.This means that it will still evaluate just as many points in regions found to be of low �tness as in regions foundto be of high �tness.A GA, by comparison, starts with an initial random population, and allocates increasing trials to regionsof the search space found to have high �tness. This is a disadvantage if the maximum is in a small region,surrounded on all sides by regions of low �tness. This kind of function is di�cult to optimise by any method,and here the simplicity of the iterated search usually wins the day [Ack87].3.4 Simulated annealingThis technique was invented by Kirkpatrick in 1982, and a good overview is given in [Rut89]. It is essentiallya modi�ed version of hill climbing. Starting from a random point in the search space, a random move is made.If this move takes us to a higher point, it is accepted. If it takes us to a lower point, it is accepted only withprobability p(t), where t is time. The function p(t) begins close to 1, but gradually reduces towards zero|theanalogy being with the cooling of a solid. 6



Initially therefore, any moves are accepted, but as the \temperature" reduces, the probability of acceptinga negative move is lowered. Negative moves are essential sometimes if local maxima are to be escaped, butobviously too many negative moves will simply lead us away from the maximum.Like the random search, however, simulated annealing only deals with one candidate solution at a time, andso does not build up an overall picture of the search space. No information is saved from previous moves toguide the selection of new moves. This technique is still the topic of much active research (e.g. fast re-annealing,parallel annealing), and it has been used successfully in many applications, for example, VLSI circuit layout[Rut89].4 Why GAs workMost research into GAs has so far concentrated on �nding empirical rules for getting them to perform well. Thereis no accepted \general theory" which explains exactly why GAs have the properties they do. Nevertheless,several hypotheses have been put forward which can partially explain the success of GAs. These can be usedto help us implement good GA applications.4.1 Schemata and the Schema theoremHolland's schema theorem [Hol75] was the �rst rigourous explanation of how GAs work. A schema is a patternof gene values which may be represented (in a binary coding) by a string of characters in the alphabet f0 1#g. A particular chromosome is said to contain a particular schema if it matches that schemata, with the \#"symbol matching anything. So, for example, the chromosome \1010" contains, among others, the schemata\10##," \#0#0," \##1#" and \101#." The order of a schema is the number of non-# symbols it contains(2, 2, 1, 3 respectively in the example). The de�ning length of a schema is the distance between the outermostnon-# symbols (2, 3, 1, 3 respectively in the example).The schema theorem explains the power of the GA in terms of how schemata are processed. Individualsin the population are given opportunities to reproduce, often referred to as reproductive trials, and produceo�spring. The number of such opportunities an individual receives is in proportion to its �tness|hence thebetter individuals contribute more of their genes to the next generation. It is assumed that an individual's high�tness is due to the fact that it contains good schemata. By passing on more of these good schemata to thenext generation, we increase the likelihood of �nding even better solutions.Holland showed that the optimum way to explore the search space is to allocate reproductive trials toindividuals in proportion to their �tness relative to the rest of the population. In this way, good schematareceive an exponentially increasing number of trials in successive generations. This is called the schema theorem.He also showed that, since each individual contains a great many di�erent schemata, the number of schematawhich are e�ectively being processed in each generation is of the order n3, where n is the population size. Thisproperty is known as implicit parallelism, and is one of the explanations for the good performance of GAs.4.2 Building Block HypothesisAccording to Goldberg [Gol89a, p41], the power of the GA lies in it being able to �nd good building blocks. Theseare schemata of short de�ning length consisting of bits which work well together, and tend to lead to improvedperformance when incorporated into an individual. A successful coding scheme is one which encourages theformation of building blocks by ensuring that:1. related genes are close together on the chromosome, while2. there is little interaction between genes.Interaction (often referred to as epistasis) between genes means that the contribution of a gene to the �tnessdepends on the value of other genes in the chromosome. (For example, for echo-location, bats must be able togenerate ultrasonic squeaks, and have a good hearing system for detecting the echoes. The possession of eithercharacteristic by itself is of little use. Therefore, the genes for good hearing can only increase the \�tness" of abat if it also has genes for squeak production.)In fact there is always some interaction between genes in multimodal �tness functions. This is signi�cantbecause multimodal functions are the only sort of any real interest in GA research, since unimodal functionscan be solved more easily using simpler methods. 7



If these rules are observed, then a GA will be as e�ective as predicted by the schema theorem.Unfortunately, conditions (1) and (2) are not always easy to meet. Genes may be related in ways which donot allow all closely related ones to be placed close together in a one-dimensional string (for example, if theyare related hierarchically). In many cases, the exact nature of the relationship between the genes may not beknown to the programmer, so even if there are only simple relationships, it may still be impossible to arrangethe coding to re
ect this.Condition (2) is a precondition for (1). If the contribution to overall �tness of each gene were independentof all other genes, then it would be possible to solve the problem by hillclimbing on each gene in turn. Clearlythis is not possible in general. If we can ensure that each gene only interacts with a small number of other genesand these can be placed together on the chromosome, then conditions (1) and (2) can be met. But if there is alot of interaction between genes, then neither condition can be met.Clearly, we should try to design coding schemes to conform with Goldberg's recommendations, since thiswill ensure that the GA will work as well as possible. Two interesting questions therefore arise from this:1. Is it possible, in general, to �nd coding schemes which �t the recommendations of the building blockhypothesis? (And if so, then how can they be found?)2. If it is not possible to �nd such ideal coding schemes, can the GA be modi�ed to improve its performancein these circumstances? (And if so, how?)These questions are both important research topics.4.3 Exploration and exploitationAny e�cient optimisation algorithm must use two techniques to �nd a global maximum: exploration to inves-tigate new and unknown areas in the search space, and exploitation to make use of knowledge found at pointspreviously visited to help �nd better points. These two requirements are contradictory, and a good searchalgorithm must �nd a tradeo� between the two.A purely random search is good at exploration, but does no exploitation, while a purely hillclimbing methodis good at exploitation, but does little exploration. Combinations of these two strategies can be quite e�ective,but it is di�cult to know where the best balance lies (i.e. how much exploitation do we perform before givingup and exploring further?)Holland [Hol75] showed that a GA combines both exploration and exploitation at the same time in anoptimal way (using a k-armed bandit analogy, also described in [Gol89a, p36]). However, although this may betheoretically true for a GA, there are inevitably problems in practice. These arise because Holland made certainsimplifying assumptions, including:1. that population size is in�nite,2. that the �tness function accurately re
ects the utility of a solution, and3. that the genes in a chromosome do not interact signi�cantly.Assumption (1) can never be satis�ed in practice. Because of this the performance of a GA will alwaysbe subject to stochastic errors. One such problem, which is also found in nature, is that of genetic drift[Boo87, GS87].Even in the absence of any selection pressure (i.e. a constant �tness function), members of the populationwill still converge to some point in the solution space. This happens simply because of the accumulation ofstochastic errors. If, by chance, a gene becomes predominant in the population, then it is just as likely to becomemore predominant in the next generation as it is to become less predominant. If an increase in predominanceis sustained over several successive generations, and the population is �nite, then a gene can spread to allmembers of the population. Once a gene has converged in this way, it is �xed|crossover cannot introduce newgene values. This produces a ratchet e�ect, so that as generations go by, each gene eventually becomes �xed.The rate of genetic drift therefore provides a lower-bound on the rate at which a GA can converge towardsthe correct solution. That is, if the GA is to exploit gradient information in the �tness function, the �tnessfunction must provide a slope su�ciently large to counteract any genetic drift. The rate of genetic drift canbe reduced by increasing the mutation rate. However, if the mutation rate is too high, the search becomese�ectively random, so once again gradient information in the �tness function is not exploited.Assumptions (2) and (3) can be satis�ed for well-behaved laboratory test functions, but are harder to satisfyfor real-world problems. Problems with the �tness function have been discussed above. Problems with geneinteraction, (epistasis), have already been mentioned, and will be described further in Part 2.8



5 Practical aspects of GAsWhen designing a GA application, we need to consider far more than just the theoretical aspects described inthe previous section. Each application will need its own �tness function, as mentioned earlier, but there arealso less problem-speci�c practicalities to deal with. Most of the steps in the traditional GA (Figure 1) canbe implemented using a number of di�erent algorithms. For example, the initial population may be generatedrandomly, or using some heuristic method [Gre87, SG90].In this section we describe di�erent techniques for selecting two individuals to be mated. To understandthe motivation behind these techniques, we must �rst describe the problems which they are trying to overcome.These problems are related to the �tness function, so �rst we shall look at this more closely.5.1 Fitness functionAlong with the coding scheme used, the �tness function is the most crucial aspect of any GA. Much researchhas concentrated on optimising all the other parts of a GA, since improvements can be applied to a varietyof problems. Frequently, however, it has been found that only small improvements in performance can bemade. Grefenstette [Gre86] sought an ideal set of parameters (in terms of crossover and mutation probabilities,population size, etc.) for a GA, but concluded that the basic mechanism of a GA was so robust that, withinfairly wide margins, parameter settings were not critical. What is critical in the performance of a GA, however,is the �tness function, and the coding scheme used.Ideally we want the �tness function to be smooth and regular, so that chromosomes with reasonable �tnessare close (in parameter space) to chromosomes with slightly better �tness. For many problems of interest,unfortunately, it is not possible to construct such ideal �tness functions (if it were, we could simply use hill-climbing algorithms). Nevertheless, if GAs (or any search technique) are to perform well, we must �nd ways ofconstructing �tness functions which do not have too many local maxima, or a very isolated global maximum.The general rule in constructing a �tness function is that it should re
ect the value of the chromosomein some \real" way. As stated above, for many problems, the construction of the �tness function may be anobvious task. For example, if the problem is to design a �re-hose nozzle with maximum through 
ow, the �tnessfunction is simply the amount of 
uid which 
ows through the nozzle in unit time. Computing this may notbe trivial, but at least we know what needs to be computed, and the knowledge of how to compute it can befound in physics textbooks.Unfortunately the \real" value of a chromosome is not always a useful quantity for guiding genetic search. Incombinatorial optimisation problems, where there are many constraints, most points in the search space oftenrepresent invalid chromosomes|and hence have zero \real" value.An example of such a problem is the construction of school timetables. A number of classes must be givena number of lessons, with a �nite number of rooms and lecturers available. Most allocations of classes andlecturers to rooms will violate constraints such as a room being occupied by two classes at once, a class orlecturer being in two places at once, or a class not being timetabled for all the lessons it is supposed to receive.For a GA to be e�ective in this case, we must invent a �tness function where the �tness of an invalidchromosome is viewed in terms of how good it is at leading us towards valid chromosomes. This, of course, isa Catch-22 situation. We have to know where the valid chromosomes are to ensure that nearby points can alsobe given good �tness values, and far away points given poor �tness values. But, if we don't know where thevalid chromosomes are, this can't be done.Cramer [Cra85] suggested that if the natural goal of the problem is all-or-nothing, better results can beobtained if we invent meaningful sub-goals, and reward those. In the timetable problem, for example, we mightgive a reward for each of the classes which has its lessons allocated in a valid way.Another approach which has been taken in this situation is to use a penalty function, which representshow poor the chromosome is, and construct the �tness as (constant � penalty) [Gol89a, p84]. Richardson etal [RPLH89] give some guidelines for constructing penalty functions. They say that those which represent theamount by which the constraints are violated are better than those which are based simply on the numberof constraints which are violated. Good penalty functions, they say, can be constructed from the expectedcompletion cost . That is, given an invalid chromosome, how much will it \cost" to turn it into a valid one?DeJong & Spears [DS89] describe a method suitable for optimising boolean logic expressions. There is muchscope for work in this area.Approximate function evaluation is a technique which can sometimes be used if the �tness function isexcessively slow or complex to evaluate. If a much faster function can be devised which approximately gives thevalue of the \true" �tness function, the GA may �nd a better chromosome in a given amount of CPU time than9



when using the \true" �tness function. If, for example, the simpli�ed function is ten times faster, ten timesas many function evaluations can be performed in the same time. An approximate evaluation of ten points inthe search space is generally better than an exact evaluation of just one. A GA is robust enough to be ableto converge in the face of the noise represented by the approximation. This technique was used in a medicalimage registration system, described by Goldberg [Gol89a, p138]. In attempting to align two images, it wasfound that optimum results were obtained when only 1/1000th of the pixels were tested.Approximate �tness techniques have to be used in cases where the �tness function is stochastic. For example,if the problem is to evolve a good set of rules for playing a game, the �tness may be assessed by using themto play against an opponent. But each game will be di�erent, so it is only ever possible to determine anapproximation of the �tness of the rule set [Chi89]. Goldberg [Gol89a, p206{8] describes other techniques forapproximate function evaluation, for example using an incremental computation based on the parents' �tness.5.2 Fitness Range ProblemsAt the start of a run, the values for each gene for di�erent members of the population are randomly distributed.Consequently, there is a wide spread of individual �tnesses. As the run progresses, particular values for eachgene begin to predominate. As the population converges, so the range of �tnesses in the population reduces.This variation in �tness range throughout a run often leads to the problems of premature convergence and slow�nishing .5.2.1 Premature convergenceA classical problem with GAs is that the genes from a few comparatively highly �t (but not optimal) individualsmay rapidly come to dominate the population, causing it to converge on a local maximum. Once the populationhas converged, the ability of the GA to continue to search for better solutions is e�ectively eliminated: crossoverof almost identical chromosomes produces little that is new. Only mutation remains to explore entirely newground, and this simply performs a slow, random search [Gol89b].The schema theorem says that we should allocate reproductive trials (or opportunities) to individuals inproportion to their relative �tness. But when we do this, premature convergence occurs|because the populationis not in�nite. In order to make GAs work e�ectively on �nite populations, we must modify the way we selectindividuals for reproduction.Ways of doing this are described in Section 5.3. The basic idea is to control the number of reproductiveopportunities each individual gets, so that it is neither too large, nor too small. The e�ect is to compress therange of �tnesses, and prevent any \super-�t" individuals from suddenly taking over.5.2.2 Slow �nishingThis is the converse problem to premature convergence. After many generations, the population will havelargely converged, but may still not have precisely located the global maximum. The average �tness will behigh, and there may be little di�erence between the best and the average individuals. Consequently there is aninsu�cient gradient in the �tness function to push the GA towards the maximum.The same techniques used to combat premature convergence also combat slow �nishing. They do this byexpanding the e�ective range of �tnesses in the population. As with premature convergence, �tness scalingcan be prone to overcompression (or, rather, underexpansion) due to just one \super poor" individual. Thesetechniques are described below.5.3 Parent selection techniquesParent selection is the task of allocating reproductive opportunities to each individual. In principle, individualsfrom the population are copied to a \mating pool", with highly �t individuals being more likely to receivemore than one copy, and un�t individuals being more likely to receive no copies. Under a strict generationalreplacement scheme (see Section 5.4), the size of the mating pool is equal to the size of the population. Afterthis, pairs of individuals are taken out of the mating pool at random, and mated. This is repeated until themating pool is exhausted.The behaviour of the GA very much depends on how individuals are chosen to go into the mating pool.Ways of doing this can be divided into two types of methods. Firstly, we can take the �tness score of eachindividual, map it onto a new scale, and use this remapped value as the number of copies to go into the matingpool (the number of reproductive trials). Another method has been devised which achieves a similar e�ect,10



but without going through the intermediate step of computing a modi�ed �tness. We shall call these methodsexplicit �tness remapping and implicit �tness remapping .5.3.1 Explicit �tness remappingTo keep the mating pool the same size as the original population, the average of the number of reproductivetrials allocated per individual must be one. If each individual's �tness is remapped by dividing it by theaverage �tness of the population, this e�ect is achieved. This remapping scheme allocates reproductive trials inproportion to raw �tness, according to Holland's theory.Before we discuss other remapping schemes, there is a practical matter to be cleared up. The remapped�tness of each individual will, in general, not be an integer. Since only an integral number of copies of eachindividual can be placed in the mating pool, we have to convert the number to an integer in a way that doesnot introduce bias. A great deal of work has gone into �nding the best way of doing this [Gol89a, p121].A widely used method is known as stochastic remainder sampling without replacement . A better method,stochastic universal sampling was devised by Baker [Bak87], and is elegantly simple and theoretically perfect.It is important not to confuse the sampling method with the parent selection method. Di�erent parent selectionmethods may have advantages in di�erent applications. But a good sampling method (such as Baker's) is alwaysgood, for all selection methods, in all applications.As mentioned in Section 5.2.1, we do not want to allocate trials to individuals in direct proportion to raw�tness. Many alternative methods for remapping raw �tness, so as to prevent premature convergence, havebeen suggested. Several are described in [Bak85]. The major ones are described below.Fitness scaling is a commonly employed method. In this, the maximum number of reproductive trialsallocated to an individual is set to a certain value, typically 2.0. This is achieved by subtracting a suitablevalue from the raw �tness score, then dividing by the average of the adjusted �tness values. Subtracting a�xed amount increases the ratio of maximum�tness to average �tness. Care must be taken to prevent negative�tness values being generated.
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Fitness6543210Figure 7: Raw and adjusted �tness histogramsFigure 7 shows a histogram of raw �tness values, with an average �tness of 5.4, and a maximum �tness of6.5. This gives a maximum:average ratio of 1.2, so, without scaling, the most �t individual would be expected toreceive 1.2 reproductive trials. To apply �tness scaling (perhaps �tness shifting would be a more accurate term)we subtract (2 � average � maximum) = 4:3 from all �tnesses. This gives a histogram of adjusted �tnesseswith an average of 1.1 and a maximum of 2.2, so the maximum:average ratio is now 2.Fitness scaling tends to compress the range of �tnesses at the start of a run, thus slowing down convergence,and increasing the amount of exploration.However, the presence of just one super �t individual (with a �tness ten times greater than any other, forexample), can lead to overcompression. If the �tness scale is compressed so that the ratio of maximumto averageis 2:1, then the rest of the population will have �tnesses clustered closely about 1. Although we have preventedpremature convergence, we have done so at the expense of e�ectively 
attening out the �tness function. Asmentioned above, if the �tness function is too 
at, genetic drift will become a problem, so overcompression maylead not just to slower performance, but also to drift away from the maximum.Fitness windowing is used in Grefenstette's GENESIS GA package [Gre84]. This is the same as �tnessscaling, except the the amount to be subtracted is chosen di�erently. The minimum �tness in each generation11



is recorded, and the amount subtracted is the minimum �tness observed during the previous n generations,where n is typically 10. With this scheme the selection pressure (i.e. the ratio of maximum to average trialsallocated) varies during a run, and also from problem to problem. The presence of a super-un�t individualwill cause underexpansion, while super-�t individuals may still cause premature convergence, since they do notin
uence the degree of scaling applied.The problem with both �tness scaling and �tness windowing is that the degree of compression is dictatedby a single, extreme individual, either the �ttest or the worst. Performance will su�er if the extreme individualis exceptionally extreme.Fitness ranking is another commonly employed method, which overcomes the reliance on an extremeindividual. Individuals are sorted in order of raw �tness, and then reproductive �tness values are assignedaccording to rank. This may be done linearly [Bak85], or exponentially [Dav89]. This gives a similar result to�tness scaling, in that the ratio of the maximum to average �tness is normalised to a particular value. Howeverit also ensures that the remapped �tnesses of intermediate individuals are regularly spread out. Because of this,the e�ect of one or two extreme individuals will be negligible, irrespective of how much greater or less their�tness is than the rest of the population. The number of reproductive trials allocated to, say, the �fth bestindividual will always be the same, whatever the raw �tness values of those above (or below). The e�ect is thatovercompression ceases to be a problem.Several experiments have shown ranking to be superior to �tness scaling [Bak85, Whi89].Other methods (hybrid methods including using a dynamic population size) are described in [Bak85], butwere found not to perform well.5.3.2 Implicit �tness remappingImplicit �tness remapping methods �ll the mating pool without passing through the intermediate stage ofremapping the �tness.Tournament selection [Bri81, GD91] is such a technique. There are several variants. In the simplest,binary tournament selection, pairs of individuals are picked at random from the population. Whichever hasthe higher �tness is copied into a mating pool (and then both are replaced in the original population). Thisis repeated until the mating pool is full. Larger tournaments may also be used, where the best of n randomlychosen individuals is copied into the mating pool.Using larger tournaments has the e�ect of increasing the selection pressure, since below average individualsare less likely to win a tournament, while above average individuals are more likely to.A further generalisation is probabilistic binary tournament selection. In this, the better individual wins thetournament with probability p, where 0:5 < p < 1. Using lower values of p has the e�ect of decreasing theselection pressure, since below average individuals are comparatively more likely to win a tournament, whileabove average individuals are less likely to.By adjusting tournament size or win probability, the selection pressure can be made arbitrarily large orsmall.Goldberg & Deb [GD91] compare four di�erent schemes; proportionate selection, �tness ranking, tournamentselection and steady state selection (see Section 5.4). They conclude that by suitable adjustment of parameters,all these schemes, (apart from proportionate selection), can be made to give similar performances, so there isno absolute \best" method.5.4 Generation gaps and steady-state replacementThe generation gap is de�ned as the proportion of individuals in the population which are replaced in eachgeneration. Most work has used a generation gap of 1|i.e. the whole population is replaced in each generation.This value is supported by the investigations of Grefenstette [Gre86]. However, a more recent trend has favouredsteady-state replacement [Whi87, Whi89, Sys89, Dav89, Dav91]. This operates at the other extreme|in eachgeneration only a few (typically two) individuals are replaced.This may be a better model of what happens in nature. In short-lived species, including some insects,parents lay eggs, and then die before their o�spring hatch. But in longer-lived species, including mammals,o�spring and parents are alive concurrently. This allows parents to nurture and teach their o�spring, but alsogives rise to competition between them. 12



In the steady-state case, we not only have to consider how to select two individuals to be parents, but wealso have to select two unlucky individuals from the population to be killed o�, to make way for the o�spring.Several schemes are possible, including:1. selection of parents according to �tness, and selection of replacements at random2. selection of parents at random, and selection of replacements by inverse �tness3. selection of both parents and replacements according to �tness/inverse �tnessFor example, Whitley's GENITOR algorithm [Whi89], selects parents according to their ranked �tness score,and the o�spring replace the the two worst members of the population.The essential di�erence between a conventional, generational replacement GA, and a steady state GA, isthat population statistics (such as average �tness) are recomputed after each mating in a steady state GA, (thisneed not be computationally expensive if done incrementally), and the new o�spring are immediately availablefor reproduction. Such a GA therefore has the opportunity to exploit a promising individual as soon as it iscreated.However, Goldberg & Deb's investigations [GD91] found that the advantages claimed for steady-state se-lection seem to be related to the high initial growth rate. The same e�ects could be obtained, they claim,using exponential �tness ranking, or large-size tournament selection. They found no evidence that steady-statereplacement is fundamentally better than generational.6 ApplicationsSome example GA applications were mentioned in the introduction. To illustrate the 
exibility of GAs, here welist some more. Some of these applications have been used in practice, while others remain as research topics.Numerical function optimisation. Most traditional GA research has concentrated in this area. GAshave been shown to be able to outperform conventional optimisation techniques on di�cult, discontinuous,multimodal, noisy functions [DeJ75].Image processing. With medical X-rays or satellite images, there is often a need to align two images ofthe same area, taken at di�erent times. By comparing a random sample of points on the two images, a GA cane�ciently �nd a set of equations which transform one image to �t onto the other [Gol89a, p138].A more unusual image processing task is that of producing pictures of criminal suspects [CJ91]. The GAreplaces the role of the traditional photo-�t system, but uses a similar coding scheme. The GA generates anumber of random faces, and the witness selects the two which are most similar to the suspect's face. Theseare then used to breed more faces for the next generation. The witness acts as the \�tness function" of the GA,and is able to control its convergence towards the correct image.Combinatorial optimisation tasks require solutions to problems involving arrangements of discrete ob-jects. This is quite unlike function optimisation, and di�erent coding, recombination, and �tness functiontechniques are required. Probably the most widely studied combinatorial task is the travelling salespersonproblem [Gol85, GS89, LHPM87]. Here the task is to �nd the shortest route for visiting a speci�ed group ofcities. Near optimal tours of several hundred cities can be determined. Bin packing, the task of determininghow to �t a number of objects into a limited space, has many applications in industry, and has been widelystudied [Dav85a, Jul92]. A particular example is the layout of VLSI integrated circuits [Fou85]. Closely relatedis job shop scheduling, or time-tabling, where the task is to allocate e�ciently a set of resources (machines,people, rooms, facilities) to carry out a set of tasks, such as the manufacture of a number of batches of machinecomponents [BUMK91, Dav85b, Sys91, WSF89]. There are obvious constraints: for example, the same machinecannot be used for doing two di�erent things at the same time. The optimum allocation has the earliest overallcompletion time, or the minimum amount of \idle time" for each resource.Design tasks can be a mix of combinatorial and function optimisation. We have already mentioned threedesign applications; bridge structure, a �re hose nozzle and neural network structure. GAs can often try thingswhich a human designer would never have thought of|they are not afraid to experiment, and do not havepreconceived ideas. Design GAs can be hybridised with more traditional optimisation or expert systems, toyield a range of designs which a human engineer can then assess.Machine learning. There are many applications of GAs to learning systems, the usual paradigm beingthat of a classi�er system. The GA tries to evolve (i.e. learn) a set of if : : : then rules to deal with someparticular situation. This has been applied to game playing [Axe87] and maze solving, as well as political andeconomic modelling [FMK91]. 13



A major use of machine learning techniques has been in the �eld of control [DeJ80, Hun92, KG90]. Ina large, complex system, such as a chemical plant, there may be many control parameters to be adjusted tokeep the system running in an optimal way. Generally, the classi�er system approach is used, so that rules aredeveloped for controlling the system. The �tness of a set of rules may be assessed by judging their performanceeither on the real system itself, or on a computer model of it. Fogarty [Fog88] used the former method todevelop rules for controlling the optimum gas/air mixture in furnaces. Goldberg modelled a gas pipeline systemto determine a set of rules for controlling compressor stations and detecting leaks [Gol89a, p288]. Davis andCoombs used a similar approach to design communication network links [DC87].7 SummaryGAs are a very broad and deep subject area, and most of our knowledge about them is empirical. This articlehas described the fundamental aspects of GAs; how they work, theoretical and practical aspects which underliethem, and how they compare with other techniques.If this article has aroused your interest, you may wish to �nd out more. For those with access to the UsenetNews system, the comp.ai.genetic newsgroup supports discussion about GA topics. A moderated bulletin,GA-digest is distributed by email from the US Navy's Arti�cial Intelligence Centre. Subscription is free. Tojoin, send a request to: GA-List-Request@aic.nrl.navy.mil . They also support an FTP site, containingback issues of GA-digest, information on publications and conferences, and GA source code which can be freelycopied. To use this service, connect using ftp to ftp.aic.nrl.navy.mil using anonymous as the user nameand your email address as the password. Then change directory to /pub/galist. There is a README �le whichgives up-to-date information about the contents of the archive. The administrators request that you do not usethis facility between 8am and 6pm EST (1pm to 11pm GMT), Monday to Friday.Part 2 of this article will appear in a future issue of this journal, and will go into further detail.References[Ack87] D.H. Ackley. An empirical study of bit vector function optimization. In L. Davis, editor, GeneticAlgorithms and Simulated Annealing, chapter 13, pages 170{204. Pitman, 1987.[Axe87] R. Axelrod. The evolution of strategies in the iterated prisoner's dilemma. In L. Davis, editor,Genetic Algorithms and Simulated Annealing, chapter 3, pages 32{41. Pitman, 1987.[Bak85] J.E. Baker. Adaptive selection methods for genetic algorithms. In J.J. Grefenstette, editor, Pro-ceedings of the First International Conference on Genetic Algorithms, pages 101{111. LawrenceErlbaum Associates, 1985.[Bak87] J.E. Baker. Reducing bias and ine�ciency in the selection algorithm. In J.J. Grefenstette, editor,Proceedings of the Second International Conference on Genetic Algorithms, pages 14{21. LawrenceErlbaum Associates, 1987.[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, 1957.[Boo87] L. Booker. Improving search in genetic algorithms. In L. Davis, editor, Genetic Algorithms andSimulated Annealing, chapter 5, pages 61{73. Pitman, 1987.[Bri81] A. Brindle. Genetic algorithms for function optimization. PhD thesis, University of Alberta, 1981.[BUMK91] S. Bagchi, S. Uckun, Y. Miyabe, and K. Kawamura. Exploring problem-speci�c recombinationoperators for job shop scheduling. In R.K. Belew and L.B. Booker, editors, Proceedings of theFourth International Conference on Genetic Algorithms, pages 10{17. Morgan Kaufmann, 1991.[Bun84] B.D. Bunday. Basic Optimisation methods. Edward Arnold, 1984.[Chi89] P-C. Chi. Genetic search with proportion estimates. In J.D. Scha�er, editor, Proceedings of theThird International Conference on Genetic Algorithms, pages 92{97. Morgan Kaufmann, 1989.[CJ91] C. Caldwell and V.S. Johnston. Tracking a criminal suspect through \face-space" with a geneticalgorithm. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Con-ference on Genetic Algorithms, pages 416{421. Morgan Kaufmann, 1991.14
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