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Part II

Applications
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Outline

Reasons for using decomposition
Block angular structure: examples
Solving LP relaxations with column generation
Application: Cutting Stock (CSP) and Bin Packing (BPP) Problems
Application: Vehicle routing
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Reasons for using decomposition

Models from DW decomposition:
become manageable in size: number of constraints is reduced and
column generation is used.
are suitable to deal with non-linear constraints: they are tackled in a
dynamic programming subproblem.
may be stronger: subproblems do not have the integrality property.
may be the only models at hand, because compact models may not
be known.
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General structure: block angular with linking constraints

DW decomposition partitions model into levels: Main problem and
subproblem(s) (or Master and slave(s)).
Subproblem(s) has(ve) nice structure that can be exploited (e.g.,
network).

D

A1

. . .

Ah

Block D - Linking constraints
Each of the blocks A1, . . . ,Ah defines a different subproblem
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Examples of models resulting from structured problems

Problem D block A blocks
Production
planning

Availability of common
resources required for
production (e.g., ma-
chine capacities).

One block for each product.
Production requirements of each
product (for example, forced by
existing demand).

Vehicle
routing

Constraints imposed
on the fleet of vehicles
(e.g., it must visit all
the clients).

One for each vehicle.
Route and vehicle constraints
(e.g., a route must end at a de-
pot and vehicle capacity cannot
be exceeded).

Generalised
assignment

Constraints imposed
on the group of agents
(all the tasks must be
performed).

One for each agent, related with
its capacity.

Machine
scheduling

Job constraints (e.g.,
all jobs must be done).

One for each machine.
Machine constraints (e.g., two
tasks cannot be made at the
same time).
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Decomposition framework

Master Problem (MP)
"combines" independent solutions of SPs
constraints in MP tell how resources are used by subproblem
solutions

Subproblem(s) (SP)
usually subproblem solutions are paths.
difficult constraints (non-linearities) are tackled in the subproblem
(solved with dynamic programming)
SP use resources when economically efficient
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Economic interpretation of DW decomposition

Master Problem (MP)
controls usage of resources: tells SP the price of the usage of resources

MP

SP1 SP2 . . . SPh
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Subproblem(s) (SPs)
compete for resources: each SP makes its best bid to MP
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Application I

Cutting Stock Problem (CSP) and Bin Packing Problem (BPP)
Kantorovich model
Gilmore-Gomory model
Solution of Gilmore-Gomory model by column generation
Example (solution of LP relaxation)
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Cutting Stock Problem
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W: width of large rolls
wi : width of rolls for client i , i = . . . ,m
bi : demand of rolls of width wi (many items of each size)
Objective: cut the minimum number of rolls to satisfy demand.
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Cutting and packing problems

Bin packing problem:
given an unbounded number of bins of capacity W and a list of n
items of size wi , 0<wi ≤W , i = 1, . . . ,n,

pack all the items in the smallest number of bins without exceeding
their capacity.

few items of each size.

Cutting stock problem:
given an unbounded number of rolls of size W, and given m clients
with demands of bi rolls of size wi , 0<wi ≤W , i = . . . ,m,

cut the minimum number of rolls to satisfy demand.

many items of each size.
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Cutting Stock Problem: a weak model

Decision variables xij =
{

1 , if item j is placed in roll i
0 , otherwise

Decision variables yi =
{

1 , if roll i is used
0 , otherwise

minzIP =
n∑

i=1
yi

subj. to
n∑

j=1
wjxij ≤Wyi , ∀i ∈ I

n∑
i=1

xij = 1, ∀j ∈ J

yi = 0 or 1, ∀i
xij = 0 or 1, ∀i , j

L. Kantorovich, "Mathematical methods of organising and planning
production" (translated from a paper in Russian, dated 1939),
Management Science 6, 366–422, 1960.
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Quality of the relaxation: value of the lower bound

LP relaxation: replace the last two constraints by 0≤ yi ≤ 1,∀i , and
0≤ xij ≤ 1,∀i , j , respectively.

LP relaxation optimum, z∗
LP , is a lower bound for the IP optimum.

Proposition (Martello and Toth, 90)
Lower bound LB1 = �∑n

i=1 wi/W �.

Proof: No solution can have an objective value lower than ∑n
i=1 wi/W .

Solution xii = 1,xij = 0,∀j �= i , and yi =wi/W ,∀i , has an objective value,
z∗

LP =∑n
i=1 wi/W , equal to that value. So, it is an optimal LP solution.

Round up, because the number of bins must be integer.

Bound can be very poor for instances with large loss: there may be cases
in which z∗

LP → 1/2 zIP .
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Example: Bins of capacity 8 and 16 items of size 5

Integer optimum is 16: Linear relaxation optimum is 10:
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x11 = 1 , y1 = 5/8
x22 = 1 , y2 = 5/8

. . . . . .
x16,16 = 1 , y16 = 5/8

∑
i yi = 10

Gap between Integer and Linear Relaxation optima, zIP −zLP = 6.
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Cutting Stock Problem: Gilmore-Gomory model

Cutting Pattern: possible arrangement of items in the roll:
m∑

i=1
aijwi ≤W

aij ≥ 0 and integer, ∀j ∈ J .

aij : number of items of width wi obtained in the cutting pattern j
J : set of valid cutting patterns.
xj : number of rolls cut according cutting pattern j .

min zIP = ∑
j∈J

xj

subj . to
∑
j∈J

aijxj ≥ bi , i = 1,2, . . . ,m

xj ≥ 0 and integer, ∀j ∈ J
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Example (cont.): Bins of capacity 8 and 16 items of size 5

The only valid Mathematical formulation:
cutting pattern is:

5

3

min zLP = x1
subj. to 1x1 ≥ 16

x1 ≥ 0

Optimal value of linear relaxation zLP = 16, when x1 = 16.

Gap between Integer and Linear Relaxation optima, zIP −zLP = 0.
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Gilmore-Gomory’s bound in practice

Bound given by the LP relaxation of Gilmore-Gomory’s model is very
tight.
Most of the one-dimensional cutting stock instances have gaps
smaller than one.
There are instances with gaps equal to 1 (O.Marcotte’1985,86).
Largest gap known is 7

6 (Rietz,Scheithauer’2002).
Conjecture: all instances have gaps smaller than 2 (modified integer
round-up property) (Scheithauer,Terno’1995).
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Column generation for CSP [Gilmore, Gomory, 1961]

Generally, it is unpractical to enumerate all valid cutting patterns.

Solve linear programming relaxation of CSP using column generation:
Choose an initial restricted set of cutting patterns
While (there is an a attractive cutting pattern) do

add attractive cutting pattern to restricted problem
reoptimize

End While

To get an integer solution, round up fractional values of cutting patterns.
Solutions are of good quality, if the quantities demanded are high.
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Cutting Stock Problem: Restricted Problem

min zLP = ∑
j∈J

xj

subj .to
∑
j∈J

aijxj ≥ bi , i = 1,2, . . . ,m

xj ≥ 0, ∀j ∈ J ,

J : subset of cutting patterns in restricted problem
π=π(J)= (π1,π2, . . . ,πm) : optimal dual solution with subset J

Pricing cutting patterns out of the restricted problem:

Reduced cost of cutting pattern j = cj −cBB−1Aj =

= 1−
m∑

i=1
aijπi

Column is attractive if its reduced cost < 0
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Cutting Stock Problem: objective function of subproblem

Find most attractive cutting pattern ∈ J \J :

min
j∈J\J

1−
m∑

i=1
aijπi

Columns in J have reduced costs ≥ 0; so, search over J :

min
j∈J

1−
m∑

i=1
aijπi

Maximize symmetric function:

min
j∈J

1−
m∑

i=1
aijπi ≡ max

j∈J

m∑
i=1

aijπi −1

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 21



Cutting Stock Problem: knapsack subproblem

Knapsack subproblem:
max zs =

m∑
i=1

πiyi

subj . to
m∑

i=1
wiyi ≤W

yi ≥ 0 and integer, i = 1,2, . . . ,m,

yi : number of items of size wi in the new cutting pattern

If optimum z∗
s > 1, cutting pattern is attractive.

If no attractive columns, solution is optimal.
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(Very Small) Example

44 4

4

2

2

2

2
2

2

2

3 3

3
3 2

2

cutting patterns
W = 8 x1 x2 x3 x4 x5 x6

Demand bi

wi = 4 2 1 1 ≥ 5
3 1 2 1 ≥ 4
2 2 1 2 4 ≥ 8

min 1 1 1 1 1 1
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(Very Small) Example (cont.)

cutting patterns
W = 8 x1 x2 x3 x4 x5 x6

Demand bi

wi = 4 2 1 1 ≥ 5
3 1 2 1 ≥ 4
2 2 1 2 4 ≥ 8

min 1 1 1 1 1 1

Optimal fractional solution
2.5 2.0 1.5 6 rolls

Fractional solution rounded up
3.0 2.0 2.0 7 rolls

Excess production: 1 item of width 4 and 2 items of width 2
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Restricted problem: first iteration

Initial solution: 3 columns, each with items of the same size (as
suggested by Gilmore and Gomory’61).

Using an LP solver, we obtain the following optimal solution (primal and
dual):

x1 x2 x3 dual
wd = 4 2 ≥ 5 0.5

3 2 ≥ 4 0.5
2 4 ≥ 8 0.25

min 1 1 1

primal 2.5 2.0 2.0 z0 = 6.5
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Subproblem: first iteration

max zs = 0.5y1+ 0.5y2+ 0.25y3
subj . to 4y1+ 3y2+ 2y3 ≤ 8

yj ≥ 0 and integer,∀j

States

0
1
2
3
4
5
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7
8

Stages
0 1 2 3 4
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Optimal solution: (y1,y2,y3)= (0,2,1),z∗
s = 1.25→ Attractive
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Subproblem: knapsack problem
Dynamic programming
Fi (x) : maximum value from placing items with index less than or
equal to i using x units of space.
Recursive equations of Knapsack Problem with upper bounds on
variables:

F0(0) = 0
Fi (x) = max

x−lwi≥0
{Fi−1(x − lwi )+ lπi : 0≤ l ≤ lmax

i },

x = 0,1, . . . ,W ; i = 1,2, ...,m.

Largest number of items of a given size in a cutting pattern
(element aij in column j) must also be less than or equal to the
demand of that size:

lmax
i = amax

ij = min
{

bi ,

⌊W
wi

⌋}

Computational complexity is O(mW 2)
weakly NP-hard (pseudo-polynomial)
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Restricted problem: second iteration

Attractive cutting pattern: 2 items of size 3 and 1 item of size 2.

Insert attractive column in the restricted problem, and reoptimize.

Optimal solution:

x1 x2 x3 x4 dual
wd = 4 2 ≥ 5 0.5

3 2 2 ≥ 4 0.375
2 4 1 ≥ 8 0.25

min 1 1 1 1

primal 2.5 0.0 1.5 2.0 zLP = 6.0
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Subproblem: second iteration

max zs = 0.5y1+ 0.375y2+ 0.25y3
subj . to 4y1+ 3y2+ 2y3 ≤ 8

yj ≥ 0 and integer,∀j

States

0
1
2
3
4
5
6
7
8

Stages
0 1 2 3 4
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Alternative optima (Value z∗
s = 1.0)→ No attractive columns. So...
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Optimal solution of the linear relaxation

x1 x2 x3 x4 dual
wd = 4 2 ≥ 5 0.5

3 2 2 ≥ 4 0.375
2 4 1 ≥ 8 0.25

min 1 1 1 1

primal 2.5 0.0 1.5 2.0 zLP = 6.0

4

4

3
3
22

2
2
2

A1 A3 A4

xj = 2.5 1.5 2.0

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 30



Strengthening the formulation
LP relaxation has an optimal value zLP . Optimal solution has an integer
value.
Round-up: use a number of rolls ≥ LP optimum rounded up:

∑
j∈J

xj ≥ �zLP�

In this case, zLP is integer: new constraint does not change the optimal
solution.

x1 x2 x3 x4 dual
wd = 4 2 ≥ 5 0.5

3 2 2 ≥ 4 0.375
2 4 1 ≥ 8 0.25

round-up 1 1 1 1 ≥ 6 0.0
min 1 1 1 1

primal 2.5 0.0 1.5 2.0 zLP = 6.0

Easy to transfer dual information to subproblem.
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Application II

Vehicle Routing Problem with Time Windows
Flow model
Reformulated model
Subproblem
Dealing with subproblem
Resource constraints: a general framework
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Vehicle Routing Problem with Time Windows

Statement
Given

a set of vehicles with given capacities,
a set clients with given demands and time windows,

find
a set of routes, all starting and ending at the depot,
such that each client is visited by one vehicle in a way that
minimizes costs.
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A set of routes
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Mathematical model

Set of clients N = {1,2, . . . ,n}

demands di , i ∈N
time windows [ai ,bi ], i ∈N .

Set of homogeneous vehicles {1,2, . . . ,K }

K is known
capacity Q
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Mathematical model

Single depot, which is the origin and the destination of all vehicle routes:
split into 2 nodes:

origin node o ≡ vertex 0
destination node d ≡ vertex n+1
no demand: d0 = dn+1 = 0
time windows [a0,b0]= [an+1,bn+1]
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Mathematical model

Graph G = (V ,A)
V =N ∪ {o,d} represents the set of nodes
A the set of oriented arcs.

arc (i , j) ∈A⊂V ×V :
cij : cost incurred in travelling through the arc
tij : travel time (includes service time of node i)
for an arc to be feasible,

ai + tij ≤ bj

The optimization objective of the plan is to minimize the total cost of
the vehicles routes.
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Mathematical model

Feasible route: path p = (v0,v1, . . . ,vH)

starts at origin node (v0 = o)
ends at destination node (vH = d)
visits customers vi ∈N , i = 1, . . . ,H −1
obeys capacity constraints ∑H−1

i=1 di ≤Q
obeys time windows:

T0 = av0

Ti+1 = max{avi+1,Ti + tvi ,vi+1 } ≤ bvi+1 , ∀i = 0, . . . ,H −1
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Decision variables

Flow variables:

xk
ij =

{
1 , if vehicle k travels from client i to client j
0 , otherwise

∀k = 1, . . . ,K ,(i , j) ∈A

Time variables:
T k

i : start of service of vehicle k at node i
∀k = 1, . . . ,K , i ∈V
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Model with arc variables

min
K∑

k=1

∑
(i ,j)∈A

cijxk
ij (1)

s .to
K∑

k=1

∑
(i ,j)∈δ+(i)

xk
ij = 1, ∀i ∈N (2)

∑
(0,j)∈δ+(0)

xk
0j = 1, ∀k = 1, . . . ,K (3)

∑
(i ,j)∈A

dixk
ij ≤Q, ∀k = 1, . . . ,K (4)

∑
(i ,j)∈δ−(j)

xk
ij =

∑
(j ,i)∈δ+(j)

xk
ji , ∀j ∈N ,k = 1, . . . ,K (5)

∑
(i ,d)∈δ−(d)

xk
id = 1, ∀k = 1, . . . ,K (6)

T k
i −T k

j +Mxk
ij ≤M − tij , ∀k = 1, . . . ,K ,(i , j) ∈A (7)

ai ≤T k
i ≤ bi , ∀k = 1, . . . ,K , i ∈V (8)

xk
ij ∈ {0,1}, ∀k = 1, . . . ,K ,(i , j) ∈A (9)
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Time constraints (7)

T k
i −T k

j +Mxk
ij ≤M − tij , ∀k = 1, . . . ,K ,(i , j) ∈A

M = bi −aj + tij provides a tighter constraint
an alternative way of expressing constraint is the non-linear
constraint:

(T k
i −T k

j + tij)xk
ij ≤ 0, ∀k = 1, . . . ,K ,(i , j) ∈A

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 41



Dantzig-Wolfe decomposition

Keep in the master problem the partitioning constraints
Remaining constraints in subproblem k
Subproblem k finds solutions which are elementary shortest paths
with capacity constraints and time windows
extreme points are feasible route ≡ paths
each decision variable corresponds to a path for vehicle k
if the fleet is homogeneous, all blocks are identical
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Reformulated model

Pk : set of feasible routes for vehicle k, each obeying the constraints,
yk

p ∈ {0,1} : vehicle k does route p ∈Pk

ck
p =∑h

i=0 ck
vi ,vi+1 : cost of vehicle k in path p ∈Pk

min
K∑

k=1

∑
p∈Pk

ck
p yk

p

s. to
K∑

k=1

∑
p∈Pk

δk
ipyk

p = 1 , ∀i ∈V

∑
p∈Pk

yk
p = 1, k = 1, . . . ,K

yk
p ∈ {0,1}, ∀p ∈Pk ,k = 1, . . . ,K

where

δk
ip =

{
1 , if route p of vehicle k visits client i
0 , otherwise
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Reformulated model with all vehicle identical
P =Pk , k = 1, . . . ,K : all vehicles are identical
convexity constraints ∑

p∈Pk yk
p = 1, k = 1, . . . ,K can be aggregated

into a single constraint ∑K
k=1

∑
p∈Pk yk

p =K .

Vehicles with path (o,d) do not leave the depot;
they act as slack variables: above constraint is a ≤ constraint.
Using yp =∑K

k=1 yk
p , then

min
∑
p∈P

cpyp

s. to
∑
p∈P

δipyp = 1 , ∀i ∈V
∑
p∈P

yp ≤K

yp ∈ {0,1}, ∀p ∈P

where
δip =

{
1 , if route p visits client i
0 , otherwise
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Example with 8 clients

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15
node 1 1 1 1 1 1 1 = 1

2 1 1 1 1 1 1 1 = 1
3 1 1 1 1 1 1 = 1
4 1 1 1 1 = 1
5 1 1 1 = 1
6 1 1 1 1 = 1
7 1 1 1 1 1 = 1
8 1 1 1 1 1 = 1

vehicles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ≤ 4
cost 8 7 10 9 8 7 10 11 7 6 10 9 10 12 7
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Subproblem

Find path with minimum reduced cost:

min
∑

(i ,j)∈A
c ijxij

s .to
∑

(0,j)∈δ+(0)
x0j = 1

∑
(i ,j)∈A

dixij ≤Q

∑
(i ,j)∈δ−(j)

xij =
∑

(j ,i)∈δ+(j)
xji , ∀j ∈N

(Ti −Tj + tij)xij ≤ 0, ∀(i , j) ∈A
ai ≤Ti ≤ bi , ∀i ∈V
xij ∈ {0,1}, ∀(i , j) ∈A
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Subproblem

Elementary Shortest Path Problem with Time Windows and Capacity
constraints (ESPPTWC)

path p
starts at origin node o, and ends at destination node n+1
obeys capacity constraints
obeys time windows, and
with minimum reduced cost cp =∑c ijxij

Reduced costs of arcs:
c ij = cij −πi , ∀(i , j) ∈A, i �= o
c ij = cij −μ, ∀(o, j) ∈A, where
πi : dual variable of visit constraint to node i ,

μ : dual variable of number of vehicles constraint

arcs with negative reduced cost induce negative cost cycles in the
network!
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ESPPTWC

Dynamic programming
F (S , i ,t) : minimum cost of path from o to i , i ∈N ∪ {d}, visiting all
nodes in set S ⊆N ∪ {d} only once, and servicing node i at time t or
later.
Recursive equations:

F (�,o,a0) = 0
F (S , j ,t) = min(i ,j)∈A{F (S − {j}, i ,t ′)+cij :

i ∈ S − {j},t ′ ≤ t − tij ,ai ≤ t ′ ≤ bi },
∀S ⊆N ∪ {d}, j ∈ S ,aj ≤ t ≤ bj

Optimal solution:

min
S⊆N∪{d}

min
ad≤t≤bd

F (S ,d ,t)

Strongly NP-hard (and very hard to solve in practice)
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SPPTWC

Relax elementary path requirement to get an easier problem:
Shortest Path Problem with Time Windows and Capacity constraints

F (i ,t) : minimum cost of path from o to i , i ∈N ∪ {d}, and servicing
node i at time t or later.
Recursive equations:

F (o,a0) = 0
F (j ,t) = min(i ,j)∈A{F (i ,t ′)+cij :

i ∈N ∪ {d}− {j},t ′ ≤ t − tij ,ai ≤ t ′ ≤ bi },
∀j ∈N ∪ {d},aj ≤ t ≤ bj

Optimal solution:

min
ad≤t≤bd

F (d ,t)

now, node i can be visited more than once in path p,
in the RMP, we get coefficients δip that may be larger than 1.
Weakly NP-hard (pseudo-polynomial)
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Different relaxations of ESPPTWC

It is possible to design a dynamic programming recursion that eliminates
some of the cycles generated in the solution of the subproblem.

SPPTWC: all cycles are allowed
SPPTWC-2-cycles: 2-cycles are not allowed
SPPTWC-k-cycles: cycles of length ≤ k are not allowed

Trade-off:
larger values of k produce stronger LP-relaxation of master problem
larger values of k induce much more complex recursion, more
difficult to code
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Shortest path problem with resource constraints (SPPRC)

Desrochers’86:
Generalization when there is a set of resources

Set of resources R
travel time tij is replaced by the consumption of tr

ij units of
resource r ,∀r ∈R
time interval constraint [ai ,bi ] of node i is replaced by |R |
constraints [ar

i ,br
i ], ∀r ∈R

T r
i : amount of resource r used to reach node i , starting from o

a path using less than ar
i resources to reach node i wastes some

resources and is feasible
a path using more than br

i resources to reach node i is infeasible
For an arc (i , j) to be feasible

ar
i + tr

ij ≤ br
j , ∀r ∈R
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SPPRC

extension of classical shortest path problem
cost is replaced by multidimensional resource vector
resources are accumulated / propagated along arcs
resource values are constrained at the nodes
Additional material

S. Irnich and D. Villeneuve, The Shortest-Path Problem with
Resource Constraints and k-Cycle Elimination for k ≥ 3, INFORMS
Journal on Computing 18(3), pp. 391.406, 2006.
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Concluding remarks

column generation is an intuitive framework.
very effective in many applications.
field is growing.
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