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Reasons for using decomposition

Block angular structure: examples

Solving LP relaxations with column generation

Application: Cutting Stock (CSP) and Bin Packing (BPP) Problems
Application: Vehicle routing
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Reasons for using decomposition

Models from DW decomposition:

@ become manageable in size: number of constraints is reduced and
column generation is used.

@ are suitable to deal with non-linear constraints: they are tackled in a
dynamic programming subproblem.

@ may be stronger: subproblems do not have the integrality property.

@ may be the only models at hand, because compact models may not
be known.
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General structure: block angular with linking constraints

@ DW decomposition partitions model into levels: Main problem and
subproblem(s) (or Master and slave(s)).

@ Subproblem(s) has(ve) nice structure that can be exploited (e.g.,
network).

Al

Ah

@ Block D - Linking constraints
@ Each of the blocks Al,..., A" defines a different subproblem
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Examples of models resulting from structured problems

Problem D block A blocks
Production | Availability of common | One block for each product.
planning resources required for | Production requirements of each
production (e.g., ma- | product (for example, forced by
chine capacities). existing demand).
Vehicle Constraints  imposed | One for each vehicle.
routing on the fleet of vehicles | Route and vehicle constraints
(e.g., it must visit all | (e.g., a route must end at a de-
the clients). pot and vehicle capacity cannot
be exceeded).
Generalised | Constraints imposed | One for each agent, related with
assignment | on the group of agents | its capacity.
(all the tasks must be
performed).
Machine Job constraints (e.g., | One for each machine.
scheduling | all jobs must be done). | Machine constraints (e.g., two
tasks cannot be made at the
same time).
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Decomposition framework

Master Problem (MP)

@ "combines" independent solutions of SPs

@ constraints in MP tell how resources are used by subproblem
solutions

Subproblem(s) (SP)

@ usually subproblem solutions are paths.

o difficult constraints (non-linearities) are tackled in the subproblem
(solved with dynamic programming)

@ SP use resources when economically efficient
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Economic interpretation of DW decomposition

Master Problem (MP)

controls usage of resources: tells SP the price of the usage of resources

MP

SP! Sp? |-+ | sph

Subproblem(s) (SPs)

compete for resources: each SP makes its best bid to MP
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Application |

Cutting Stock Problem (CSP) and Bin Packing Problem (BPP)
Kantorovich model
Gilmore-Gomory model

Solution of Gilmore-Gomory model by column generation

© ¢ o0 ¢ ¢

Example (solution of LP relaxation)

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



Cutting Stock Problem

W: width of large rolls

w; : width of rolls for client i, i=...,m

b; : demand of rolls of width w; (many items of each size)
Objective: cut the minimum number of rolls to satisfy demand.
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Cutting and packing problems

Bin packing problem:

@ given an unbounded number of bins of capacity W and a list of n
items of size wj, O<w; < W, i=1,...,n,

o pack all the items in the smallest number of bins without exceeding
their capacity.

o few items of each size.

Cutting stock problem:

@ given an unbounded number of rolls of size W, and given m clients
with demands of b; rolls of size w;, O<w; < W, i=...,m,

@ cut the minimum number of rolls to satisfy demand.

@ many items of each size.
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Cutting Stock Problem: a weak model

.. . 1 ,if item j is placed in roll i
Decision variables x; = { 0 otherwijse P

. . 1 ,ifroll iis used
Decision variables y; = 0 otherwise

minzpp = Yi

n
2
i=1
n
subj. to > wixjj < Wy;, Viel
=1
n
2.

xj=1, VjeJ
i=1
yi=0or1l, Vi
xjj=0or1, Vij

L. Kantorovich, "Mathematical methods of organising and planning

production" (translated from a paper in Russian, dated 1939),
Management Science 6, 366—422, 1960.

© J.M. Valério de Carvalho, UMinho

Ciclo di Seminari 'Column Generation’



Quality of the relaxation: value of the lower bound

LP relaxation: replace the last two constraints by 0 < y; <1,V/, and
0=x;; =1,Vi,j, respectively.

LP relaxation optimum, zZ‘P, is a lower bound for the IP optimum.

Proposition (Martello and Toth, 90)

Lower bound LBy =¥, w;/W1.

Proof: No solution can have an objective value lower than X7, w;/W.

Solution x;; =1,x; =0,Vj #i, and y; = w;/W, Vi, has an objective value,
zZP =Z§’:1 w;/ W, equal to that value. So, it is an optimal LP solution.

Round up, because the number of bins must be integer. 0

Bound can be very poor for instances with large loss: there may be cases
in which z, —1/2 zjp.
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Example: Bins of capacity 8 and 16 items of size 5

Integer optimum is 16: Linear relaxation optimum is 10:

x11=1 , y1=5/8
xpn=1 , y2=5/8

x1616=1 , y16=5/8

Yiyi=10

Gap between Integer and Linear Relaxation optima, zjp—z;p =6.
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Cutting Stock Problem: Gilmore-Gomory model

Cutting Pattern: possible arrangement of items in the roll:

m
ajjwi =W
i=1
a;j =20 and integer, Vje J.

ajj : number of items of width w; obtained in the cutting pattern j
J: set of valid cutting patterns.
xj : number of rolls cut according cutting pattern j.

min zip = ZX_,'
jed

subj. to Y ajxjzbj, i=1,2,...,m
jed

xj =20 and integer, Vj€ J
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Example (cont.): Bins of capacity 8 and 16 items of size 5

The only valid Mathematical formulation:
cutting pattern is:
min zip = x1
5 subj. to 1x; 216
x1=0
3

Optimal value of linear relaxation z; p =16, when x; = 16.

Gap between Integer and Linear Relaxation optima, zjp—z;p =0.
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Gilmore-Gomory's bound in practice

@ Bound given by the LP relaxation of Gilmore-Gomory's model is very
tight.

@ Most of the one-dimensional cutting stock instances have gaps
smaller than one.

@ There are instances with gaps equal to 1 (O.Marcotte'1985,86).
@ Largest gap known is % (Rietz,Scheithauer'2002).

@ Conjecture: all instances have gaps smaller than 2 (modified integer
round-up property) (Scheithauer, Terno'1995).
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Column generation for CSP [Gilmore, Gomory, 1961]

Generally, it is unpractical to enumerate all valid cutting patterns.

Solve linear programming relaxation of CSP using column generation:

Choose an initial restricted set of cutting patterns

While (there is an a attractive cutting pattern) do
add attractive cutting pattern to restricted problem
reoptimize

End While

To get an integer solution, round up fractional values of cutting patterns.
Solutions are of good quality, if the quantities demanded are high.
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Cutting Stock Problem: Restricted Problem

min zZIp= ij
jej
subj.to Y ajxjzbi, i=1,2,...,m
jed
Xj = 0, vj Ej,

J: subset of cutting patterns in restricted problem _
x=n(J)=(m1,72,...,Tm) : optimal dual solution with subset J

Pricing cutting patterns out of the restricted problem:

Reduced cost of cutting pattern j = ¢ —CBB_IAJ' =
m
= 1- Z ajjj
i=1

Column is attractive if its reduced cost < 0
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Cutting Stock Problem: objective function of subproblem

Find most attractive cutting pattern € J \J:

m
min 1- Z ajj7;
jed\J i=1

Columns in J have reduced costs =0; so, search over J:

min 1-) ajm;
jed Z yr

Maximize symmetric function:

min 1-— Zaun, max Zaun,—l
jed i1 jed i3
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Cutting Stock Problem: knapsack subproblem

Knapsack subproblem:
max ZzZs = Z Tiyi
i=1

m
subj. to Z wiyi< W
i=1
yi =0 and integer, i=1,2,...,m,

yi : number of items of size w; in the new cutting pattern

If optimum zJ > 1, cutting pattern is attractive.
If no attractive columns, solution is optimal.
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(Very Small) Example

2
4| 4| a|3]3
2
2
2 | 31—
4|3 2
2 | 2 2

<
1l
oo
)
@
3
5]
=}
o
o

X1 X2 X3 X4 X5 X6 i

wi=4| 2 1 1 > 5
3 1 2 1 > 4
2 2 1 2 4 |= 8
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(Very Small) Example (cont.)

cutting patterns
W=8 X1 X X3 xa X5 X Demand b;
wi=4 | 2 1 1 = 5
3 1 2 1 > 4
2 1 2 > 8
min | 1 1 1 1 1 1
Optimal fractional solution
(25 2.0 15 | 6 rolls
Fractional solution rounded up
3.0 2.0 2.0 | 7 rolls

Excess production: 1 item of width 4 and 2 items of width 2

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



Restricted problem: first iteration

Initial solution: 3 columns, each with items of the same size (as
suggested by Gilmore and Gomory'61).

Using an LP solver, we obtain the following optimal solution (primal and

dual):
X1 X2 X3 dual
wg=4 2 > 5 05
3 2 = 4 0.5
2 4 = 8 0.25

min 1 1 1

primal [25 20 20 | =165 |
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Subproblem: first iteration

max zs= 0.5y1+ 0.5+ 0.25y3
subj. to 4y1+ 3yo+ 2y3 <38
yj =0 and integer, ¥

States

O ~NOo ok wWw N = O

Stages

Optimal solution: (y1,y2,y3) =(0,2,1),zF =1.25 — Attractive

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



Subproblem: knapsack problem

@ Dynamic programming

@ Fi(x): maximum value from placing items with index less than or
equal to i using x units of space.

@ Recursive equations of Knapsack Problem with upper bounds on
variables:

Fo(0)
F,'(X)

0

max {Fi_1(x—Iw;)+/m;:0=</<["%},
x—Iw;j=0

x=0,1,...,W; i=12,...,m.

@ Largest number of items of a given size in a cutting pattern
(element aj; in column j) must also be less than or equal to the
demand of that size:

w
Mo = af}“ax = min{b,-, {W:J }

o Computational complexity is O(mW?)
o weakly NP-hard (pseudo-polynomial)
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Restricted problem: second iteration

Attractive cutting pattern: 2 items of size 3 and 1 item of size 2.
Insert attractive column in the restricted problem, and reoptimize.

Optimal solution:

X1 X2 X3 X4 dual
wg=4 2 = 5 0.5
3 2 2 = 4 0.375
2 4 1 = 8 0.25

primal [ 25 00 15 2.0 | zip=
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Subproblem: second iteration

max zs= 0.5y1+ 0.375y>+ 0.25y3
subj. to 4y + 3yo+ 2y3 <38
yj =0 and integer, V;

States

0 ~NO Ol WN - O

Stages

Alternative optima (Value z; =1.0) — No attractive columns. So...
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Optimal solution of the linear relaxation

X1 X2 X3 X4 dual
Wy = 4 2 = 5 0.5
3 2 2 = 4 0.375
2 4 1 = 8 0.25
min 1 1 1 1
primal [25 00 15 2.0 | z1p=
Al Az A
2] 3
4
2 3
YT

Xj= 25 15 20
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Strengthening the formulation

LP relaxation has an optimal value z; p. Optimal solution has an integer
value.
Round-up: use a number of rolls = LP optimum rounded up:

Y. xi = [zp]
jed

In this case, z; p is integer: new constraint does not change the optimal

solution.
X1 X2 X3 X4 dual
wy =4 2 > 5 0.5
3 2 2 = 4 0.375
2 4 1 = 8 0.25
round-up 1 1 1 1 = 6 0.0
min 1 1 1 1

primal [25 00 15 2.0 | z1p=

Easy to transfer dual information to subproblem.
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Application Il

Vehicle Routing Problem with Time Windows
Flow model

Reformulated model

Subproblem

Dealing with subproblem

© ¢ ¢ ¢ ¢ ¢

Resource constraints: a general framework
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Vehicle Routing Problem with Time Windows

Statement

Given

@ a set of vehicles with given capacities,

@ a set clients with given demands and time windows,
find

@ a set of routes, all starting and ending at the depot,

@ such that each client is visited by one vehicle in a way that
minimizes costs.
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A set of routes
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Mathematical model

Set of clients N=1{1,2,...,n}

@ demands d;, ie N

o time windows [a;, b;], i€ N.

Set of homogeneous vehicles {1,2,..., K}

o K is known

@ capacity
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Mathematical model

Single depot, which is the origin and the destination of all vehicle routes:

split into 2 nodes:
@ origin node o= vertex 0
@ destination node d = vertex n+1

@ no demand: dp=dn+1=0

o time windows [ag, bo] = [an+1, bn+1]
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Mathematical model

Graph G =(V,A)

@ V =Nuf{o,d} represents the set of nodes

@ A the set of oriented arcs.

arc (i,j)e AcV x V:

© ¢jj: cost incurred in travelling through the arc

@ tj: travel time (includes service time of node i)
o for an arc to be feasible,

a,'+t,'ijj

The optimization objective of the plan is to minimize the total cost of
the vehicles routes.
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Mathematical model

Feasible route: path p=(w,v1,...,vy)

@ starts at origin node (vp = 0)
ends at destination node (vy = d)
visits customers v;e N, i=1,...,H-1

obeys capacity constraints Zfi‘ll di<Q

¢ ¢ o ¢

obeys time windows:

To = ay
Tis1 max{ay,+1, Ti+tv,vi.1} < by, ¥i=0,...,H-1
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Decision variables

Flow variables:

o xk = 1 , if vehicle k travels from client / to client j
=1 0 , otherwise

ly
Vk=1,...,K,(i,j) €A

Time variables:

9 T,.k: start of service of vehicle k at node i
Vk=1,...,K,ieV
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Model with arc variables

K

min >y c,-jx; (1)
k=1(i,j)eA
K
sto Y Y xf=1,VieN (2)
k=1(i,j)es+ (i)
xp;=1, Yk=1,..,K (3)
(0.j)es*(0)
Y dixk=Q vk=1,...,K (4)
(i)eA
Y xf= Y X VieNk=1..,K (5)
(i)es=(j) (.i)es* (i)
Y x5=1 Vk=1,..,K (6)
(i,d)ed~(d)
TK=T/+Mxg < M-ty Yk=1,...,K,(i,j)€ A (7)
ai<TF<b, Yk=1,...,K,ieV (8)
xFel0 1, Vk=1,...,K,(i,j)e A (9)
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Time constraints (7)

TH=Tf+Mxj < M~ty, Vk=1,....K,(i,j) €A

o M = bj— aj+tj; provides a tighter constraint

@ an alternative way of expressing constraint is the non-linear
constraint:

(T} =T/ +ty)x <0, Vk=1,...,K,(i,j) € A
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Dantzig-Wolfe decomposition

@ Keep in the master problem the partitioning constraints
@ Remaining constraints in subproblem k

@ Subproblem k finds solutions which are elementary shortest paths
with capacity constraints and time windows

@ extreme points are feasible route = paths
@ each decision variable corresponds to a path for vehicle k
o if the fleet is homogeneous, all blocks are identical

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



Reformulated model

o PK: set of feasible routes for vehicle k, each obeying the constraints,
° yl’,‘ €{0,1} : vehicle k does route p e Pk
Z - cost of vehicle k in path pe P¥

VI Vitl ©

min Z Y ¢ pyp

k= 1pepk

s. to Z Zélpyp 1, VieV
k= lngk
Y yE=1k=1,...,K
pePk

yae{0,1}, Vpe P\ k=1,...K

@ where

1 , if route p of vehicle k visits client i
0 , otherwise

Ciclo di Seminari 'Column Generation’
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Reformulated model with all vehicle identical

o P=Pk k=1,...,K: all vehicles are identical

@ convexity constraints ). . p yFI,( =1, k=1,...,K can be aggregated
into a single constraint Zle 2 pepk y,’,‘ =K.

@ Vehicles with path (o,d) do not leave the depot;

@ they act as slack variables: above constraint is a < constraint.

o Using y, = Zszly;’,‘, then

min Z CpYp
peP
s. to Y bipyp=1, VieV
peP
Z Yo=K
peP
yp€1{0,1}, VpeP

where
1 , if route p visits client i
Oip=

0 , otherwise
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Example with 8 clients

Yiy2 Y3 Ya Y5 Y6 Y7 Y8 Y9 Y10 Y11 V12 Y13 V14 Y15

nodel 11 1 1 1 1 =1
2 11 111 1 1 =1
3 11 1 1 1 1 =1
4 1 11 1 =1
5 1 1 1=1
6 11 1 1 =1
7 1 1 1 1 1 =1
8 1 1 1 1 1=1
vehicles 11 1 1 1 1111 1 1 1 1 1 1<4
cost 8710 9 8 71011 7 6 10 9 10 12 7
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Subproblem

Find path with minimum reduced cost:

min Y Cixij
(ij)eA
s.to Z xpj =1
(0,))e6*(0)
Z d,'X,'j = Q
(ij)eA
Xjj = Z Xji, VjeN
(ij)es= () (.1es* ()
(T,'— Tj+t,'j)X,'j <0, V(i,j)€A
a;<T;<bj, VieV
xij€{0,1}, V(i,j)eA
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Subproblem

Elementary Shortest Path Problem with Time Windows and Capacity
constraints (ESPPTWC)

@ path p

starts at origin node o, and ends at destination node n+1

°
@ obeys capacity constraints
@ obeys time windows, and

°

with minimum reduced cost ¢, = ¥ ¢ X;j
>

Reduced costs of arcs:

o cij=cj—mj, Y(i,j)eAi#o

® Cjj=cjj— i, Y(0,j) €A, where

@ 7;: dual variable of visit constraint to node i,

@ p: dual variable of number of vehicles constraint

A\

arcs with negative reduced cost induce negative cost cycles in the
network!

\
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ESPPTWC

@ Dynamic programming
o F(S,i,t): minimum cost of path from o to i,i € Nu{d}, visiting all
nodes in set S< Nu{d} only once, and servicing node i at time t or
later.
@ Recursive equations:
F(®¢,0,a0) = 0
F(S,j,t) = min(,-yj)eA{F(S—{j},i,t’)+c,-j:
ieS—{}t'st—tja <t <bj},
VScNul{d}jeS,ajst<b;
@ Optimal solution:
min min  F(S,d,t)
ScNu{d} adStde
@ Strongly NP-hard (and very hard to solve in practice)
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SPPTWC

Relax elementary path requirement to get an easier problem:
Shortest Path Problem with Time Windows and Capacity constraints

@ F(i,t): minimum cost of path from o to i,i € Nu{d}, and servicing
node i at time t or later.
@ Recursive equations:

F(o,a) = 0
F(j,t) = min(,-yj)eA{F(i,t/)+C,'j:

ie Nu{d}—{j},t' st—tjai st <b},
Vj€NU{d},ajStSbj

@ Optimal solution:

min F(d,t)

ag<ts<by
@ now, node /i can be visited more than once in path p,
@ in the RMP, we get coefficients §;, that may be larger than 1.
o Weakly NP-hard (pseudo-polynomial)
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Different relaxations of ESPPTWC

It is possible to design a dynamic programming recursion that eliminates
some of the cycles generated in the solution of the subproblem.

o SPPTWC: all cycles are allowed
@ SPPTWC-2-cycles: 2-cycles are not allowed
@ SPPTWC-k-cycles: cycles of length < k are not allowed

Trade-off:

o larger values of k produce stronger LP-relaxation of master problem

@ larger values of k induce much more complex recursion, more
difficult to code

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



Shortest path problem with resource constraints (SPPRC)

Desrochers'86:
Generalization when there is a set of resources

Set of resources R

o travel time t;; is replaced by the consumption of tl.g. units of
resource r,Yre R

o time interval constraint [a;, b;] of node i is replaced by |R|
constraints [af, b/], Vre R

@ T/ : amount of resource r used to reach node i, starting from o

@ a path using less than a7 resources to reach node i wastes some
resources and is feasible

@ a path using more than b/ resources to reach node i is infeasible
@ For an arc (/,j) to be feasible

r r r
ai+t;<bj, VreR
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SPPRC

e ¢ ¢ ¢ ¢

extension of classical shortest path problem
cost is replaced by multidimensional resource vector
resources are accumulated / propagated along arcs
resource values are constrained at the nodes

Additional material

S. Irnich and D. Villeneuve, The Shortest-Path Problem with
Resource Constraints and k-Cycle Elimination for k =3, INFORMS
Journal on Computing 18(3), pp. 391.406, 2006.
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Concluding remarks

@ column generation is an intuitive framework.
o very effective in many applications.

o field is growing.
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