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Practical issues, stabilization, accelerating strategies
and heuristics
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Dual-cutting and Stabilization
@ Primal and dual perspectives
Stabilizing terms: examples
Degeneracy and perturbation
Perfect Dual Information
(Weak and deep) dual-optimal inequalities
Application: cutting stock problem
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Pre-processing
Master problem

Subproblem
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Branch-and-bound
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Acceleration of column generation

Y
min Z

© . current solutiorl
L .« . . .. B ptlmum
unknown value)

" lower bound

iteration

Slow convergence: large changes in the values of the dual variables,
which oscillate from one iteration to the next.

Degeneracy: in many iterations, adding new columns to restricted master
problem does not improve objective value.
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Instability of the values of the dual variables

@ Dual objective: maximize dual function mb, with gradient b.
@ Domain is successively restricted by adding dual constraints.
@ 75 gets smaller at each iteration (b also does).

@ m oscillates until optimum dual solution is reached.
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Acceleration of column generation: motivation

Restricting the dual space may accelerate column generation.
Better convergence: smaller number of attractive columns in subproblem.
Less degeneracy: alternative dual solutions = degenerate primal solutions.

How to do it [VC, 2005]:
Add valid dual cuts to the model before starting column generation.
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Simple example

Restricting the dual space by setting lower bounds on dual variables:
GilmoreGomory'61: for any optimal primal solution with slack for the
CSP, there is an alternative optimal primal solution without slack.

What to do do: allow solutions with slack, substituting primal = for =
constraints.

Faster convergence: at a given restricted master problem, there may be a
solution with slack better than all solutions without slack.

Dual perspective: dual variables are restricted to be =0, instead of
unrestricted.

Same happens in many practical applications, when it is valid to work
with set covering instead of set partitioning formulations.
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Column generation: dual perspective

Cutting plane algorithm: adding a column in the primal is equivalent to
adding a cut in the dual.

min  ¢cx

. max 7h
(Primal’) s.t. fiib (Dual) o1 zas=c

CSP Example: rolls of width 10, items of size 4 and 3

. max b1y +bom
min 1x; +1xo +1x3 L1 +bort

. s.t. 2x1 +1xo > b st 2m =1
(Primal ) (Dual) lmp +2mp <1
+2X2 +3X3 = b2 375 <1
2 <
x1,x2,x320 P
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Dual space of CSP: rolls of size 10, items of size 4 and 3

o/
/

0.33 3np<1
\ Y
my+2mp<1
0O 4
0.5 1 1

knapsack:
K={(y1,y2) :4y1+3y2 < 10,y1,y2 = 0 and integer} = {(2,0),(1,2),(0,3)}
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Cutting plane algorithm for dual of CSP: starting solution

0.

{ 2y =<1
211 <1 3mp =1

033 A 37!251

0.5 T
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Dual space of CSP: first iteration

2

INIA
[y

2my
3mp

27y <1

3mp =<1

0.5 1
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Dual space of CSP: second iteration

2
2mq <1
{ 3mp =1
1mq +2mp <1
27y <1
-
0.5
033 |A B 3mp =<1
\ Y
C]
m+2mp <1
D »
0.5 1> m

M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



Ax = b is column generation model.

min  ¢cx

max 7wb
(P) s.t. fiab (D) s.t. @mA<c

Adding a set of inequalities to the dual problem, 7D < d, we get the
extended primal-dual pair:

min  cx+dy max 7b
(P¢) st. Ax+Dy=b (D€) s.t. mAsc
x,y=0 nD<d

Usually, restricting the dual = relaxing the primal.
In this case, that does not happen.
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Methodology

Assume that we can map any solution (x,y) of the extended model to a
solution X that is valid in the original space, i.e.,

XeX ={x: Ax = b,x =0}, and has the same objective value, i.e.,

cxX =cx+dy.

Solve the extended model, and eventually recover an optimal solution to
the original problem.

Proposition

Under Assumption 1, mapping the optimal solution of the extended
—x
model (x*,y™) gives a solution X that is optimal to the original problem.

Proof: Let z; and z,. be the optimal values of problems P and P¢,

respectively. Clearly, z;. <zp. Let (x*,¥") be the optimal solution of
—_— —%
problem P€. Then, X €% and cx =cx* +dy* = Zp. < zp,, which means
—%
= . . i o s
that X is optimal to the original problem. It follows that z/. =z;. [J
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Dual inequalities may effectively cut portions of the space of the dual
problem D (mA<c), but

Under Assumption 1, the dual inequalities do not cut all optimal dual
solutions of the original problem.

Proof: Let z; and zj,. be the optimal values of problems D and D¢,

respectively. Suppose that all optimal dual solutions were cut. Then,
*

z;)e < zE, and, by the strong duality theorem, Zpe < z;;, contradicting the
previous Proposition. O

That also happens, if, at the optimum of the extended model, the dual
inequality is obeyed with slack, that is, 7D < d.
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A family of valid dual cuts

For any width w;, and a set S of item widths, indexed by s, such that
Y sesWs < w;, the dual cuts

—mi+ Y ms < 0, ViS5,
seS

are valid inequalities to the space of optimal solutions of the dual of the
cutting stock problem.

(contradiction): there would be an attractive cutting pattern.

Primal point of view: an item of size w; can be cut, and used to fulfill
the demand of smaller orders, provided the sum of their widths is < wj;.
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Combining a cutting pattern and a valid dual cut gives a new cutting

pattern.
W =100 Ay Ds A; Anew
25 2 1 +1 0 ——> 2 |+ 2
10 4 -1 4 0
6 1 1 1 5
3 0 1 0 4
2 2 0 2 2
Xj 0.3 0.8 0.1 0.2
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Implementation issues

@ Exponential number of cuts of this family.
@ Use only cuts from sets S of small cardinality.

@ Sets of size 1 and 2 provide a polynomial number O(m?) of cuts.

Cuts selected:

@ Cuts of Type 1:  -m;+mj41<0, i=1,2,....m-1

o Cuts of Type 2: -mj+mj+m, =<0, Vij, k:w;=wj+wg
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Dual space of CSP: rolls of size 10, items of size 4 and 3

2
27y <1
-
0.5
033 |A B 3mp =1

\ A

@
m+2mp <1
Dl »

05 1 m

knapsack:
K={(y1,y2) :4y1+3y2 =10,y1,y2 = 0 and integer} = {(2,0),(1,2),(0,3)}
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Dual space of CSP with cut 71 =m>

2
2my <1 4
- my 27)
0.5
033 |A 3mp =<1
Y
C
my+2mp <1
Dl »
0.5 1> m
Dual cuts are valid inequalities for the optimal dual space: w1 =, cuts

the dual space but obeys all the dual optimal solutions.
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Methodology

Computational implementation of column generation:

@ Add dual cuts to model before starting column generation.

@ Add starting solution: as suggested by GG, or any other.

@ Proceed as usual.

Note: every column is a dual constraint.

© J.M. Valério de Carvalho, UMinho

dual cuts GG initial solution

100||dy dr d3 dy ds d d7|x1 X0 X3 Xa Xs
25||-1 -1 4 > dbs
10| 1 -1 1-1 10 = d1o
6 1-1 1 1-1 16 >ds
3 1-1 11 33 >d3
2 1 1 50|=db

minf0 0000O0O0OI1 1 1 1 1
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Computational experiments: instances

Binpacking instances (OR-Library, Beasley’90)

t class: instances with an integer optimum solution in which all bins have
three items, which fulfill exactly the capacity of the bin (triplet instances).
Bin capacity is W =100, and item sizes vary between 25.0 and 49.9.

No dual cuts of Type Il, because no item can be divided into two smaller
items.

Larger instances were tested: the t501—-instances, with 501 items.

Cutting stock instances (as in Vance’93)

Rolls with widths of 100, 120 or 150, a number of items equal to 200 or
500, with randomly generated real values drawn from a uniform
distribution u(1,100).

Existence of small items leads to an explosion in the number of feasible
columns.

The more difficult instances are those with larger roll widths and larger
number of items, because they have more feasible columns.
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Computational results: summary

Binpacking instances (OR-Library, Beasley’90)

Reduction in number of columns: 43.0 % (from 263.3 to 150.0).
Reduction in computational time: 20.1 % faster.

Reduction in degenerate pivots: percentage falls from 9.3% to 5.4%.

Cutting stock instances (as in Vance’93)

Reduction in number of columns: 75.9 % (from 5309.1 to 1281.6).
Reduction in computational time: 78.2 % (4.5 times faster).
Reduction in degenerate pivots: percentage falls from 39.8% to 8.5%.
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Dual cuts in the arc-flow model

Dual cuts are cycles in the space of the original variables.

Exactly one arc (the largest) is traversed in the direction opposite to its
orientation.

Combining a cycle and a path produces a new path.

For each arc with negative flow (direction opposite to its orientation),
there is always one (or plus) arc(s) with positive flow(s) with larger value:
the net sum of flows in arcs that correspond to a given width is positive
(equal to the demand).
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Dual-optimal inequalities and deep dual-optimal

inequalities

Instead of just referring to "dual cuts", at some points, we will make a
distinction between the two different classes:

Dual-optimal inequalities:
All dual optimal solutions are preserved (as in the dual cuts for
Gilmore-Gomory model for the CSP).

Deep dual-optimal inequalities:

One may even effectively cut a subset of dual optimal solutions, if, at
least, one dual optimal solution is preserved.

One optimal dual solution is sufficient to drive the process to find the
optimum.
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Perturbing dual-optimal inequalities

Consider now the set of dual-optimal inequalities perturbed by
ane: nD<d+e:

min  cx+(d+¢)y max 7wb
(P€) sit. Ax+Dy=b (D) st. mAsc
x,y=0 aD<d+e¢

Proposition

Let D < d be a set of dual-optimal inequalities, and (x*,y*) an optimal
solution for P€. Then, y* =0 and x* is an optimal solution for P.

Proof: All dual-optimal solutions obey 7D < d and have slack in
D < d +¢e. By complementary slackness, the corresponding primal
variables y* =0. O

(Ben Amor,Desrosiers,VC'2006)
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Dual space of CSP with cut m; =m, perturbed by €

2

27y <1 .

< mpzag—e

0.5
033 |A 'B-"' 3mp =1

@
m+2mp <1
Dl »

05 1 m

Columns of dual cutsiwill be 0 in any optimal solution [Ben Amor,
Desrosiers, VC, 2006].
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Boxstep method (Marsten et al. 1975)

Motivation: avoid oscillation of the dual variables by drawing a fixed-size
Box (lower and upper bounds) for each dual variable.
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Boxstep method (Marsten et al. 1975)

Motivation: avoid oscillation of the dual variables by drawing a fixed-size
Box (lower and upper bounds) for each dual variable.

*

T

i/.\
I )

Solution process:

@ If the optimal dual solution is strictly inside the box, then it is an
optimal solution to the original problem.
o If any dual variable lies in the boundary of the box (its value equals

the lower or the upper bound), the box is re-centered for the next
iteration.
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Primal and dual problems (Marsten et al. 1975)

Ax = b is original column generation model:

min  ¢cx max  7b
(P) st i\izb (D) s.t. mA=<c

Modified column generation model:

min  cx—-6"u +6Tut max 7nb
by St. Ax—u+ut=b b St. mA=c
(P”) x,u”,ut =0 (D) —-m<-06"
T=<6t

Bounds in dual variables define a Box: 6 < n <§*.
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Analysis of Boxstep method (Marsten et al. 1975)

Computational implementation of column generation:

similar to standard, but the restricted master problems has slack and
surplus variables with a cost (penalty).

min cx—-6"u +6Tut max 7nb
by St. Ax—u +ut=b by S.t. mWA<=c
(P>) x,u",ut =0 (D?) -m<-6"
T<ét

@ Primal view: penalize deviation from valid solution.

o Dual view: Set Box (Trust region) for dual variables.

@ small Box may lead to many iterations.

@ standard column generation is Boxstep method with infinite
dimension box.
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Stabilizing terms: penalty / trust region

o larger penalty in primal, wider box in dual

@ smaller penalty in primal, thinner box in dual
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Stabilization (du Merle et al. 99)

Ax = b is original column generation model:

min  ¢cx max b
(P) st j);zb (D) s.t. 7@mA=<c

Stabilized column generation model:

min  cox—-6"u +6Tut max wbh—-e w —etw?
s.t. Ax—u +ut=b s.t. mA=sc
(P*) uT<e” (D*) —-m-w~ <=0
ut<et a-wh=<ét
x,u”,ut =0 wo,wt=0

Dual variables may be outside the Box: " < 7w <§7%, but there is a
penalty.
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Analysis of Stabilization method (du Merle et al. 99)

Computational implementation of column generation:

now, the slack and surplus variables with a cost also have bounds.

min  cx-6u +6Tut max 7mb—-e¢ w —etw?
st. Ax—u +ut=b s.t. mA=<c
(P*) u <e (D?) —-T-w~<-0"
ut<e* a-wh<6t
x,u",ut =0 wo,wt=0

©

Primal view: penalize deviation from valid solution (now deviation is
limited).
Last two groups of dual constraints: 6~ —-w™ < 7 <6T+w™.

©

©

Dual view: dual variables outside a pre-defined box are penalized
(if 7 is outside the interval [67,8%], the variables w™ or w™ take a
positive value, penalizing the objective function).

©

size of Box is not so critical, because solutions outside Box are
allowed.
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Stabilizing terms: penalty / trust region
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Getting to the optimal solution

Adjustment of penalties at a given restricted master problem:

o If any m is on the border of the interval, the penalty is not
sufficiently large, and the optimal solution of the stabilized problem
may not be valid for the original problem.

@ Adjust penalties !

@ The algorithm needs appropriate strategies for the adjustment of the

penalties so that the optimal solution is found rapidly.
ot

At the optimal solution:

@ Complementary Slackness Theorem: if the optimal value of 7 is
strictly inside the interval [67,8%], the constraints have slack and the
corresponding dual variables are null, that is, u= = u™ =0, which
implies that Ax = b (valid for original model).

@ The same happens with ¢~ =¢* =0.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



When an optimal dual solution is known

Given an optimal dual solution 7* for D and a vector of scalars
A>0€IR™, use the stabilized pair of primal and dual problems:

v(P(@*)):=minc"x— (7" - A)Ty1 + (7" +A) Ty, v(D(7*)) :=maxb'
Ax-y1+y2=b Alm<c
x=0,y1>0,y,=0 T —-A<a<T +A.

Proposition

Let ETn<e be a set of deep dual-optimal inequalities and (i*,y;,yz) be
an optimal solution for P(*). Then, y; =y5=0 and X" is an optimal
solution for P.

Proof: This result was proved in a previous session. O
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When an optimal dual solution is known: example

Proposition

Consider a CSP instance with no loss at optimality. Then, n} = %,i(—: lis
an optimal dual solution.

Proof: All dual constraints are obeyed. The dual objective function
reaches the optimal value 27:71 bijw;/W. Therefore, this dual solution is
optimal. O

Computational results for binpacking triplet instances (OR-Library,

Beasley'90)

@ Reduction in number of columns: 90.2 % (from 124.2 to 12.2).
o Size of box A=1072

(Ben Amor,Desrosiers,VC'2006)
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A word about a nice result

Different primal models with equally constrained dual spaces take the
same number of iterations.

Experiment 1

BinaryCSP model (disaggregated demand): there is a constraint for each
item of the same size (demand is equal to 1).

Solution of BinaryCSP takes more iterations than CSP.

Experiment 2

Add dual constrains saying that dual variables of items of the same size
should be equal.

Solution of BinaryCSP takes approximately the same number of
iterations as CSP.

(Ben Amor,Desrosiers,VC'2006)
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Approaches

Stabilization
General framework, which is not problem dependent.
Adjustments of stability center may be needed.

Dual cuts

Derivation relies on characterization of the space of dual optimal
solutions.

Problem dependent, not easy to derive.

Valid through entire column generation process.

Combination

Using dual cuts amounts to solving an alternative primal model (equally
strong) with a more restricted dual space.

Stabilization and dual cuts can be combined.
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Concluding remarks

@ Strength of models is of crucial importance.
@ Dual cuts make column generation faster keeping models strong.

@ Restriction of dual space may be an important factor for faster
convergence.
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Pre-processing

@ Arc elimination

o Initial Primal Solutions
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Arc elimination

Using a feasible primal integer solution and a feasible dual solution to the
relaxation of the problem to fix a path variable to 0:

Given (IP): min{cx : Ax = b,x = (x;)ieq1,...n €1{0,1}"}.

7 : feasible dual solution of the LP-relaxation of IP, with value mb.

©

,,,,,

U : upper bound for IP, given by a feasible primal integer solution.

¢ © ©

If, for some pe{l,...,n}, mb+(cp, —mAp) > U, then x, =0 in all
optimal solutions of IP.

©

In the integer problem (/P), x, is a binary variable.

©

Idea of proof: the lagrangean lower bound of the problem
with x, =1 is above the upper bound.
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Arc elimination (cont.)

o Consider modified problem where x;, is fixed to 1 and
xi=0,Viefl,...,n\{p}:

min{cx+cp i Ax=b—Ap,x; 20,Vie{l,...,n}\{p},xp = 0}.

©

Dual of modified problem: max{(b—Ap)m: TA < c}

©

lagrangean of modified problem:

zir(m) cp+rrqin{cx+7r((b—Ap)—Ax)}:
X\Xp

(cp—mAp) + b+ rrqin{(c —mA)x)}
X\Xp

in dual feasible solution, 7A<c.

©

©

given a feasible dual solution 7, the lagrangean lower bound of
modified problem > U.
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Arc elimination (cont.)

Using a feasible primal integer solution and a feasible dual solution to the
relaxation of the problem to fix an arc variable to O:

Variable fixing

o Consider the paths p=(s,...,i,j,...,t) that contain arc (/,j).
o If wb+min,.(; yep(cp—Ap) > U, then arc (i,j) can be eliminated.
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Initial Primal solutions

Starting solutions for column generation:

@ Polynomial heuristics: First Fit Decreasing and Best Fit Decreasing

@ Pseudo-polynomial heuristics
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First Fit Decreasing (FFD) and Best Fit Decreasing

(BFD) heuristics

FFD : largest unplaced item is assigned to the bin with smallest index
already used with sufficient remaining capacity; if there is none, a new
bin is started.

BFD : largest unplaced item is assigned to the bin with smallest
remaining capacity, but still sufficient to accommodate the item; if there
is none, a new bin is started.

FFD and BFD have absolute performance ratios of 3/2, i.e., zy <3/2 z¥,
where z* is the value of the optimum (Simchi-Levi'94).

Absolute performance ratios:

First-Fit Decreasing — %

Best-Fit Decreasing — %
Asymptotic performance ratios:

First-Fit Decreasing — % .

Best-Fit Decreasing — %.
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FFD: example of asymptotic performance ratio of 11/9

Asymptotic performance ratio: happens even in large instances.
Example: optimal solution uses 9N bins, heuristic solution uses 11N bins.

51 26 23 51 27

51 26 23 51 27

51 26 23 51 27

51 26 23 51 27

51 26 23 51 27

51 26 23 51 27

27 27 23 | 23 26 26 26

27 27 23 | 23 26 26 26
27 27 23 | 23 23 | 23 | 23 | 23
23 | 23 | 23 | 23
23 | 23 | 23 | 23

z*¥=9N zprp = 11N

Absolute performance ratio: only in instances with a small number of
bins.
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Pseudo-polynomial heuristics

Greedy (myopic) heuristic, based on iterative solution of knapsack

problems:

Build list with all items
While (there are items in the list) do
solve knapsack problem
remove items in the solution from the list

(repeat removal, if there are multiple copies of all items)
End While

o Computation time is not significant in the column generation
framework.

@ Usually provides good starting solutions, with, at least, some very
good cutting patterns.

@ Last patterns may be very poor.
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Pseudo-polynomial heuristics (two implementations)

Vanderbeck'99:

@ among the solutions with maximum capacity usage, X; w;y;,
choose the one that is lexicographically smaller when considering a
solution vector where the items are ordered by non-increasing sizes
(wvizwoz=...2 wp).

| \

VC'05:

® use weights w; = item sizes and profits p;=(1-(j—1)/n) w;, Vi, to
favor choice of solutions with larger items, leaving the smaller items,
which should be easier to combine, to subsequent iterations

@ preferable to solving a subset-sum problem,
max{};wiy;i: Y iwjyi < W,y; =0 and integer, Vi}, which is, in
practice, difficult to solve [Martello, Toth'90].

They provide much better starting solutions than FFD or BFD.
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Master Problem

Column elimination

Constraint aggregation

Multiple columns at each iteration
Stabilization [Part V]

Dual cuts (including covering vs. partitioning constraints) [Part V]

© ¢ o0 ¢ ¢
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Column elimination

Most probably many columns of the RMP will not be used in the optimal
solution. Periodically,

@ purge columns with reduced cost above a pre-defined threshold, or

@ purge columns with zero value for a predefined number of iterations.
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Constraint aggregation

@ Basic algorithm:

o pick two similar item sizes and aggregate demands (e.g., use larger
item size).

@ less constraints and smaller subproblem

@ solution of aggregated model may be "sub-optimal"

@ at the end, disaggregate to check if re-optimization is necessary.

@ Also more effective n-phase algorithm.

>

VR & CS [Elhallaoui, Villeneuve, Soumis, Desaulniers’'05]

@ Vehicle routing and crew scheduling:

@ Aggregation according to an equivalence relation that changes
dynamically over time.

@ Shortest path problem used to recover the non-aggregated dual
information

@ Master problem time reduced by a factor of 8.

\
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Multiple columns at each iteration

@ when problem has several subproblems, use the dual information of
the RMP to generate columns from all the subproblems, and insert
them all in the RMP, before re-optimizing.

o if possible, pick not only the optimal solution of subproblem, but
also 2" ... kth best solutions (there are cases with 3 to 10
columns).

@ furthermore, use heuristics to find columns that are orthogonal
together with the most attractive (i.e., that may combine better to
form a solution).
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Subproblem

@ Heuristic pricing
@ State space reduction
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Heuristic pricing

@ Subproblem may be a problem difficult to solve practically.
@ Try to get close to the optimal solution using heuristics.

@ Only resort to solving subproblem optimally when no more attractive
solutions are found.

o use different heuristic algorithms along the process.
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Space state reduction

@ Temporarily reduce the burden of the dynamic programming
subproblem,

@ Then resort to solving subproblem optimally.

in problems with time constraints, start with a less precise definition
of time,

@ start with a subset of clients or items.
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Branch-and-bound

o Early branching
@ Upper bounds
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Early branching

For problems with integer cost coefficients, ¢;, Vj, given

Z : value of the current solution of column generation process, and
LB : a lower bound,

if [z1=[LB],

column-generation process can be cut off to reduce the tail.

¢ 6 © ¢ ¢

@ One can also terminate heuristically earlier. )
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Upper bounds

@ use depth first search (possibly making a single dive) to try to get a
good incumbent solution, which may help fathoming nodes later
during the full exploitation of the tree.

@ use heuristics (more or less elaborate) at each node of the tree.

.M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



o G. Desaulniers, J. Desrosiers, M. Salomon, Accelerating strategies in
column generation methods for vehicle routing and crew scheduling
problems, Cahiers GERAD G-99-36, and in Essays and Surveys in
Metaheuristics, C. Ribeiro and P. Hansen (eds.), Kluwer Academic
Publishers, 309-324, 2002.
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Concluding remarks

@ Practical issues may reduce computational time significantly.
@ They are problem dependent, and have to be tailored.
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