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Part Il

Branch-and-price algorithms
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@ Partition and branching

@ Compatibility between master and sub-problem

o Coping with changes in sub-problem

@ Application (binary variables): parallel machine scheduling
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Getting integer solutions with branch-and-price

Branch-and-price = branch-and-bound + column generation

Methodology

@ Branching constraints are introduced in the restricted master.
@ After branching, deep in the tree, new columns may be needed.

@ Column generation still has to work correctly.
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Compatibility between Master Problem and Subproblem

Structure of the restricted master problem

@ Branching constraints change the structure of the restricted master
problem.

@ Subproblem has to identify correctly the attractive and
non-attractive columns with respect to the new structure.

Compatible (or robust) branching scheme

@ Desirably, subproblem should be the same optimization problem
both during the linear relaxation and branch-and-price.

V.

Coping with changes

@ Branching scheme should not induce intractable changes in the
structure of the subproblem.
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Branching schemes

Branching on variables of the reformulated model

@ Regeneration of variables: a column set to zero by a branching
constraint in the restricted master problem may turn out to be the
most attractive column generated by the subproblem.

Branching on original variables

e Original variables: variables of model to which the Dantzig-Wolfe
decomposition is applied.

@ Successful in many applications.
@ Often, original variables are related with flows in arcs.
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A review of Partition and Branching

Each node of a branch-and-bound tree corresponds to a set of solutions
obeying the constraints of the original problem and all branching
constraints down to the node.

Partition:
@ divides set of solutions into (desirably) mutually exclusive subsets,
@ (should be a polynomial number of subsets),
o (desirably) corresponding to problems of the same type,

@ eliminating the fractional solution of the node.
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Basic and balanced branching schemes

@ Basic branching rule: pick fractional x;; and create 2 branches:

Xjj < Ll
and
Xij = fXU]

@ Acting on a single variable may lead to a dive in the branching tree
where no solutions will be found, and we still have to explore the
other branch.

@ Usually, better branching rules can be devised leading to more
balanced trees, where we expect the subtrees to be of similar size.

@ Branching schemes with unbalanced trees may perform very well on
some instances, but very poorly on others.
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Balanced branching schemes

Example 1: x1 +x0+x3+ X4+ x5+ x5 =1

o Given the fractional solution x; =2/3 and x =1/3,
@ instead of using pair of branching constraints x; =1 and x; <0,

@ use x1 +xo+x3=1and x; +x0+x3<0

Example 2: problems based on flows on arcs:

@ For each node /i, compute outflows YjeJ Xij

@ Select set of successors J: ZjerU has a fractional value a,
@ Use branching constraints:
° Zjejxif = [a]

° J.er,'j <l|al
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o left branch: x1o0+x13=2

@ right branch: x;2+x13<1

Figure shows part of a network
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Selection of branching constraint

Branch first on decisions that have a larger impact on the solution. )

Example 1: variable size bin-packing problem

@ use a two-level branching scheme:

@ branch first on bins until a bin integer solution is found, and then
branch on items.

@ in both levels, start with larger pieces (bins and items).
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Branching in branch-and-price

Binary variables

Ryan and Foster's rule for set partitioning problems
Application: GAP
Application: BCSP

Application: multicommodity flow problems

Application: vehicle routing

<

General integer variables

@ general strategy

@ adding branching constraints to the master problem explicitly

@ Application: Cutting Stock Problems
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Set partitioning problems

@ S: finite set with m elements,
@ 51,5,,...,S,, a collection of subsets of S.

@ A partition of S is a collection of subsets, S;,...,S
identified by i,...,/j,...,ik, such that:

o Sir

UL S, = S
5,',05,']. = @, Vij
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Ryan and Foster’s rule (1981) for set partitioning problems

@ Branches on variables of set partitioning problem:
@ min{cx: Ax=1,x€{0,1}"}, and A€ {0,1}™*",

@ In the optimal integer solution of a set partitioning problem, each
row is covered by xexactlyx one column (variable).

Proposition
Given a fractional solution to Ax =1,x =0, there are rows r and s such
that 0 < Zj33rj:35j:1)<j <1.

Many reformulated (column generation) models are set partitioning
problems.
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Branching rule

X1 Xjp
r 1 1 =1
s 1 =1

Branching rule: create two branches

@ in left branch, rows r and s are covered by the same columns, i.e.,
Zj:a,j:arszlxj =1

@ in right branch: rows r and s are covered by different columns, i.e.,
Zj:a,j:arszlxj =0.

M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



X1 X2 X3 X4 X5 X X7

1 11 1 1=1
2 11 1 1=1
31 1 1 1=1
0.50.50.5

For rows 1 and 2:

o left branch: xo +x7 =1

@ right branch: xo+x7=0
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Dealing with branching constraints

X1 X
r 1 1 =1
s 1 =1

A column j is feasible in the master problem,

e in left branch: if (a;j = asj=1) or (a, = asj =0)
e in right branch: if (a; = as; =0) or (a;j =1,as;=0) or
(a,j = 0, dsj = 1).

v

In the subproblem,

@ in left branch: only accept solutions in which row 1 and 2 are both
covered

@ in right branch: if solution covers one row, the other must not be
covered

A\
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Example: generalized assignment problem (GAP)

@ maximize profit of assigning a set of jobs to agents with
capacities W, Vi.

@ job j uses wj; units of capacity of agent i.

1 ifiobii . .
assighment variables x;; = { 0 ' Iotjhzliv{li; assigned to agent |

maxz = PijXij

NgE
i

l
_

subj. to

[\/]:

wiixij< W, i=1,...,m

[
1l
—

[y

.n

* M=
X
=
|
=
—

X,J e€{0,1}, Vi,j

@ Applications: in vehicle routing, resource scheduling, ...
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Reformulated (set partitioning) model

o Ki= {x{,xz",...,xli.}: set of all feasible assignments to agent i, V.
1
. . . i (i i i
o feasible assignment is a 0,1 vector x; = (x],,X3,,.+, X, )-

1, if feasible assignment x,i is used for agent j
0, otherwise

Vi:l,...,m, kEK,'.

ref. variables: y,i = {

n . .
maxz = X (X Pixi)y
i=1,...m, keK; j=1

subj. to Z X;ky,izl,jzl,...,n
i=1,...,m, kEK,'
Z y,isl, i=1,....m
kEK,'

yiel0,1}, i=1,...m, keK;

@ m knapsack subproblems, one for each agent.
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Example with 5 jobs and 3 agents

N i Ya Ve e i Vi vaviviviviys
jobl 1 1 1 1
2 1 1 11 1
3 1 1 1 1 1
4 1 11 11
5 1
agentl 1 1 1 1 1
2 1111
3 1
max 7 8 6 5 4 9 5 6 4 6 4 5

—_
—

[EE gy

IANIA A

—_
[y
—_

[Ey
[ay
[ ST Y T T G A G T 'Y

W[
Tl =

@ set partitioning problem: instead of < constraints, use "idle agent"
columns (i.e., slack variables for agent constraints).

@ agent constraints are convexity constraints.
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Branching rule [Savelsbergh'97]

Ryan and Foster's rule with one row belonging to a job and another row
belonging to an agent = branch on original variables x;;.

Branching rule: create two branches

| A

@ in left branch (xj; =1): agent i does job j

@ in right branch (x;; =0): assign job j to an agent i’ other than i .

Branching constraints are not added explicitly to the Restricted Master
Problem, but actions are taken to guarantee that the solution of a given
node obeys the branching constraints imposed on the node.
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Branching rule [Savelsbergh'97] (cont.)

left branch (xj;=1):

@ in master problem, set to O:

o all columns yL of agent i that do not make job j (with Xjk =0)
e all columns yl’: of agents i’ other than i that make job j (with XJ’;( =1)

@ in subproblem: always include job j in knapsack solution of agent i :

max z = (3. msys)+m;
seS

subj.to Z wsys <= Wi —w;
seS

ys€10,1}, VseS=11,...,m\{j}

right branch (x;;=0):

@ in master problem: set to 0 all columns yL of agent j that make job j

@ in subproblem: exclude job j from knapsack subproblem of agent i.
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Example: binary cutting stock problem (BCSP)

Binary cutting stock problem:

@ demand constraints are disaggregated, and items are treated
separately.

@ only practical when quantities demanded by each client are very
small, close to 1 unit.

min zip = ZXJ
jed

subj. to Y ajxi=1,i=12,...,m
jed

x; €{0,1}, VjeJ

@ Special case of GAP when all agents are identical.
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Example with 5 items

cutting patterns

W =8 X1 X2 x3 x4 X5 X Demand b;
wi=4| 1 1 1 = 1

411 1 1 = 1

3 1 1 1 | = 1

2 1 1 1 | = 1

2 1 1 1 | = 1

min | 1 1 1 1 1 1

(some patterns may be missing...)

Set partitioning model:

@ there are no convexity constraints (bins are equal).

@ (convexity constraints would appear if bins were treated separately:
same set of feasible solutions for every bin).

@ no so structured as GAP.
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Branching rule [Vance et al. '94]

Constraints are not added explicitly to the Master Problem.

in left branch: items r and s must belong to the same bin

@ in Master Problem: combine rows r and s in a single row, and set
to 0 all columns that are infeasible,

@ in (knapsack) Subproblem: replace items r and s by a single
item m+1 with w1 =7, +7s and W1 = Wy + we.

max zs = Z iyi
i€eS

subj. to Z wiyi < W
i€S

yi€{0,1}, VieS={1,....m}\{r,syu{m+1}

@ subproblem generates columns with either both items r and s or
none.
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Branching rule [Vance et al. '94] (cont.)

in right branch: put items r and s in different bins
@ in Master Problem: set to 0 all columns that are infeasible,

@ in Subproblem: add extra constraint to avoid having both items r

and s
max Zs = Z iyi
i€S
subj. to Y wiyis W
i€S
Yrt+ys<1

yie{0,1}, Vie$S

e after b branchings, b pairs of constraints are added.

Structure of subproblem is preserved in GAP, but not in BCSP. )

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari 'Column Generation’



Binary multicommodity flow problem

Flow of K commodities, indexed by k, in a graph G=(V,A)
ujj : capacity of arc (i, /)

Commodity k has a flow of g¥, from one unique supply node and to one

unique demand node. Node /i has:

a positive supply of b;‘ units of commodity k, if i is one of the origin
nodes for k,

a positive demand of —b;‘ units of commodity k, if i is one of the
destination nodes for k,

a null value, otherwise.

The flow of each commodity must be routed in a single path. J
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Binary multicommodity flow problem: arc flow model

.. . 1, if entire flow of commodity k uses arc (i,

Decision variables xX = . y (i.J)
uy 0, otherwise

c;; © unit cost of arc (i,j)

gkc 5‘ cost of entire flow of commodity k in arc (i,})

min Z Z ch,j(x,j‘
keK (i,j)eA
subj. to + Y xi— Y xK=bf,, VieV,VkeK
()eA  (ii)eA
quu_uu Y(i,j)eA
keK

X €40,1}, Yk, ¥(i,j) € A
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Binary multicommodity flow problem: path model

Pk : set of paths between source node and destination node of
commodity k.

Reform. variables yk _ 1, if path.pe P¥ is used for commodity k
p 0, otherwise
c"; : corresponding unit cost for the path, i.e., c;,‘ =X (ij)eA 6§ci’j.

1, if arc (i,j) belongs to path p
0, otherwise

min Zqukk

where 65’. = {
ij

keK pepk
subj. to Y Y ohqkys<uy, V(ij)eA

keK pe Pk

Y yi=1 VYkeK

pePk

ykei0,1}, vpe PK vke K
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Example
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(Starting) solution shown in Example

ylb/ue y{)range yfreen ylred ])-/ellow
(1,2) 10 < 10
(1,3) 7 < 12
(2,4) 10 11 = 32
(2,5) 8 < 38
(3,5) 7 5 < 12
(4,6) 5 11 < 16
(5,6) 7 5 11 < 24
1 1 = 1
2 1 = 1
3 1 = 1
4 1 = 1
5 1 = 1
min 20 14 16 10 22
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Branching on variables of reformulated model

Binary multicommodity flow problem: branching on paths

@ in left branch, y[j =1 is easy to deal with:

e commodity k is done,
o just reduce the capacities of arcs in path p by qk.
@ in right branch, y,’,‘ =0 forbids commodity k to use path p:

o (shortest path) subproblem must know that it should not generate
path p for commodity k,

e which may be (and often is) the most attractive path to the
subproblem after the branching constraint is added to the master
problem ...
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Avoiding the regeneration of variables ... to avoid a
deadlock

Modify subproblem, so as to:

reject the most attractive column (if you do not want it in the master
problem), the 279, the 3", ..., the k" best columns, until an column
acceptable is found.

Application: binary multicommodity flow problem:

use kth best shortest path problem in subproblem.

Application: cutting stock problem:

Degraeve, Schrage' 99 : (modified) knapsack subproblem receives a list
of forbidden solutions, and only generates acceptable solutions.
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Binary multicommodity problem: branching on x* variables

/

X; are variables of the original model

@ in right branch, xéf =0 forbids commodity k to use arc (/,j): just
remove arc (i,j) from (shortest path) subproblem graph.
@ in left branch, xl.jf =1 forces commodity k to use arc (/,j):

o easy if there is a single constraint,
o complicated if shortest path must go through a set of arcs, when
several constraints are enforced in the node, deep in the tree.
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Branching rule [Barnhart et al. '00]

Binary multicommodity flow problem: exclude set of arcs of commodity
in one branch and the complementary set in the other branch

For a commodity k with fractional flows xl.jf out of a node i:

@ Choose a(n even) partition of the set J of successors of i:J and J\J,
@ such that Z JXij k<1,

@ and use branchmg constraints:
Xk <
° ZJ€J ij =0

° ZJeJ\JXu =0

Constraints are easy to enforce in the subproblem in both branches,
because arcs are just removed from subproblem.
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o left branch: x$ +x{5 =0 — arcs (1,2) and (1,3) excluded

e right branch: xf, + x5 =0 — arcs (1,4) and (1,5) excluded

@_.

e

=@

N

@_

left and right branches are not mutually disjoint:

Solutions with null flow in all arcs (1,2),(1,3),(1,4) and (1,5) belong to
both branches.
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Vehicle routing with TW [Desrochers et al. '92]

All clients are visited once:

in left branch: cover clients i and j with the same route
@ in Subproblem network:

e fix arc (/,j) at 1.
o arcs (i, k), k #j are removed
e arcs (/,j),/# i are removed

@ in Master Problem: penalize all columns of master problem that use
arcs removed in subproblem (penalty should be sufficient to drive
then to 0)
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Vehicle routing with TW [Desrochers et al. '92] (cont.)

in right branch: cover clients / and j with different routes
@ in Subproblem network:
e arc (i,j) is removed

@ in Master Problem: again penalize all columns of master problem
that use arcs removed in subproblem

>~ 7
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Carpaneto and Toth's rule (1980)

@ Pick a fractional variable y, of the master problem corresponding to
a route with s arcs: vi,w,..., Vs, V1.

o Create s+1 branches on arc variables of the route:

branch 1 o Xyw =0

branch 2 o Xyw =1 Xy, =0

branch s CoXuw =1 X =1, X v =1, ., Xy =0
branch s+1 ' xuuw=1 X =1 X v =1 ..., Xy, =1

@ creates a polynomial number of branches

@ used in J. Desrosiers, F. Soumis, M. Desrochers, Routing with Time
Windows by Column Generation, Networks, 14, pp. 545-565, 1984.
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Example: route with 3 arcs

Consider route: vi — vp — v3 — vy.

branch 1: Xvivp =0

branch 2: Xvivo =1, Xypuy =0

branch 3: Xvpv, =1, Xypug =1, Xygyy =0
branch 4: Xvivy = ]-r Xvovy = 1’ Xvzvy = 1

Xvivo  Xwpvz  Xuzvg

0 0 0
branch 1 0 0 1
0 1 0
0 1 1
branch 2 1 0 0
1 0 1
branch 3 1 1 0
branch 4 1 1 1
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Dealing with branching constraints

branch 1:xy,y, =0:

@ remove arc Xy, from subproblem

branch 2: xy;v, =1, Xy, =0:

@ group trips 1 and 2 both in the master problem and in subproblem

@ remove arc Xy,y; from subproblem

branch 3:xy;v, =1, Xyyvs =1, Xu3y, =0

@ group trips 1, 2 and 3 both in the master problem and in subproblem

@ remove arc Xy,,, from subproblem
31

branch 4:xy;v, =1, Xyu3 =1, Xy, =1:

@ route is fixed: remove trips 1, 2 and 3
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Considering branching constraints explicitly

In all the previous examples, the branching constraints were not added to
the Restricted Master Problem.

General strategy [Vanderbeck, Wolsey'96]:

o Consider the structure of the RMP at a given node of the
Branch-and-Price tree,

@ Use dual information from the branching constraints in the
subproblem.
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Considering branching constraints explicitly (cont.)

Restricted master problem at a given node of the branch-and-price tree:

minz = chxj
jed
s. to Y ajxj=b
jed
ZXJ' <U
jed
ZXJ' =L
jed
xj =0, and integer, V)€ J,

melR™ uelR_,velR; are the dual variables corresponding to each set of
constraints, respectively.
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Considering branching constraints explicitly (cont.)

Subproblem:

@ there are new constraints in the Restricted Master Problem,

@ it may be necessary to consider additional binary variables in the
subproblem to enforce in the subproblem the dual information of the
Restricted Master Problem,

Compatibility:

@ if that happens, subproblem loses its structure,

@ it may become a general Integer Programming Problem.
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Concluding remarks

@ compatibility is a crucial issue in branch-and-price

@ in models with binary variables, it is often possible to implement
branch-and-price without adding explicitly the constraints.
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