
Branch-and-price algorithms

J.M. Valério de Carvalho
vc@dps.uminho.pt

Departamento de Produção e Sistemas
Escola de Engenharia, Universidade do Minho

Portugal

Ciclo di Seminari ’Column Generation’
Metodi e Modelli per l’Ottimizzazione Combinatoria

Corso di Laurea Magistrale in Informatica
Dipartimento di Matematica Pura e Applicata

Università degli Studi di Padova
19th - 28th October 2011

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 1



Global outline

Part I - Decomposition methods
Part II - Applications
Part III - Branch-and-price algorithms
Part IV - Branch-and-price algorithms (cont.)
Part V - Practical issues, stabilization, accelerating strategies and
heuristics
Bibliography

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 2



Part III

Branch-and-price algorithms

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 3



Outline

Partition and branching
Compatibility between master and sub-problem
Coping with changes in sub-problem
Application (binary variables): parallel machine scheduling

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 4



Getting integer solutions with branch-and-price

Branch-and-price = branch-and-bound + column generationq q qqq q qq
q qq q qqq q

q q q
��

@
@@

@@ �
��@
@@��

�
�
�
�
�@

@
@@

@@��

Methodology
Branching constraints are introduced in the restricted master.
After branching, deep in the tree, new columns may be needed.
Column generation still has to work correctly.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 5



Compatibility between Master Problem and Subproblem

Structure of the restricted master problem
Branching constraints change the structure of the restricted master
problem.
Subproblem has to identify correctly the attractive and
non-attractive columns with respect to the new structure.

Compatible (or robust) branching scheme
Desirably, subproblem should be the same optimization problem
both during the linear relaxation and branch-and-price.

Coping with changes
Branching scheme should not induce intractable changes in the
structure of the subproblem.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 6



Branching schemes

Branching on variables of the reformulated model
Regeneration of variables: a column set to zero by a branching
constraint in the restricted master problem may turn out to be the
most attractive column generated by the subproblem.

Branching on original variables
Original variables: variables of model to which the Dantzig-Wolfe
decomposition is applied.
Successful in many applications.
Often, original variables are related with flows in arcs.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 7



A review of Partition and Branching

Each node of a branch-and-bound tree corresponds to a set of solutions
obeying the constraints of the original problem and all branching
constraints down to the node.

Partition:
divides set of solutions into (desirably) mutually exclusive subsets,
(should be a polynomial number of subsets),
(desirably) corresponding to problems of the same type,
eliminating the fractional solution of the node.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 8



Basic and balanced branching schemes

Basic branching rule: pick fractional xij and create 2 branches:

xij ≤ bxijc
and

xij ≥ dxije

Acting on a single variable may lead to a dive in the branching tree
where no solutions will be found, and we still have to explore the
other branch.
Usually, better branching rules can be devised leading to more
balanced trees, where we expect the subtrees to be of similar size.
Branching schemes with unbalanced trees may perform very well on
some instances, but very poorly on others.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 9



Balanced branching schemes

Example 1: x1 +x2 +x3 +x4 +x5 +x6 = 1
Given the fractional solution x1 = 2/3 and x6 = 1/3,

instead of using pair of branching constraints x1 ≥ 1 and x1 ≤ 0,

use x1 +x2 +x3 ≥ 1 and x1 +x2 +x3 ≤ 0

Example 2: problems based on flows on arcs:
For each node i , compute outflows ∑

j∈J xij

Select set of successors J : ∑
j∈J xij has a fractional value α,

Use branching constraints:∑
j∈J xij ≥ dαe∑
j∈J xij ≤ bαc

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 10



Example

left branch: x12 +x13 ≥ 2
right branch: x12 +x13 ≤ 1

2

3
0,5

1
3

1,0

1
44

0,5

5

1,0
2,0

Figure shows part of a network

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 11



Selection of branching constraint

Branch first on decisions that have a larger impact on the solution.

Example 1: variable size bin-packing problem
use a two-level branching scheme:
branch first on bins until a bin integer solution is found, and then
branch on items.
in both levels, start with larger pieces (bins and items).

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 12



Branching in branch-and-price

Binary variables
Ryan and Foster’s rule for set partitioning problems
Application: GAP
Application: BCSP
Application: multicommodity flow problems
Application: vehicle routing

General integer variables
general strategy
adding branching constraints to the master problem explicitly
Application: Cutting Stock Problems

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 13



Set partitioning problems

S : finite set with m elements,
S1,S2, . . . ,Sn, a collection of subsets of S .

A partition of S is a collection of subsets, Si1 , . . . ,Sij , . . . ,SiK ,
identified by i1, . . . , ij , . . . , iK , such that:

∪k
j=1Sij = S

Sii ∩Sij = ;, ∀i , j

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 14



Ryan and Foster’s rule (1981) for set partitioning problems

Branches on variables of set partitioning problem:
min{cx :Ax = 1,x ∈ {0,1}n}, and A ∈ {0,1}m×n.

In the optimal integer solution of a set partitioning problem, each
row is covered by ?exactly? one column (variable).

Proposition
Given a fractional solution to Ax = 1,x ≥ 0, there are rows r and s such
that 0<∑

j:arj=asj=1 xj < 1.

Many reformulated (column generation) models are set partitioning
problems.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 15



Branching rule

xj1 xj2

r 1 1 = 1

s 1 = 1

Branching rule: create two branches
in left branch, rows r and s are covered by the same columns, i.e.,∑

j:arj=ars=1 xj = 1.

in right branch: rows r and s are covered by different columns, i.e.,∑
j:arj=ars=1 xj = 0.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 16



Example

x1 x2 x3 x4 x5 x6 x7
1 1 1 1 1 = 1
2 1 1 1 1 = 1
3 1 1 1 1 = 1
0.5 0.5 0.5

For rows 1 and 2:
left branch: x2 +x7 = 1
right branch: x2 +x7 = 0

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 17



Dealing with branching constraints

xj1 xj2

r 1 1 = 1

s 1 = 1

A column j is feasible in the master problem,
in left branch: if (arj = asj = 1) or (arj = asj = 0)
in right branch: if (arj = asj = 0) or (arj = 1,asj = 0) or
(arj = 0,asj = 1).

In the subproblem,
in left branch: only accept solutions in which row 1 and 2 are both
covered
in right branch: if solution covers one row, the other must not be
covered

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 18



Example: generalized assignment problem (GAP)

maximize profit of assigning a set of jobs to agents with
capacities Wi ,∀i .

job j uses wij units of capacity of agent i .

assignment variables xij =
{

1 , if job j is assigned to agent i
0 , otherwise

maxz =
m∑

i=1

n∑
j=1

pijxij

subj. to
n∑

j=1
wijxij ≤Wi , i = 1, . . . ,m

m∑
i=1

xij = 1, j = 1, . . . ,n

xij ∈ {0,1}, ∀i , j

Applications: in vehicle routing, resource scheduling, ...
© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 19



Reformulated (set partitioning) model

Ki = {x i
1,x i

2, . . . ,x i
ki

} : set of all feasible assignments to agent i , ∀i .

feasible assignment is a 0,1 vector x i
k = (x i

1k ,x i
2k , . . . ,x i

nk).

ref. variables: y i
k =

{
1, if feasible assignment x i

k is used for agent i
0, otherwise

∀i = 1, . . . ,m, k ∈Ki .

maxz = ∑
i=1,...,m, k∈Ki

(
n∑

j=1
pijx i

jk)y
i
k

subj. to
∑

i=1,...,m, k∈Ki

x i
jky i

k = 1, j = 1, . . . ,n∑
k∈Ki

y i
k ≤ 1, i = 1, . . . ,m

y i
k ∈ {0,1}, i = 1, . . . ,m, k ∈Ki

m knapsack subproblems, one for each agent.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 20



Example with 5 jobs and 3 agents

y1
1 y1

2 y1
3 y1

4 y1
5 y1

6 y1
7 y2

1 y2
2 y2

3 y2
4 y3

1 y3
2 y3

3
job 1 1 1 1 1 =1

2 1 1 1 1 1 =1
3 1 1 1 1 1 =1
4 1 1 1 1 1 1 1 1=1
5 1 1 1 1 1=1

agent 1 1 1 1 1 1 1 1 ≤1
2 1 1 1 1 ≤1
3 1 1 1 ≤1

max 7 8 6 5 4 9 5 6 4 6 4 5 3 5

set partitioning problem: instead of ≤ constraints, use "idle agent"
columns (i.e., slack variables for agent constraints).
agent constraints are convexity constraints.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 21



Branching rule [Savelsbergh’97]

Ryan and Foster’s rule with one row belonging to a job and another row
belonging to an agent ⇒ branch on original variables xij .

Branching rule: create two branches
in left branch (xij = 1) : agent i does job j
in right branch (xij = 0) : assign job j to an agent i ′ other than i .

Branching constraints are not added explicitly to the Restricted Master
Problem, but actions are taken to guarantee that the solution of a given
node obeys the branching constraints imposed on the node.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 22



Branching rule [Savelsbergh’97] (cont.)

left branch (xij = 1) :
in master problem, set to 0:

all columns y i
k of agent i that do not make job j (with x i

jk = 0)
all columns y i ′

k of agents i ′ other than i that make job j (with x i ′
jk = 1)

in subproblem: always include job j in knapsack solution of agent i :

max z = (
∑
s∈S

πsys)+πj

subj .to
∑
s∈S

wsys ≤Wi −wj

ys ∈ {0,1}, ∀s ∈ S = {1, . . . ,n}\{j}

right branch (xij = 0) :

in master problem: set to 0 all columns y i
k of agent i that make job j

in subproblem: exclude job j from knapsack subproblem of agent i .

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 23



Example: binary cutting stock problem (BCSP)

Binary cutting stock problem:
demand constraints are disaggregated, and items are treated
separately.
only practical when quantities demanded by each client are very
small, close to 1 unit.

min zIP = ∑
j∈J

xj

subj . to
∑
j∈J

aijxj = 1, i = 1,2, . . . ,m

xj ∈ {0,1}, ∀j ∈ J

Special case of GAP when all agents are identical.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 24



Example with 5 items

cutting patterns
W = 8 x1 x2 x3 x4 x5 x6

Demand bi

wi = 4 1 1 1 = 1
4 1 1 1 = 1
3 1 1 1 = 1
2 1 1 1 = 1
2 1 1 1 = 1

min 1 1 1 1 1 1

(some patterns may be missing...)

Set partitioning model:
there are no convexity constraints (bins are equal).
(convexity constraints would appear if bins were treated separately:
same set of feasible solutions for every bin).
no so structured as GAP.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 25



Branching rule [Vance et al. ’94]

Constraints are not added explicitly to the Master Problem.

in left branch: items r and s must belong to the same bin
in Master Problem: combine rows r and s in a single row, and set
to 0 all columns that are infeasible,
in (knapsack) Subproblem: replace items r and s by a single
item m+1 with πm+1 =πr +πs and wm+1 =wr +ws .

max zs =
∑
i∈S

πiyi

subj . to
∑
i∈S

wiyi ≤W

yi ∈ {0,1}, ∀i ∈ S = {1, . . . ,m}\{r ,s}∪ {m+1}

subproblem generates columns with either both items r and s or
none.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 26



Branching rule [Vance et al. ’94] (cont.)

in right branch: put items r and s in different bins
in Master Problem: set to 0 all columns that are infeasible,
in Subproblem: add extra constraint to avoid having both items r
and s

max zs =
∑
i∈S

πiyi

subj . to
∑
i∈S

wiyi ≤W

yr +ys ≤ 1
yi ∈ {0,1}, ∀i ∈ S

after b branchings, b pairs of constraints are added.

Structure of subproblem is preserved in GAP, but not in BCSP.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 27



Binary multicommodity flow problem

Flow of K commodities, indexed by k , in a graph G = (V ,A)
uij : capacity of arc (i , j)

Commodity k has a flow of qk , from one unique supply node and to one
unique demand node. Node i has:

a positive supply of bk
i units of commodity k , if i is one of the origin

nodes for k ,
a positive demand of −bk

i units of commodity k , if i is one of the
destination nodes for k ,
a null value, otherwise.

The flow of each commodity must be routed in a single path.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 28



Binary multicommodity flow problem: arc flow model

Decision variables xk
ij =

{
1, if entire flow of commodity k uses arc (i , j)
0, otherwise

ck
ij : unit cost of arc (i , j)

qkck
ij : cost of entire flow of commodity k in arc (i , j)

min
∑

k∈K

∑
(i ,j)∈A

qkck
ij x

k
ij

subj. to + ∑
(i ,j)∈A

xk
ij −

∑
(j ,i)∈A

xk
ji = bk

i , , ∀i ∈V ,∀k ∈K

∑
k∈K

qkxk
ij ≤ uij , ∀(i , j) ∈A

xk
ij ∈ {0,1}, ∀k ,∀(i , j) ∈A

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 29



Binary multicommodity flow problem: path model

Pk : set of paths between source node and destination node of
commodity k .

Reform. variables yk
p =

{
1, if path p ∈Pk is used for commodity k
0, otherwise

ck
p : corresponding unit cost for the path, i.e., ck

p =∑
(i ,j)∈Aδ

p
ijc

k
ij .

where δp
ij =

{
1, if arc (i , j) belongs to path p
0, otherwise

min
∑

k∈K

∑
p∈Pk

qkck
p yk

p

subj. to
∑

k∈K

∑
p∈Pk

δ
p
ijq

kyk
p ≤ uij , ∀(i , j) ∈A

∑
p∈Pk

yk
p = 1, ∀k ∈K

yk
p ∈ {0,1}, ∀p ∈Pk ,∀k ∈K

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 30



Example

42

1 6

53

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 31



(Starting) solution shown in Example

yblue
1 yorange

1 ygreen
1 y red

1 yyellow
1

(1,2) 10 ≤ 10
(1,3) 7 ≤ 12
(2,4) 10 11 ≤ 32
(2,5) 8 ≤ 8
(3,5) 7 5 ≤ 12
(4,6) 5 11 ≤ 16
(5,6) 7 5 11 ≤ 24
1 1 = 1
2 1 = 1
3 1 = 1
4 1 = 1
5 1 = 1

min 20 14 16 10 22

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 32



Branching on variables of reformulated model

Binary multicommodity flow problem: branching on paths

in left branch, yk
p = 1 is easy to deal with:

commodity k is done,
just reduce the capacities of arcs in path p by qk .

in right branch, yk
p = 0 forbids commodity k to use path p :

(shortest path) subproblem must know that it should not generate
path p for commodity k ,
which may be (and often is) the most attractive path to the
subproblem after the branching constraint is added to the master
problem ...

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 33



Avoiding the regeneration of variables . . . to avoid a
deadlock

Modify subproblem, so as to:
reject the most attractive column (if you do not want it in the master
problem), the 2nd , the 3rd , . . . , the kth best columns, until an column
acceptable is found.

Application: binary multicommodity flow problem:

use kth best shortest path problem in subproblem.

Application: cutting stock problem:
Degraeve, Schrage’ 99 : (modified) knapsack subproblem receives a list
of forbidden solutions, and only generates acceptable solutions.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 34



Binary multicommodity problem: branching on x k
ij variables

xk
ij are variables of the original model

in right branch, xk
ij = 0 forbids commodity k to use arc (i , j) : just

remove arc (i , j) from (shortest path) subproblem graph.
in left branch, xk

ij = 1 forces commodity k to use arc (i , j) :
easy if there is a single constraint,
complicated if shortest path must go through a set of arcs, when
several constraints are enforced in the node, deep in the tree.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 35



Branching rule [Barnhart et al. ’00]

Binary multicommodity flow problem: exclude set of arcs of commodity
in one branch and the complementary set in the other branch

For a commodity k with fractional flows xk
ij out of a node i :

Choose a(n even) partition of the set J of successors of i : J and J\J ,

such that ∑
j∈J xk

ij < 1,

and use branching constraints:∑
j∈J xk

ij ≤ 0∑
j∈J\J xk

ij ≤ 0

Constraints are easy to enforce in the subproblem in both branches,
because arcs are just removed from subproblem.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 36



Example

left branch: xk
12 +xk

13 = 0 – arcs (1,2) and (1,3) excluded
right branch: xk

14 +xk
15 = 0 – arcs (1,4) and (1,5) excluded

2

3
0,5

1
3

1,0

1
44

0,5

5

left and right branches are not mutually disjoint:
Solutions with null flow in all arcs (1,2),(1,3),(1,4) and (1,5) belong to
both branches.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 37



Vehicle routing with TW [Desrochers et al. ’92]
All clients are visited once:
in left branch: cover clients i and j with the same route

in Subproblem network:
fix arc (i , j) at 1.
arcs (i ,k),k 6= j are removed
arcs (l , j), l 6= i are removed

in Master Problem: penalize all columns of master problem that use
arcs removed in subproblem (penalty should be sufficient to drive
then to 0)

i j

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 38



Vehicle routing with TW [Desrochers et al. ’92] (cont.)

in right branch: cover clients i and j with different routes
in Subproblem network:

arc (i , j) is removed

in Master Problem: again penalize all columns of master problem
that use arcs removed in subproblem

i j

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 39



Carpaneto and Toth’s rule (1980)

Pick a fractional variable yr of the master problem corresponding to
a route with s arcs: v1,v2, . . . ,vs ,v1.

Create s +1 branches on arc variables of the route:

branch 1 : xv1v2 = 0
branch 2 : xv1v2 = 1, xv2v3 = 0

. . .
branch s : xv1v2 = 1, xv2v3 = 1, xvs−1vs = 1, . . . , xvs v1 = 0
branch s +1 : xv1v2 = 1, xv2v3 = 1, xvs−1vs = 1, . . . , xvs v1 = 1

creates a polynomial number of branches
used in J. Desrosiers, F. Soumis, M. Desrochers, Routing with Time
Windows by Column Generation, Networks, 14, pp. 545–565, 1984.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 40



Example: route with 3 arcs

Consider route: v1 → v2 → v3 → v1.

branch 1 : xv1v2 = 0
branch 2 : xv1v2 = 1, xv2v3 = 0
branch 3 : xv1v2 = 1, xv2v3 = 1, xv3v1 = 0
branch 4 : xv1v2 = 1, xv2v3 = 1, xv3v1 = 1

xv1v2 xv2v3 xv3v1
0 0 0

branch 1 0 0 1
0 1 0
0 1 1

branch 2 1 0 0
1 0 1

branch 3 1 1 0
branch 4 1 1 1

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 41



Dealing with branching constraints

branch 1 : xv1v2 = 0 :
remove arc xv1v2 from subproblem

branch 2 : xv1v2 = 1, xv2v3 = 0 :
group trips 1 and 2 both in the master problem and in subproblem
remove arc xv2v3 from subproblem

branch 3 : xv1v2 = 1, xv2v3 = 1, xv3v1 = 0 :
group trips 1, 2 and 3 both in the master problem and in subproblem
remove arc xv3v1 from subproblem

branch 4 : xv1v2 = 1, xv2v3 = 1, xv3v1 = 1 :
route is fixed: remove trips 1, 2 and 3

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 42



Considering branching constraints explicitly

In all the previous examples, the branching constraints were not added to
the Restricted Master Problem.

General strategy [Vanderbeck, Wolsey’96]:
Consider the structure of the RMP at a given node of the
Branch-and-Price tree,
Use dual information from the branching constraints in the
subproblem.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 43



Considering branching constraints explicitly (cont.)

Restricted master problem at a given node of the branch-and-price tree:

minz = ∑
j∈J

cjxj

s. to
∑
j∈J

ajxj = b∑
j∈J

xj ≤U∑
j∈J

xj ≥ L

xj ≥ 0, and integer, ∀j ∈ J ,

π ∈ IRm,µ ∈ IR−,ν ∈ IR+ are the dual variables corresponding to each set of
constraints, respectively.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 44



Considering branching constraints explicitly (cont.)

Subproblem:
there are new constraints in the Restricted Master Problem,
it may be necessary to consider additional binary variables in the
subproblem to enforce in the subproblem the dual information of the
Restricted Master Problem,

Compatibility:
if that happens, subproblem loses its structure,
it may become a general Integer Programming Problem.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 45



Concluding remarks

compatibility is a crucial issue in branch-and-price
in models with binary variables, it is often possible to implement
branch-and-price without adding explicitly the constraints.

© J.M. Valério de Carvalho, UMinho Ciclo di Seminari ’Column Generation’ 46


