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1 A rod cutting problem

A company produces iron rods with diameter 15 millimeters and length 11 meters. The
company also takes care of cutting the rods for its customers, who require different lengths.
At the moment, the following demand has to be satisfied:

item type length (m) number of pieces required

1 2.0 48
2 4.5 35
3 5.0 24
4 5.5 10
5 7.5 8

Determine the minimum number of iron rods that should be used to satisfy the total
demand.

A possible model for the problem, proposed by Gilmore and Gomory in 19601 is the
following.

Sets

• I = {1, 2, 3, 4, 5}: set of item types;

• J : set of patterns (i.e., possible ways) that can be adopted to cut a single rod into
pieces of the required lengths.

Parameters

• W : rod length (before the cutting);

1P.C.Gilmore and R.E.Gomory, “A linear programming approach to the cutting stock problem”,
Operations Research, Vol. 9, No. 6 (Nov.-Dec., 1961), pp. 849–859
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• Li: length of item i ∈ I;

• Ri: number of pieces of type i ∈ I required;

• Nij: number of pieces of type i ∈ I in pattern j ∈ J .

Decision variables

• xj: number of rods that should be cut using pattern j ∈ J .

Model
min

∑
j∈J

xj

s.t.
∑
j∈J

Nijxj ≥ Ri ∀ i ∈ I

xj ∈ Z+ ∀ j ∈ J

2 Problem solution

The model is very elegant, but assumes the availability of the set I and the parameters
Nij. In order to generate this data, one needs to enumerate all possible cutting patterns.
It is easy to realize that the number of possible cutting patterns is huge, and therefore a
direct implementation of the above model is unpractical for real-world instances.

We remark that it makes sense to solve the continuous relaxation of the above model.
This is because, in practical situations, the demands are so high that the number of
rods cut is also very large, and therefore a good heuristic solution can be determined
by rounding up to the next integer each variable xj found by solving the continuous
relaxation. Moreover, the solution of the continuous relaxation may constitute the starting
point for the application of an exact solution method (for instance, the Branch-and-
Bound).

We therefore analyze how to solve the continuous relaxation of the
model.

As a starting point, we need any feasible solution. Such a solution can be constructed
as follows:

1. consider single-item cutting patterns, i.e., |I| configurations, each containing Nii =
bW/Lic pieces of type i;

2. set xi = dRi/Niie for pattern i (where pattern i is the pattern containing only pieces
of type i).
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The same solution can be obtained by applying the simplex method to the model
(without integrality constraints), where only the decision variables corresponding to the
above single-item patterns are considered:

min x1 + x2 + x3 + x4 + x5
s.t. 5x1 ≥ 48

2x2 ≥ 35
2x3 ≥ 24

2x4 ≥ 10
x5 ≥ 8

x1 x2 x3 x4 x5 ≥ 0

In fact, if AMPL-CPLEX is used and only single-item patterns are considered, the solution
is the following:

x [*] :=

1 9.6

2 17.5

3 12.0

4 5.0

5 8.0

Consider now a new possible pattern (number 6), containing one piece of type 1 and one
piece of type 5. We ask ourselves: does the previous solution remain optimal if this new
pattern is allowed? As we saw, we can answer a question like this by using duality. Recall
that at every iteration the simplex method yields a feasible basic solution (corresponding
to some basis B) for the primal problem and a dual solution (the multipliers uT = cTBB

−1)
that satisfy the complementary slackness conditions. (The dual solution will be feasible
only at the last iteration.) The new pattern number 6 corresponds to including a new
variable in the primal problem, with objective cost 1 (as each time pattern 6 is chosen,
one rod is cut) and corresponding to the following column in the constraint matrix:

A6 =


1
0
0
0
1


This variables creates a new dual constraint. We then have to check if this new constraint
is violated by the current dual solution uT , i.e., if the reduced cost of the new variable
with respect to basis B is negative. The new dual constraint is

1u1 + 0u2 + 0u3 + 0u4 + 1u5 ≤ 1.

The current dual solution u = cTBB
−1 ca be obtained from AMPL (Fill[i] is the name

of the constraint corresponding to item type i):
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Fill.dual [*] :=

20 0.2

45 0.5

50 0.5

55 0.5

75 1.0

Since 0.2+1 = 1.2 > 1, the new constraint is violated. This means that the current primal
solution (in which the new variable is x6 = 0) may not be optimal anymore (although it is
still feasible). We can verify that the fact that the dual constraint is violated corresponds
to the fact that the associated primal variable has negative reduced cost:

c̄6 = c6 − uTA6 = 1−
[

0.2 0.5 0.5 0.5 1
]


1
0
0
0
1

 = −0.2.

It is then convenient to let x6 enter the basis. To do so, we modify the problem by
inserting the new variable:

min x1 + x2 + x3 + x4 + x5 + x6
s.t. 5x1 + x6 ≥ 48

2x2 ≥ 35
2x3 ≥ 24

2x4 ≥ 10
x5 + x6 ≥ 8

x1 x2 x3 x4 x5 x6 ≥ 0

If this problem is solved with the simplex method, the optimal solution is found, but
restricted only to patterns 1, . . . , 6. If a new pattern is available, one can decide whether
this new pattern should be used or not by proceeding as above.

However, the problem is how to find a pattern (i.e., a variable; i.e, a column of the
matrix) whose reduced cost is negative (i.e., it is convenient to include it in the formula-
tion). Not only is the number of possible patterns exponentially large, but the patterns
are not even known explicitly! The question then is:

Given a basic optimal solution for the problem in which only some variables
are included, how can we find (if any exists) a variable with negative reduced
cost (i.e., a constraint violated by the current dual solution)?

This question can be transformed into an optimization problem: in order to see whether
a variable with negative reduced cost exists, we can look for the minimum of the reduced
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costs of all possible variables and check whether this minimum is negative:

min c̄ = 1− uT z
s.t. z is a possible column of the constraint matrix.

Recall that every column of the constraint matrix corresponds to a cutting pattern,
and every entry of the column says how many pieces of a certain type are in that pattern.
In order for z to be a possible column of the constraint matrix, the following condition
must be satisfied:

z ∈ Z|I|+∑
i∈I

Lizi ≤ W

Then the problem of finding a variable with negative reduced cost can be converted
into the following integer linear programming problem:

min c̄ = 1−
∑
i∈I

uizi

s.t.
∑
i∈I

Lizi ≤ W

z ∈ Z|I|+

which is equivalent to the following (we just write the objective in maximization form and
ignore the additive constant 1):

max
∑
i∈I

uizi

s.t.
∑
i∈I

Lizi ≤ W

z ∈ Z|I|+

The coefficients zi of a column with negative reduced cost can be
found by solving the above integer knapsack problem.

In our example, if we start from the problem restricted to the five single-item patterns,
the above problem reads as

max 0.2z1 + 0.5z2 + 0.5z3 + 0.5z4 + z5
s.t. 2.0z1 + 4.5z2 + 5.0z3 + 5.5z4 + 7.5z5 ≤ 11

z1 z2 z3 z4 z5 ∈ Z+

and has the following optimal solution: zT =
[

1 0 0 0 1
]
. This correspond to the

pattern called A6 in the above discussion.

L. De Giovanni M. Di Summa G. Zambelli - Methods and Models for Combinatorial

Optimization

5



Column generation methods

3 An algorithm for the one-dimensional cutting-stock

problem

The procedure described above can be generalized to an algorithm for one-dimensional
cutting-stock problems.

Problem 1 (One-dimensional cutting-stock problem): given

• a set of item types I,

• for every item type i ∈ I, its length Li and the number of pieces to be produced Ri,

• the length W of the starting objects to be cut,

find the minimum number of objects needed to satisfy the demand of all item types.

The problem can be modeled as follows:

min
∑
j∈J

xj

s.t.
∑
j∈J

Nijxj ≥ Ri ∀ i ∈ I

xj ∈ Z+ ∀ j ∈ J

where:

• J : set of all possible cutting patterns that can be used to obtain item types in I
from the original objects of length W ;

• Nij: number of pieces of type i ∈ I in the cutting pattern j ∈ J .

• xj: number of original objects to be cut with pattern j ∈ J .

An algorithm for this problem is based on the solution of the continuous relaxation of
the above model, i.e., the model obtained by replacing constraints xj ∈ Z+∀j ∈ J with
constraints xj ∈ R+∀j ∈ J .

Since |J | can be so large as to make the enumeration of the patterns unpractical, the
following algorithm can be used:

Step 0: initialization
Generate a subset of patterns J ′ such that the problem has a feasible solution (e.g., one
can start with the |I| single-item cutting patterns).

Step 1: solution of the master problem
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Solve the master problem (restricted to the variables/patterns xj with j ∈ J ′)

min
∑
j∈J ′

xj

s.t.
∑
j∈J ′

Nijxj ≥ Ri ∀ i ∈ I

xj ∈ R+ ∀ j ∈ J ′

thus obtaining a primal optimal solution x∗ and a dual optimal solution u such that x∗

and u satisfy the complementary slackness condition (this can be done with the simplex
method).

Step 2: solution of the slave problem
Solve the following integer linear programming problem (called slave problem) with |I|
variables and one constraint:

max
∑
i∈I

u∗i zi

s.t.
∑
i∈I

Lizi ≤ W

zi ∈ Z+ ∀ i ∈ I

thus obtaining an optimal solution z∗ ∈ Z|I|+ .

Step 3: optimality test
If
∑

i∈I u
∗
i z
∗
i ≤ 1, then STOP: x∗ is an optimal solution of the full continuous relaxation

(including all patterns in J). Otherwise, update the master problem by including in J ′

the pattern γ defined by Niγ = z∗i (this means that column z∗ has to be included in the
constraint matrix) and go to Step 1.

Finally, one has go from the optimal solution of the continuous relaxation to a heuristic
(i.e., not necessarily optimal but hopefully good) solution of the original problem with
integrality constraints. This can be done in at least two different ways:

• by rounding up the entries of x∗ (this is a good choice if these entries are large:
765.3 is not very different from 766...); note that rounding down is not allowed, as
we would create an infeasible integer solution;

• by applying an integer linear programming method (for instance the Branch-and-
Bound) to the last master problem that was generated; this means solving the
original problem (with integrality constraints) restricted to the “good” patterns
(those in J ′) found in the above procedure.
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4 Colon generation methods for linear programming

problems

The idea developed above for the one-dimensional cutting-stock problem can be applied
to more general linear programming problems (without integer variables) whenever it is
not possible or convenient to list explicitly all possible decision variables.

Consider the following problem:

(P ) min cTx
s.t. Ax = b

x ≥ 0

where A ∈ Rm×n, and suppose that n (the number of variables) is very large, or that the
n columns of A are not known explicitly. The dual problem is the following:

(D) max uT b
s.t. uTA ≤ cT

u free

Step 0: initialization
Find explicitly a (small) subset of columns of A such that, if only these columns are
considered, the problem has a feasible solution. Let E ∈ Rm×q(q < n) denote this
submatrix of A, and let xE, cE be the corresponding vectors of variables and costs in the
objective function.

Step 1: solution of the master problem
Solve the following master problem:

(MP ) min cTExE
s.t. ExE = b

xE ≥ 0

thus obtaining a primal-dual pair of feasible solutions xME , uM .

Theoretical remark. Consider the partition A =
[
E | H

]
(Explicit, Hidden

columns) and the corresponding x =

[
xE
xH

]
e cT =

[
cTE | cTH

]
. Note that

the solution x =

[
xE = xME
xH = 0n−q

]
, is feasible for the initial problem (P ) (as all

constraints are satisfied). Furthermore, u = uM is a (not necessarily feasible)
solution for (D): the number of entries of u is equal to the number of con-
straints of both (P ) and (MP ). Finally, u and x satisfy the complementary
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slackness conditions with respect to the initial pair (P )-(D). To see this, note
that

(cT−uTA)x = ([cTE | cTH ]−uT [E | H])

[
xE
xH

]
= (cTE−uTE)xE+(cTH−uTH) xH︸︷︷︸

=0

=

(cTE − (uM)TE)xME︸ ︷︷ ︸
=0

+(cTH − (uM)TH) · 0 = 0 · xME + 0 = 0,

as xME and uM satisfy the complementary slackness conditions (because they
are optimal for (MP ) and its dual).

A pair of optimal solutions for (MP ) and its dual can be obtained for instance with the
simplex method.

Step 2: solution of the slave problem (subproblem for the generation of a new
column)
Find one or more vectors z ∈ Rm satisfying the following conditions:

(i) the entries of z are the coefficients in the constraint matrix of a variable xj (i.e., z
is a possible column Aj of A) whose cost is cj;

(ii) cj − (uM)T z < 0.

Theoretical remark. The above conditions identify the existence of a constraint
in the original dual problem (D) that is violated by the solution u = uM . Note
that (D) contains also all the constraints of the dual of (MP), corresponding to
the variables in xE. These constraint are of course satisfied, as uM is feasible
for the dual of (MP ).

Step 3: optimality test

If no vector z as above exists, then STOP: x =

[
xME
0

]
is an optimal solution of the

initial problem (P ).

Theoretical remark. As we saw, x =

[
xE = xME
xH = 0n−q

]
and u = uM are a primal-

dual pair of solutions for (P )-(D) satisfying the complementary slackness con-
ditions. The fact that the slave problem is infeasible means that no constraint
of (D) is violated, i.e., u = uM is feasible for (D). We then have pair of feasible
solutions for (P )-(D) satisfying the complementary slackness conditions. By
the strong duality theorem, x and u are optimal for (P ) and (D).

L. De Giovanni M. Di Summa G. Zambelli - Methods and Models for Combinatorial

Optimization

9



Column generation methods

Step 4: iteration
Update the master problem by including in matrix E one or more columns generated at
Step 2; also update the corresponding xE and cE. Go to Step 1.

Theoretical remark. As we saw, violated dual constraints correspond to vari-
ables with negative reduced cost; thus these variables are worth being included
in the problem to improve the objective value.

5 Column generation methods: considerations on the

implementation

5.1 The column generation subproblem

The critical part of the method is Step 2, i.e., generating the new columns. It is not
reasonable to compute the reduced costs of all variables xj for j = 1, . . . , n, otherwise
this procedure would reduce to the simplex method. In fact, n can be very large (as in
the cutting-stock problem) or, for some reason, it mat be not possible or convenient to
enumerate all decision variables.

It is then necessary to study a specific column generation algorithm for each
problem; only if such an algorithm exists (and is efficient), the method can be
fully developed.

In the one-dimensional cutting stock problem we transformed the column generation
subproblem into an easily solvable integer linear programming problem. In other cases,
the computational effort required to solve the subproblem may be so high as to make the
full procedure unpractical.

5.2 Convergence of the method

5.2.1 Feasibility and boundedness of the master problem

A column generation algorithm receives as input a primal-dual pair of feasible solutions.
In order for Step 1 to be able to find such a pair, the master problem needs to be feasible
and bounded. At the first iteration feasibility can be achieved by taking any feasible
solution for (P ) and including in E only the columns corresponding to variables that
take a strictly positive value in this solution. At the next iterations, if the method adds
new variables, the new master problems will be feasible because the initial variables will
still be included in the model. Moreover, to ensure boundedness, one can impose box
constraints, i.e., constraints of the type xj ≤M, ∀ j ∈ E (where M is a sufficiently large
constant). In many cases such a value of M can be easily determined. (For instance, in
the rod cutting problem it is easy to find a safe upper bound M on the number of rods
needed.)
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5.2.2 Convergence rate

The convergence of column generation methods is guaranteed by the theory of the simplex
method, provided that the column generation subproblem can be solved exactly. However,
from the practical point of view, convergence might be slow for several reasons (we only
mention some of them below).

One issue is the following: if, at Step 4, a single variable is introduced, many iterations
may be needed before including all variables needed in an optimal solution of the original
problem. To overcome this problem, if possible one can find and include more than one
new variable at every iteration.

Another issue is the fact that after some iterations problem (MP ) will contain a large
number of variables, and therefore solving (MP ) may become very hard. One way of
overcoming this problem is the creation of a pool of non-active variables among all the
variables introduced so far. In other words, the variables whose value has been zero for
several iterations can be eliminated from the model, but kept in a pool. However, when
doing this, one has to ensure that the elimination of some variables does not make the
problem infeasible. If this approach is adopted, at every iteration one can check if one of
the columns already generated but currently removed has negative reduced cost; only if
this is false, a new variable will be generated.

Some other problems, not covered here, are known as instability, tailing-off, head-in
etc.: dealing with this aspects is fundamental for the implementation of efficient column
generation methods (stabilized column generation).
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