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Exact and heuristic methods

Exact methods: devised to provide a provably optimal solution

Heuristic methods: provides “good” solution with no optimality
guarantee

Try to devise an exact approach, first!
I search for an efficient algorithm (e.g. shortest path-like problem)
I MILP model + MILP solver
I exploit some special property
I suitable (re)formulation of the problem
I search for (scientific) literature
I ...

... otherwise, heuristics! (eur̀ıskein = to find)
I example: optimal transportation-network configuration (“hard”

congestion models)
I limited available time
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When do we use heuristics?

Sometime cannot be used, since an optimal solution is mandatory!

NP-hard problem ; heuristics! (e.g., MILP solver are now able to
solve some of them!)

Use of heuristic to provide a “good” solution in a “reasonable”
amount of time. Some appropriate cases:

I limited amount of time to provide a solution (running time)
I limited amount of time to develop a solution algorithm
I just estimates of the problem parameters are available
I quick scenario evaluation in interactive Decision Support Systems
I real time system
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One (among many) possible classification

Specific heuristics

exploits special features of the problem at hand

may encode the current “manual” solution, good practice

may be “the first reasonable algorithm come to our mind”

General heuristic approaches

constructive heuristics

meta-heuristics (algorithmic schemes)

approximation algorithms

iper-heuristics

...

C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison”, ACM Computer Surveys 35:3, 2003 (p. 268-308)

K. S orensen, “Metaheuristics – the metaphor exposed”, International Transactions in
Operational Research (22), 2015 (p. 3-18)
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Constructive heuristics

Build a solution incrementally selecting a subset of alternatives

Expansion criterion (no backtracking)

Greedy algorithms (strictly local optimality in the expansion criterion)

Initialize solution S ;

While (there are choice to make)

add to S the most convenient element 1

Widespread use: simulate practice; simple implementation; small
running times (∼ linear); embedded as sub-procedure.

Sorting elements by Dispatching rules: static or dynamic scores

Randomization (randomized scores, random among the best n etc.)

Primal / dual heuristics

1Taking feasibility constraints into account, e.g., by excluding elements that make
the solution unfeasible
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Example: greedy algorithm KP/0-1

Item j with wj and pj ; capacity W ; select items maximizing profit!

1 Sort object according to ascending
pj

wj
.

2 Initialize: S := ∅, W̄ := W , z := 0

3 for j = 1, . . . , n do

4 if (wj ≤ W̄ ) then

5 S := S ∪ {j}, W̄ := W̄ − wj , z := z + pj .

6 endif

7 endfor

Static dispatching rule
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Example: Greedy algorithm for the Set Covering Problem

SCP: given set M and M⊂ 2M , cj , j ∈M;
select a min cost combination of subsets in M whose union is M

1 Initialize: S := ∅, M̄ := ∅ , z := 0

2 if M̄ = M (⇔ all elements are covered), STOP;

3 compute the set j /∈ S minimizing the ratio
cj∑

i∈M\M̄

aij
;

4 set S := S ∪ {j}, M̄ := M̄ ∪ {i : aij = 1}, z := z + cj and go to 2.

Dynamic dispatching rule
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Algorithms embedding exact solution methods

Expansion criterion based on solving a sub-problem to optimality
(once or at each expansion)

Example: best (optimal!) element to add by MILP

normally longer running times but better final solution

“Less greedy”: solving the sub-problem involves all (remaining)
decisions variables (global optimality)

Luigi De Giovanni Heuristic for Combinatorial Optimization 8 / 59



Algorithm for SCP

min
∑
j∈M

cjxj

s.t.
∑
j∈M

aijxj ≥ 1 ∀ i ∈ M

xj ∈ {0, 1} ∀ j ∈M

1 Initialize: S := ∅, M̄ := ∅, z := 0

2 se M̄ = M (⇔ tall elements are covered), STOP;

3 solve linear programming relaxation of SCP (with xj = 1 (j ∈ S), and
let x∗ be the corresponding optimal solution;

4 let j = arg max
j /∈S

x∗j ;

5 set S := S ∪ {j}, M̄ := M̄ ∪ {i : aij = 1}, z := z + cj and go to 2.
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Simplifying exact procedures: some examples

Run Cplex on a MILP model for a limited amount of time

simplify an enumeration scheme (select only a limited subset of
alternatives)

Beam search

partial breath-first visit ot the enumeration tree

compute a score for each node (likelihood it leads to an optimal leave)

at each level select the k best-score nodes and branch them

let: n levels, b branches per node, k beam size

n · k nodes in the final tree

n · b · k score evaluations

calibrate k so that specific time limits are met

variant (with some backtrack): recovery beam search
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Beam search for KP-0/1

n = 6 items; binary branchining (b = 2); k = 2; greedy evaluation of nodes
root

x1 = 0 x1 = 1

x2 = 0

x3 = 0

x4 = 0

x5 = 0

x6 = 0 x6 = 1

x5 = 1

x4 = 1

x3 = 1

x2 = 1 x2 = 0

x3 = 0

x4 = 0

x5 = 0

x6 = 0 x6 = 1

x5 = 1

x4 = 1

x3 = 1

x2 = 1

44 48

34 47 48 N.A.

47 N.A. 46 48

44 47 48 N.A.

47 N.A. 48 N.A.

47 N.A 45 48

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

LEVEL 6
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Neighbourhood Search and Local Search

Neghbourhood of a solution s ∈ X is N : s → N(s), N(s) ⊆ X

Basic LS scheme:

1 Determine an initial solution x ;

2 while (∃ x ′ ∈ N(x) : f (x ′) < f (x)) do {
3 x := x ′

4 }
5 return(x) (x is a local optimum)
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LS components

a method to find an initial solution;

a solution representation, which is the base for the following
elements;

the application that, starting from a solution, generates the
neighbourhood (moves);

the function that evaluates solutions;

a neighbourhood exploration strategy.
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Initial solution

random

from current practice

(fast) heuristics

randomized heuristics

...

no theoretical preference: better initial solutions may lead to worst
local optima

random or randomized + multistart
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Solution representation

Encodes the features of the solutions

Very important: impact on the following design steps (related to how
we imagine the solutions and the solution space to be explored!)

Example: KP-0/1

list of loaded items

characteristic (binary) vector

ordered item sequence

Decoding may be needed

Example: KP-0/1

list and vector representation: immediate decoding

ordered sequence: a solution is derived by loading items in the given
order up to saturating the knapsack
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Neighbourhood (moves)

Neighbour solutions by moves that perturb x (neighbourhood centre)

Example KP/0-1: (i) insertion; (ii) swap one in/out; (iii) ...

Neighbourhood size: number of neighbour solutions

Evaluation complexity: should be quick! possibly incremental
evaluation

Neighbourhood complexity: time to explore (evaluate) all the
neighbour solutions of a the current one (efficiency!)

Neighbourhood strength: ability to produce good local optima
(notice: local optima depend also on the neighbourhood definition)

little perturbations, small size, fast evaluation, less strong .vs. large
perturbation, large size, slow evaluation, larger improving power

Connection feature is desirable
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Neighbourhood: KP/0-1 example

Insertion neighbourhood has O(n) size; Swap neigh. has O(n2) size

A stronger neigh. by allowing also double-swap moves, size O(n4)

An insertion or a swap move can be incrementally evaluated in O(1)

Overall neigh. complexity: insertion O(n), swap O(n2)

Insertion neigh. or Swap neigh. are not connected.
Insertion+removing neigh. is connected
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Neighbourhood definition: solution representation is
important!

Insertion, swapping, removing moves are based on list or vector
representation!

Difficult to implement (and imagine) them on the ordered-sequence
representation

For the ordered-sequence representation, moves that perturb the
order are more natural. e.g.swapping position:

I from 1− 2− 3− 4− 5− 6− 7 to 1− 6− 3− 4− 5− 2− 7 (swap 2
and 6) or 5− 2− 3− 4− 1− 6− 7 (swap 1 and 5)

I size is O(n2), connected (with respect to maximal solutions)
I neigh. evaluation in O(n) (no fully-incremental evaluation)
I overall complexity O(n3)
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Solution evaluation function

Evaluation is used to compare neighbours to each other and select the
best one

Normally, the objective function

May include some extra-feature (e.g. weighted sum)

May include penalty terms (e.g. infeasibility level)

I In KP/0-1, let X be the subset of loaded items

I f̃ (X ) = α
∑

i∈X pi − βmax
{

0,
∑

i∈X wi −W
}

(α, β > 0)

I activate “removing” move in a connected “insertion+removing”
neighbourhood
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Exploration strategies

Which improving neighbour solution to select?

Stepest descent strategy: the best neighbour (all evaluated!)

First improvement strategy: the first improving neighbour. Sorting
matters! (heuristic, random)

Possible variants:

random choice among the best k neighbours

store interesting second-best neighbours and use them as recovery
starting points for LS
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Sample application to TSP

First question: is LS justified? Exact approaches exists, not suitable
for large instances and small running times. Notice that TSP is
NP-Hard

Notation and assumptions:

G = (V ,A) (undirected)

G is complete

|V | = n

cost cij (may be = cji in the symmetric case)

Define all the elements of LS
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LS for TSP: initial solution by Nearest Neighbour heuristic

1 select node i0 ∈ V ; cost = 0, Cycle = {i0}, i = i0.

2 select j = arg min
j∈V \Cycle

{cij}

3 set Cycle = Cycle ∪ {j}; cost = cost + cij
4 set i = j

5 if still nodes to be visited, go to 2

6 Cycle = Cycle ∪ {i0}; cost = cost + cii0

O(n2) (or better): simple but not effective (too greedy, last choices
are critical)

repeat with different i0

randomize Step 2
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LS for TSP: Nearest/Farthest Insertion

1 Choose the nearest/farthest nodes i and j : C = i − j − i ,
cost = cij + cji

2 select the node r = arg mini∈V \C /maxi∈V \C{cij : j ∈ C}
3 modify C by inserting r between nodes i and j minimizing

cir + crj − cij
4 if still nodes to be visited, go to 2.

O(n3): rather effective (farthest version better, more balanced cycles)

may randomize initial pair and/or r selection
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LS for TSP: Best Insertion

1 Choose the nearest nodes i and j : C = i − j − i , cost = cij + cji
2 select the node r = arg mini∈V \C{cir + crj − cij : i , j consecutive in C}
3 modify C by inserting r between nodes i and j minimizing

cir + crj − cij
4 if still nodes to be visited, go to 2.

O(n3): rather effective (lest than farthest/nearest insertion)

may randomize initial pair and/or r selection
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LS for TSP: Solution Representation

arc representation: arcs in the solution, e.g. as a binary adjacency
matrix

adjacency representation: a vector of n elements between 1 and n
(representing nodes), v [i ] reports the node to be visited after node i

path representation: ordered sequence of the n nodes (a solution is
a node permutation!)
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LS for TSP: k-opt neighbourhoods

Concept: replace k arcs in with k arcs out [Lin and Kernighan, 1973]
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LS for TSP: k-opt neighbourhoods

In terms of path representation, 2-opt is a substring reversal

Example: < 1, 2, 3, 4, 5, 6, 7, 8, 1 > −→ < 1, 2, 6, 5, 4, 3, 7, 8, 1 >

2-opt size: (n−1)(n−2)
2 = O(n2)

k-opt size: O(nk)

Neighbour evaluation: incremental for the symmetric case, O(1)

2-opt move evaluation: reversing sequence between i and j in the
sequence < 1 . . . h, i , . . . , j , l , . . . , 1 >

Cnew = Cold − chi − cjl + chj + cil

which k? k = 2 good, k = 3 fair improvement, k = 4 little
improvement
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LS for TSP: evaluation function and exploration strategy

No specific reason to adopt special choices:

Neighbours evaluated by the objective function (cost of the related
cycle)

Steepest descent (or first improvement)
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Neighbourhood search and Trajectory methods

LS trades-off simplicity/efficiency and effectiveness, but it gets stuck
in local optima

Need to escape from local optima (only convexity implies global
optimality)

- Random multistart (random initial solutions)

- Variable neighbourhood (change neighbourhood if local optimum)

- Randomized exploration strategy (e.g. random among best k neigh)

- Backtrack (memory and recovery of unexplored promising neighbours)

- ...

Neighbourhood search or Trajectory methods: a walk trough the
solution space, recording the best visited solution
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Avoiding loops

A walk escaping local optima may worsen the current solution and fall
into loops

In order to avoid loops:

- (only improving solutions are accepted = LS)

- randomized exploration
I alternative random ways
I does not exploit information on the problem (structure)
I e.g. Simulated Annealing

- memory of visited solutions
I store visited solution and do not accept them
I structure can be exploited
I e.g. Tabu Search

Notice. Visiting a same solution is allowed: we just need to avoid
choosing the same neighbour
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Simulated Annealing [Kirkpatrick, 1983]

Metaphore: annealing process of glass, metal. Alternate
warming/cooling to obtain “optimal” molecular structure

(One possible) search scheme (min problem):

Determine an initial solution x ; x∗ ← x k = 0

repeat

k ← k + 1

generate a (random) neighbour y

if y is better than x∗, then x∗ ← y

compute p = min

{
1, exp

(
− f (y)− f (x)

T (k)

)}
accept y with probability p

if accepted, x ← y

until (no further neighbours of x , or max trials)

return x∗
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SA: cooling schedule

Parameter T (k): temperature, cooling schedule

T (first) > T (last)

Example of cooling schedule:

- initial T (maximum)

- number of iterations at constant T

- T decrement

- minimum T

+ (one of) the first NS metaphors

+ provably converges to the global optimum (under strong assumptions)

+ simple to implement

— there are better (on-the-field) NS metaheuristics!
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Tabu Search [Fred Glover, 1989]

Memory is used to avoid cycling: store information on visited
solutions (allows exploiting structure of the problem)

Basic idea: store visited solutions and exclude them (= make tabu)
from neighbourhoods

Implementation by storing Tabu List of the last t solutions

T (k) := {xk−1, xk−2, . . . , xk−t}

at iteration k , avoid cycles of length ≤ t

t is a parameter to be calibrated

From N(x) to N(x , k)
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Storing “information” instead of solutions

Tabu List (may) store information on the last t solutions

E.g., often moves are stored instead of solutions because of

- efficiency (checking equality between full solutions may take long
time and slow down the search)

- storage capacity (storing full solution information may take large
memory)

Example: TSP, 2-opt. TL stores the last t pairs of arcs added (to
avoid arcs or involved nodes)

Notice. Visiting a same solution is allowed: we just need to avoid
choosing the same neighbour (recall N(x , k) 6= N(x , l))

t (tabu tenior) has to be calibrated:

- too small: TS may cycle

- too large: too many tabu neighbours
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Aspiration criteria

By storing “information”, unvisited solutions may be declared as tabu

If a tabu neighbour solution satisfies one or more aspiration criteria,
tabu list is overruled

Aspiration criterion: a solution is “interesting”, e.g. the solution is
the best found so far (not visited before!)
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Stopping criteria

(A solution is found satisfying an optimality certificate, if available...)

Maximum number of iterations, or time limit

Maximum number of NOT IMPROVING iterations

Empty neighbourhood and no overruling
I perhaps t is too long
I perhaps visit non-feasible solutions (e.g. COP with many constraints):

modifying the evaluation function, alternate dual and primal search
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TS basic scheme

Determine an initial solution x ; k := 0, T (k) = ∅, x∗ = x ;

repeat

let y = arg best
(
{f̃ (y), y ∈ N(x , k)}∪

{y ∈ N(x) \ N(x , k) | y satisfies aspiration}
)

compute T (k + 1) from T (k) by inserting y (or move x 7→ y ,
or information) and, if |T (k)| ≥ t, removing the elder solution
(or move or information)

if f (y) improves f (x∗), let x∗ := y ;
x = y , k++

until (stopping criteria)

return (x∗).

Same basic elements as LS (+ tabu list, aspiration, stop)
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Intesification and diversification phases

Intensification explores more solutions in a small portion of the
solution space: solutions with similar features

Diversification moves the search towards unexplored regions of the
search space: solutions with different features

the basic TS scheme may be improved by alternating intensification
and diversification, to find and exploit new promising regions and,
hence, new (and possibly better) local optima

memory may play a role (store information on visited solutions, e.g.
to allow avoiding the same features during diversification)

Intesification and diversification can be applied to any metaheuristics (not
only to TS)
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Intensification

enumerate (implicitly) all the solutions in a (small) region where good
solutions have been found (e.g. fix some variables in a MILP model
and run a solver)

use a more detailed neighbourhood (e.g. allowing many possible
moves)

relax aspiration criteria

modify evaluation function to penalize far away solutions
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Diversification

use “larger” neighbourhoods (e.g. k-opt → (k + 1)-opt in TSP, until
a better solution is found)

I if more neighbourhoods are used, they rely on independent tabu lists

modify the evaluation function to promote far away solutions

use the last local minimum to build a far-away (“complementary”)
solution to start a new intensification

use a long term memory to store the “more visited” features and
penalize them in the evaluation function

I as a quick-and-dirty approximation, use a dynamic tabu list length t: t
is short during intensification and long during diversification (we may
start with small t = t0 and increment it as long as we do not find
improving solutions, until a maximum t is reached or an improvement
resets t = t0 for a new intensification)
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Example: Tabu Search for Graph Coloring

R V

G

RV

G

vertex 1 v. 2

v. 3

v. 4v. 5

v. 6

1 2 3 4 5 6

R RV VG G

f = 3

R V

R

VR

V

vertex 1 v. 2

v. 3

v. 4v. 5

v. 6

1 2 3 4 5 6

R VV RR V

f = 2

move: change the color of one node at a time (no new color). 12 neighbours:
VVGRVG, GVGRVG, RRGRVG, RGGRVG, RVRRVG etc. none feasible!

objective function to evaluate: little variations (plateau!)

f̃ that penalizes non-feasibilities, includes (weighted sum) other features, but ...
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Too many constraints: change perspective!

Given a k-coloring, search for a k − 1-coloring

Initial solution: delete one color by changing it in one of the others

Evaluation f̃ : number of monochromatic edges (minimize
non-feasibilities)

Move: as before, change the color of one vertex

Granular TS: consider only nodes belonging to monochromatic edges

Tabu list: last t pairs (v , r) (vertx v kept color r)

if f̃ = 0, new feasible solution with k − 1 colors: set k = k − 1 and
start again!
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Population based heuristics

At each iteration

a set2 of solutions (population) is maintained

some solutions are recombined3 to obtain new solutions (among
which a better one, hopefully)

Several paradigms (often just the metaphor changes!)

Evolutionary Computation (Genetic algorithms)

Scatter Search and path relinking

Ant Colony Optmization

Swarm Optmization

etc.

General purpose (soft computing) and easy to implement (more than
effective!)

2In trajectory/based metaheuristics, a single
3In trajectory/based metaheuristics, perturbation, move
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Genetic Algorithms [Hollande, 1975]

Survival of the fittest (evolution) ! Optimization
Individual ! Solution

Fitness ! Objective function

Encode solutions of the specific problem.

Create an initial set of solutions (initial population*).

Repeat

Select* pairs (or groups) of solutions (parent).

Recombine* parents to generate new solutions (offspring).

Evaluate the fitness* of the new solutions

Replace* the population, using the new solutions.

Until (stopping criterion)

Return the best generated solution.

* Genetic Operators
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Encoding: chromosome, sequence of genes

KP 0/1: binary vector, n genes = 0 / 1

1 0 0 1 1 0 0 0 1 0

TSP: path representation: n genes = cities

3 2 6 1 8 0 4 7 1 5

Normally, each gene is related to one of the decision variables of the
Combinatorial Optimization Problem (COP)

Encoding is important and affect following design steps (like solution
representation in neighbourhood search)

Decoding to transform a chromosome (or individual) into a solution
of the COP (in the cases above it is straightforward)
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Encoding: chromosome, sequence of genes

Job shop scheduling: n ∗m genes = jobs (decoding!!!)

Job machine , tij
1 A , 5 B , 4 C , 4
2 B , 2 A , 6 C , 5
3 C , 4 B , 2 A , 2
4 C , 4 A , 5 B , 4

Encoding:

4 2 1 1 3 4 2 3 1 2 3 4

Decoding:

4

2

1

1

3

4 2

3

1 2

3

4

C

B

A

t0 5 10 15 20
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Genetic operators

Initial population: random + some heuristic/local search
I random → diversification (very important!!!)

I heuristic (randomized) → faster convergence (not too many heuristic
solutions, otherwise fast convergence to local optimum)

Fitness: (variants of the) objective function (see Neighbourhood
Search)
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Genetic operators: Selection

Selection: larger fitness  larger probability to be selected

Notice: even worse individual should be selected with small
probability to (avoid premature convergence!): they may contain
good features (genes), even if their overall fitness is poor

Mode 1: select one t-uple of individuals to be combined at a time

Mode 2: select a subset of individuals to form a mating pool, and
combine all the individual in the mating pool.
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Genetic operators: Selection schemes

pi : probability of selecting individual i ; fi : fitness of i

In general, compute pi such that the higher fi , the higher pi

Montecarlo: pi is proportional to fi

pi = fi /
N∑

k=1

fk fi : fitness of i

Super-individuals may be selected too often

Linear ranking: sort individual by increasing fitness and σi is the

position of i , set pi =
2σi

N(N + 1)

n-tournament: select a small subset of individuals uniformly in the
population, then select the best individual in the subset
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Genetic operators: recombination [crossover]

From n ≥ 1 parents, obtain m offspring different but similar

offspring inherits genes (features) from one of the parents at random

Uniform (probability normally depends on the parent fitness)

1 0 0 1 1 0 0 0 1 0 parent 1 (fitness 8)
0 0 1 0 1 0 1 1 0 1 parent 2 (fitness 5)

1 0 0 0 1 0 0 1 0 0 offspring

k-cut-point: “adjacent genes represents correlated features”

cut point cut point

* * * * * * * * * * parent 1
+ + + + + + + + + + parent 2

* * * + + + + + * * offspring 1
+ + + * * * * * + + offspring 2
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Mutation

After or during crossover, some genes are randomly changed

Against genetic drift: one gene takes the same value in all the
individuals of the population (loss of genetic diversity)

Effects and side effects (sometimes we want them!):

I (re)introduce genetic diversity
I slow population convergence (normally we change very few genes with

very small probability)
I can be used to obtain diversification (more genes with more probability:

simple way to diversify, not the best one)
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Integrating Local Search

Local search may be used to improve offspring (simulate children
education)

Replace an individual with the related local minimum

May lead to premature convergence

Efficiency may degrade!
I simple, fast LS
I apply to a selected subset of individuals
I more sophisticated NS only at the end, as post-optimization
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Crossover, mutation and non-fesible offspring

Crossover/mutation operators may generate unfeasible offspring. We can:

Reject unfeasible offspring

Penalize (modified fitness)

Repair (during the decoding)

Design specific operators guaranteeing feasibility. E.g. for TSP:
I Order crossover (similar, since reciprocal order is maintained)

1 4 9 2 6 8 3 0 5 7 parent 1
0 2 1 5 3 9 4 7 6 8 parent 2

1 4 9 2 3 6 8 0 5 7 offspring 1
0 2 1 4 9 3 5 7 6 8 offspring 2

I Mutation by substring reversal (= 2-opt)

1 4 9 2 6 8 3 0 5 7
−→ ←− −→

1 4 8 6 2 9 3 0 5 7
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Generational Replacement

Generational replacement: old individuals are replaced by offspring

Steady state: a few individuals (likely the worst ones) are replaced

Elitism: a few individuals (likely the best ones) are kept

Best individuals: generate R new individuals from N old ones; keep
the best N among the N + R

Population management: keep the population diversified, whilst
obtaining (at least one) better and better solution

Acceptance criteria for new individuals (e.g. fitness)

Diversity threshold (e.g. Hamming distance)

Variable threshold to alternate intensification and diversification
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Stopping criteria

Time limit

Number of (not improving) iterations (=generations)

Population convergence: all individuals are similar to each other
(pathology: not well designed or calibrated)
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Observations

Advantages: general, robust, adaptability (just an encoding and a
fitness function!)

Disadvantages: many parameters! (you may save time in developing
the code but spend it in calibration)

Overstatement: complexity comes back to the user, that should find
the optimal combination of the parameters.
Normally, the designer should provide the user with a method able to
directly find the optimal combination of decision variables. In fact,
the algorithm designer should also provide the user with the
parameter calibration!

Genetic algorithms are in the class of weak methods or soft
computing (exploit little or no knowledge of the specific problem)
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Validating optimization algorithms

Some criteria:

(Design and implementation time / cost)

Efficiency (running times)

Effectiveness (quality of the provided solutions)

Reliability, if stochastic (every run provide a good solution)

Evaluation/validation techniques:

Computational experiments. Steps
I desing and implementation of the optimization algorithm
I benchmark selection (real, literature, ad-hoc): “many” instances
I parameter calibration (before -not during- test)
I test (notice: multiple [e.g. 10] running if stochastic)
I statistics (including reliability) and comparison with alternative

Probabilistic analysis (more theoretical, e.g. probability of optimum)

Worst case analysis (performance guarantee, often too pessimistic)
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Parameter calibration (or estimation)

Pre-deployment activity (designer should do, not the user!)

Estimation valid for every instance (for evaluation purposes)

Standard technique:

I select an instance subset (= training set)
I extensive test on the training set
I take interaction among parameters into account
I stochastic components make the calibration harder

Advanced techniques:

I Black box optimization
I Automatic estimation (e.g. i-race package)
I Adaptivity
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Hybrid metaheuristics: very brief introduction!

Integration between different techniques, at different levels (components,
concepts, etc.). Examples:

population based + trajectory methods (find good regions +
intensification)

tabu search + simulated annealing

Matheuristics (hot research topic, thesis avaialble!)
I mathematical programming driven constructive heuristics
I exact methods to find the best move in large neighbourhoods
I heuristics to help exact methods (e.g. primal and dual bounds)
I Rounding heuristics
I Local branching
I ...

Warning: an algorithm is good if it provides good results (validation), and
not if it is described by a suggestive metaphor. See Sörensen, 2015
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