
Methods and Models for Combinatorial Optimization

Heuristis for Combinatorial Optimization

L. De Giovanni

1 Introduction

Solution methods for Combinatorial Optimization Problems (COPs) fall into two classes:
exact methods and heuristic methods. Exact methods are able, at least in theory, to pro-
vide an optimal solution, that is, a feasible solution that optimize (minimize or maximize)
the value of the objective function, whereas heuristic methods provide a feasible solution
with no optimality guarantee.

In some cases, we may be able to find “efficient” exact algorithms to solve a COP: for
example, the problem of finding the shortest paths on a graph, under some reasonable
assumptions often met in practice, can be solved by the Dijkstra or Bellman-Ford algo-
rithms, able to provide optimal solutions in polynomial (of small degree) running time.
For more complex problems, when no “efficient” algorithms are available, a possible ap-
proach may be formulating the COP as a Mixed Linear Programming (MILP) model and
solving it by a MILP solver (e.g. Cplex, Gurobi, Xpress, AMPL, OPL etc.), which makes
use of general purpose exact algorithms that guarantee, at least in theory, to find the
optimal solution. These methods have an exponential computational complexity, so that
the time to solve the problem may grow exponentially with its size.

It is not always possible or appropriate to apply exact solution methods, due to basically
two concurrent issues: the inner complexity of a COP (e.g. an NP-Hard problem), and
the time available to provide a solution, which may be limited. To this respect it is
important to clarify that the use of a heuristic method instead of an exact one must be
well motivated: the inner complexity of a problem does not justify in itself the use of
heuristics, since literature may provide viable exact algorithms. The use of heuristic is
thus motivated by the inner complexity of the COP together with consideration on the
opportunity of implementing exact methods (which may require, for example, considerable
implementation resources), the available computational time, the size of the instances to
be solved etc. For example, it is always advisable to make an attempt to formulate a model
of the COP (e.g. a MILP model): this effort is useful in the analysis phase, but also as
an operational tool, since the growing efficiency of solvers may make the implementation
of the model a viable approach to obtain an exact solution in reasonable running times.

1



Heuristis for Combinatorial Optimization

Nevertheless, the inner complexity of the problem may make a hard task to obtain a
accurate enough formulation. Think about the problem of configuring a transportation
network in order to minimize the congestion level, which depends also on the behaviour
of the network users: even if several mathematical behavioural models are available in
literature, often the only way for obtaining realistic results is simulation, which can be
hardly embedded in a mathematical programming model (in general, an in a MILP model
in particular). In other contexts, even if we have an accurate formulation, it may be the
available time that inhibits the use of exact methods, since their computational complexity
does not give any guarantee on the required running time: solving a problem in order of
hours may be appropriate in some cases, non acceptable in others.

The problem features and/or the solution context may make inappropriate the application
of exact methods, while it is necessary to provides “good” feasible solutions in “reason-
able” amount of time. It is worth nothing that, while in some cases the availability of a
provably optimal solution is necessary, in many other cases, including perhaps the ma-
jority of real cases, a good approximate solution is enough, in particular for large size
instances of a COP. For example:

• for many parameters (data) determining a COP coming from a real application,
just estimates are available, which may be also subject to error, and it may be not
worth waiting a long time for a solution whose value (or even feasibility) cannot be
ensured;

• a COP may be solved to provide one possible solution to a real problem, towards
a quick scenario evaluation (e.g., operational contexts, integration of optimization
algorithms into interactive Decision Support Systems);

• a COP may be stated in a real time system, so that it is required that a “good”
feasible solution is provided within a limited amount of time (e.g. fractions of
seconds).

These examples attest for the extended use, in practise and in real applications, of methods
that provide “good” solutions and guarantee acceptable computing times, even if they
cannot guarantee optimality: they are called heuristic methods (from greek eur̀ıskein =
to find).

For many COPs it is possible to devise some specific heuristic that exploits some special
feature of the COP itself and the human experience of who solves the problem in prac-
tice. In fact, very often, an “optimization” algorithm comes directly from coding, when
available, the rules applied to “manually” solve the problem. In this case, the quality
of the obtained solution, that is, the effectiveness of the algorithm, depends on the rules
themselves and, hence, on the amount of “good practice” that the algorithm embeds: if
the amount is high, we will obtain fairly “good” solutions (hardly better than the current
ones, anyway); if the amount is little (or lacking, as it may happens if the developer has
computer skills but no knowledge about the problem to be solved), the method is likely
to be “the first reasonable algorithm coming into our mind”.

L. De Giovanni - Methods and Models for Combinatorial Optimization 2



Heuristis for Combinatorial Optimization

In the last decades, academic and practitioners’ interest has been devoted to general
heuristic approaches, able to outperform specific heuristics on the field. Related literature
is vaste and has been fed by the ingenuity (and often the fantasy – see the work by Söresen
cited below) of researchers. Al lot of techniques have been proposed and it is a very hard
task to attempt a systematic and broadly accepted classification. A possible classification
is the following:

• constructive heuristics: they can be applied when the solution is given by se-
lecting the “best” subset of a given set of elements. One starts from the empty set
and iteratively add one element to the solution, by applying some specific selection
criterion. For example, if the selection criterion is some “local optimality” (e.g.,
the element providing the best improvement the objective function), we obtain the
so called greedy heuristics. The basic feature of such construction approaches is
the fact that, in principle, the selection made at a certain step influences only the
following steps, that is, no backtracking is applied;

• meta-heuristics: they are general, multi-purpose methods or, better, algorith-
mic schemes which are devised independently from a specific COP. They defines
some components and their interactions, allowing them to provide an hopefully
good solutions. In order to devise a real algorithm for a specific COP, we need to
devise and specialize each component. Among the well known meta-heuristics we
cite: Local Search, Simulated Annealing, Tabu Search, Variable Neighborhood Search,
Greedy Randomized Adaptive Search Techniques, Stochastic Local Search, Genetic
Algorithms, Scatter Search, Ant Colony Optimization, Swarm Optimization, Neural
Networks etc.

• approximation algorithms: they are a special class of heuristic methods able to
provide a performance guarantee, that is, it is possible to formally prove that, for
any instance of the COP, the obtained solution will never be worst than the optimal
solution (which may be unknown) over a specified threshold (which is, often, rather
large): for example, we will obtain a solution which is at most 30% far from the
optimum;

• iper-heuristics: we are here at the boundary between Operations Research and
Artificial Intelligence. The aim is defining general algorithms able to automatically
build good algorithms for a specific problem (for example, by trial and errors, they
try to put together the right instructions, evaluating each attempt by applying each
trial algorithm).

• etc. etc. etc.

What we are going to say in the following is necessarily very schematic and mostly based
on examples. For an insight into this topic, a possible (among many others) reading is

C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison”, ACM Computer Surveys 35:3, 2003 (p. 268-
308)

L. De Giovanni - Methods and Models for Combinatorial Optimization 3



Heuristis for Combinatorial Optimization

The article provides also useful links to specific techniques. We also suggest reading
the following paper, which criticizes the trend, registered in the last-years literature, to
propose an increasing number of “new” meta-heuristic methodologies, based on natural
metaphors where just the metaphor changes, whereas the relying mechanisms are essen-
tially the same:

K. Sörensen, “Metaheuristics – the metaphor exposed”, International Trans-
actions in Operational Research (22), 2015 (p. 3-18)

2 Constructive heuristics

Constructive heuristics provide a solution by building it based only on input data and
using a scheme that does not consider, or strongly limits, backtracking: they start from
an empty solution and, iteratively, at each step, new elements are added to the solution
according to a predefined expansion criterion, until a complete solution is defined.

Among the many possible constructive heuristics, we will here consider greedy (myopic) al-
gorithms, algorithms embedding exact techniques for simplified problems, and algorithms
that simplify potentially exact methods. Notice that all of these techniques are devised
such that the overall final running time is short (normally, the computational complexity
is polynomial).

2.1 Greedy algorithms

These algorithms adopt a local expansion criterion, that is, the choice is the one which
seems to be best choice in that moment, also taking into account the constraints of the
problem: at each iteration, the element to add to the current solution is the one that
provides the best improvement to the objective function. The concept scheme of a greedy
algorithm is the following:

1. Initialize solution S;

2. For each choice to be made:

3. make the most convenient choice (taking feasibility constraints into account,
e.g., by excluding elements that make the solution unfeasible).

The scheme is very basic, nevertheless, greedy algorithms are widespread used. In fact:

• the algorithm often “simulates” the most intuitive rules applied in practice to build
solutions (it is actually among the “first methods coming into one’s mind”);

• the implementation is very simple;

L. De Giovanni - Methods and Models for Combinatorial Optimization 4



Heuristis for Combinatorial Optimization

• running times are normally very small (if steps 2. and 3. can be efficiently imple-
mented to identify the current choice and to evalute the choise itself), since just one
evaluation per step is required (linear number of evaluations);

• greedy algorithms are often embedded in more sophisticated algorithms using them
to solve sub-problems. For example, a greedy algorithm may provide the initial solu-
tion for local search algorithms, or an feasible solutions to speed-up exact techniques
(e.g. an initial incumbent solution in branch-and-bound).

Greedy algorithms may consider elements sorted according to a Dispatching Rule, that
is, elements are considered according to this sorting and inserted into the solution. Nor-
mally, sorting criteria are based on associating a numeric “score” to each element, which
identifies the most promising elements. The score can be evaluated once before starting
the algorithm, based only on input data (pre-sorting); or, which often ends up with better
performance, the score can be dynamically updated, taking into account previous choices.
The disadvantage of dynamic scoring is an increased computational effort (and related
running time), since the evaluation is required before each choice, instead of only once.

Of course, the final solution depends on the selection criterion and, with the aim of ob-
taining different and possibly better solutions, the basic scheme can be slightly modified,
by iterating the same greedy algorithm with a different sorting (or selection criterion).
A straightforward and general way to obtain different sorting, is to randomize the dis-
patching rule. For example, at each repetition, the score may be biased by a random
component, so that, at each step, the selection will me made on the element which is
not the best, but close to the best: the algorithm would thus be less myopic, since some
locally optimal element has the chance to be preserved for future steps, when choices may
becomes more critical. A similar randomization can be obtained by making, at each step,
a random choice among the best k elements still available, with k reasonably smaller than
the total number of alternatives.

Normally, greedy algorithms are used to build a feasible solution from the empty set,
in which case we say that they are a primal heuristic. They may be also used as dual
heuristic, meaning that they start from an unfeasible solutions and the score is related to
the reduction of the unfeasibility degree: at each step, the choice that decreases as much
as possible the unfeasibility degree (trying to take a good value of the objective function)
is made.

2.2 Algorithms embedding exact solution methods

The expansion criteria, that is choosing the best element to add, can be interpreted as
an optimization (sub)problem, which is easier than the original COP. For example, the
subproblem (or one approximation) may be modelled as a MILP and, if the MILP is still
difficult to solve, the linear relaxation may be solved by standard solvers. In this case, the
information provided by the solution may be used to define the scores. As already seen,

L. De Giovanni - Methods and Models for Combinatorial Optimization 5



Heuristis for Combinatorial Optimization

the sub-problem may be solved once before starting the heuristic procedure, or before
each iteration, taking into account already fixed choices.

Normally, the time needed to run these algorithms is longer than the one required by
greedy procedures, but the provided solutions are generally better. In fact, using an
optimization model involves all (still-to-be-fixed) decision variables, so that the choices
made at each step take to some extent into account a global optimality criterion.

2.3 Simplifying exact procedures

Some heuristic approaches simplifies exact procedures in order to make their complexity
polynomial in time, at the cost of losing optimality guarantee. For example, an exact
algorithm may be based on implicit enumeration (e.g., branch-and-bound) that gives rise
to an exponential number of alternatives to be evaluated: a heuristic approach is to use
some greedy criteria to select only a subset of alternatives. A simpler alternative is to
stop an enumeration scheme, visited in depth, after a given number of alternatives have
been explored, or after a fixed time-limit, and take the best solution generated so far. In
practise, we may implement a MILP model using a standard solver (e.g. Cplex) and run
it for a fixed amount of time, getting the best incumbent solution (if any).

A more sophisticated variant to an enumeration scheme is the beam search. It considers
a partial breath-first visit of an enumeration tree: at each node, all the b alternatives
(child nodes) are generated and, at each level of the tree, only k nodes are branched, k
being a parameter to be calibrated according to the available computational time. The k
nodes are chosen by associating to each node an evaluation that should be related to the
likelihood a node is on the way to an optimal solution: for example, a rapid evaluation
(e,g, by greedy completing the partial solution at the node) of a possible solution in the
subtree rooted at the node itself, or a bound on the value of the optimal solution in the
subtree, or a weighted sum of these two values, or any other evaluation. Then the k most
promising nodes are chosen at each level, whereas the others are discarded: in such a way,
we do not have the combinatorial explosion of the size of the enumeration tree, since at
each level (at most) k nodes are taken and the enumeration trees reduces to a beam of
n · k nodes (n being the number of levels of the enumeration tree). Hence, the overall
complexity is polynomial, if polynomial is the node evaluation procedure. More in details,
denoting by n the size of the problem in terms of variables to be fixed (number of tree’s
levels), by b the number of alternatives for each decision variable, that is, the number of
children of each node, and by k the beam size, we will evaluate O(n · k · b) nodes. The
bottom level is made of k leaves, corresponding to k alternative solutions among which
the best is chosen. Notice that, starting from the time needed to evaluate a single node,
one advantage of this technique is the possibility of a good estimation of the time needed
to run it, once k is fixed; or, it is possible to estimate the parameter k based on the
maximum available time.

In its basic implementation, beam search does not backtrack (it is not possible to go
back to previous levels once the k nodes have been selected): this is the reason why

L. De Giovanni - Methods and Models for Combinatorial Optimization 6



Heuristis for Combinatorial Optimization

we have included beam search among the constructive heuristics. In fact, it may be
classified as a meta-heuristic, since it defines a framework with some components (tree-
search structure, node evaluation) to be specified in order to get an algorithm for a specific
COP. This shows that the boundary between classes of heuristics is floating (and, in fact,
not relevant in practice). Moreover, a variant to beam search is the recovery beam search,
where backtracking is allowed: if at a given level one of the k nodes seems to be not as
promising as supposed, it is possible to prune it and go back to a previous level and follow
a new path (according to how backtracking is implemented, polynomial complexity may
be lost).

2.4 Example: the 0-1 Knapsack problem (KP/0-1)

We are given n objects and a knapsack of capacity W , and let wj and pj be the weight
and the profit of object j. We want to select a subset of the objects such that the profit is
maximized and the capacity of the knapsack is not exceeded. In this problem, a “good”
object is one having high profit and small weight. A possible greedy selection order is
thus the one given by ascending ratio between pj and wj, yielding the following greedy
heuristic.

• Greedy algorithm KP/0-1

1. Sort object according to ascending
pj
wj

.

2. Initialize: S := ∅ (selected objects),
W̄ := W (remaining knapsack capacity),
z := 0 (current solution value).

3. for j = 1, . . . , n do

4. if (wj ≤ W̄ ) then

5. S := S ∪ {j}, W̄ := W̄ − wj, z := z + pj.

6. endif

7. endfor

Notice that the expansion criterion is here static and evaluated once.

• Beam search for KP/0-1

We illustrate by the following example.

max 30x1 + 36x2 + 15x3 + 11x4 + 5x5 + 3x6

9x1 + 12x2 + 6x3 + 5x4 + 3x5 + 2x6 ≤ 17

xi ∈ {0, 1} ∀ i = 1 . . . 6

The result is shown in Figure 1 and considers the following implementation:

L. De Giovanni - Methods and Models for Combinatorial Optimization 7



Heuristis for Combinatorial Optimization

root

x1 = 0 x1 = 1

x2 = 0

x3 = 0

x4 = 0

x5 = 0

x6 = 0 x6 = 1

x5 = 1

x4 = 1

x3 = 1

x2 = 1 x2 = 0

x3 = 0

x4 = 0

x5 = 0

x6 = 0 x6 = 1

x5 = 1

x4 = 1

x3 = 1

x2 = 1

44 48

34 47 48 N.A.

47 N.A. 46 48

44 47 48 N.A.

47 N.A. 48 N.A.

47 N.A 45 48

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

LEVEL 6

Figure 1: An example of search tree associated to a beam-search method for KP/0-1.

– binary branching (b = 2): at tree level i, we fix either to 0 or 1 variable xi,

according to decreasing
pj
wj

(in the examples it corresponds to 1 . . . 6). The

number of levels is equal to the number of variables (6 in this case).

– k = 2;

– the heuristic algorithm described above is used to provide the evaluation of
each node (O(n) complexity, once the variable are initially fixed, at the root
node, once for all), taking into account the value fixed at previous levels. We
thus evaluate at each node a lower bound (feasible solution) and choose, at
each level, the k = 2 nodes with higher lower bound.

2.5 Example: the Set Covering problem

The set covering problem (SCP) takes a set M and a set M ⊆ 2M of subsets of M as
input. For each j ∈ M a cost cj is given and we want to select a combination of subsets
in M whose union is M (the subsets cover M) and whose total cost in minimized. For
each i ∈ M , j ∈ M, let aij be the input parameter equal to 1 if i ∈ j, 0 otherwise. A
subset is “good” if its cost is small and it if covers many elements (among the ones to be

L. De Giovanni - Methods and Models for Combinatorial Optimization 8



Heuristis for Combinatorial Optimization

still covered). The following greedy algorithm associates to each subset a score computed
as a function of the subset cost and the number of new elements covered by adding the
set itself to the solution.

• Greedy algorithm for SCP

1. Initialize: S := ∅ (selected subsets),
M̄ := ∅ (elements already covered by the currently selected subsets),
z := 0 (objective function value).

2. if M̄ = M (⇔ all elements are covered), STOP;

3. compute the set j /∈ S minimizing the ratio
cj∑

i∈M\M̄

aij
;

4. set S := S ∪ {j}, M̄ := M̄ ∪ {i : aij = 1}, z := z + cj and go to 2.

Notice that, in this case, scores are dynamically evaluated, since it is related not
only to the subset at hand, but also to previous choices determining the current
partial solution, which determines the number of additional covered elements.

• Algorithm for SCP based on linear programming relaxation

A possible model for SCP is the following:

min
∑
j∈M

cjxj

s.t.
∑
j∈M

aijxj ≥ 1 ∀ i ∈M

xj ∈ {0, 1} ∀ j ∈M

The model is hard to be solved to integrality by a MILP solver, whereas its linear
relaxation, that is, the problem with constraints xj ∈ [0, 1] instead of xj ∈ {0, 1}
can be efficiently solved. We can embed the exact solution of the linear relaxation
in a constructive heuristic for SCP as follows.

1. Initialize: S := ∅ (selected subsets),
M̄ := ∅ (elements already covered by the currently selected subsets),
z := 0 (objective function valule).

2. se M̄ = M (⇔ tall elements are covered), STOP;

3. solve the linear programming relaxation of SCP (with additional constraints
xj = 1 ∀ j ∈ S), and let x∗ be the corresponding optimal solution;

4. let j = arg max
j /∈S

x∗j ;

5. set S := S ∪ {j}, M̄ := M̄ ∪ {i : aij = 1}, z := z + cj and go to 2.

L. De Giovanni - Methods and Models for Combinatorial Optimization 9



Heuristis for Combinatorial Optimization

3 Neighbourhood Search: local search

Let P be an optimization problem defined by an objective function f and a feasible region
X. A neighborhood is an application

N : s→ N(s)

that associates, to each point s ∈ X a subset N(s) ⊆ X.

The basic idea of the meta-heuristic known as neighborhood search is the following: start
from an initial solution (current solution) x and try to improve it by exploring a suitable
neighbourhood of x. If the neighbourhood contains a solution y better than x, then iterate
the process considering y as the new current solution.

The simplest version of the neighbourhood search is the local search (LS): the algorithm
stops when the neighbourhood of the current solution contains no improving solutions, so
that the current solution is a local optimum.

The basic LS scheme is the following (for a minimization problem) :

1. Determine an initial solution x;

2. while (∃ x′ ∈ N(x) : f(x′) < f(x)) do {

3. x := x′

4. }

5. return(x) (x is a local optimum)

We remark that, in general, LS guarantees that the final solution is a local optimum, that
is, a solution with no improving neighbour.

The scheme is extremely simple and general. To obtain an algorithm for a specific problem
the following components should be specialized:

• a method to find an initial solution;

• a solution representation, which is the base for the following elements;

• the application that, starting from a solution, generates the neighbourhood (moves);

• the function that evaluates solutions;

• a neighbourhood exploration strategy.

As we will see, these elements are the basis for any neighbourhood search, and not only
for LS.

L. De Giovanni - Methods and Models for Combinatorial Optimization 10



Heuristis for Combinatorial Optimization

3.1 Initial solution

A straightforward way to obtain the initial solution is to generate it at random, even if
it is advisable to start from a good solution, for example the one obtained by a heuristic
algorithm, or the one implementing the current pratice, or the one currently adopted on
the field (if available). In fact, no theoretical results nor experience attest that better
solutions are obtained starting from better initial points: normally, LS is applied starting
from different initial solutions (multistart), obtained by heuristics or randomly generated,
or by randomized heuristics. In such a way, different portions of the feasible region are
explored and different local optima are identified (and the best is chosen).

3.2 Solution representation

The solution representation encodes the features of the solutions as to provide the “con-
crete” support for the operations that allow us exploring the solution space. As we will see,
different solution representations may be adopted for the same problem, which influences
the design of the remaining LS elements.

Example. The solutions of the KP/0-1 problem (which, we recall, is to select, among
n items with weights wi and profit pi, the ones to be loaded in a knapsack with
capacity W ) can be represented as follows:

1. list of the loaded items;

2. characteristic vector of the set of the loaded items, i.e., a binary vector of
dimension n;

3. ordered sequence of items.

It is not always possible to derive directly the solution from its representation: for example,
the last option for KP/0-1 does not identify directly the subset of loaded items. In these
cases, a decoding procedure is necessary to transform the representation into a solution.

In the KP/0-1 example, decoding the first two representations is immediate. The

third representation can be decoded by loading items in the given order and loading

them if the residual space is enough, until all items are considered (this is in fact

the same heuristic procedure described before, with an initial sorting different from

the greedy one).

3.3 Neighbourhood definition (moves)

Given a solution x, its neighbour solutions are obtained by applying some moves that
perturb x (called the centre of the neighbourhood).

For KP-0/1, possible moves are: (i) insert an item in the knapsack, (ii) swap an

item in the knapsack with one outside, etc.

L. De Giovanni - Methods and Models for Combinatorial Optimization 11



Heuristis for Combinatorial Optimization

3.3.1 Neighbourhood size

Normally, moves implies small changes to the centre solution, to “take control” of the path
in the solution space. Hence, the neighbourhood size, that is, the number of neighbour
solutions, is relatively small and a rapid evaluation is possible. The LS designer should
determine a good trade-off between the neighbourhood size (hence time needed to explore
it) and its effectiveness, that is the ability to contain improving solutions. Notice that,
in theory, we may define more and more complex moves, up to making all the feasible
solutions be included in a neighbourhood: in this case we are sure that an improving
move exists (unless we are already at the optimum), but exploring the neighbourhood may
be impractical, since an exponential-time enumeration is needed. This simple example
shows us that, each time we design a neighbourhood, we should consider the following
first question:

1) what is the size of the neighbourhood (number of neighbour solutions generated by
the moves)?

following the example, (i) the item-insertion neighbourhood and (ii) the item pair-

wise swap neighbourhood have, respectively, size O(n) e O(n2).

Some authors use the term strength of the neighbourhood: a strong neighbourhood is
able to lead a LS towards good solutions, independently from the starting point. This
is related to landascape analysis, which is outside our scope: we let here simply notice
the LS finds local optima, and the definition of a local optimum depends also on the
neighbourhood definition. In other words, the “combinatorial convexity” of the solution
space depends, at a first glance, from the objective function and from the neighbourhood
definition, that is, a solution x is not a local optimum in itself, but because the defined
neighbourhood of x does not contain any solution with better objective function value.

In KP/0-1, a stronger neighbourhood may be obtained by including moves implying

swapping two items outside with two items inside, at the cost of a larger size O(n4).

The availability of a strong neighbourhood reduces, at least in principle, the need for a
good initial solution, so that it should be not worth spending many time in evaluating
it, but it may be advisable to randomly generate different initial solutions, as to obtain
a good sampling of the feasible region leading to better local optima (if not the global
optimum).

Another desirable feature for a neighbourhood is connection: given two feasible solutions
x and y, it is always possible to build a sequence of moves from x to y. Non connected
neighbourhoods limit a-priori the possibility of exploring the solution space.

The insertion neighbourhood (i) is not connected (from solution x it is only possible

to reach solutions y containing more items than x). The swapping neighbourhood is

not connected too (the number of items in the solution cannot change). A connected

neighbourhood may be the one including two types of moves: 1. inserting an item,

and 2. removing an item. Notice that, a straightforward implementation of LS

would never select removing moves, which do not improve the objective function.

L. De Giovanni - Methods and Models for Combinatorial Optimization 12



Heuristis for Combinatorial Optimization

3.3.2 Solution representation is important!

The way the neighbourhood is devised and designed strongly depends on the way solutions
are represented.

All the moves we have previously described for KP-0/1 comes from the first rep-
resentation (insert or remove are list operations). The same moves can be easily
adapted to the second representation (characteristic vector): flipping a 0 to 1 (in-
sertion), flipping a 1 to 0 (removing), swapping a 0 and a 1 (pairwise swap).

The third representation (ordered item list) yield different move definitions, since

a neighbour solution is given by a different order. A move may be swapping the

position of two items in the sequence: for example, if n = 7 and the centre solution

is 1− 2− 3− 4− 5− 6− 7, neighbour solutions are 1− 6− 3− 4− 5− 2− 7 (swap 2

and 6) or 5− 2− 3− 4− 1− 6− 7 (swap 1 and 5). The size of this neighbourhood

is O(n2), and it is connected (with respect to maximal solutions, that is, the ones

where no further items can be included preserving feasibility).

3.3.3 Neighbourhood evaluation and overall complexity

It is important to take the efficiency of a neighbourhood into account, that is, the overall
time taken to explore it, that is, to evaluate all of its solutions. One of the reasons why LS
is a successful heuristic is its capability of quickly evaluating many solutions. The time
to explore a neighbourhood depends on its size and on the computational complexity of
the procedure that evaluates one single neighbour. To this end, it is crucial devising an
incremental evaluation, that is, a procedure that provides the evaluation of a neighbour
exploiting the information of the centre solution. In fact, a second question arises:

2) What is the computational complexity of the (possibly incremental) neighbour solu-
tion evaluation?

Notice that if we consider “small” moves, that is moves yielding small perturbations, it
is more likely to devise an incremental evaluation (the neighbour solution is “similar” to
the centre): this is the reason why simple moves (yielding small weaker neighbourhoods)
are preferred to more complex moves (yielding to stronger neighbourhood that are larger
and normally less efficient).

Overall, the neighbourhood complexity is the product of its size and the computational
complexity of evaluating a single neighbour solution.

In the KP/0-1 example, evaluating each neighbourhood coming from insertion or
removing moves takes constant time. In fact, an incremental evaluation is possible:
starting from the information (value) of the centre, we just need to add or subtract
the profit of the selected item. The overall complexity of these neighbourhoods is
thus O(1 · n) = O(n).

The swapping moves, as defined fro the first and the second representations, the in-
cremental evaluation time remains constant (add/subtract the profits of two items),
determining an O(1 · n2) = O(n2) overall complexity.

L. De Giovanni - Methods and Models for Combinatorial Optimization 13



Heuristis for Combinatorial Optimization

Taking the third representation into account, the related position-swapping move

can be hardly evaluated in a (fully) incremental way, and the evaluation is O(n),

hence the overall neighbourhood complexity is O(n3).

3.4 Solution evaluation function

The solution evaluation function is the value associated to each solution and used to
compare solutions to each others: the best neighbour (chosen as the next move) is the
one having the best value of the evaluation function. Normally, a solution is evaluated
by computing the value of the objective function. However, different evaluations are
possible. For example, when problems are strongly constrained and a feasible solution is
not available, a first step is to find a feasible solution, which can be done by starting from
an unfeasible solution and applying a local search having the objective of minimizing
a measure of the infeasibility. In fact, a neighbourhood may often contain unfeasible
solutions. If they are excluded, the connection features may be lost, so that one may
chose to allow choosing them. Of course we need to evaluate and compare both feasible
and unfeasible solutions, we thus use an evaluation function different from the objective
function. For example, we combine the objective function with a penalty term related to
unsatisfied constraints.

In the KP-0/1 problem, we have seen that the neighbourhood including both in-
sertion and removing moves is connected but only in theory, since removing moves
are never improving according to the objective function. We thus may use an eval-
uation combining the objective function and a penalty measuring the unfeasibility.
Representing a solution with X, the subset of items in the knapsack, the evaluating
function becomes:

f̃(X) = α
∑
i∈X

pi − βmax

{
0,
∑
i∈X

wi −W

}
(α, β > 0).

When the knapsack capacity is saturated with inserting moves, the LS will be able

to continue if, by properly calibrating the parameters α and β, we are able to

temporarily overload the knapsack (e.g. to successively add very profitable items)

and, then, to reach a better feasible solution by removing moves (e.g. a sequence

heavy less profitable items).

3.5 Exploration strategies

The basic LS scheme depicted above make the search go on if the neighbourhood of the
current solution contains an improving solution. The choice of which improving neighbour
solution to select is not unique and depends on th exploration strategy. The common
alternatives are:

• first improvement : as soon as the first improving neighbour is generated, it is se-
lected as the next current solution. Notice that the final results (e.g. the local

L. De Giovanni - Methods and Models for Combinatorial Optimization 14



Heuristis for Combinatorial Optimization

minimum found, or the running times for a single move) depend on the order in
which neighbour solutions are explored. In order to reduce running times, we may
adopt a heuristic order, to give priorities to the moves that are more likely to yield
an improvement. A random order may be used instead, so that different repetitions
of the local search (starting from the same initial solution) may lead to different
local optima.

• steepest descent or best improvement : all the neighbourhood is explored and evalu-
ated, and the next move is determined by the best one.

Several variants are possible, e.g., choosing at random among the best k neighbours (to
introduce randomness into a quasi-best improvement scheme), or storing a number of
the “second-best” neighbours (discarded by a steepest descent strategy), and using them
as further starting points after the first LS reaches a local optimum and stops.

TO BE CONTINUED ... I

L. De Giovanni - Methods and Models for Combinatorial Optimization 15


