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1 The assignment problem

Let G = (V,E) be a bipartite graph, where V is the vertex set and E is the edge set.
Recall that “bipartite” means that V can be partitioned into two disjoint subsets V1, V2

such that, for every edge uv ∈ E, one of u and v is in V1 and the other is in V2.
In the assignment problem we have |V1| = |V2| and there is a cost cuv for every edge

uv ∈ E. We want to select a subset of edges such that every node is the end of exactly one
selected edge, and the sum of the costs of the selected edges is minimized. This problem
is called “assignment problem” because selecting edges with the above property can be
interpreted as assigning each node in V1 to exactly one adjacent node in V2 and vice versa.

To model this problem, we define a binary variable xuv for every u ∈ V1 and v ∈ V2

such that uv ∈ E, where

xuv =

{

1 if u is assigned to v (i.e., edge uv is selected),
0 otherwise.

The total cost of the assignment is given by

∑

uv∈E

cuvxuv.

The condition that for every node u in V1 exactly one adjacent node v ∈ V2 is assigned
to v1 can be modeled with the constraint

∑

v∈V2:uv∈E

xuv = 1, u ∈ V1,

while the condition that for every node v in V2 exactly one adjacent node u ∈ V1 is
assigned to v2 can be modeled with the constraint

∑

u∈V1:uv∈E

xuv = 1, v ∈ V2.
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The assignment problem can then be formulated as the following integer linear pro-
gramming problem:

min
∑

uv∈E

cuvxuv

∑

v∈V2:uv∈E

xuv = 1, u ∈ V1,

∑

u∈V1:uv∈E

xuv = 1, v ∈ V2, (1)

xuv ≥ 0, uv ∈ E,

xuv ∈ Z, uv ∈ E.

Note that we can omit the inequalities xuv ≤ 1 for every uv ∈ E, as they are implied by
the other constraints.

In the following we will write the assignment problem in matrix form.

Definition 1 Given an undirected graph G = (V,E) (not necessarily bipartite), the inci-
dence matrix of G is the matrix A(G) with |V | rows, |E| columns and all entries in {0, 1},
where the element av,e (i.e, the element in the row of A(G) corresponding to node v ∈ V

and in the column of A(G) corresponding to edge e ∈ E) is

av,e =

{

1 if v is an end-node of e,
0 otherwise.

Note that every column of A(G) has exactly two entries of value 1 and all other entries
equal to 0. Moreover, if G is bipartite then every column of A(G) has exactly one entry
of value 1 in the rows corresponding to nodes in V1, and one entry of value 1 in the rows
corresponding to nodes in V2. A bipartite graph and its incidence matrix are shown below.

v1v5 v1v7 v2v6 v2v8 v3v5 v3v6 v4v5 v4v7 v4v8
v1 1 1 0 0 0 0 0 0 0
v2 0 0 1 1 0 0 0 0 0
v3 0 0 0 0 1 1 0 0 0
v4 0 0 0 0 0 0 1 1 1
v5 1 0 0 0 1 0 1 0 0
v6 0 0 1 0 0 1 0 0 0
v7 0 1 0 0 0 0 0 1 0
v8 0 0 0 1 0 0 0 0 1

It can be easily checked that the assignment problem can be written in the form

min cTx
A(G) x = 1

x ≥ 0
x ∈ Z

|E|,
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where 1 denotes a vector whose components are all equal to 1.

In the following, we will show that in the above problem the integrality constraints can
be removed, as the formulation is ideal. In other words, we will show that all feasible basic
solutions of the system A(G) x = 1, x ≥ 0, have integer components. This will follow from
a fundamental property of incidence matrices of bipartite graphs: total unimodularity.

2 Totally unimodular matrices

We call a vector (or a matrix) integer if all its entries are integer.

Definition 2 A matrix A is totally unimodular if det(B) ∈ {0,+1,−1} for every square
submatrix B of A.

In particular, since every entry of A is a 1 × 1 square submatrix of A, the entries of
every totally unimodular matrix are 0, +1 and −1.

We recall a basic fact from linear algebra. Given a square matrix B ∈ R
m×m and given

two indices i, j ∈ {1, . . . ,m}, let Bji denote the matrix obtained from B by removing the
j-th row and the i-th column. If B is invertible (i.e., det(B) 6= 0), then the entry in
position (i, j) of the inverse matrix is

(B−1)i,j = (−1)i+j det(B
ji)

det(B)
.

This implies that if B is integer then every entry of B−1 is an integer number divided by
the determinant of B. Therefore, if B is integer and det(B) = ±1, B−1 is also an integer
matrix. In particular, if A is a totally unimodular matrix, then for every invertible square
submatrix B of A the matrix B−1 is integer.

Theorem 1 Let A ∈ R
m×n be a totally unimodular matrix and b ∈ R

m be a integer
vector. Then all basic solutions of the system

Ax = b

x ≥ 0

are integer.

Proof: Given a basis B of A, the corresponding basic solution x̄ is given by

x̄B = B−1b,

x̄N = 0.

Since A is totally unimodular, from the above discussion we know that B−1 is an integer
matrix. Since b is an integer vector by assumption, B−1b is an integer vector and thus x̄
is an integer vector. �
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Theorem 2 Let A be a matrix with all entries in {0,+1} such that every column of A
has at most two entries of value 1. If the rows of A can be partitioned into two sets V1

and V2 such that every column of A has at most one entry of value 1 in the rows of V1

and at most one entry of value 1 in the rows of V2, then A is totally unimodular.

Proof: Let B be a k × k square submatrix of A. We will show by induction on k that
det(B) ∈ {0,+1,−1}. If k = 1, then B has a single entry that, by assumption, is 0 or
1, and therefore det(B) ∈ {0, 1}. Now take k ≥ 2 and assume by induction that every
(k − 1) × (k − 1) square submatrix of A has determinant 0, +1 or −1. Note that every
column of B has at most two entries of value 1. We consider three cases.
a) B has at least one all-zero column. In this case det(B) = 0.
b) B has at least one column with exactly one entry equal to 1. Let us assume that the
j-th column of B has a single entry of value 1, say the entry in row i. By Laplace rule,
if B′ is the submatrix of B obtained by removing the i-th row and the j-th column, then
det(B) = (−1)i+j det(B′). By induction, det(B′) ∈ {0,+1,−1}, and therefore det(B) =
(−1)i+j det(B′) ∈ {0,+1,−1}.
c) Each column of B has precisely two entries of value 1. In this case, by assumption
every column of A has one entry of value 1 in the rows of V1 and one entry of value 1 in
the rows of V2. Then the sum of the rows of B in V1 minus the sum of the rows of B in V2

is the zero vector. This implies that the rows of B are linearly dependent, and therefore
det(B) = 0. �

Corollary 1 The incidence matrix of a bipartite graph is totally unimodular.

Proof: Let G = (V,E) be a bipartite graph and let V1, V2 be the partition of the nodes
of G such that every edge has one end in V1 and the other in V2. Then every column
of A(G) has exactly one entry equal to 1 in the rows corresponding to nodes in V1 and
exactly one entry equal to 1 in the rows corresponding to nodes in V2 . Then A(G) is
totally unimodular by Theorem 2. �

By Theorem 1 and Corollary 1, all basic solutions of (1) are integer, and therefore the
assignment problem can be solved with the simplex method.

We remark that in Corollary 1 the assumption that the graph is bipartite is essential.
For instance, the incidence matrix of the graph below has determinant −2 and thus it is
not totally unimodular.

ab ac bc

a 1 1 0
b 1 0 1
c 0 1 1
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Several operations preserve totally unimodularity. For instance, if A is anm×n totally
unimodular matrix, then

(1) every matrix obtained from A by permuting some rows and/or columns is totally
unimodular,

(2) every matrix obtained from A by multiplying some rows and/or columns by −1 is
totally unimodular,

(3) AT is totally unimodular,

(4) the matrix (A, I) is totally unimodular (where I is the m×m identity matrix),

(5) the matrix

(

A

I

)

is totally unimodular (where I is the n× n identity matrix).

Facts (1) and (2) are immediate, as if B is a square matrix and B′ is obtained from
B by permutation of rows and columns or by multiplying some rows or columns by −1,
then det(B′) = ± det(B). Property (3) holds because det(B) = det(BT ). Fact (5) follows
from (3) and (4). To show that (4) holds, let B be a square submatrix of (A, I). Up to
row permutations, we can write B in the form

(

C 0
D I

)

where C and D are submatrix of A and 0 denotes an all-zero matrix. Then, by basic
linear algebra, det(B) = det(C) ∈ {0,+1,−1} because C is a submatrix of the totally
unimodular matrix A.

The above facts and Theorem 1 imply the following result.

Theorem 3 Let A ∈ R
m×n be a totally unimodular matrix and b ∈ R

m be an integer
vector. Then all basic solutions of the system

Ax ≤ b

x ≥ 0

are integer.

Proof: A vector x̄ is a basic solution of the above system if the vector (x̄, s̄), where
s̄ = b− Ax̄, is a basic solution of the equivalent system in standard form

Ax+ Is = b

x ≥ 0, s ≥ 0.

By property 4, the matrix of the system of equations (A, I) is totally unimodular. Then,
by Theorem 1, (x̄, s̄) is an integer vector. In particular, x̄ is an integer vector. �
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The transportation problem Let G = (V,E) be an undirected bipartite graph, and
let V1, V2 be a partition of V such that every edge of G has one end in V1 and the other
in V2. For every node u ∈ V1, let du ∈ Z be the amount that can be sent from u to the
nodes in V2, and for every node v ∈ V2 let rv ∈ Z be the amount required by node v.
For every edge uv ∈ E (with u ∈ V1 and v ∈ V2), let cuv be the cost for transporting one
unit from u to v. We want to plan a transportation from the nodes in V1 to the nodes in
V2 at the minimum total cost, satisfying the demands of the nodes in V2 and in such a
way that the amount sent from every node u ∈ V1 does not exceed du. This is called the
transportation problem and can be formulated as

min
∑

uv∈E

cuvxuv

∑

v∈V2:uv∈E

xuv ≤ du, u ∈ V1,

∑

u∈V1:uv∈E

xuv ≥ rv, v ∈ V2, (2)

xuv ≥ 0, uv ∈ E,

xuv ∈ Z, uv ∈ E.

where xuv is the amount sent from u ∈ V1 to v ∈ V2.
By Theorems 2 and 3, all basic solutions of the above system are integer and therefore

the linear relaxation already provides an integer optimal solution.

Incidence matrices of directed graphs Given a directed graph D = (V,A), the
incidence matrix of D is the matrix A(D) with entries in {0,+1,−1} with |V | rows and
|A| columns, where for every arc e = (v, w) the element au,e (in the row corresponding to
node u and column corresponding to arc e) is

au,e =







−1 if u = v,

1 if u = w,

0 otherwise.

Theorem 4 The incidence matrix of every directed graph is totally unimodular.

The proof of Theorem 4 is essentially the same as that of Theorem 2: the only difference
is that, if B is a square submatrix of A(D) in which every column of B has precisely two
nonzero entries, then the sum of all the rows of B gives the all-zero vector (because every
column contains exactly one +1 and one −1), therefore in this case the rows of B are
linearly dependent, and thus det(B) = 0.

The maximum flow problem As an application, consider the maximum flow problem.
Given a directed graph D = (V,A) with capacity cuv for every arc (u, v) ∈ A, let s, t ∈ V

be two special nodes, called source and sink. There is no arc entering in the source s and
no arc leaving the sink t. A feasible s-t flow is a vector x ∈ R

|A| such that:
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(a) 0 ≤ xuv ≤ cuv for every (u, v) ∈ A (i.e., the flow does not exceed arc capacities);

(b) for every node u ∈ V \ {s, t},

∑

v∈V :(v,u)∈A

xvu −
∑

v∈V :(u,v)∈A

xuv = 0

(i.e., in every node, except the source and the sink, the incoming flow equals the
outgoing flow).

The value of the flow, which we denote by φ, is the total amount leaving node s, i.e.,

φ =
∑

v∈V :(s,v)∈A

xsv.

(It can be shown that this value coincides with the total amount entering in node t.) The
maximum flow problem is to find a feasible s-t flow of maximum value. The problem can
be formulated as follows:

max φ (3)
∑

v∈V :(v,u)∈A

xvu −
∑

v∈V :(u,v)∈A

xuv = 0, u ∈ V \ {s, t}, (4)

−
∑

v∈V :(s,v)∈A

xsv + φ = 0, (5)

∑

v∈V :(v,t)∈A

xvt − φ = 0, (6)

xuv ≤ cuv, (u, v) ∈ A, (7)

xuv ≥ 0, (u, v) ∈ A. (8)

Constraints (4) ensure that condition (b) is satisfied; the other two equations define (twice,
but this will be convenient) the objective function φ to be the value of the flow; constraints
(7) and (8) enforce condition (a).

If we construct a directed graph D′ by adding to D an arc from t to s (corresponding
to variable φ), we can rewrite system (4), (5) and (6) in the form A(D′) x = 0, where
A(D′) is the incidence matrix of D and therefore is totally unimodular by Theorem 4.
Constraint (7) preserve totally unimodularity thanks to property (5). It follows that,
when the capacities cuv are all integer, by solving the above linear programming problem
with the simplex method we find a maximum flow with integer components.1

1The form of the system is in part that of Theorem 1 and in part that of Theorem 3; however, similar

to the proof of Theorem 3 one can show that all basic solutions are integer also for problems in this

hybrid form.
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