RICERCA OPERATIVA – 5 crediti

Tema d'esame del 10 dicembre 2010

	COGNOME:	 Questo foglio deve
Scrivere subito!	NOME:	 essere consegnato
	MATRICOLA:	 con l'elaborato

1. Una società di navigazione effettua un servizio di trasporto merci su tre rotte 1, 2 e 3 dove la domanda è rispettivamente di 20000, 5000 e 15000 tonnellate. La società usa per questo servizio tre tipi di nave (A, B e C) e dispone di 100 navi di tipo A, 80 navi di tipo B e 150 navi di tipo C. Ciascuna nave ha capacità e costo di trasporto unitario che dipendono dal tipo e dalla rotta, come riassunto nella seguente tabella:

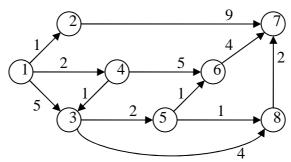
TIPO NAVE	ROTTA	Capacità massima	Costo €/tonnellata		
A	1	150	60		
A	2	120	30		
A	3	non impiegabile			
В	1	100	45		
В	2	80	25		
В	3	90	30		
С	1	non impiegabile			
С	2	60	50		
С	3	140	35		

Si scriva il modello di programmazione lineare per determinare il piano di trasporto che soddisfa la domanda sulle tre rotte minimizzando i costi complessivi, tenendo conto che:

- sulla rotta 1 ci possono essere al massimo 10 navi di tipo A;
- sulla rotta 2 può effettuare servizio un solo tipo di nave;
- se le navi di tipo B sono utilizzate sulla rotta 2, allora queste non possono essere utilizzate né sulla rotta 1, né sulla rotta 3.
- 2. Si risolva il seguente problema di programmazione lineare con il metodo del simplesso, a partire dalla base relativa alle variabili x_1 , x_2 , x_3 e applicando la regola di Bland:

... CONTINUA SUL RETRO ...

3. Si vogliono determinare i cammini minimi composti da al più 4 archi sul seguente grafo:



- si scelga un algoritmo appropriato e si motivi la scelta;
- si calcolino i cammini minimi con al più quattro archi dal nodo 1 verso tutti gli altri nodi (<u>i</u> passi dell'algoritmo vanno riportati in una tabella e giustificati);
- si ricavi un cammino minimo di al più quattro archi da 1 a 7, descrivendo il procedimento adottato.
- **4.** Enunciare le condizioni di complementarietà primale-duale e applicarle per dimostrare che $(x_1,x_2,x_3) = (0,4,8)$ è soluzione ottima del seguente problema:

5. Si consideri il seguente tableau del simplesso:

	x_1	x_2	x_3	χ_4	χ_5	b
- <i>z</i> .	-12	0	0	0	-147	-239
x_3	75	0	1	0	-12	0
x_4	46	0	0	1	1	4/3
x_2	13	1	0	0	0	0

Riportare il tableau sul foglio e rispondere (NON su questo foglio) alle seguenti domande:

- (a) Cerchiare i possibili elementi pivot e dire su quale elemento si farà pivot alla prossima iterazione del simplesso usando la regola di Bland?
- (b) Stabilire, SENZA EFFETTUARE LE OPERAZIONI DI PIVOT, quale sarà il valore della funzione obiettivo alla fine della prossima iterazione del simplesso. GIUSTIFICARE LA RISPOSTA!
- (c) Alla fine della prossima iterazione sarà cambiata la base corrente: sarà cambiato anche il vertice del poliedro associato alla nuova base? GIUSTIFICARE LA RISPOSTA!
- **6.** Discutere la complessità computazionale dell'algoritmo di Dijkstra per il problema del cammino minimo.

2