Implementations of the Levin-Weniger convergence accelerator and applications to problems in physics

Ignacio Porras, Francisco Cordobés-Aguilar

Departamento de Física Atómica, Molecular y Nuclear
Universidad de Granada

Luminy 09 Conference
Outline:

- Introduction.
Outline:

- Introduction.
- A new remainder for the generalized Levin transformation.
Outline:

- Introduction.
- A new remainder for the generalized Levin transformation.
- Attempts to improve stability.
Outline:

- Introduction.
- A new remainder for the generalized Levin transformation.
- Attempts to improve stability.
- Series appearing in few-electron integrals.
Outline:

- Introduction.
- A new remainder for the generalized Levin transformation.
- Attempts to improve stability.
- Series appearing in few-electron integrals.
- Generalizing Čížek et al's generalization of Levin-Weniger transformations.
Outline:

- Introduction.
- A new remainder for the generalized Levin transformation.
- Attempts to improve stability.
- Series appearing in few-electron integrals.
- Generalizing Čížek et al’s generalization of Levin-Weniger transformations.
- Conclusions.
Introduction:

Convergence acceleration is an important problem in many problems in physics.
Convergence acceleration is an important problem in many problems in physics.

Variational calculations in atomic physics: multiple series for the calculation of each matrix element of the Hamiltonian.
Introduction:

- Convergence acceleration is an important problem in many problems in physics.
- Variational calculations in atomic physics: multiple series for the calculation of each matrix element of the Hamiltonian.
- High precision is demanded.
Introduction:

- Convergence acceleration is an important problem in many problems in physics.
- Variational calculations in atomic physics: multiple series for the calculation of each matrix element of the Hamiltonian.
- High precision is demanded.
- Large basis sets: necessity of reducing computing time.
Introduction:

- Convergence acceleration is an important problem in many problems in physics.
- Variational calculations in atomic physics: multiple series for the calculation of each matrix element of the Hamiltonian.
- High precision is demanded.
- Large basis sets: necessity of reducing computing time.
- Crucial problems: negative ions.
For a series $S = \sum_{i=0}^{\infty} a_i$, where $S_n = \sum_{i=0}^{n} a_i$, for which we assume

$$S_n = S + \omega_n \sum_{j=0}^{k-1} \frac{C_j}{(n + \beta)^j}$$
For a series \(S = \sum_{i=0}^{\infty} a_i \), where \(S_n = \sum_{i=0}^{n} a_i \), for which we assume

\[
S_n = S + \omega_n \sum_{j=0}^{k-1} \frac{C_j}{(n + \beta)^j}
\]

Then, multiplying by \((n + \beta)^{k-1} \) both sides:

\[
(n + \beta)^{k-1} \frac{S_n - S}{\omega_n} = \text{polynomial in } n \text{ of degree } k - 1
\]
Generalized Levin transformed reviewed by Weniger

For a series $S = \sum_{i=0}^{\infty} a_i$, where $S_n = \sum_{i=0}^{n} a_i$, for which we assume

$$S_n = S + \omega_n \sum_{j=0}^{k-1} \frac{C_j}{(n + \beta)^j}$$

Then, multiplying by $(n + \beta)^{k-1}$ both sides:

$$\frac{(n + \beta)^{k-1} S_n - S}{\omega_n} = \text{polynomial in } n \text{ of degree } k - 1$$

And applying the k-th power of the difference operator Δ^k:

$$S = \frac{\sum_{j=0}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \beta)^{k-1}}{(n + k + \beta)^{k-1}} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \beta)^{k-1}}{(n + k + \beta)^{k-1}} \frac{1}{\omega_{n+j}}}$$

A new remainder for g-Levin transformation

Levin’s u-transformation: $\omega_n = na_n$ or $\omega_n = (n + \beta)a_n$ (inspired in integrals)
A new remainder for g-Levin transformation

- Levin's \(u \)-transformation: \(\omega_n = n a_n \) or \(\omega_n = (n + \beta) a_n \) (inspired in integrals)

- Formal obtention of a remainder for series for which \(a_n \sim n^{-\alpha} \), using Euler-McLaurin sum rule:

\[
\sum_{i=n}^{\infty} a_i = \int_{n}^{\infty} f(x) \, dx + \frac{1}{2} f(n) - \sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} f(2k-1)(N) + E_m
\]

where
A new remainder for g-Levin transformation

- Levin’s \(u \)-transformation: \(\omega_n = na_n \) or \(\omega_n = (n + \beta)a_n \) (inspired in integrals)

- Formal obtention of a remainder for series for which \(a_n \sim n^{-\alpha} \), using Euler-McLaurin sum rule:

\[
\sum_{i=n}^{\infty} a_i = \int_n^{\infty} f(x) \, dx + \frac{1}{2} f(n) - \sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} f^{(2k-1)}(N) + E_m
\]

where

- \(f(x) \) verifies \(f(i) = a_i \) for \(i = n, n + 1, \ldots \),
A new remainder for g-Levin transformation

Levin’s u-transformation: $\omega_n = na_n$ or $\omega_n = (n + \beta)a_n$ (inspired in integrals)

Formal obtention of a remainder for series for which $a_n \sim n^{-\alpha}$, using Euler-McLaurin sum rule:

$$\sum_{i=n}^{\infty} a_i = \int_{n}^{\infty} f(x) \, dx + \frac{1}{2} f(n) - \sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} f^{(2k-1)}(N) + E_m$$

where

- $f(x)$ verifies $f(i) = a_i$ for $i = n, n+1, \ldots$,
- B_n denote the Bernoulli numbers,
A new remainder for g-Levin transformation

- Levin’s \(u \)-transformation: \(\omega_n = na_n \) or \(\omega_n = (n + \beta)a_n \) (inspired in integrals)

- Formal obtention of a remainder for series for which \(a_n \sim n^{-\alpha} \), using Euler-McLaurin sum rule:

\[
\sum_{i=n}^{\infty} a_i = \int_{n}^{\infty} f(x) \, dx + \frac{1}{2} f(n) - \sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} f(2k-1)(N) + E_m
\]

where

- \(f(x) \) verifies \(f(i) = a_i \) for \(i = n, n+1, \ldots \),
- \(B_n \) denote the Bernouilli numbers,
- and \(E_m \) is a remainder term.
If n is large enough and $f(x) \sim \frac{C}{x^\alpha}$:

$$\sum_{i=n}^{\infty} a_i = \frac{C}{\alpha - 1} \frac{1}{n^{\alpha-1}} + \frac{C}{2} \frac{1}{n^\alpha} + \sum_{k=1}^{m} \frac{B_{2k} C'(\alpha)_{2k-1}}{(2k)!} \frac{1}{n^{\alpha+2k-1}} + E_m$$
If n is large enough and $f(x) \sim \frac{C}{x^\alpha}$:

$$\sum_{i=n}^{\infty} a_i = \frac{C}{\alpha - 1} \frac{1}{n^{\alpha-1}} + \frac{C}{2} \frac{1}{n^\alpha} + \sum_{k=1}^{m} \frac{B_{2k}C(\alpha)_{2k-1}}{(2k)!} \frac{1}{n^{\alpha+2k-1}} + E_m$$

We apply this result to the sum:

$$S = \sum_{i=0}^{\infty} a_i = \sum_{i=0}^{n-1} a_i + \sum_{i=n}^{\infty} a_i = S_{n-1} + \sum_{i=n}^{\infty} a_i$$

up to k terms, for the second sum, including for convenience the missing terms $\left(1/n^{\alpha+2k}\right)$.
If \(n \) is large enough and \(f(x) \sim \frac{C}{x^\alpha} \):

\[
\sum_{i=n}^{\infty} a_i = \frac{C}{\alpha - 1} \frac{1}{n^{\alpha-1}} + \frac{C}{2} \frac{1}{n^{\alpha}} + \sum_{k=1}^{m} \frac{B_{2k} C'(\alpha)_{2k-1}}{(2k)!} \frac{1}{n^{\alpha+2k-1}} + E_m
\]

We apply this result to the sum:

\[
S = \sum_{i=0}^{\infty} a_i = \sum_{i=0}^{n-1} a_i + \sum_{i=n}^{\infty} a_i = S_{n-1} + \sum_{i=n}^{\infty} a_i
\]

up to \(k \) terms, for the second sum, including for convenience the missing terms \((1/n^{\alpha+2k})\).

We obtain and estimator for \(S \) that will be denoted by \(Q_0 \).

\[
S_{n-1} = Q_0 + \frac{Q_1}{n^{\alpha-1}} + \frac{Q_2}{n^{\alpha}} + \cdots + \frac{Q_k}{n^{\alpha+k-2}}
\]
Applying this result for \(n, \ldots n + k \), we find a system of equations that can be solved for \(Q_0 \):

\[
Q_0^{(\alpha)}(n, k) = \frac{\sum_{j=0}^{k} \frac{(-1)^j}{j!(k-j)!} (n + j + 1)^{k+\alpha-2} S_{n+j}}{\sum_{j=0}^{k} \frac{(-1)^j}{j!(k-j)!} (n + j + 1)^{k+\alpha-2}}
\]
Applying this result for $n, \ldots n + k$, we find a system of equations than can be solved for Q_0:

$$Q_0^{(\alpha)}(n, k) = \frac{\sum_{j=0}^{k} \frac{(-1)^j}{j!(k-j)!} (n + j + 1)^{k+\alpha-2} S_{n+j}}{\sum_{j=0}^{k} \frac{(-1)^j}{j!(k-j)!} (n + j + 1)^{k+\alpha-2}},$$

Equal to g-Levin formula for $\beta = 1$ and $\omega_n = (n + 1)^{-\alpha+1}$, which is equivalent to u-transform in the large n-limit.
Applying this result for $n, \ldots, n + k$, we find a system of equations than can be solved for Q_0:

$$Q_0^{(\alpha)}(n, k) = \sum_{j=0}^{k} \frac{(-1)^j}{j!(k-j)!} (n + j + 1)^{k+\alpha-2} S_{n+j}$$

$$= \frac{1}{\sum_{j=0}^{k} \frac{(-1)^j}{j!(k-j)!} (n + j + 1)^{k+\alpha-2}}$$

Equal to g-Levin formula for $\beta = 1$ and $\omega_n = (n + 1)^{-\alpha+1}$, which is equivalent to u-transform in the large n-limit.

For n not large, differences appear.
Applying this result for $n, \ldots n + k$, we find a system of equations than can be solved for Q_0:

$$Q_0^{(\alpha)}(n, k) = \frac{\sum_{j=0}^{k} (-1)^j \frac{(n + j + 1)^{k+\alpha-2}}{j!(k-j)!} S_{n+j}}{\sum_{j=0}^{k} \frac{(-1)^j (n + j + 1)^{k+\alpha-2}}{j!(k-j)!}} ,$$

Equal to g-Levin formula for $\beta = 1$ and $\omega_n = (n + 1)^{-\alpha+1}$, which is equivalent to u-transform in the large n-limit.

For n not large, differences appear.

$\alpha = 2$ leads to Richardson’s convergence accelerator.
Unstability problems:

- Alternating sums of close values in numerator and denominator. Problems when k increases, getting worse as n increases.
Unstability problems:

- Alternating sums of close values in numerator and denominator. Problems when k increases, getting worse as n increases.

- Attempt to improve stability: we assume that differences in the values $P_{n,j} = S_{n+j} - S_n = \sum_{i=n+1}^{n+j} a_i$ are greater than differences between S_{n+j} values, for different j, fixed n.
Unstability problems:

- Alternating sums of close values in numerator and denominator. Problems when k increases, getting worse as n increases.

- Attempt to improve stability: we assume that differences in the values $P_{n,j} = S_{n+j} - S_n = \sum_{i=n+1}^{n+j} a_i$ are greater than differences between S_{n+j} values, for different j, fixed n.

- Summing and subtracting S_n leads to:

$$S = S_n + \sum_{j=1}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \beta)^{k-1}}{(n + k + \beta)^{k-1}} \frac{P_{n,j}}{\omega_{n+j}}$$

$$S = S_n + \frac{1}{\omega_{n+j}} \sum_{j=0}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \beta)^{k-1}}{(n + k + \beta)^{k-1}}$$
Unstability problems:

- Alternating sums of close values in numerator and denominator. Problems when k increases, getting worse as n increases.

- Attempt to improve stability: we assume that differences in the values $P_{n,j} = S_{n+j} - S_n = \sum_{i=n+1}^{n+j} a_i$ are greater than differences between S_{n+j} values, for different j, fixed n.

- Summing and substracting S_n leads to:

\[
S = S_n + \frac{\sum_{j=1}^{k} (-1)^j \binom{k}{j} (n + j + \beta)^{k-1}}{\sum_{j=0}^{k} (-1)^j \binom{k}{j} (n + k + \beta)^{k-1} } \frac{P_{n,j}}{\omega_{n+j}}
\]

- Čížek, Zamastil and Skála obtained an accelerator in terms of $P_{n,j}$.

Test 1:

\[S = \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \]
Test 1:

\[S = \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \]

For this case, Richardson, \(u \)-Levin and \(Q_0 \) are equivalent.
Test 1:

\[S = \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \]

For this case, Richardson, \(u \)-Levin and \(Q_0 \) are equivalent.

\(\epsilon \): relative error (solid lines: with \(P_{n,j} \), dashed lines: with \(S_{n+j} \))
Test 1:

\[S = \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \]

For this case, Richardson, \(u \)-Levin and \(Q_0 \) are equivalent.

\(\epsilon \): relative error (solid lines: with \(P_{n,j} \), dashed lines: with \(S_{n+j} \))

From now on, starting index \(n = 1 \), unless otherwise stated.
\[_2F_1(1, 1, 5/2, 1) = \sum_{n=0}^{\infty} \frac{n!}{(5/2)^n} = 3 \]
Test 2:

\[_2 F_1(1, 1, 5/2, 1) = \sum_{n=0}^{\infty} \frac{n!}{(5/2)_n} = 3 \]

\[a_n \sim n^{-3/2}, \quad \alpha = 3/2. \text{ } u\text{-Levin exact for this series.} \]
Test 2:

\[_2F_1(1, 1, 5/2, 1) = \sum_{n=0}^{\infty} \frac{n!}{(5/2)_n} = 3 \]

\[a_n \sim n^{-3/2}, \quad \alpha = 3/2. \quad u\text{-Levin} \text{ exact for this series.} \]
Test 3:

\[S = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{n} \right) - \frac{1}{\sqrt{n+1}} \left(1 + \frac{1}{n+1} \right) = 2 \]
Test 3:

\[S = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{n} \right) - \frac{1}{\sqrt{n+1}} \left(1 + \frac{1}{n+1} \right) = 2 \]

\[a_n \sim n^{-3/2}, \quad Q_{0}^{3/2} \text{ is exact.} \]
Test 3:

\[S = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{n} \right) - \frac{1}{\sqrt{n+1}} \left(1 + \frac{1}{n+1} \right) = 2 \]

\[a_n \sim n^{-3/2}, \, Q_0^{3/2} \text{ is exact.} \]
Test 4:

\[\frac{1}{z} = \sum_{m=0}^{\infty} \hat{k}_{m-1/2}(z) \frac{1}{2^m m!} \]
Test 4:

\[\frac{1}{z} = \sum_{m=0}^{\infty} \hat{k}_m^{-1/2}(z) \frac{1}{2^m m!} \]

For \(z = 1 \):

\[1 = e^{-1} \left[1 + \frac{1}{2} \sum_{n=0}^{\infty} M(-n; -2n; 2) \frac{(1/2)^n}{(n + 1)!} \right] ; a_n \sim n^{-3/2} \]
Test 4:

\[\frac{1}{z} = \sum_{m=0}^{\infty} \hat{k} m - 1/2(z) \frac{1}{2^m m!} \]

For \(z = 1 \):

\[1 = e^{-1} \left[1 + \frac{1}{2} \sum_{n=0}^{\infty} M(-n; -2n; 2) \frac{(1/2)^n}{(n + 1)!} \right] ; \ a_n \sim n^{-3/2}. \]
Calculations with arbitrary precision:

- MPFR: Multi-Precision Floating-point library with correct Rounding (free distribution, in C language).
Calculations with arbitrary precision:

- MPFR: Multi-Precision Floating-point library with correct Rounding (free distribution, in C language).
Calculations with arbitrary precision:

- MPFR: Multi-Precision Floating-point library with correct Rounding (free distribution, in C language).
- We adjust the number of bits of precision by convenience.
Recall Test 2:

\[_2F_1(1, 1, 5/2, 1) = \sum_{n=0}^{\infty} \frac{n!}{(5/2)^n} = 3 \]
Recall Test 2:

\[2F_1(1, 1, 5/2, 1) = \sum_{n=0}^{\infty} \frac{n!}{(5/2)^n} = 3 \]

Results for 200 bit-precision:
Few electron integrals in atomic calculations

Two electron correlated integrals:

\[I_2(i, j, l, a, b) = \int \int d\vec{r}_1 d\vec{r}_2 r_1^i r_2^j r_{12}^l e^{-ar_1 - br_2} \]
Few electron integrals in atomic calculations

Two electron correlated integrals:

\[
I_2(i, j, l, a, b) = \int \int d\vec{r}_1 d\vec{r}_2 r_1^i r_2^j r_{12}^l e^{-a r_1 - b r_2}
\]

Usual approach:

\[
r_{12}^l = \sum_{m=0}^{\infty} R_{l,m}(r_1, r_2) P_m(\cos \theta_{12})
\]

and expansions of \(R_{l,m} \) in terms of \(r_\text{<} = \min\{r_1, r_2\} \) and \(r_\text{>} = \max\{r_1, r_2\} \) (finite sum) or \(r_1 r_2/(r_1 + r_2)^2 \) (infinite sum).
Few electron integrals in atomic calculations

Two electron correlated integrals:

\[I_2(i, j, l, a, b) = \int \int d\vec{r}_1 d\vec{r}_2 r_1^i r_2^j r_{12}^l e^{-ar_1 - br_2} \]

Usual approach:

\[r_{12}^l = \sum_{m=0}^{\infty} R_{l,m}(r_1, r_2) P_m(\cos\theta_{12}) \]

and expansions of \(R_{l,m} \) in terms of \(r_\prec = \min\{r_1, r_2\} \) and \(r_\succ = \max\{r_1, r_2\} \) (finite sum) or \(r_1 r_2/(r_1 + r_2)^2 \) (infinite sum).

The slowest convergent resulting series happens when \(l = -2 \) (relativistic and lower bound calculations)
Particular case:

\[I_2(-2, -1, -2, a, b) = \frac{8\pi^2}{b} \left\{ \frac{\pi^2}{3} - \left[\ln \left(1 + \frac{a}{b}\right) \right]^2 \right. \]

\[+ \quad \text{Li}_2 \left(1 - \frac{a}{b}\right) - \text{Li}_2 \left(\frac{b}{b+a}\right) \right\} \quad [1] \]
Particular case:

\[I_2(-2, -1, -2, a, b) = \frac{8\pi^2}{b} \left\{ \frac{\pi^2}{3} - \left[\ln \left(1 + \frac{a}{b}\right) \right]^2 \right. \]

\[+ \quad \text{Li}_2 \left(1 - \frac{a}{b}\right) - \text{Li}_2 \left(\frac{b}{b+a}\right) \} \quad [1] \]

Last two terms cancel some digits if \(x = a/b \) is small.
Particular case:

\[
I_2(-2, -1, -2, a, b) = \frac{8\pi^2}{b} \left\{ \frac{\pi^2}{3} - \left[\ln \left(1 + \frac{a}{b}\right) \right]^2 \right. \\
+ \left. \text{Li}_2 \left(1 - \frac{a}{b}\right) - \text{Li}_2 \left(\frac{b}{b + a}\right) \right\} \quad [1]
\]

Last two terms cancel some digits if \(x = a/b\) is small.

\[
S(x) = \text{Li}_2 \left(1 - x\right) - \text{Li}_2 \left(\frac{1}{1 + x}\right) = \sum_{n=1}^{\infty} \frac{1}{n^2} \left[(1 - x)^n - \left(\frac{1}{1 + x}\right)^n \right]
\]
Particular case:

\[I_2(-2, -1, -2, a, b) = \frac{8\pi^2}{b} \left\{ \frac{\pi^2}{3} - \left[\ln \left(1 + \frac{a}{b}\right) \right]^2 + \text{Li}_2 \left(1 - \frac{a}{b}\right) - \text{Li}_2 \left(\frac{b}{b+a}\right) \right\} \quad [1] \]

Last two terms cancel some digits if \(x = a/b \) is small.

\[S(x) = \text{Li}_2 \left(1 - x\right) - \text{Li}_2 \left(\frac{1}{1+x}\right) = \sum_{n=1}^{\infty} \frac{1}{n^2} \left[(1 - x)^n - \left(\frac{1}{1+x}\right)^n \right] \]

Very slowly convergent series if \(x \) is small
(Rydberg states, Hydride ion).
Particular case:

\[I_2(-2, -1, -2, a, b) = \frac{8\pi^2}{b} \left\{ \frac{\pi^2}{3} - \left[\ln \left(1 + \frac{a}{b}\right) \right]^2 \right. \]

\[+ \quad \text{Li}_2 \left(1 - \frac{a}{b}\right) - \text{Li}_2 \left(\frac{b}{b+a}\right) \} \quad [1] \]

Last two terms cancel some digits if \(x = a/b \) is small.

\[S(x) = \text{Li}_2 \left(1 - x\right) - \text{Li}_2 \left(\frac{1}{1+x}\right) = \sum_{n=1}^{\infty} \frac{1}{n^2} \left[(1 - x)^n - \left(\frac{1}{1+x}\right)^n \right] \]

Very slowly convergent series if \(x \) is small
(Rydberg states, Hydride ion).

Test 5: $S(x = 0.001)$

- Use of $\alpha = 3/2$, although a_n does not behave as a negative power.
Test 5: $S(x = 0.001)$

- Use of $\alpha = 3/2$, although a_n does not behave as a negative power.

- $(n = 20)$
Three electron integrals

\[I_3(i, j, k, l, m, n, a, b, c) = \int \int \int d\vec{r}_1 d\vec{r}_2 d\vec{r}_3 r_1^i r_2^j r_3^k r_{12}^l r_{23}^m r_{31}^n e^{-ar_1 - br_2 - cr_3} \]
Three electron integrals

\[I_3(i, j, k, l, m, n, a, b, c) = \int \int \int d\vec{r}_1 d\vec{r}_2 d\vec{r}_3 r_i^1 r_j^2 r_k^3 r_{12}^l r_{23}^m r_{31}^n e^{-ar_1 - br_2 - cr_3} \]

- Multiple series when expanding \(r_{ij} \), even more when avoiding \(r_<, r_> \)

 (project with F.W. King and C. H. Leong).
Three electron integrals

\[I_3(i, j, k, l, m, n, a, b, c) = \int \int \int d\mathbf{r}_1 d\mathbf{r}_2 d\mathbf{r}_3 r_1^i r_2^j r_3^k r_{12}^l r_{23}^m r_{31}^n e^{-ar_1 - br_2 - cr_3} \]

Multiple series when expanding \(r_{ij} \), even more when avoiding \(r_1, r_2 \) (project with F.W. King and C. H. Leong).

Let us examine a particular case:

\[I_3(i, j, k, l, 0, 0, a, a, c) = \frac{(4\pi)^3}{\Gamma(-l/2)} \frac{(k + 2)! (i + j + l + 5)!}{c^{k+3} a^{i+j+l+6}} S_l(i, j) \]

where

\[S_l(i, j) = \sum_{n=0}^{\infty} \frac{\Gamma(n - l/2) \Gamma(i + n + 3) \Gamma(j + n + 3)}{\Gamma(n + 2) \Gamma(n + 3 + (i + j)/2) \Gamma(n + 3 + (i + j + 1)/2)} \]
Three electron integrals

\[I_3(i, j, k, l, m, n, a, b, c) = \int \int \int d\vec{r}_1 d\vec{r}_2 d\vec{r}_3 r_1^i r_2^j r_3^k r_{12}^l r_{23}^m r_{31}^n e^{-ar_1 - br_2 - cr_3} \]

Multiple series when expanding \(r_{ij} \), even more when avoiding \(r_\prec, r_\succ \) (project with F.W. King and C. H. Leong).

Let us examine a particular case:

\[I_3(i, j, k, l, 0, 0, a, a, c) = \frac{(4\pi)^3}{\Gamma(-l/2)} \frac{(k + 2)! (i + j + l + 5)!}{c^{k+3} a^{i+j+l+6}} S_l(i, j) \]

where

\[S_l(i, j) = \sum_{n=0}^{\infty} \frac{\Gamma(n - l/2) \Gamma(i + n + 3) \Gamma(j + n + 3)}{\Gamma(n + 2) \Gamma(n + 3 + (i + j)/2) \Gamma(n + 3 + (i + j + 1)/2)} \]

The general term behaves as \(n^{-(l+5)/2} \). In practical variational calculations, the worst case is \(l = -1 \), for which \(a_n \sim n^{-2} \).
\(S_{-1}(i, j) \) can be summed up exactly, and the remainder is known, for particular values of \(i \) and \(j \).
\(S_{-1}(i, j) \) can be summed up exactly, and the remainder is known, for particular values of \(i \) and \(j \).

We will study the remainder for small values of \(i \) and \(j \) and trying to extrapolate the best accelerator.
\(S_{-1}(i, j) \) can be summed up exactly, and the remainder is known, for particular values of \(i \) and \(j \).

We will study the remainder for small values of \(i \) and \(j \) and trying to extrapolate the best accelerator.

\(S_{-1}(0, 0) \):

\[
S - S_n = (n + 2) a_n \left[1 - \frac{5}{4(n + 2)} - \frac{3}{8(n + 2)^2} \right]
= n^{-1} \left[1 - \frac{9}{8(n + 3/2)} - \frac{5}{8(n + 5/2)} \right]
\]
\(S_{-1}(i, j) \) can be summed up exactly, and the remainder is known, for particular values of \(i \) and \(j \).

We will study the remainder for small values of \(i \) and \(j \) and trying to extrapolate the best accelerator.

\(S_{-1}(0, 0) \):

\[
S - S_n = (n + 2) a_n \left[1 - \frac{5}{4(n + 2)} - \frac{3}{8(n + 2)^2} \right] = n^{-1} \left[1 - \frac{9}{8(n + 3/2)} - \frac{5}{8(n + 5/2)} \right]
\]

\(u \)-Levin exact for \(\beta = 2 \).
Other cases

$S_{-1}(1, 1)$:

$$
S - S_n = (n + 2) a_n \left[1 - \frac{13/8}{n + 2} - \frac{13/8}{(n + 2)^2} - \frac{5/8}{n + 3} \right]
$$

$$
= n^{-1} \left[1 - \frac{15/16}{n + 3/2} - \frac{3/8}{n + 5/2} - \frac{7/16}{n + 7/2} \right]
$$
Other cases

- $S_{-1}(1, 1)$:

\[
S - S_n = (n + 2) a_n \left[1 - \frac{13/8}{n + 2} - \frac{13/8}{(n + 2)^2} - \frac{5/8}{n + 3} \right]
\]

\[
= n^{-1} \left[1 - \frac{15/16}{n + 3/2} - \frac{3/8}{n + 5/2} - \frac{7/16}{n + 7/2} \right]
\]

- $S_{-1}(2, 0)$:

\[
S - S_n = (n + 2) a_n \left[1 - \frac{17/16}{n + 2} - \frac{3/8}{(n + 2)^2} - \frac{7/16}{n + 4} \right]
\]

\[
= n^{-1} \left[1 - \frac{21/16}{n + 3/2} - \frac{5/8}{n + 5/2} + \frac{7/16}{n + 7/2} \right]
\]
Other cases

- \(S_{-1}(1, 1) \):
 \[
 S - S_n = (n + 2)\, a_n \left[1 - \frac{13/8}{n + 2} - \frac{13/8}{(n + 2)^2} - \frac{5/8}{n + 3} \right]
 = n^{-1} \left[1 - \frac{15/16}{n + 3/2} - \frac{3/8}{n + 5/2} - \frac{7/16}{n + 7/2} \right]
 \]

- \(S_{-1}(2, 0) \):
 \[
 S - S_n = (n + 2)\, a_n \left[1 - \frac{17/16}{n + 2} - \frac{3/8}{(n + 2)^2} - \frac{7/16}{n + 4} \right]
 = n^{-1} \left[1 - \frac{21/16}{n + 3/2} - \frac{5/8}{n + 5/2} + \frac{7/16}{n + 7/2} \right]
 \]

- \(S_{-1}(2, 2) \):
 \[
 S - S_n = (n + 2)\, a_n \left[1 - \frac{477/256}{n + 2} - \frac{45/128}{(n + 2)^2} + \frac{45/64}{n + 3} + \frac{105/256}{n + 4} \right]
 = n^{-1} \left[1 - \frac{105/128}{n + 3/2} - \frac{75/128}{n + 5/2} - \frac{76/128}{n + 7/2} - \frac{45/128}{n + 9/2} \right]
 \]
For a series for which:

\[S_n = S + \omega_n \sum_{j=0}^{k-1} \frac{C_j}{(n + \beta)_j} \]
Weniger transformation

For a series for which:

\[S_n = S + \omega_n \sum_{j=0}^{k-1} \frac{C_j}{(n + \beta)_j} \]

Then, multiplying by \((n + \beta)_{k-1}\) both sides:

\[(n + \beta)_{k-1} \frac{S_n - S}{\omega_n} = \text{polynomial in } n \text{ of degree } k - 1 \]
Weniger transformation

For a series for which:

\[S_n = S + \omega_n \sum_{j=0}^{k-1} \frac{C_j}{(n + \beta)_j} \]

Then, multiplying by \((n + \beta)_{k-1}\) both sides:

\[(n + \beta)_{k-1} \frac{S_n - S}{\omega_n} = \text{polynomial in } n \text{ of degree } k - 1\]

And applying \(\Delta^k\) to this equation:

\[
S = \frac{\sum_{j=0}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \beta)_{k-1}}{(n + k + \beta)_{k-1}} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \beta)_{k-1}}{(n + k + \beta)_{k-1}} \frac{1}{\omega_{n+j}}}\]
Generalization

For a series for which:

\[S_n = S + \omega_n \left[C_0 + \frac{C_{11}}{n + \beta_1} + \frac{C_{12}}{(n + \beta_1)^2} + \cdots + \frac{C_{1p_1}}{(n + \beta_1)^{p_1}} + \cdots \right. \]

\[+ \left. \frac{C_{l1}}{n + \beta_l} + \frac{C_{l2}}{(n + \beta_l)^2} + \cdots + \frac{C_{lp_l}}{(n + \beta_l)^{p_l}} + \cdots \right] \]
Generalization

For a series for which:

\[S_n = S + \omega_n \left[C_0 + \frac{C_{11}}{n + \beta_1} + \frac{C_{12}}{(n + \beta_1)^2} + \cdots + \frac{C_{1p_1}}{(n + \beta_1)^{p_1}} + \cdots \right.
+ \left. \frac{C_{l_1}}{n + \beta_l} + \frac{C_{l_2}}{(n + \beta_l)^2} + \cdots + \frac{C_{l_{p_l}}}{(n + \beta_l)^{p_l}} + \cdots \right] \]

Multiplying by \((n + \beta_1)^{p_1} \cdots (n + \beta_l)^{p_l}\) and applying \(\Delta^k\) with \(k = p_1 + p_2 + \cdots p_l + 1\)

\[S = \frac{\sum_{j=0}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \alpha_1) \cdots (n + j + \alpha_k)}{(n + k + \alpha_1) \cdots (n + k + \alpha_k)} S_{n+j}}{\sum_{j=0}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \alpha_1) \cdots (n + j + \alpha_k)}{(n + k + \alpha_1) \cdots (n + k + \alpha_k)} \frac{1}{\omega_{n+j}}} \]

where \(\alpha_1 = \cdots \alpha_{p_1} = \beta_1, \alpha_{p_1+1} = \cdots \alpha_{p_1+p_2} = \beta_2, \text{ and so on.}\)
Generalization

For a series for which:

\[S_n = S + \omega_n \left[C_0 + \frac{C_{11}}{n + \beta_1} + \frac{C_{12}}{(n + \beta_1)^2} + \cdots + \frac{C_{1p_1}}{(n + \beta_1)^{p_1}} + \cdots \right. \]

\[+ \frac{C_{l_1}}{n + \beta_l} + \frac{C_{l_2}}{(n + \beta_l)^2} + \cdots + \frac{C_{l_{p_l}}}{(n + \beta_l)^{p_l}} + \cdots \]

Multiplying by \((n + \beta_1)^{p_1} \cdots (n + \beta_l)^{p_l}\) and applying \(\Delta^k\) with \(k = p_1 + p_2 + \cdots p_l + 1\)

\[S = \sum_{j=0}^{k} \left(-1 \right)^j \binom{k}{j} \frac{(n + j + \alpha_1) \cdots (n + j + \alpha_k)}{(n + k + \alpha_1) \cdots (n + k + \alpha_k)} \left[S_{n+j} \right. \]

\[\left. \frac{1}{\omega_{n+j}} \right] \]

where \(\alpha_1 = \cdots \alpha_{p_1} = \beta_1, \alpha_{p_1+1} = \cdots \alpha_{p_1+p_2} = \beta_2\), and so on.

This is a generalization (including \(\omega_n\)) of the generalization of Levin and Weniger transform by Čížek-Zamastil-Skála, also studied by Weniger.
Generalization

For a series for which:

\[S_n = S + \omega_n \left[C_0 + \frac{C_{11}}{n + \beta_1} + \frac{C_{12}}{(n + \beta_1)^2} + \cdots + \frac{C_{1p_1}}{(n + \beta_1)^{p_1}} + \cdots \right. \]

\[+ \left. \frac{C_{l1}}{n + \beta_l} + \frac{C_{l2}}{(n + \beta_l)^2} + \cdots + \frac{C_{lp_l}}{(n + \beta_l)^{p_l}} + \cdots \right] \]

Multiplying by \((n + \beta_1)^{p_1} \cdots (n + \beta_l)^{p_l}\) and applying \(\Delta^k\) with \(k = p_1 + p_2 + \cdots p_l + 1\)

\[
S = \sum_{j=0}^{k} (-1)^j \binom{k}{j} \frac{(n + j + \alpha_1) \cdots (n + j + \alpha_k)}{(n + k + \alpha_1) \cdots (n + k + \alpha_k)} \frac{S_{n+j}}{\omega_{n+j}}
\]

where \(\alpha_1 = \cdots \alpha_{p_1} = \beta_1, \alpha_{p_1+1} = \cdots \alpha_{p_1+p_2} = \beta_2,\) and so on.

This is a generalization (including \(\omega_n\)) of the generalization of Levin and Weniger transform by Čížek-Zamastil-Skála, also studied by Weniger.
Application:

For $S_{-1}(i, j)$ sums, previous formula can be applied:
Application:

- For $S_{-1}(i, j)$ sums, previous formula can be applied:

- **Case 1:** Use $\omega_n = (n + 2)a_n$ and $\alpha_1 = \alpha_2 = 2$, $\alpha_3 = \alpha_4 = 3$, ...
Application:

- For $S_{-1}(i, j)$ sums, previous formula can be applied:
 - Case 1: Use $\omega_n = (n + 2)a_n$ and $\alpha_1 = \alpha_2 = 2$, $\alpha_3 = \alpha_4 = 3, \ldots$
 - Case 2: Use $\omega_n = n^{-1}$ and $\alpha_i = i + 1/2$
Application:

- For $S_{-1}(i, j)$ sums, previous formula can be applied:
 - **Case 1:** Use $\omega_n = (n + 2)a_n$ and $\alpha_1 = \alpha_2 = 2, \alpha_3 = \alpha_4 = 3, \ldots$
 - **Case 2:** Use $\omega_n = n^{-1}$ and $\alpha_i = i + 1/2$
 - $S_1(1, 1)$:

![Graph](image)
Conclusions:

\[\omega_n = (n + \beta)^{-\alpha + 1} \] is a interesting alternative to \(u \)-Levin when \(a_n \sim n^{-\alpha} \).
Conclusions:

- \(\omega_n = (n + \beta)^{-\alpha + 1} \) is an interesting alternative to \(u \)-Levin when \(a_n \sim n^{-\alpha} \)

- Use of differences of partial sums instead of \(S_{n+j} \) improves slightly the optimal result.
Conclusions:

- \(\omega_n = (n + \beta)^{-\alpha + 1} \) is a interesting alternative to \(u \)-Levin when \(a_n \sim n^{-\alpha} \)

- Use of differences of partial sums instead of \(S_{n+j} \) improves slightly the optimal result.

- Multiple precision calculations are required for some very slowly converging series.
Conclusions:

- $\omega_n = (n + \beta)^{-\alpha+1}$ is an interesting alternative to u-Levin when $a_n \sim n^{-\alpha}$

- Use of differences of partial sums instead of S_{n+j} improves slightly the optimal result.

- Multiple precision calculations are required for some very slowly converging series.

- Generalization of the transformation of Čížek et al. is adequate for the three-electron integral problem.
Conclusions:

- \(\omega_n = (n + \beta)^{-\alpha + 1} \) is an interesting alternative to \(u \)-Levin when \(a_n \sim n^{-\alpha} \)

- Use of differences of partial sums instead of \(S_{n+j} \) improves slightly the optimal result.

- Multiple precision calculations are required for some very slowly converging series.

- Generalization of the transformation of Čížek et al. is adequate for the three-electron integral problem.

- Weniger’s treatment using \(\Delta^k \) is a powerful formalism for the design of convergence accelerators.