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Abstract We present a quantitative estimate for the derivation of the Hartree
dynamics for boson particles at low temperatures in arbitrary dimension. This
achievement is obtained by the normal mode decomposition of the boson field
operator evolved under the many body quantum dynamics, and estimates on
Wick symbols through an L2(µ) - norm with Gaussian thermal measures µ.
This is directly linked to the estimate by the Gibbs measure. The rate of
convergence is explicitly written in terms of the temperature and the number
of particles. The interaction potential is supposed to be in the Hardy class,
thus containing the Coulomb type, and it is not rescaled with respect to the
number of particles. The dependence on time in the main estimates is shown
to be globally linear.

Keywords Hartree dynamics · many body theory · Gibbs estimates

1 Introduction

The experimental observation of Bose-Einstein condesation (BEC), see [1] and
[33], led to a great growth of activity in the physics of Bose gases. The ap-
proach was based on laser cooling techniques and magneto-optical traps, first
introduced in the 80’s, and represents a cornerstone in the field of interact-
ing bosons, whose study has attracted increasing interest from experimental,
numerical and theoretical communities (an excellent review is [40]).

This is still a very active field of research, improved by various fundamental
results in the mathematical analysis of condensation for interacting bosons.
A first reference work is [43], where the author discusses a plenty of classical
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and quantum models for which kinetic equations can be derived rigorously.
A second reference paper is [29], where the author shows that in the many
body framework the classical limit of the expectation values of products of
Weyl operators, translated in time by the quantum dynamics and taken on
coherent states centered in (x, p)-space, are shown to become the exponentials
of coordinate functions of the classical orbit in phase space. Such results have
been extended in [27], and a recent review of this method is given in [18].
For a class of singular interaction potentials including the Coulomb potential,
in [24] the authors show the convergence of the quantum dynamics to the
Hartree dynamics when the number of particles becomes large.
Methods for deriving higher order corrections to the mean field asymptotics
for the quantum systems are provided in the works [38], [13].
A reference role in the literature is played by those recent works dealing with
the rigorous version of the Bogoliubov theory of superfluids; see e.g. the review
[42]. The Gross-Pitaevskii equation is rigorously deduced for example in [9],
whereas the fluctuations around it are studied in the works [17] and [14].
We also recall that the convergence to the limiting Hartree dynamics is studied
in [41] and [5], and in [11] the Hartree-Fock-Bogoliubov is derived by the
method of the quasi-free reduction. A general discussion of the role played by
scaling of the physical parameters in BEC is given in [21].

In the recent paper [26], the authors prove that the grand canonical Gibbs
state of an interacting quantum Bose gas converges to the Gibbs measure of a
nonlinear Schrödinger equation in the mean-field limit, where the density of the
gas becomes large and the interaction strength is assumed proportional to the
inverse density. Moreover, in [30] the authors prove that the grand-canonical
Gibbs state of a large bosonic quantum system converges to the Gibbs measure
of a nonlinear Schrödinger-type classical field theory, in terms of partition
functions and reduced density matrices. This gives a further derivation of
nonlinear Gibbs measures in two and three space dimensions, starting from
many-body quantum systems in thermal equilibrium.

With respect to these last results, we have a different target and thus we
exhibit different results. Indeed, in our paper we deal with a family of flow
invariant Gaussian measures and the Gibbs measure, not as the result of a
mean field limit, but as a tool in order to study the rate of convergence of
the quantum many body evolutive problem to the related Hartree effective
dynamics in the low temperature asymptotics.
Concerning the two-body interaction potentials v, we consider the whole class
of (positive) Hardy potentials v with Hardy constant 0 < Cv < +∞ ([6], [31])
and we do not assume any scaling of v in terms of the number of particles N ,
which here is supposed to be finite (see Sect. 2.2). This ensures also Coulomb
type repulsive interactions.
More precisely, our approach is based on the normal mode decomposition to-
gether with an ‘ultra violet’ (UV) regularization of the quantum many body
dynamics of the boson field Ψ , with respect to a fixed orthonormal basis (see
Sect. 3.1). This means to study the reduced quantum dynamics on Bargmann-
Fock space FB(C`), ` ∈ N, and then to control such an UV - regularization
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by estimating explicitly the remainder of the approximated dynamics with re-
spect to the full Fock dynamics.
The advantage to consider the quantum dynamics of Ψ within this setting
is that we can apply time global and rigorous results about the propagation
of Wick operators on Bargmann-Fock space and related Wick symbols. This
approach is inspired from the works [2], [3], [4] where the flow of the Hartree
equation is recovered as mean field limit, thanks to infinite dimensional phase-
space analysis through Wick operators on the Fock space, and by the use of
infinite dimensional Wigner measures.
In addition, this framework allows to apply operator Gibbs estimates that con-
trol some Gaussian thermal L2(µ) - norms on phase space where furthermore
µ are invariant under the discrete Hartree flow (see Sect. 3.2). The use of these
invariance properties, and such norms for the convergence, allows us to avoid
the assumption of a scaling for the interaction potential in terms of N , to
avoid the application of the Grönwall Lemma and various related arguments
that frequently appears in the literature for derivation of Hartree dynamics
and that give time exponential growth estimates.

Our main result (Theorem 1) proves the convergence of the (quantum
evolved) Wick symbol of the boson field to the Wick symbol moved under the
Hartree flow, with respect to L2(µ) - gaussian norms. Moreover, an elliptic
property on the Hamiltonian ensures also the L2 - estimate by the Gibbs mea-
sure. The rate of convergence is explicitly written in terms of the temperature
T > 0 which here is the ‘small’ asymptotic parameter, the fixed number of
particles N and the Hardy constant Cv > 0 linked to the interaction potential
v. Our choice of this L2(µ) - convergence notion allows a globally linear es-
timate on the difference between the quantum many body dynamics and the
effective one.

The contents of our paper are inspired by our previous results in [39]. The
focus of [39] was on Bose-Hubbard models for the derivation of the discrete
NLS flow in the mean field regime. In the present paper we consider the low
temperature asymptotics for many body models on Rd far beyond the simple
case of periodic external potentials in the tight binding approximation (here
we assume confining ones with at most polynomial growth) and for the deriva-
tion of the continuous Hartree flow.
Furthermore, here we show a link between the one particle density operator as-
sociated to the field operators, the related Hilbert-Schmidt norm convergence,
and the gaussian norm of fields we used in the paper (see Sect. 3.7). This
allows us to discuss both the differences and the similarities between our main
result and the ones in the existing literature that prove the Bose-Einstein con-
densation through one particle density operator and mean field asymptotics.
Within this discussion, we also suggest an index for the growth of particle
correlations (see Remark 5) by exhibiting a lower bound for the density oper-
ator associated to the deviation field between Hartree flow and the quantum
dynamics. Such an achievement is a novelty in the study of correlations, since
related lower bounds are usually difficult to recover.
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2 Preliminaries about the model

2.1 Many body operator and normal mode decomposition

We consider the Hamiltonian operator of identical spinless trapped interacting
bosons of mass m = 1 in Rd with 1 ≤ d ≤ 3 defined on the bosonic Fock space
F :=

⊕
n≥0 L

2
s(Rdn), written in terms of the annihilation operator distribution

Ψ(x) (see sect. 10.2.2 in [18]),

H := Hext + Hint (1)

=

∫
Rd

Ψ†(x) h Ψ(x)dx+
1

2

∫
R2d

Ψ†(x)Ψ†(y)v(x− y)Ψ(y)Ψ(x)dxdy

where h := − 1
2∆x + u(x) is the single-particle operator, u and v are the trap-

ping external potential and the positive interaction potential in the Hardy
class (see Sect. 2.2). All over the paper we assume ~ = 1. Under these assump-
tions, H is selfadjoint on F and the unitary map U(t) := exp{−iHt} : F → F
is wellposed (see for example Prop. 122 in [18]).
Let us consider the time dependent operator distribution Ψ(t) ≡ Ψ(t, x) that
fulfills the Heisenberg equation

iΨ̇(t) = [Ψ(t),H] (2)

with the initial data Ψ(0, x) := Ψ(x). This is directly solved by Ψ(t, x) :=
U(t)†Ψ(x)U(t). At any fixed time, the canonical commutation relations hold
true [Ψ(t, x),Ψ†(t, y)] = δ(x − y)1, [Ψ(t, x),Ψ(t, y)] = 0. In particular, the
commutation [H,N] = 0 gives the operator valued conservation law

N :=

∫
Rd

Ψ†(x)Ψ(x)dx =

∫
Rd

Ψ†(t, x)Ψ(t, x)dx ∀t ≥ 0. (3)

We may now expand the field operator in terms of an orthonormal basis of
the single particle Hilbert space L2(Rd).

Remark 1 In what follows we denote {ϕk}k∈Nd ⊂ L2(Rd) the orthonormal
basis of eigenfunctions of the single particle harmonic oscillator − 1

2∆x+ 1
2 |x|

2.
The choice of the eigenfunctions ϕk is motivated from the knowledge of explicit
bounds for ‖∇ϕk‖L2(Rd) in term of k that will be useful for our estimates.

The Hamiltonian H given in (1) can be also expressed in the form (see [18])

H =
∑
km

ukm a†kam +
1

2

∑
klmn

vklmn a†ka†l aman , (4)

where k, l,m, n ∈ Zd and am :=
∫
Rd ϕ̄m(x) Ψ(x) dx. The coefficients of the

quadratic part are given by

ukm := 〈ϕk, hϕm〉L2(Rd) (5)



Gibbs estimates for the convergence to Hartree dynamics 5

and the quartic terms are the entries of the matrix of the selfadjoint two
body interaction operator defined on the two particles symmetric space v̂ :
L2
s(R2d)→ L2

s(R2d)

vklmn := 〈ϕk ∨ ϕl, v̂ ϕm ∨ ϕn〉L2
s(R2d) (6)

where ϕm ∨ ϕn := 1
2 (ϕm ⊗ ϕn + ϕn ⊗ ϕm) ∈ L2

s(R2d) is the symmetric tensor
product. Such coefficients satisfy the following relation v̄klmn = vmnkl.
The number operator N given in (3) can be equivalently written as

N =
∑
k

a†kak . (7)

Now consider the normal mode expansion with index k ∈ Nd through the time
dependent ak(t) :=

∫
Rd ϕ̄k(x)Ψ(t, x)dx,

Ψ(t, x) =
∑
k

ak(t)ϕk(x) (8)

We can now say that these time dependent operators ak(t) : F → F satisfy
(formally) the following infinite family of coupled operator equations

iȧk(t) = [ak(t),H] =
∑
m

ukm am(t) +
∑
lmn

vklmn a†l (t)am(t)an(t). (9)

Notice that ak(t) 7→ [ak(t),H] is a well posed operator map on Fock. In the
next section, we are going to show a regularized (and rigorous) version for the
righthand side of this equation.

2.2 Assumptions on the physical potentials

The external potential u ∈ C2(Rd;R+) is such that

c‖x‖q ≤ u(x) ≤ Ω‖x‖2p, (10)

for some c,Ω, q > 0 and p ∈ N. The simplest example is the isotropic harmonic
trap u(x) := 1

2$
2‖x‖2.

The interaction potential v : Rd → R+ is assumed to be a measurable posi-
tive function such that v(x) = v(−x) and belonging to the Hardy class, i.e.
satisfying

‖vψ‖L2(Rd) ≤ Cv‖ψ‖H1(Rd), ∀ψ ∈ H1(Rd), (11)

for some Cv > 0 that we will call the Hardy constant of v. We recall that
the H1 - Sobolev norm reads ‖ψ‖2H1(Rd) := ‖ψ‖2L2(Rd) + ‖∇ψ‖2L2(Rd). In the

bounded case v ∈ L∞(Rd) we can set Cv = ‖v‖L∞(Rd). For the Coulomb
case v(x) := 1/‖x‖ with d = 3 the optimal Hardy constant reads Cv = 2.
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In particular, the well known Hardy inequality (see [6], [31]) for the Coulomb
potential and d ≥ 3 reads∫

Rd

‖ψ(x)‖2

‖x‖2
dx ≤ 4

(d− 2)2

∫
Rd
‖∇xψ(x)‖2dx.

In Appendix 4.1 we prove that, if v fulfills (11) then the same inequality (in the
sense of semipositive operators) is realized for the bosonic field Ψ(x), namely∫

Rd
v(x)2Ψ †(x)Ψ(x)dx ≤ C2

v

(∫
Rd
Ψ †(x)Ψ(x)dx+

∫
Rd
∇xΨ †(x)∇xΨ(x)dx

)
.

=: C2
v

(
N + Hfree

)
. (12)

Moreover, a consequence (see Proposition 8) is that Hint given in (1) fulfills

0 < Hint ≤
1

2
CvN(N + Hfree). (13)

Such an operator inequality, which implies H ≤ Hext + 1
2CvN(N + Hfree) ≤

Ω′pNpΛ (see Lemma 5) provides, for β > 0 and Ω′p := 2((1 + Ω)3p + Cv), the
lower bound

e−βΩ
′
pN

p

≤ e−βH (14)

that will be useful in the determination of a quantitative estimate for the
critical temperature shown in Section 3.6.

3 Main results

3.1 UV - regularization

The normal modes ak(t), k ∈ Nd, of the field operator Ψ(t, x) solves equation
(9) which is an infinite system of countably many strongly coupled operator
equations. We regularize this system by inserting an ultra-violet (UV) cut-off
Λ ∈ N, requiring the sum to run only on multi-indices of norm lesser than Λ.
We thus define the following norm |k| := maxi∈{1,...,d} ki so that the set of
multi-indices having norm lesser than a positive integer Λ is an hypercube of
side Λ, with volume easy to compute by

Λ∑
k∈Nd

1 ≡
∑

k : |k|<Λ

1 = Λd =: `. (15)

Notice that the norm ‖k‖ := k1 + · · · + kd is equivalent to the above one,
since |k| ≤ ‖k‖ ≤ d|k| and ‖k‖/d ≤ |k| ≤ ‖k‖. The Hamiltonian and number
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operators in this setting are given by

NΛ :=

Λ∑
k

a†kak , (16)

HΛ :=

Λ∑
km

ukm a†kam +
1

2

Λ∑
klmn

vklmna†ka†l aman = Hext,Λ + Hint,Λ . (17)

We stress that, for any Λ ≥ 1,

[NΛ,HΛ] = 0. (18)

Then, employing the short-hand notation
∑Λ
k ≡

∑
k : |k|<Λ we consider the

Heisenberg equations ∀ |k| < Λ for initial data ak,Λ(0) := ak

iȧk,Λ(t) = [ak,Λ(t),HΛ] =

Λ∑
m

ukm am,Λ(t) +

Λ∑
lmn

vklmn a†l,Λ(t)am,Λ(t)an,Λ(t).

(19)

Here the operators NΛ, HΛ and ak,Λ(t) can be represented as Wick operators
defined on the Bargmann-Fock space FB(C`), see the brief review in [39] or the
textbooks [12], section 10.2.2 in [18], section 1.6 in [23]. We recall that FB(C`)
is isomorphic to a subset of the bosonic Fock space F :=

⊕
n≥0 L

2
s(Rdn) =⊕

n≥0(L2(Rd))⊗sn. The Bargmann-Fock space is isomorphic (see pp. 48-49 in
[23]) to the direct sum of the symmetric tensor products

FB(C`) '
⊕
n≥0

h⊗snΛ ⊂ F (20)

where the (finite dimensional) subspace hΛ of the single particle space reads

hΛ := Span
{
ϕ1, ϕ2, ..., ϕk ∈ L2(Rd) | k ∈ Nd, |k| < Λ

}
` := dim(hΛ) = Λd.

Let us now define the related orthogonal projector

πΛ : F → FB(C`) (21)

(acting on any single sector) and notice that

HΛ = πΛ HπΛ

and in particular Hext,Λ = πΛHext = HextπΛ, NΛ = πΛN = NπΛ. Whereas in
general πΛHint 6= Hint,Λ thus we have only the general link Hint,Λ = πΛHint πΛ.
We stress moreover that

πΛ(H− HΛ)2πΛ = πΛH(1− πΛ)HπΛ = πΛHint(1− πΛ)HintπΛ 6= 0. (22)
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Such an inequality tells us that, for general interaction terms Hint, the many
body quantum dynamics does not preserve FB(C`) nor the operators defined
on it and moved under unitary conjugation in the Heisenberg picture. In par-
ticular, we have the inequality between semipositive operators

πΛ(H− HΛ)4πΛ ≥
(
πΛ(H− HΛ)2πΛ

)2

> 0. (23)

The lefthand side of (23) will appear in the trace (52) to estimate the UV
remainder of the quantum evolved annihilation operator, namely the difference
Ψ(t)− ΨΛ(t) where the UV - regularized field operator is defined as

ΨΛ(t) ≡ ΨΛ(t, x) :=

Λ∑
k

ak,Λ(t)ϕk(x). (24)

We now denote ω > 0 as the lowest eigenvalue of the semipositive operator
h := − 1

2∆x + u(x) defined in Section 2.2, then it is smaller than the lowest
eigenvalue of the matrix ukm := 〈ϕk, hϕm〉L2(Rd) where we assume |k|, |m| <
Λ. Taking into account the interaction part in (17) which is the restriction of
the semipositive interaction part Hint contained in (4), we have

HΛ ≥ ωNΛ (25)

namely the operator HΛ − ωNΛ is semipositive definite. In the harmonic trap
case u(x) = 1

2$
2‖x‖2, we have ω = 1

2d$.

Remark 2 Since the notation becomes heavy, the subscript Λ on the operators
ak,Λ, marking these latter operators as satisfying the finite system of equations
(19), will not be carried in the following Sections. Still, to remind us of the
presence of the cut-off, all other relevant quantities will maintain the subscript.

In order to turn the coupled equations of Wick operators in (19) into coupled
equations of Wick symbols we need to use coherent states φα ∈ FB(C`), see
Section 4.4, which are given by the eigenvectors of the annihilation operators

akφα = αkφα, αk ∈ C.

Now, by taking the quantum expectation of ak solving (19) over coherent states
(namely, computing the Wick symbol)

ak(t, α, ᾱ) := 〈φα, ak(t)φα〉 (26)

we obtain the following problem with initial data ak(0, α, ᾱ) := αk,

iȧk(t, α, ᾱ) =

Λ∑
m

ukm am(t, α, ᾱ) +

Λ∑
lmn

vklmn 〈φα, a†l (t)am(t)an(t)φα〉 (27)

This would correspond to the scalar and discrete coupled Hartree equations
(45), if not for the generic failure of the Wick symbol of operator product to
map onto the pointwise one, namely

〈φα, a†l (t)am(t)an(t)φα〉 6= 〈φα, a†l (t)φα〉 · 〈φα, am(t)φα〉 · 〈φα, an(t)φα〉.
To obtain a closed system of equations for the family of functions ak(t, α, ᾱ)
we will make use of Wick deformation quantization, see Proposition 2.
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3.2 Gaussian thermal measures

Motivated from the inequality (25), a candidate to define a weighted trace is
the following Gibbsian operator

%Λ :=
e−βωNΛ

Tr(e−βωNΛ)
, β := (kBT )−1, (28)

for which we recall the next useful result (see Prop. 1 in [39]).

Lemma 1 Consider the number operator NΛ :=
∑Λ
k a†kak, then for any λ in

R, and any Wick operator F : FB(C`)→ FB(C`) we have that

Tr(Fe−λNΛ)

Tr(e−λNΛ)
=

∫
C`
〈φα,Fφα〉

σAW (e−λNΛ)

Tr(e−λNΛ)
dα ∧ dᾱ

=

∫
C`
〈φα,Fφα〉 (eλ − 1)`e−(eλ−1)|α|2 dα ∧ dᾱ

where α := q + ip and dα ∧ dᾱ := π−`dqdp.

The above result follows from the trace formula involving Wick and anti-Wick
operators (see section 7.6.1 in [18]) and thanks to the direct computation

σAW (e−λNΛ) = eλ`e−(eλ−1)|α|2 and Tr(e−λNΛ) =
∫
σAW (e−λNΛ)π−`dαdᾱ =

(eλ/(eλ − 1))`.
A direct consequence of Lemma 1 is that tracing an operator F against %Λ, for
λ := βω, is equivalent to averaging its Wick symbol f(α, ᾱ) := 〈φα,Fφα〉 over
C` ' R2` with respect to a normalized gaussian measure µ, that is

Tr(F%Λ) =

∫
C`
f(α, ᾱ) dµ(α, ᾱ), (29)

with the Gaussian thermal measure linked to B := eβω − 1

dµ(α, ᾱ) := B` e−B|α|
2

dα ∧ dᾱ . (30)

When B → +∞ (i.e. T → 0+) the measure concentrates at α = 0, or equiva-
lently the trace becomes the projector onto the ground state φ0 of the number
operator, namely Tr(FρΛ)→ 〈φ0,Fφ0〉.

Definition 1 Let ω > 0 be the lowest eigenvalue of the single particle operator
h. We introduce a (quantum invariant) weighted norm of fields Θ by

‖Θ‖2? := Tr
(
%Λ

∫
Rd

Θ†(x)Θ(x)dx
)
. (31)

Remark 3 We stress the inequality between Wick symbols

〈φα,F†Fφα〉 = |f(α, ᾱ)|2 +

∞∑
n=1

∂nf̄

∂αn
∂nf

∂ᾱn
(α, ᾱ) ≥ |f(α, ᾱ)|2. (32)



10 Ponno, Preet Singh, Zanelli

Thus, the weighted operator norm ‖Θ‖? in Def. 1 has a lower bound given by
sum of the L2(µ)-norms of the Wick symbols ϑk(α, ᾱ) := 〈φα, ekφα〉, ek :=∫
Rd ϕ̄k(x)Θ(x)dx,

‖Θ‖2? ≥
Λ∑
k

∫
C`
| 〈φαekφα〉 |2 dµ(α, ᾱ) ≡

Λ∑
k

‖ϑk‖2L2(µ). (33)

Notice that also in the case of arbitrary operators on Fock, e : F → F ,
the bracket with respect to the coherent states φα ∈ FB(C`) ⊂ F fulfills
〈φα, e†eφα〉 = 〈φα, e†(πΛ+1−πΛ)e, φα〉 = 〈φα, πΛe†πΛeπΛφα〉+〈φα, πΛe†(1−
πΛ)eπΛφα〉 ≥ 〈φα, πΛe†πΛeπΛφα〉. Whence (33) still holds true.

In view of the above observations, we have the next

Proposition 1 The following identities hold

Tr(a†kak%Λ) =

∫
C`
|αk|2dµ(α, ᾱ) =

1

B
, (34)

Tr((a†k)2a2
k%Λ) =

∫
C`
|αk|4dµ(α, ᾱ) =

2

B2
. (35)

More in general, for any σ ≥ 0

∫
C`
|αk|σdµ(α, ᾱ) =

1

Bσ/2
Γ
(σ

2
+ 1
)
, (36)

where Γ : R+ → R+ is the Euler Gamma function.

Definition 2 (L2 - Gaussian thermal norm) Let Θ(x) :=
∑
k ϕk(x) ek

and related Wick symbols ϑk(ᾱ, α) := 〈α, ekα〉. Let µ be the Gaussian thermal
measure (30). In view of Def. 1 and Remark 3, we now introduce

‖Θ‖2µ :=
1

Λd

Λ∑
k

‖ϑk‖2L2(µ) ≤ ‖Θ‖
2
?. (37)

We remind the one to one correspondence between Wick operators and related
Wick symbols. Thus, ‖Θ‖µ is another well posed norm definition for field
operators, which is furthermore sharper than the norm ‖Θ‖? as shown in (33).

Here we choose to normalize the sum since
∑Λ
k 1 = Λd. Notice also that this

norm is invariant under discrete Hartree flow (45) thanks to the invariance of
the measure dµ (see Prop 4).
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3.3 The Gibbs measure

We show that the L2 - norm computed through the Gibbs measure can be
controlled by the Gaussian measure introduced above. Let us consider the
Hamiltonian function defined on the complex phase space C` ' R2` given by
H(α, ᾱ) := 〈φα,HΛφα〉, where HΛ is the many body operator (17), which reads

H(α, ᾱ) =

Λ∑
km

ukm ᾱkαm +
1

2

Λ∑
klmn

vklmn ᾱkᾱlαmαn . (38)

The Gibbs measure is defined as

dG(α, ᾱ) :=
1∫

e−λH(α,ᾱ)dα ∧ dᾱ
e−λH(α,ᾱ) dα ∧ dᾱ (39)

where α := q+ ip and dα∧dᾱ := π−`dqdp. Notice that the ellipticity property
H(α, ᾱ) ≥ τmin|α|2 implies the upper bound

0 < e−λH(α,ᾱ) ≤ e−λτmin|α|
2

(40)

where the value τmin > 0 is the smallest eigenvalue of the positive definite
matrix (ukj)1≤k,j≤` linked to the quadratic part of H and given the anti-Wick

symbol (see [23]) of e−λ0N̂ with eλ0 := λ τmin + 1 we have

σAW (e−λ0N̂ )(α, ᾱ) = (λ τmin + 1)` e−λτmin|α|
2

. (41)

Now define

dm(α, ᾱ) :=
σAW (e−λ0N̂ )

Tr(e−λ0N̂ )
dα ∧ dᾱ = (λ τmin)` e−λτmin|α|

2

dα ∧ dᾱ. (42)

and notice that there is cH > 0 such that (see Lemma 8)

(λ τmin)−` ≤ cH
∫
e−λH(α,ᾱ) dα ∧ dᾱ. (43)

A consequence of (40) - (43) is that ∀ f ∈ L2(m) with the gaussian measure
dm we have the following inequality between norms

‖f‖L2(G) ≤
√
cH ‖f‖L2(m) ≡

√
cH ‖f‖µ (44)

where the equivalence with the Gaussian thermal measure µ defined in (30) is
obtained by setting λτmin ≡ B. A direct application of (44) is that the upper
bounds in Theorem 1 can be seen as L2 - Gibbs estimates on the Wick symbols
of the operators.
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3.4 Convergence to the effective field

Let us consider the Hamiltonian flow on the phase space linked to (38), namely
the solution of the (finite) system of coupled discrete Hartree equations

iċk =
∂H
∂ᾱk

(c, c̄) =

Λ∑
m

ukm cm +

Λ∑
lmn

vklmn c̄lcmcn (45)

with initial data ck(0, α, ᾱ) := αk. The Hartree functional on ψ ∈ L2(Rd)

E(ψ, ψ̄) := 〈ψ, hψ〉+
1

2
〈ψ, v ∗ |ψ|2ψ〉 (46)

when restricted on the span ψΛ(x) =
∑Λ
k λk ϕk(x) gives the reduced scalar

Hartree equation on L2(Rd)

iψ̇Λ =
∂E
∂ψ̄Λ

(ψΛ, ψ̄Λ) (47)

with initial data ψΛ(0, x) :=
∑Λ
k αk ϕk(x). This corresponds to the whole

family of equations (45). Notice that (unless v = 0) this is not the projected
Hartree dynamics, namely ψΛ(t) 6= πΛψ(t) but it is still a nice approximating
version of the full Hartree flow solving

iψ̇ =
(
h + v ∗ |ψ|2

)
ψ. (48)

The regularized effective field is defined by

Ψ
(0)
Λ (t) ≡ Ψ

(0)
Λ (t, x) :=

Λ∑
k

ck(t)ϕk(x) (49)

where the Wick operators ck(t) : FB(C`)→ FB(C`) are the ones such that the
symbols read 〈φα, ck(t)φα〉 = ck(t, α, ᾱ). In other words, ck(t) are the operators
that can be associated, by the link between Wick operators and Wick symbols
(see Section 4.4), to the components ck of the above Hamiltonian flow. The
well posedness of these operators is studied in details in the Section 3 of [45]. In
view of this setting, the bracket with respect to the coherent state φα ∈ FB(C`)
associated to a fixed point α ∈ C` gives

〈φα,Ψ(0)
Λ (t, x)φα〉 =

Λ∑
k

ck(t, α, ᾱ)ϕk(x) = ψΛ(t, x) (50)

namely the Wick symbol of Ψ
(0)
Λ , evaluated at α, is the solution ψΛ of the

reduced Hartree equation (47).

Remark 4 The initial data α ∈ C` will be then distributed over the measure µ:
this is our approach to introduce a Gaussian thermal estimate for the deviation

of the quantum field Ψ(t) from the effective field Ψ
(0)
Λ (t).



Gibbs estimates for the convergence to Hartree dynamics 13

We can now state the main result of the paper, to estimate the deviation of
quantum field dynamics from the effective one, through the norm ‖ · ‖µ given
in (37), by the next

Theorem 1 (Main Result) Let Ψ(t) be the solution of (2), let ΨΛ(t) be as

in (24), Ψ
(0)
Λ (t) given in (49) and v the interaction potential in the Hardy class

with constant Cv. Then, for B ≥ 1, Λ ≥ 1 and t ≥ 0 we have

‖Ψ(0)
Λ (t)‖µ =

1√
B
, (51)

where B := eβω − 1 and β := (kBT )−1. The UV - remainder satisfies

‖Ψ(t)−ΨΛ(t)‖µ ≤ ‖Ψ(t)−ΨΛ(t)‖?

≤ 2√
B

Tr(%Λ|(1− πΛ)Hint|4)
1
4 t (52)

≤ 4√
B
Cv

(Λd
B

)2

t (53)

with %Λ := e−βωNΛ/Tr(e−βωNΛ) and |A| :=
√

A†A. The quantum fluctuation

around the effective field Ψ
(0)
Λ (t) fulfills

‖ΨΛ(t)−Ψ
(0)
Λ (t)‖µ ≤

29

B
Cv (1 + 2Λ)4d+ d

2 t (54)

With respect to the above results, we have the following observations:

• The inequality ‖f‖L2(G) ≤
√
cH ‖f‖µ between Gibbs and gaussian norms

(see Section 3.3) ensures that the main Theorem can be rewritten in terms
of Gibbs estimates.

• By the simple application of the triangular inequality taking into account

(53) - (54) one gets an explicit bound for ‖Ψ(t)−Ψ
(0)
Λ (t)‖µ.

• The norm can be rescaled as
√
B ‖ · ‖µ, so that Ψ

(0)
Λ (t) has norm one and

both (53) - (54) still work as vanishing estimates as B → +∞.
• By (54) we have thus proved there is a plenty of effective (and not equiv-

alent) dynamics for any fixed value `, coming from the low temperature
asymptotics of the UV - regularized quantum many body Hamiltonian op-
erators on Bargmann-Fock space.

• The bound (52) is obtained thanks to ‖Ψ(t)−ΨΛ(t)‖µ ≤ ‖Ψ(t)−ΨΛ(t)‖?,
where the bigger one is the weighted operator norm given in Def. 1. This
norm is then estimated from above by the operator version of the L4 - norm,
i.e. the Schatten norm with index 4 and weight given by the semipositive
trace one %Λ. The projector from Fock to Bargmann πΛ : F → FB(C`),
see (21), weakly converges to identity as Λ→ +∞. The term (1− πΛ)Hint
measures the way Hint does not preserve the UV - cutoff, since for A := (1−
πΛ)Hint we have the nonzero term |A|4 = πΛHint(1−πΛ)H2

int(1−πΛ)HintπΛ
in the trace (52).
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• Our estimates by L2(µ) - norm is linear in time, whereas the trace norm
used to prove the convergence of the one particle density operator usually
exhibits bounds with exponential growth in time. See also Sect. 3.7 on the
link between these different notions of convergence.

• The interaction potential v is not rescaled with respect to the number of
particles N , nor depending on the temperature T .

• The upper bound (53) is not sharp since we do expect, by a more refined
analysis, a vanishing behavior Tr(%Λ|(1−πΛ)Hint|4)→ 0+ as Λ→ +∞ for
any fixed B. For (54) we can expect a better upper bound uniform with
respect to Λ.

Bogoliubov, in [15], (see also [19]) assumed an expansion of the time dependent
field operator by the operator valued distribution

Ψ(t, x) = Ψ(0,b)(t, x) + Θ(t, x)

where Ψ(0,b)(t, x) := ψ(t, x)1, for ψ(t, x) solving the scalar Gross-Pitaevskii
equation, 1 is the identity on the Fock space, and Θ the so-called normal
fluid excitation field. Notice also the strong similarity between the Bogoliubov
superfluid order parameter Ψ (0,b)(t, x) decomposed by

Ψ (0,b)(t, x) =
∑
k∈Nd

(
〈ϕk, ψ(t)〉L2(Rd)1

)
ϕk(x)

and the effective field Ψ
(0)
Λ (t, x) =

∑Λ
k ck(t)ϕk(x) we introduced in (49). In

particular, the operator 〈ϕk, ψ(t)〉L2(Rd)1 is a Wick operator whose symbol
〈φα, 〈ϕk, ψ(t)〉L2(Rd)1φα〉 = 〈ϕk, ψ(t)〉L2(Rd) is the k-th Fourier component of
ψ(t) solving Hartree

iψ̇ =
(
h + v ∗ |ψ|2

)
ψ (55)

for a fixed initial data ψ0 ∈ L2(Rd). Such components solves the family of
discrete Hartree equations (45) without a cut-off, i.e. Λ = +∞, and initial
data 〈ϕk, ψ0〉L2(Rd). Whereas we recall that the scalar terms ck(t, α, ᾱ) =
〈φα, ck(t)φα〉 determined by solving (45) are the k-th components of the Λ -
regularized coupled discrete Hartree equations but with arbitrary initial data

αk ∈ C. This means that Ψ
(0)
Λ (t, x) contains the information of the regularized

Hartree flow for any fixed initial data.

3.5 The first order correction

The first order correction Ψ (1)(t, x) to the effective field Ψ (0)(t, x), that easily
comes from the iteration of the integral equation for the quantum evolved
Wick symbols

ak(t, ω, ω̄) = e−itL0ak(0, ω, ω̄) +

∫ t

0

e−i(t−s)L0L1ak(s, ω, ω̄)ds
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reads, in the operator valued distribution form, as

Ψ (1)(t, x) :=

Λ∑
k

ϕk(x) Opwick(σ
(1)
k (t, · ))

σ
(1)
k (t, ω, ω̄) := e−itL0ak(0, ω, ω̄) +

∫ t

0

e−i(t−s)L0L1e
−isL0ak(0, ω, ω̄)ds.

Clearly, Ψ (1)(t, x) is the first order correction of the effective quantum field

Ψ (0)(t, x) :=
∑Λ
k ϕk(x) Opwick(e−itL0ak(0, · )) that we have considered in The-

orem 1. The straightforward generalization of Theorem 1 is the estimate for

the quantum fluctuation of Ψ
(1)
Λ (t, x) with respect to the quantum dynamics

ΨΛ(t, x) =
∑Λ
k ϕk(x) Opwick(ak(t, · )) given by

‖ΨΛ − Ψ (1)
Λ ‖µ ≤ 2

√
Cv

Λd

B1+ 1
4

(29

B
Cv (1 + 2Λ)4d+ d

2

) t2
2

' 29C
1+ 1

2
v

Λ5d+ d
2

B2+ 1
4

t2

and where
(

29

B Cv (1 + 2Λ)4d+ d
2

)
is the constant appearing in the estimate for

the zero-th order fluctuation ‖ΨΛ − Ψ (0)
Λ ‖µ showed in Theorem 1.

This proves that the first order correction ‖ΨΛ − Ψ (1)
Λ ‖µ is thus better with

respect to the zero-th order effective fluctuation: both from the dependence
on B as well as with respect to dependence on the Hardy constant 0 < Cv ≤ 1
(now supposed smaller than one) of the interaction potential.

3.6 A bound on the temperature

We now set a fortiori bound between the total number N ≥ 2 of bosons and
the average of NΛ with respect to the canonical Gibbs operator

GΛ :=
e−βHΛ

Tr(e−βHΛ)
(56)

with energy operator HΛ as in (17). We recall that the number operator NΛ
is defined on the Bargmann-Fock space FB(C`), ` := Λd, which is isomorphic
to a subset of the bosonic Fock space F , see (20). For Λ→ +∞ we have that
FB(C`) asymptotically recovers F as well as HΛ, NΛ weakly converge to H, N
(see Sect. 3.1). We require ∀Λ ≥ 1 that the number of expected particles with
respect to the operator GΛ cannot be bigger than N

Tr(GΛNΛ) ≤ N. (57)

By defining β := 1/(kBT ), ~ := 1 and in analogy with the case of the free gas

of bosons in the box (see page 16) we now exhibit an interval 0 < T ≤ T̃ of
temperatures such that (57) is fulfilled ∀Λ ≥ 1. In our work we are interested
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in the setting given in Sect. 2.2 where the interaction potential belongs to the
Hardy class on Rd. In Lemma 5 we prove the functional inequality between
semipositive operators ωNΛ ≤ HΛ ≤ Ω′pNpΛ, for Ω′p := 2(1+Ω)3p+2Cv, where
the external potential fulfills 0 ≤ u(x) ≤ Ω‖x‖p, Ω > 0, p ≥ 2. This allows,
by the setting B := eβω − 1, and thanks to the inequality (see Lemma 7)

Tr(GΛNΛ) ≤ Tr(e−βωNΛNΛ)

Tr(e−βΩ
′
pN

p
Λ)

to consider the new and more restrictive condition

Tr(e−βωNΛNΛ)

Tr(e−βΩ
′
pN

p
Λ)
≤ N. (58)

In particular, we also prove (see Lemma 7) that the following interval of
temperatures

0 < T ≤ ω

kB ln (1 + 1
ApN2 )

=: T̃ , Ap :=
(Γ ( 1

p )

p

)2( ω
Ω′p

) 2
p

(59)

imply, ∀Λ ≥ 1, the inequality (58) and thus also (57). Easily notice that
supp≥2Ap < +∞, and that the function ‖x‖p approximate, as p → +∞, the
box potential for the volume ‖x‖ ≤ 1. We stress moreover that, for large values
of N ,

T̃ ≈ ω

kB
ApN

2. (60)

The inequality in (59) can be rewritten as

B ≥ 1

ApN2
, . (61)

We have thus shown an interval of temperatures uniform with respect to the
UV cutoff parameter Λ ≥ 1. The setting B ≥ 1 used in Theorem 1 can be
replaced with (61) and the related estimates (53) - (54) can be modified in
the proof of the main Theorem and become dependant on both B than N .
Alternatively, one can fix the additional condition ApN

2 ≥ 1 and take into
account the same estimates.
On the other hand, the value (59) is obtained by a (Λ - independent) lower
bound for Tr(GΛNΛ) and gives a larger interval of temperatures than the sharp
one for the non regularized condition

Tr(GN) ≤ N. (62)

Indeed, in the free case of the box potential, the optimal value of this bound
for the temperatures grows as N2/3.

The free case in the box. We remind that the temperature under which
there is experimental evidence of BEC for N non-interacting (i.e. v = 0) bosons
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confined by a 3d box potential in a volume V = L3 is given by the interval
0 < T ≤ Tc where

Tc :=
( 1

ζ(3/2)

) 2
3
(N
V

) 2
3 2π~2

mkB
(63)

where ζ is the Riemann zeta function, m the mass of the particles and kB the
Boltzmann constant. Among all various approaches, (63) can be derived from
the inequality

Tr
( e−βH

Tr(e−βH)
N
)

=
∑

(nx,ny,nz)∈N3r{0}

1

eβε1(n2
x+n2

y+n2
z) − 1

≤ N (64)

where H = Hfree on F with single particle state space L2(T3), and thus the

first excited energy value reads ε1 := ~2π2

2mL2 linked to all the other energies by
εn := ε1(n2

x+n2
y +n2

z). The equality in the lefthand side of (64) can be proved
by application the so-called quantum Wick Theorem, as it can be seen in the
formula (1.28) and (1.31) in [25].

3.7 One particle density operator, thermal estimates and correlations

The one particle density operator Γ : L2(Rd) → L2(Rd) associated to
√
N -

rescaled coherent states on Fock φ√Nα0
∈ F centered on a fixed α0 ∈ L2(Rd)

with ‖α0‖L2 = 1, evaluated with respect to the field operator Ψ(t, x) solving
(2) has integral kernel

Γ(t, x, y) =
1

〈φ√Nα0
,Nφ√Nα0

〉
〈φ√Nα0

,Ψ†(t, y)Ψ(t, x)φ√Nα0
〉

=
1

N
Tr(π0Ψ†(t, y)Ψ(t, x))

where π0 is defined as the rank one projector into φ√Nα0
. In particular, it is

easily seen that Γ ≥ 0 and Tr(Γ) = 1.
The term Ψ (0,b)(t, x) := ψ(t, x)1 has one particle density operator with inte-
gral kernel

Γ0(t, x, y) =
1

N
ψ(t, y)ψ(t, x)

namely is the rank one projector Πψ(t) onto the single particle state ψ(t)

solving the scalar Hartree equation (55) with a fixed initial data ψ(0) ∈ L2(Rd)
and ‖ψ(t)‖2L2 = N .
A standard result in the literature (see for example [9] and references therein)

can be given by the trace norm Tr|A| := Tr
√
A†A convergence

Tr|Γ(t)−Πψ(t)| .
exp(exp(C t))√

N
(65)

for some C > 0. This can be proved under various assumptions on initial data
and about the scaling of the interaction potential v in terms of N .
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Notice that the operator δΓ associated to %Λ (in place of π0) and evaluated
for the deviation field ΘΛ with integral kernel

δΓ(t, x, y) := Tr(%ΛΘ†Λ(t, y)ΘΛ(t, x)), ΘΛ := ΨΛ − Ψ (0)
Λ ,

fulfills the inequalities (see Proposition 10)

Tr|δΓ| ≥ ‖δΓ‖HS ≥
1

Λd
Tr
(
%Λ

∫
Rd

Θ†Λ(t, x)ΘΛ(t, x) dx
)
. (66)

The righthand side of (66) is the rescaled norm ‖Θ‖2? introduced in Def. 1,

‖ΘΛ‖2? := Tr
(
%Λ

∫
Rd

Θ†Λ(t, x)ΘΛ(t, x) dx
)
.

The norm ‖Θ‖µ is sharp with respect to ‖Θ‖? (see Remark 3). It follows that

‖δΓ‖HS ≥
1

Λd
‖ΘΛ‖2? ≥ ‖ΘΛ‖2µ . (67)

Remark 5 The lower bound for ‖δΓ‖HS can be interpreted as an indicator
for the growth of particles correlation in the framework of thermal measures.
Since (54) is an upper bound, a sharp value for ‖ΘΛ‖µ grows at most linearly
in time. Such an observation is a novelty in the study of lower bounds for
quantum correlations, which are difficult to recover by quantitative bounds.

Notice also that the UV-regularized one particle density operator

ΓΛ(t, x, y) := Tr(%ΛΨ†Λ(t, y)ΨΛ(t, x)) (68)

and the regularized effective one

Γ
(0)
Λ (t, x, y) := Tr(%ΛΨ

(0),†
Λ (t, y)Ψ

(0)
Λ (t, x)) (69)

satisfy the Hilbert-Schmidt operator estimate

‖ΓΛ − Γ
(0)
Λ ‖

2
HS =

∫
Rd
|ΓΛ(t, x, y)− Γ

(0)
Λ (t, x, y)|2 dxdy

≤ ‖ΘΛ‖4? + 2‖ΘΛ‖3?Tr(%ΛNΛ) + 4‖ΘΛ‖
2+ 3

2
? (Tr(%ΛNΛ))

1
2 + 2‖ΘΛ‖?Tr(%ΛNΛ)

≤ ‖ΘΛ‖4? + 2‖ΘΛ‖3?
Λd

B
+ 4‖ΘΛ‖

7
2
?

(Λd
B

) 1
2

+ 2‖ΘΛ‖?
Λd

B
. (70)

It is remarkable that ‖ΘΛ‖? can be used to control from above the quantity

‖ΓΛ−Γ
(0)
Λ ‖2HS, as it can be used to control from the bottom the norm ‖δΓ‖HS.

Moreover, we do expect that this estimate can be improved with respect to
the dependence on Λ.
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3.8 Assessment of the convergence

In order to prove Theorem 1, we first need to write explicitly the equations of
motion for the Wick symbols ak given in (26).

Remark 6 In this subsection, since we have long computations within various
proofs, we use the compact notation 〈α|F|α〉 ≡ 〈φα,Fφα〉 where φα ∈ FB(C`)
are the coherent states in the Bargmann-Fock space and 〈 , 〉 is the scalar
product on FB(C`) as given in (107).

Proposition 2 ak satisfies the following Cauchy problem

iȧk = (L0 + L1)ak (71)

where ak(0) = αk, L0 := { · ,H} is the Lie derivative along the Hamiltonian
flow associated to H given in (38) and

L1 :=
1

2

Λ∑
ij

∂2H
∂ᾱi∂ᾱj

∂2

∂αi∂αj
− ∂2H
∂αi∂αj

∂2

∂ᾱi∂ᾱj
.

Proof. The operator Heisenberg equation iȧk(t) = [ak(t),HΛ] with initial data
ak(0) := ak turns, in terms of Wick symbols, into

iȧk(t) = {ak(t),H}w, ak(0) := αk.

Recalling the explicit form of the Wick brackets, we obtain

iȧk(t) = {ak(t),H}w = {ak(t),H}+
1

2

Λ∑
ij

∂2H
∂ᾱi∂ᾱj

∂2ak(t)

∂αi∂αj
− ∂2H
∂αi∂αj

∂2ak(t)

∂ᾱi∂ᾱj

since { · ,H}w does not contain O(∂3) terms because H is a polynomial of
degree 2 in α and in ᾱ. The identification of L0 and L1 is now straight-forward.
�

Proposition 3 The deviation term δk(t) := ak(t)− ck(t) satisfies

iδ̇k = L0δk + L1ak

for δk(0) := ak(0)− ck(0) = 0. Furthermore,

δk(t) =

∫ t

0

e−i(t−s)L0L1ak (s)ds ,

where e−isL0 denotes the pull-back by the Hamiltonian flow ΦsH.
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Proof. Since iċk = {ck,H} = L0ck and the Lie derivative L0 is linear, it follows

iδ̇k = i(ȧk − ċk) = L0(ak − ck) + L1ak = L0δk + L1ak.

Thus, a standard argument for perturbed semigroups gives

δk(t) = e−itL0δk(0) +

∫ t

0

e−i(t−s)L0L1ak (s)ds =

∫ t

0

e−i(t−s)L0L1ak (s)ds.

�

We can now compute an estimate for the L2(C`, dµΛ)-norm of δk, but first we
need to bear in mind the following Proposition.

Proposition 4 The gaussian measure µ is invariant under the discrete Hartree
flow, that is

dµ(ΦtH(α)) = dµ(α) ∀t ≥ 0.

Furthermore, averages with respect to µ are invariant under the full quantum
evolution, namely for all F ∈ PΛ(a, a†)∫

C`
〈α|F(a(t), a†(t)) |α〉 dµ(α) =

∫
C`
〈α|F(a, a†) |α〉 dµ(α), ` := Λd.

Proof. Since |α|2 is the Wick symbol of NΛ, the measure, interpreted as a
volume form on coherent phase space, can be written as

dµ(α) =
1

Z
e−B|α|

2
Λ∏
k

dαk ∧ dᾱk.

Since {NΛ,H} ≡ 0, we obtain (in short form)

dµ(ΦtH) =
e−B|α|

2

Z

Λ∏
k

d(ΦtH)k ∧ d(Φ̄tH)k = det(d(ΦtH))dµ

= dµ

where det(d(ΦtH)) = 1 since ΦtH is a one-parametre group of symplectomor-
phisms.
The second result follows by recalling the definition of µ with respect to the
Wick map.∫

C`
〈α|F(a(t), a†(t)) |α〉 dµ(α) = Tr(F(a(t), a†(t))%Λ)

= Tr(eitHΛF(a, a†)e−itHΛ%Λ) = Tr(F(a, a†)%Λ)

where in the last passage cyclicity of the trace and [HΛ, %Λ] = 0 were employed.
�
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Proposition 5 The norm of the deviation δk satisfies the following upper
bound.

‖δk(t)‖2µ ≤
(∫ t

0

(∫
C`
|L1ak(s)|2dµ

) 1
2

ds

)2

. (72)

Proof. By Proposition 3,

‖δk(t)‖2µ =

∫
C`

∫
[0,t]2

e−i(t−s)L0L1ak (s)e−i(t−u)L0L1ak (u) dsdudµ

For fixed times s, u, employing the Cauchy-Schwarz inequality in L2(C`, dµ)
the previous expression becomes

‖δk(t)‖2µ ≤
∫

[0,t]2

∥∥∥e−i(t−s)L0L1ak (s)
∥∥∥
µ

∥∥∥e−i(t−u)L0L1ak (u)
∥∥∥
µ
dsdu.

However, since by Proposition 4 the measure µ is invariant under the scalar
flow, we have that ∥∥∥e−i(t−s)L0L1ak (s)

∥∥∥
µ

= ‖L1ak (s)‖µ

hence

‖δk(t)‖2µ ≤
∫ t

0

∫ t

0

‖L1ak (s)‖µ ‖L1ak (u)‖µ dsdu =

(∫ t

0

‖L1ak (s)‖µ ds
)2

.

�

3.9 Computation of the remainder ‖L1aq (s)‖µ

In Proposition 2 we have the term

L1aq(s) :=
1

2

Λ∑
ij

∂2H
∂ᾱi∂ᾱj

∂2aq(s)

∂αi∂αj
− ∂2H
∂αi∂αj

∂2aq(s)

∂ᾱi∂ᾱj
;

therefore taking into account the explicit expression of H and employing equa-
tions (118) - (119) to transform the second derivatives of aq(s) into coherent
expectations of commutators, through simple algebraic manipulations we may
write

L1aq(s) =
1

2

Λ∑
klmn

vklmn

(
αmαn 〈α| aq(s)a†ka†l |α〉 − 2ᾱkαmαn 〈α| aq(s)a†l |α〉

−ᾱkᾱl 〈α| amanaq(s) |α〉+ 2ᾱkᾱlαm 〈α| anaq(s) |α〉
)
.

(73)
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Lemma 2 The following inequalities holds true.

〈α| aiaja†ia
†
j |α〉

1
2 ≤ 2 + 2|αi|+ 2|αj |+ |αiαj |,

〈α| aia†i |α〉
1
2 ≤ 1 + |αi|.

Proof. The inequalities are obtained by using the CCRs to bring the as to the
right and by sublinearity of the square root function,

〈α| aiaja†ia
†
j |α〉

1
2 = 〈α| 1 + δij + a†iai + a†jaj + 2δija

†
iai + a†ia

†
jaiaj |α〉

1
2

≤ 2 + 2|αi|+ 2|αj |+ |αiαj |.

〈α| aia†i |α〉
1
2 =

√
〈α| a†iai + 1 |α〉 ≤ 1 + |αi|.

�

Proposition 6 The squared-module of L1aq(s) may be estimated from above
by the product of a time-dependent Wick symbol and a time-independent poly-
nomial

|L1aq(s)|2 ≤ 〈α| aq(s)a†q(s) |α〉 (p(α, ᾱ))2,

where p : C` → R+ is defined as

p(α, ᾱ) := 3

Λ∑
klmn

|vklmn|(|αkαlαmαn|+|αkαlαm|+|αkαmαn|+|αkαl|+|αmαn|).

Proof. Employing the following form of the triangular inequality, |z + w| ≤
(|z| + |w|) ∀z, w ∈ C and taking into account equation (73), we have that
|L1aq(s)| has the upper bound

≤
Λ∑

klmn

|vklmn|
2

[
|αmαn|

∣∣∣ 〈α| aq(s)a†ka†l |α〉
∣∣∣+ 2|αkαmαn|

∣∣∣ 〈α| aq(s)a†l |α〉
∣∣∣

+|αkαl|
∣∣∣ 〈α| amanaq(s) |α〉

∣∣∣+ 2|αkαlαm|
∣∣∣ 〈α| anaq(s) |α〉

∣∣∣].
Using the Cauchy-Schwarz inequality and the previous Lemma for the first
two summands,∣∣∣〈α| aq(s)a†ka†l |α〉

∣∣∣ ≤ 〈α| aq(s)a†q(s) |α〉
1
2 〈α| akala

†
ka†l |α〉

1
2

≤ 〈α| aq(s)a†q(s) |α〉
1
2 (2 + 2|αk|+ 2|αl|+ |αkαl|).

and moreover∣∣∣〈α| aq(s)a†l |α〉
∣∣∣ ≤ 〈α| aq(s)a†q(s) |α〉

1
2 〈α| ala†l |α〉

1
2 ≤ 〈α| aq(s)a†q(s) |α〉

1
2 (1 + |αl|)
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obtaining analogous expressions for the third and fourth one, and taking into
account index symmetrisation, eventually we are lead to

|L1aq(s)|2 ≤ 〈α| aq(s)a†q(s) |α〉
{ Λ∑

klmn

|vklmn|
[
|αkαlαmαn|+ 3|αkαlαm|+

+3 |αkαmαn|+ 2|αkαl|+ 2|αmαn|
]}2

.

Overestimating each of the constant factors multiplying the polynomial sum-
mands with 3, the statement is proven. �

Proposition 7 The norm ‖L1aq(s)‖µ has an upper bound not depending on
q and s indeces. In particular, assuming B ≥ 1 we have

‖L1aq(s)‖µ ≤
28

B

Λ∑
klmn

|vklmn|.

Proof. Due to the previous Proposition, it is clear that

‖L1aq(s)‖2µ ≤
∫
C`
〈α| aq(s)a†q(s) |α〉 p2(α) dµ(α)

≤
(∫

C`

∣∣〈α| aq(s)a†q(s) |α〉
∣∣2 dµ(α)

) 1
2 ∥∥p2

∥∥
µ

≤
(∫

C`
〈α| aq(s)a†q(s)aq(s)a†q(s) |α〉dµ(α)

) 1
2 ∥∥p2

∥∥
µ

=
(∫

C`
〈α| aqa†qaqa†q |α〉dµ(α)

) 1
2 ∥∥p2

∥∥
µ

where in the second inequality we used Cauchy-Schwarz inequality with respect
to µ, and in the last one the invariance of the measure under the full quantum
evolution. Let us compute the two terms.∫

C`
〈α| aqa†qaqa†q |α〉 dµ(α) =

∫
C`
〈α, 1 + 3a†qaq + (a†q)

2a2
q, α〉dµ(α)

=

∫
C`

1 + 3|αq|2 + |αq|4dµ(α) = 1 +
3

B
+

2

B2

where in the last equality we applied Proposition 1. Meanwhile,

∥∥p2
∥∥2

µ
=

∫
C`

{ Λ∑
klmn

3|vklmn|
[
|αkαlαmαn|

+|αkαlαm|+ |αkαmαn|+ |αkαl|+ |αmαn|
]}4

dµ(α) .

We now look for an upper bound for the integral

I :=

∫
C`

[
|αkαlαmαn|+ |αkαlαm|+ |αkαmαn|+ |αkαl|+ |αmαn|

]4
dµ(α)
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which can be written as the sum of several terms. Moreover, the intergral over
phase space does not depend on the index. Thus, we can exhibit the bound

I ≤ 54
(4!

2!

)2
∫
C`
|αmαn|4 dµ(α)

= 54
(4!

2!

)2(∫
C`
|αn|4 dµ(α)

)2

≤ (4!)2 · 54

B4
. (74)

The above norm has thus the bound

∥∥p2
∥∥2

µ
≤

(
Λ∑

klmn

3|vklmn|

)4

(4!)2 · 54

B4
. (75)

Then, in view of all the above calculations, and assuming B ≥ 1,

‖L1aq(s)‖µ ≤
∥∥p2
∥∥ 1

2

µ

(
1 +

3

B
+

2

B2

) 1
2

≤
( Λ∑
klmn

3|vklmn|
)√4! · 5

B

(
1 +

3

B
+

2

B2

) 1
2

<
( Λ∑
klmn

3|vklmn|
)12 · 5

B
<

28

B

Λ∑
klmn

|vklmn|. (76)

�

In view of the previous statements, we can now show the proof of the main
result of the paper.
Proof of Theorem 1. Recall that

‖Ψ (0)
Λ (t)‖2µ :=

1

Λd

Λ∑
k

‖ck(t)‖2L2(µ) (77)

for ck(t) solving the family of coupled discrete Hartree equations (45) and
where measure µ is invariant under the flow. Thus, by defining nk(ᾱ, α) :=
|αk|2 we get

‖Ψ (0)
Λ (t)‖2µ = ‖Ψ (0)

Λ (0)‖2µ =
1

Λd

Λ∑
k

‖nk‖2L1(µ) =
1

Λd
Λd

1

B
=

1

B
(78)

namely the statement ‖Ψ (0)
Λ ‖µ = 1√

B
.

As for the second statement, notice that

‖Ψ(t)−ΨΛ(t)‖2µ ≤
1

Λd
‖ΠΛΨ(t)−ΨΛ(t)‖2? ≤

1

Λd
‖Ψ(t)−ΨΛ(t)‖2?

=
1

Λd
Tr
( e−βωNΛ

Tr(e−βωNΛ)

∫
Rd

B†Λ(t, x)BΛ(t, x)dx
)

(79)
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for BΛ(t, x) := Ψ(t, x)−ΨΛ(t, x). A standard semigroup argument gives

BΛ(t) = eiHΛtBΛ(0)e−iHΛt +

∫ t

0

eiHΛ(t−s) [H− HΛ,Ψ(s)] e−iHΛ(t−s)ds

whence

‖BΛ(t)‖? ≤ ‖eiHΛtBΛ(0)e−iHΛt‖?+

∫ t

0

‖eiHΛ(t−s)[H−HΛ,Ψ(s)]e−iHΛ(t−s)‖? ds.

Thus, since [NΛ,HΛ] = 0 and the trace is invariant under any unitary conju-
gation of operators,

‖BΛ(t)‖? ≤ ‖BΛ(0)‖? +

∫ t

0

‖[H− HΛ,Ψ(s)]‖? ds

≤ ‖BΛ(0)‖? +

∫ t

0

‖(H− HΛ)Ψ(s)‖? + ‖Ψ(s)(H− HΛ)‖? ds. (80)

In particular, ‖Ψ(s)(H− HΛ)‖? = ‖(H− HΛ)Ψ(s)‖? and

‖Ψ(s)(H−HΛ)‖2? = Tr
( e−βωNΛ

Tr(e−βωNΛ)
(H−HΛ)

∫
Rd

Ψ(s, x)†Ψ(s, x)dx (H−HΛ)
)

whence

‖Ψ(s)(H− HΛ)‖2? = Tr
( e−βωNΛ

Tr(e−βωNΛ)
(H− HΛ)N(H− HΛ)

)
.

Taking into account that HΛ = πΛHπΛ we have HΛN = HΛπΛN = HΛNΛ =
NΛHΛ. Moreover, [H,N] = 0 whence

‖Ψ(s)(H− HΛ)‖? = Tr
( e−βωNΛ

Tr(e−βωNΛ)
NΛ(H− HΛ)2

) 1
2

= Tr
( e−βωNΛ

Tr(e−βωNΛ)
(H− HΛ)2NΛ

) 1
2

Since H = Hext + Hint we can write

‖Ψ(s)(H− HΛ)‖? ≤ ‖Ψ(s)(Hext − Hext,Λ)‖? + ‖Ψ(s)(Hint − Hint,Λ)‖?

but πΛHext = Hext,Λ = πΛHext,Λ so that

πΛ(Hext − Hext,Λ)2πΛ = πΛ(Hext − Hext,Λ)(Hext − Hext,Λ)πΛ = 0.

Thus, by the setting %Λ := e−βωNΛ/Tr(e−βωNΛ) we can write down

‖Ψ(s)(H− HΛ)‖? ≤ Tr
(
%Λ(Hint − Hint,Λ)2NΛ

) 1
2

and the operator version of Hölder inequality gives

≤
[
Tr
(
%ΛN2

Λ

)] 1
4
[
Tr
(
%Λ(Hint − Hint,Λ)4

)] 1
4

.
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A direct computation (thanks to Proposition 1) shows that

≤ Λ
d
2

B
1
2

[
Tr
(
%Λ(Hint − Hint,Λ)4

)] 1
4

.

The zero-time term in (80)

‖BΛ(0)‖2? := Tr
( e−βωNΛ

Tr(e−βωNΛ)

∫
Rd

B†Λ(0, x)BΛ(0, x)dx
)

fulfills ‖BΛ(0)‖2? = 0. Indeed,

BΛ(0) = Ψ−ΨΛ = Ψ− πΛΨπΛ

= (I− πΛ)ΨπΛ + πΛΨ(I− πΛ) + (I− πΛ)Ψ(I− πΛ)

whence the trace reduces to

‖BΛ(0)‖2? = Tr
( e−βωNΛ

Tr(e−βωNΛ)

∫
Rd
πΛΨ†(x)(I− πΛ)Ψ(x)πΛ dx

)
= Tr

( e−βωNΛ

Tr(e−βωNΛ)
(πΛNπΛ −

∫
Rd
πΛΨ†(x)πΛΨ(x)πΛ dx)

)
From Ψ(x) =

∑
k akϕk(x) we have (πΛΨΛπΛ)(x) =

∑Λ
k ak,Λϕk(x) as well as the

adjoint equality (πΛΨ
†
ΛπΛ)(x) =

∑Λ
k a†k,Λϕk(x). Since NΛ :=

∑Λ
k a†k,Λak,Λ =

πΛNπΛ we have that ‖BΛ(0)‖2? = 0.
In view of the above computations,

‖Ψ(t)−ΨΛ(t)‖µ ≤
1

Λ
d
2

2t
Λ
d
2

B
1
2

[
Tr
(
%Λ(Hint − Hint,Λ)4

)] 1
4

≤ 2t

B
1
2

[
Tr
(
%Λ(Hint − Hint,Λ)4

)] 1
4

.

In view of Lemma 4 we can write

‖Ψ(t)−ΨΛ(t)‖µ ≤
2t

B
1
2

Tr(%Λ|(1− πΛ)Hint|4)
1
4 ,

and thanks to Lemma 6, the next bound reads

‖Ψ(t)−ΨΛ(t)‖µ ≤
2t

B
1
2

2Cv

(Λd
B

)2

=
4Cvt

B
1
2

(Λd
B

)2

.

To conclude, by combining the results of Propositions 5 and 7, we find that
the difference ‖aq(t)− cq(t)‖L2(µ) fulfills the relation:

‖aq(t)− cq(t)‖L2(µ) =: ‖δq(t)‖L2(µ) ≤ ‖L1aq‖L2(µ) t (81)
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where

‖L1aq‖L2(µ) ≤
28

B

Λ∑
klmn

|vklmn| ≤ 28Λ4d
√

2Cv(1 + 2Λ)
d
2

<
29

B
Cv(1 + 2Λ)4d+ d

2 =: bΛ,B . (82)

Consequently, the deviation of the effective field Ψ
(0)
Λ (t) from the quantum

field ΨΛ(t) is controlled by

‖ΨΛ(t)− Ψ (0)
Λ (t)‖µ :=

( 1

Λd

Λ∑
q

‖aq(t)− cq(t)‖2L2(µ)

) 1
2 ≤ bΛ,B t . (83)

�

4 Appendix

4.1 Hardy potentials and interaction operator inequalities

Lemma 3 For the Hardy potentials v ≥ 0 in (11) with Hardy constant Cv,
the annihilation operator distribution Ψ(x) fulfills∫

Rd
v(x)2Ψ †(x)Ψ(x)dx ≤ C2

v

(∫
Rd
Ψ †(x)Ψ(x)dx+

∫
Rd
∇xΨ †(x)∇xΨ(x)dx

)
where ≤ is the inequality between semipositive operators.

Proof. We first notice that, for any fixed x ∈ Rd, the operators Ψ †(x)Ψ(x)
and ∇xΨ †(x)∇xΨ(x) preserve all the sectors L2

s(Rdn) of the Fock space. Now
consider an arbitrary ϕ ∈ L2

s(Rdn), so that

〈ϕ, Ψ†(x)Ψ(x)ϕ〉L2
s(Rdn) = 〈Ψ(x)ϕ, Ψ(x)ϕ〉L2

s(Rd(n−1))

〈ϕ,∇xΨ †(x)∇xΨ(x)ϕ〉L2
s(Rdn) = 〈∇xΨ(x)ϕ,∇xΨ(x)ϕ〉L2

s(Rd(n−1)) .

Moreover, ∇xΨ(x)ϕ = ∇x(Ψ(x)ϕ). Now define ψ(x) := Ψ(x)ϕ, and denote
ψj(x) := 〈ψ(x), ej〉L2

s(Rd(n−1)) where ej with j ∈ N is a complete orthonormal

set in L2
s(Rd(n−1)). Thus, the above equalities turns into

〈ϕ, Ψ†(x)Ψ(x)ϕ〉L2
s(Rdn) =

∞∑
j=0

|ψj(x)|2

〈ϕ,∇xΨ †(x)∇xΨ(x)ϕ〉L2
s(Rdn) =

∞∑
j=0

|∇xψj(x)|2

Now apply Hardy inequality for all the functions ψj so that

∞∑
j=0

C2
v

(∫
Rd
|ψj(x)|2dx+

∫
Rd
|∇xψj(x)|2dx

)
≥
∞∑
j=0

∫
Rd
v(x)2|ψj(x)|2dx
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where the lower bound can be rewritten as∫
Rd
v(x)2

∞∑
j=0

|ψj(x)|2dx =

∫
Rd
v(x)2〈ϕ, Ψ†(x)Ψ(x)ϕ〉L2

s(Rdn) dx

= 〈ϕ,
∫
Rd
v(x)2Ψ †(x)Ψ(x) dxϕ 〉L2

s(Rdn)

from which the statement follows. �

Proposition 8 For the Hardy potentials (11), the interaction operator Hint
in (1) fulfills

0 < Hint ≤
Cv
2

N(N + Hfree) (84)

where Cv is the Hardy constant.

Proof. We begin by noticing that

Hint :=
1

2

∫
R2d

Ψ†(y)Ψ†(x)v(x− y)Ψ(x)Ψ(y)dxdy

can be rewritten as

Hint =
1

2

∫
Rd

Ψ†(y)
(∫

Rd
Ψ†(x)v(x− y)Ψ(x)dx

)
Ψ(y)dy.

The operator version of Hölder inequality gives a bound for∫
Rd

Ψ†(x)v(x− y)Ψ(x)dx =

∫
Rd

(Ψ†(x)Ψ(x))
1
2 v(x− y)(Ψ†(x)Ψ(x))

1
2 dx

≤
(∫

Rd
Ψ†(x)Ψ(x)dx

) 1
2
(∫

Rd
v(x− y)2Ψ†(x)Ψ(x)dx

) 1
2

= N
1
2

(∫
Rd
v(x− y)2Ψ†(x)Ψ(x)dx

) 1
2

.

Furthermore, recalling Lemma 3 and by applying a simple argument of trans-
lation invariance we get∫

Rd
v(x− y)2Ψ †(x)Ψ(x)dx ≤ C2

v (N + Hfree), ∀ y ∈ Rd. (85)

Whence, we get the upper bound by the semipositive operator

≤ N
1
2

(
C2
v (N + Hfree)

) 1
2 ≤ Cv N

1
2 (N + Hfree)

1
2

≤ Cv (N + Hfree).

where for the last inequality we used N,Hfree ≥ 0 and [N,Hfree] = 0. Thus,

Hint ≤
1

2

∫
Rd

Ψ†(y)
(
Cv (N + Hfree)

)
Ψ(y)dy. (86)
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Now recall that Ψ(y) =
∑
k ϕk(y)ak, Hfree =

∑
k ‖∇ϕk‖2L2a†kak and N =∑

k a†kak. Rewrite the estimate (86) as

Hint ≤
Cv
2

∑
k

a†k(N + Hfree)ak

=
Cv
2

∑
k

a†k

[
(N + Hfree), ak

]
+
Cv
2

∑
k

a†kak(N + Hfree)

Thanks to commutation rules [N, ak] = −ak and [Hfree, ak] = −‖∇ϕk‖2L2ak
we conclude

Hint ≤ −
Cv
2

(N + Hfree) +
Cv
2

N(N + Hfree) ≤
Cv
2

N(N + Hfree).

�

Remark 7 Let K be the harmonic oscillator Hamiltonian on Fock space, then
Hfree ≤ K = ( 3

21+ N) ≤ 3N and thus

0 ≤ Hint ≤
Cv
2

N(N + 3N) = 2CvN2. (87)

Notice moreover that [Hint,N] = [H − Hext,N] = 0 and whence [Hint,N
2] = 0

so that

0 ≤ H2
int ≤ 4C2

vN4. (88)

We stress anyway that [Hint,NΛ] 6= 0 since [Hint, πΛ] 6= 0.

Lemma 4 Let Hint and Hint,Λ be as in (1) - (17). Then,

Tr(%Λ(Hint − Hint,Λ)4)
1
4 = Tr(%Λ|A|4)

1
4

where A := (1− πΛ)Hint.

Proof. We begin by the identity Hint,Λ = πΛHintπΛ so that

πΛ(Hint − Hint,Λ)2 = πΛHint(1− πΛ)Hint ,

(Hint − Hint,Λ)2πΛ = Hint(1− πΛ)HintπΛ .

Thus,

πΛ(Hint − Hint,Λ)4πΛ = πΛHint(1− πΛ)H2
int(1− πΛ)HintπΛ.

For D := Hint(1− πΛ)Hint = A†A = |A|2 and A := (1− πΛ)Hint we have

πΛ(Hint − Hint,Λ)4πΛ = πΛD2πΛ = πΛ|A|4πΛ.

Whence,

Tr(%Λ(Hint − Hint,Λ)4)
1
4 = Tr(%Λ|A|4)

1
4 .

�
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Lemma 5 Let H be as in (1) under the assumption that u(x) ≤ Ω‖x‖2p,
Ω > 0, p ≥ 2, and v(x) in the Hardy class with constant Cv. Then,

H ≤
(

2(1 +Ω)3p + 2Cv

)
Np =: Ω′pNp.

Proof. Recall that Hint ≤ 2CvN2, that Hext preserves all the n-sectors of the
Fock space, and that the related restriction reads

H
(n)
ext = H

(n)
free +

n∑
i=1

u(xi) ≤ H
(n)
free +Ω

n∑
i=1

‖xi‖2p

≤ H
(n)
free +Ω

( n∑
i=1

‖xi‖2
)p

= H
(n)
free +Ω

(
K− H

(n)
free

)p
.

Moreover, K−H
(n)
free ≤ K ≤ 3N and [K−H

(n)
free, 3N] = 0. This allows the upper

bound

H
(n)
ext ≤ H

(n)
free +Ω(3N(n))p ≤ 3N(n) +Ω(3N(n))p ≤ 2(1 +Ω)3p (N(n))p

where N(n) denotes the restriction of the number operator to the n-sector.
Recalling (87), Hint ≤ 2CvN2, from which we get the statement. �

Remark 8 Notice that Tr(e−βωNΛ) =
∫
C` σAW (e−βωNΛ)(α, ᾱ)π−`dαdᾱ with

` = Λd and σAW (e−βωNΛ) := (B + 1)` e−B|α|
2

. Then

Tr(e−βωNΛ) =
(B + 1

B

)Λd
=
(B + 1

B

)B Λd

B ≤ eΛ
d

B .

Since ωNΛ ≤ HΛ ≤ Ω′pNpΛ for Ω′p := (2(1 +Ω)3p+ 2Cv) and recalling the com-

mutation rule [HΛ,NΛ] = 0 then e−βΩ
′
pN

p
Λ ≤ e−βHΛ ≤ e−βωNΛ which directly

gives the inequalities 1 ≤ Tr(e−βHΛ) ≤ Tr(e−βωNΛ) as well as Tr(e−βΩ
′
pN

p
Λ) ≤

Tr(e−βωNΛ).

Lemma 6 For A := (1− πΛ)Hint we have

Tr(%Λ|A|4)
1
4 ≤ 2Cv

(Λd
B

)2

.

Proof. In view of the previous Lemma,

Tr(%Λ|A|4) = Tr(%ΛHint(1− πΛ)H2
int(1− πΛ)Hint).

Recalling (88), we have

Tr(%Λ|A|4) ≤ 4C2
vTr(%ΛHint(1− πΛ)N4(1− πΛ)Hint).

Since [N, πΛ] = 0 and [Hint,N
4] = 0 then

Tr(%Λ|A|4) ≤ 4C2
vTr(%ΛN4Hint(1− πΛ)Hint)
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In particular, Tr(%ΛN4
ΛHintπΛHint) = Tr(

√
%ΛN2

ΛHintπΛHint
√
%ΛN2

Λ) ≥ 0. Thus,

Tr(%Λ|A|4) ≤ 4C2
v Tr(%ΛN4

ΛH2
int) = 4C2

v Tr(
√
%ΛN2

ΛH2
int

√
%ΛN2

Λ)

Now apply Hint ≤ 2CvN2, so that

Tr(%Λ|A|4) ≤ 42C4
v Tr(%ΛN8

Λ) ≤ 42C4
v Tr(%ΛNΛ)8 = 24C4

v

(Λd
B

)8

.

�

Lemma 7 Let β := 1/(kBT ), HΛ as in (17) and GΛ := e−βHΛ

Tr(e−βHΛ )
. Then,

Tr(GΛNΛ) ≤ Tr(e−βωNΛNΛ)

Tr(e−βΩ
′
pN

p
Λ)

.

Moreover, the following (Λ - independent) interval of temperatures

0 < T ≤ ω

kB ln (1 + 1
ApN2 )

=: T̃ , Ap :=
(Γ ( 1

p )

p

)2( ω
Ω′p

) 2
p

(89)

implies the next inequality ∀Λ ≥ 1

Tr(e−βωNΛNΛ)

Tr(e−βΩ
′
pN

p
Λ)
≤ N, (90)

and thus also Tr(GΛNΛ) ≤ N .

Proof. In view of Remark 8, and recalling that ` := Λd,

Tr(GΛNΛ) =
Tr(e−βωNΛNΛ)

Tr(e−βωNΛ)
≤ Tr(e−βωNΛNΛ)

Tr(e−βΩ
′
pN

p
Λ)

=
`
B

Tr(e−βΩ
′
pN

p
Λ)

(91)

In particular, ]{k1 + k2 + ...+ k` = n | 0 ≤ αi ≤ n} ≥ ` and

Tr(e−βΩ
′
pN

p
Λ) =

∞∑
n=0

e−βΩ
′
pn
p

]{k1 + k2 + ...+ k` = n} (92)

≥ `
∞∑
n=0

e−βΩ
′
pn
p

≥ `
∫ ∞

0

e−βΩ
′
px
p

dx.

More in details, ∫ ∞
0

e−βΩ
′
px
p

dx =
Γ ( 1

p )

p

1

(βΩ′p)
1
p

.

We now set the (uniform with respect to `) bound

Tr(GΛNΛ) ≤
1
B

Γ ( 1
p )

p
1

(βΩ′p)
1
p

≤ N (93)
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so that Tr(GΛNΛ) ≤ N is consequently fulfilled. The righthand side is equiva-
lent to

1

NB
≤
Γ ( 1

p )

p

1

(βΩ′p)
1
p

(94)

hence, recalling B := eβω − 1,

( 1

NB

)p
≤
(Γ ( 1

p )

p

)p 1

βΩ′p
=
(Γ ( 1

p )

p

)p ω

ln (B + 1)Ω′p
, (95)

ln (B + 1)

Bp
≤
(Γ ( 1

p )

p

)pωNp

Ω′p
, (96)

Notice that, since p ≥ 2, g(B) := ln (B + 1)/Bp is a strictly decreasing function
for B ≥ 1, and thus can be inverted. Anyway, in order to simplify the study of
the interval of temperatures, we fix the stronger condition (that still ensures
Tr(GΛNΛ) ≤ N)

ln (B + 1)

Bp
≤ 1

Bp/2
≤
(Γ ( 1

p )

p

)pωNp

Ω′p
(97)

The righthand side reads

1

B
≤
(Γ ( 1

p )

p

)2( ω
Ω′p

) 2
p

N2 (98)

which turns into

0 < T ≤ ω

kB ln (1 + 1
ApN2 )

; Ap :=
(Γ ( 1

p )

p

)2( ω
Ω′p

) 2
p

. (99)

�

Lemma 8 Let us recall the multi-index notation ‖k‖ := k1 + k2 + ...+ k` and
k! := k1! k2! ... k`! for k ∈ N`. Then, for H as in (38) and constant

cH :=
eΩ
′
p·n(p,`)

2(τmin)`(`!)
(100)

with n(p, `) :=
∑
k∈N` ‖k‖p/k! and where Ω′p := 2((1 +Ω)3p+Cv) we have the

inequality

(λ τmin)−` ≤ cH
∫
e−λH(α,ᾱ) dα ∧ dᾱ. (101)
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Proof. Recall that H(α, ᾱ) := 〈α,HΛα〉 and thanks to Lemma 5, HΛ ≤ Ω′pNpΛ
so that H(α, ᾱ) ≤ Ω′p〈α,N

p
Λα〉. Thus,

(λ τmin)−`∫
e−λH(α,ᾱ) dα ∧ dᾱ

≤ (λ τmin)−`∫
e−λΩ

′
p〈α,N

p
Λα〉 dα ∧ dᾱ

=
(τmin)−`∫

e−Ω
′
p〈β,N

p
Λβ〉 dβ ∧ dβ̄

(102)
where in the last equality we used the change of variables

√
λα = β. A further

upper bound is given integrating just over the ball B ⊂ C` centered at zero
with radius one. Thus,

(λ τmin)−`∫
e−λH(α,ᾱ) dα ∧ dᾱ

≤ (τmin)−`∫
B
e−Ω

′
p〈β,N

p
Λβ〉 dβ ∧ dβ̄

. (103)

Now apply the decomposition of a coherent state into eigenfunctions of the

number operator, namely |β〉 = e−|β|
2/2
∑
k∈N`

βk√
k!
|k〉, |β|2 := β̄β so that

〈β,NpΛβ〉 = e−|β|
2 ∑

k∈N`
|β|2k
k! ‖k‖

p. This gives, for any |β| ≤ 1 the simplified
upper bound 〈β,NpΛβ〉 ≤

∑
k∈N`

1
k!‖k‖

p =: n(p, `). We conclude with the new
bound

≤ (τmin)−`e+Ω′p·n(p,`)∫
B
π−`dβdβ̄

=
(τmin)−`e+Ω′p·n(p,`)

2(`!)
. (104)

�

4.2 An upper bound for the interaction coefficients

We show that the Hardy constant of the interaction potential allows an upper
bound for the interaction coefficients.

Proposition 9 Let |k|, |l|, |m|, |n| < Λ and let vklmn be as in (6). Then,

|vklmn| ≤
√

2Cv (1 + 2Λ)
d
2 .

Proof. Recall that

vklmn := 〈ϕk ∨ ϕl, v̂ ϕm ∨ ϕn〉L2
s(R2d)

=

∫
R2d

ϕ̄k(y)ϕ̄l(y)v(x− y)ϕm(x)ϕn(x) dxdy

where v(x− y) = v(y− x) and ϕm ∨ϕn := (ϕm⊗ϕn +ϕn⊗ϕm)/2 ∈ L2
s(R2d)

is the symmetric tensor product. As a consequence, it is easily seen that

|vklmn| ≤
∫
Rd
|ϕm(x)| |ϕn(x)|

(∫
Rd
|v(x− y)| |ϕk(y)| |ϕl(y)| dy

)
dx

≤
∫
Rd
|ϕm(x)| |ϕn(x)| ‖ϕl‖L2(Rd)

(∫
Rd
|v(x− y)|2 |ϕk(y)|2 dy

) 1
2

dx

≤
∫
Rd
|ϕm(x)| |ϕn(x)|Cv(‖ϕk‖2L2(Rd) + ‖∇ϕk‖2L2(Rd))

1
2 dx

≤ ‖ϕm‖L2(Rd)‖ϕn‖L2(Rd) Cv (1 + ‖∇ϕk‖2L2(Rd))
1
2 .
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In particular, for d = 1, the eigenfunctions of the harmonic oscillator fulfill

−1

2

d2fk
dx2

+
1

2
|x|2fk =

(1

2
+ k
)
fk

so that normalization ‖fk‖L2(R) = 1 and integration by parts imply∫
R

1

2

∣∣∣dfk
dx

∣∣∣2 dx ≤ (1

2
+ k
)
⇒
∫
R

∣∣∣dfk
dx

∣∣∣2 dx ≤ (1 + 2k).

It follows, for d = 1, 2, 3

‖∇ϕk‖2L2(Rd) ≤ (1 + 2Λ)d.

We thus conclude with the following bound

|vklmn| ≤
√

2Cv (1 + 2Λ)
d
2 .

�

4.3 A lower bound for the density operator

Proposition 10 Let Π : FB(C`) → FB(C`) be a trace one semipositive op-

erator, ` := Λd. Let ΘΛ(t, x) :=
∑Λ
k ek ϕk(x) and ek : FB(C`) → FB(C`).

Define δΓ (1) : L2(Rd)→ L2(Rd) with integral kernel

δΓ (1)(t, x, y) := Tr(ΠΘ†Λ(t, y)ΘΛ(t, x)).

Then,

‖δΓ (1)‖HS ≥
1

Λd
Tr
(
Π

∫
Rd

Θ†Λ(t, x)ΘΛ(t, x) dx
)
. (105)

Proof. Let K(t, x, y) be the integral kernel of Γ (1),† ◦ Γ (1),

‖δΓ (1)‖2HS = Tr(δΓ (1),† ◦ δΓ (1)) =

∫
Rd
K(t, x, x) dx .

Thus, since δΓ (1),† = δΓ (1),

K(t, x, y) =

∫
Rd
δΓ (1)(t, x, z) δΓ (1)(t, z, y) dz

=

∫
Rd

Tr(ΠΘ†Λ(t, z)ΘΛ(t, x)) Tr(ΠΘ†Λ(t, y)ΘΛ(t, z)) dz.

As a consequence, the kernel on the diagonal x = y reads

K(t, x, x) =

∫
Rd

Tr(ΠΘ†Λ(t, z)ΘΛ(t, x)) Tr(ΠΘ†Λ(t, x)ΘΛ(t, z)) dz

=

∫
Rd

Tr(Θ†Λ(t, z)ΘΛ(t, x)Π) Tr(ΠΘ†Λ(t, x)ΘΛ(t, z)) dz
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The finite normal mode decomposition allows for

K(t, x, x) =

Λ∑
lk

Λ∑
µm

∫
Rd

Tr(e†l ekΠ) Tr(Πe†µem) ϕ̄l(z)ϕk(x)ϕ̄µ(x)ϕm(z) dz

=

Λ∑
lkµ

Tr(e†l ekΠ) Tr(Πe†µel)ϕk(x)ϕ̄µ(x)

and the related integral satisfies∫
Rd
K(t, x, x) dx =

Λ∑
lk

Tr(e†l ekΠ) Tr(Πe†kel) =

Λ∑
lk

|Tr(Πe†kel)|2

≥
Λ∑
k

|Tr(Πe†kek)|2 =

Λ∑
k

(Tr(Πe†kek))2 .

The next inequality then follows

(∫
Rd
K(t, x, x) dx

) 1
2 ≥

( Λ∑
k

(Tr(Πe†kek))2
) 1

2 ≥ 1

Λd

Λ∑
k

Tr(Πe†kek)

and thanks to the equivalence

Tr
(
Π

∫
Rd

Θ†Λ(t, x)ΘΛ(t, x) dx
)

=

Λ∑
k

Tr(Πe†kek)

we get the statement above. �

4.4 Bargmann-Fock space, Wick operators and coherent phase space

Let Ā(C`) be the set of the anti-analytic functions ψ : C` → C. The Bargmann-
Fock space is defined as

FB(C`) :=
{
ψ ∈ Ā(C`) |

∫
|ψ(z̄)|2 e−|z|

2

dz ∧ dz̄ < +∞
}

(106)

with the scalar product (here z := x+ iξ and dz ∧ dz̄ := π−`dxdξ)

〈ψ,ϕ〉 :=

∫
ψ?(z̄)ϕ(z̄) e−|z|

2

dz ∧ dz̄

=
1

π`

∫
R2`

ψ?(x− iξ)ϕ(x− iξ) e−(|x|2+|y|2)dxdξ (107)

Coherent states in FB(C`) are, with normalization factor e−
1
2 |α|

2

, given by

|α〉 ≡ φα(z̄) := eα·z̄−
1
2α·ᾱ. (108)
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The creation and annihilation operators on FB(C`) are defined as

(akψ)(z̄) :=
∂ψ(z̄)

∂z̄k
, (a†kψ)(z̄) := z̄kψ(z̄). (109)

The vector space C` with ` := Λd and d = 1, 2, 3 equipped with linear coor-
dinates α = (αk)|k|<Λ can be called coherent phase space, since its points are
the coherent state eigenvalues,

akφα = αkφα (110)

We denote the space of (finite) power series in (α, ᾱ) as

PΛ(α, ᾱ) :=
{
c(α, ᾱ) =

Λ∑
ij

∑
nm

cij,nmᾱ
n
i α

m
j

}
.

The space of power series in terms of a, a† will be indicated with

PΛ(a, a†) :=
{

c(a, a†) =

Λ∑
ij

∑
nm

cij,nm(a†i )
namj

}
.

These definitions should be read in terms of multi-indices; for instance αni =∏d
p=1 α

np
ip

.

Definition 3 The Wick quantization map W : PΛ(α, ᾱ)→ PΛ(a, a†) is given
by the following properties:

1. W[1] = 1H;
2. W[af + bg] = aW[f ] + bW[g] for all f, g ∈ PΛ(α, ᾱ) and ∀a, b ∈ C;

3. normal form compatibility, i.e. W[ᾱni α
m
j ] = W[αmj ᾱ

n
i ] = (a†i )

namj ;

The inverse map f := W−1[F] is the Wick symbol of the operator F, given by
the expectation over coherent states,

W−1 : PΛ(a, a†)→ PΛ(α, ᾱ) .

In particular, 〈φα, (a†i )
namj φα〉 = ᾱni α

m
j . This map sends polynomials into

polynomial operators expressed in normal form via the prescription α → a,
ᾱ → a†. For general Wick operators, namely F := Opwick(f) when f is not a
polynomial, one can set

(Opwick(f)ψ)(z̄) :=

∫
f(z̄, α)ψ(ᾱ) e−|α|

2+α·z̄ dα ∧ dᾱ, (111)

f(z̄, α) =
〈φz,Fφα〉
〈φz, φα〉

, ψ ∈ FB(C`), (112)

for which we address the reader to [7], [8], [12], [16], [23].
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The Wick star product is defined as:

f ? g := W−1[ W[f ] W[g] ], (113)

which is linear and associative.

Proposition 11 By defining the Wick parenthesis as

{f, g}w := f ? g − g ? f (114)

the following properties can be stated: ∀a, b ∈ C,

1. linearity: {af + bg, h}w = a{f, h}w + b{g, h}w;
2. skew-symmetry: {f, g}w = −{g, f}w;
3. ?-Leibniz property: {f, g ? h}w = {f, g ? h}w + g ? {f, h}w;
4. Jacobi identity: {f, {g, h}w}w + {h, {f, g}w}w + {g, {h, f}w}w = 0.

The Wick product admits the asymptotic expansion (see [8])

f ? g '
∞∑
n=0

Λ∑
k1,...,kn

1

n!

∂nf

∂αk1 · · · ∂αkn
∂ng

∂ᾱk1 · · · ∂ᾱkn
(115)

which shows that the ? - product may be seen as an algebraic deformation
of the point-wise product between coherent phase space functions. Denoting
by O(∂2) terms containing derivatives of at least order 2, notice that Wick
parenthesis can be seen as an algebraic deformation of the Poisson parenthesis,

{f, g}w = {f, g}+O(∂2),

{f, g} :=

Λ∑
k

∂f

∂αk

∂g

∂ᾱk
− ∂f

∂ᾱk

∂g

∂αk
.

A straightforward application of the above properties shows some useful rela-
tions between phase space derivation and operator multiplication:

〈φα, akF(a, a†)φα〉 =

(
αk +

∂

∂ᾱk

)
f (α, ᾱ) (116)

〈φα, F (a, a†)a†kφα〉 =

(
ᾱk +

∂

∂αk

)
f (α, ᾱ) (117)

∂f

∂ᾱk
(α, ᾱ) = 〈φα, [ak,F(a, a†)]φα〉 (118)

∂f

∂αk
(α, ᾱ) = 〈φα, [F(a, a†), a†k]φα〉. (119)
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