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Abstract We present a quantitative estimate for the derivation of the Hartree
dynamics for boson particles at low temperatures in arbitrary dimension. This
achievement is obtained by the normal mode decomposition of the boson field
operator evolved under the many body quantum dynamics, and estimates on
Wick symbols through an L?(p) - norm with Gaussian thermal measures p.
This is directly linked to the estimate by the Gibbs measure. The rate of
convergence is explicitly written in terms of the temperature and the number
of particles. The interaction potential is supposed to be in the Hardy class,
thus containing the Coulomb type, and it is not rescaled with respect to the
number of particles. The dependence on time in the main estimates is shown
to be globally linear.

Keywords Hartree dynamics - many body theory - Gibbs estimates

1 Introduction

The experimental observation of Bose-Einstein condesation (BEC), see [1] and
[33], led to a great growth of activity in the physics of Bose gases. The ap-
proach was based on laser cooling techniques and magneto-optical traps, first
introduced in the 80’s, and represents a cornerstone in the field of interact-
ing bosons, whose study has attracted increasing interest from experimental,
numerical and theoretical communities (an excellent review is [40]).

This is still a very active field of research, improved by various fundamental
results in the mathematical analysis of condensation for interacting bosons.
A first reference work is [43], where the author discusses a plenty of classical
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and quantum models for which kinetic equations can be derived rigorously.
A second reference paper is [29], where the author shows that in the many
body framework the classical limit of the expectation values of products of
Weyl operators, translated in time by the quantum dynamics and taken on
coherent states centered in (z, p)-space, are shown to become the exponentials
of coordinate functions of the classical orbit in phase space. Such results have
been extended in [27], and a recent review of this method is given in [18].
For a class of singular interaction potentials including the Coulomb potential,
in [24] the authors show the convergence of the quantum dynamics to the
Hartree dynamics when the number of particles becomes large.

Methods for deriving higher order corrections to the mean field asymptotics
for the quantum systems are provided in the works [38], [13].

A reference role in the literature is played by those recent works dealing with
the rigorous version of the Bogoliubov theory of superfluids; see e.g. the review
[42]. The Gross-Pitaevskii equation is rigorously deduced for example in [9],
whereas the fluctuations around it are studied in the works [17] and [14].

We also recall that the convergence to the limiting Hartree dynamics is studied
in [41] and [5], and in [11] the Hartree-Fock-Bogoliubov is derived by the
method of the quasi-free reduction. A general discussion of the role played by
scaling of the physical parameters in BEC is given in [21].

In the recent paper [26], the authors prove that the grand canonical Gibbs
state of an interacting quantum Bose gas converges to the Gibbs measure of a
nonlinear Schrédinger equation in the mean-field limit, where the density of the
gas becomes large and the interaction strength is assumed proportional to the
inverse density. Moreover, in [30] the authors prove that the grand-canonical
Gibbs state of a large bosonic quantum system converges to the Gibbs measure
of a nonlinear Schrédinger-type classical field theory, in terms of partition
functions and reduced density matrices. This gives a further derivation of
nonlinear Gibbs measures in two and three space dimensions, starting from
many-body quantum systems in thermal equilibrium.

With respect to these last results, we have a different target and thus we
exhibit different results. Indeed, in our paper we deal with a family of flow
invariant Gaussian measures and the Gibbs measure, not as the result of a
mean field limit, but as a tool in order to study the rate of convergence of
the quantum many body evolutive problem to the related Hartree effective
dynamics in the low temperature asymptotics.

Concerning the two-body interaction potentials v, we consider the whole class
of (positive) Hardy potentials v with Hardy constant 0 < C,, < 400 ([6], [31])
and we do not assume any scaling of v in terms of the number of particles IV,
which here is supposed to be finite (see Sect. 2.2). This ensures also Coulomb
type repulsive interactions.

More precisely, our approach is based on the normal mode decomposition to-
gether with an ‘ultra violet’ (UV) regularization of the quantum many body
dynamics of the boson field ¥, with respect to a fixed orthonormal basis (see
Sect. 3.1). This means to study the reduced quantum dynamics on Bargmann-
Fock space Fp(C%), £ € N, and then to control such an UV - regularization
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by estimating explicitly the remainder of the approximated dynamics with re-
spect to the full Fock dynamics.

The advantage to consider the quantum dynamics of ¥ within this setting
is that we can apply time global and rigorous results about the propagation
of Wick operators on Bargmann-Fock space and related Wick symbols. This
approach is inspired from the works [2], [3], [4] where the flow of the Hartree
equation is recovered as mean field limit, thanks to infinite dimensional phase-
space analysis through Wick operators on the Fock space, and by the use of
infinite dimensional Wigner measures.

In addition, this framework allows to apply operator Gibbs estimates that con-
trol some Gaussian thermal L?(u) - norms on phase space where furthermore
w are invariant under the discrete Hartree flow (see Sect. 3.2). The use of these
invariance properties, and such norms for the convergence, allows us to avoid
the assumption of a scaling for the interaction potential in terms of N, to
avoid the application of the Gronwall Lemma and various related arguments
that frequently appears in the literature for derivation of Hartree dynamics
and that give time exponential growth estimates.

Our main result (Theorem 1) proves the convergence of the (quantum
evolved) Wick symbol of the boson field to the Wick symbol moved under the
Hartree flow, with respect to L?(u) - gaussian norms. Moreover, an elliptic
property on the Hamiltonian ensures also the L? - estimate by the Gibbs mea-
sure. The rate of convergence is explicitly written in terms of the temperature
T > 0 which here is the ‘small’ asymptotic parameter, the fixed number of
particles NV and the Hardy constant C,, > 0 linked to the interaction potential
v. Our choice of this L?(u) - convergence notion allows a globally linear es-
timate on the difference between the quantum many body dynamics and the
effective one.

The contents of our paper are inspired by our previous results in [39]. The

focus of [39] was on Bose-Hubbard models for the derivation of the discrete
NLS flow in the mean field regime. In the present paper we consider the low
temperature asymptotics for many body models on R? far beyond the simple
case of periodic external potentials in the tight binding approximation (here
we assume confining ones with at most polynomial growth) and for the deriva-
tion of the continuous Hartree flow.
Furthermore, here we show a link between the one particle density operator as-
sociated to the field operators, the related Hilbert-Schmidt norm convergence,
and the gaussian norm of fields we used in the paper (see Sect. 3.7). This
allows us to discuss both the differences and the similarities between our main
result and the ones in the existing literature that prove the Bose-Einstein con-
densation through one particle density operator and mean field asymptotics.
Within this discussion, we also suggest an index for the growth of particle
correlations (see Remark 5) by exhibiting a lower bound for the density oper-
ator associated to the deviation field between Hartree flow and the quantum
dynamics. Such an achievement is a novelty in the study of correlations, since
related lower bounds are usually difficult to recover.
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2 Preliminaries about the model
2.1 Many body operator and normal mode decomposition

We consider the Hamiltonian operator of identical spinless trapped interacting
bosons of mass m = 1 in R? with 1 < d < 3 defined on the bosonic Fock space
F:=@D,,5o L2(R™), written in terms of the annihilation operator distribution
U (z) (see sect. 10.2.2 in [18]),

H = Hewt + Hint (1)
1
= / \UT(CU) hW(z)dz + = / \UT(x)\UT(y)v(x — )V (y)V(z)dzdy
R 2 Jgr2a
where h := —%Aw + u(z) is the single-particle operator, u and v are the trap-

ping external potential and the positive interaction potential in the Hardy
class (see Sect. 2.2). All over the paper we assume i = 1. Under these assump-
tions, H is selfadjoint on F and the unitary map U (¢t) := exp{—iHt} : F — F
is wellposed (see for example Prop. 122 in [18]).

Let us consider the time dependent operator distribution W(t) = W(t,z) that
fulfills the Heisenberg equation

iW(t) = [W(t),H] (2)

with the initial data W(0,2) := W(z). This is directly solved by V(¢ , z) :=
U)W (2)U(t). At any fixed time, the canonical commutation relations hold
true [W(t,z),Vi(t,y)] = o(x — )1, [V(tz),¥(t,y)] = 0. In particular, the
commutation [H, N] = 0 gives the operator valued conservation law

N.f/Rd\IJ( YW (z)d /Rd\ll(t, YW(t,z)de V>0 (3)

We may now expand the field operator in terms of an orthonormal basis of
the single particle Hilbert space L?(R?).

Remark 1 In what follows we denote {@g}rene C L2(RY) the orthonormal
basis of eigenfunctions of the single particle harmonic oscillator —%Az + %|1’|2
The choice of the eigenfunctions ¢y, is motivated from the knowledge of explicit
bounds for ||Viy|[12(ray in term of k that will be useful for our estimates.

The Hamiltonian H given in (1) can be also expressed in the form (see [18])

1
H= Zukm a;;am + 5 Z Vklmn azajaman y (4)

km klmn

where k,I,m,n € Z% and a,, = f]Rd @m(x) V(z)dr. The coefficients of the
quadratic part are given by

Ukm = (Pk, " Pm) £2(Re) (5)
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and the quartic terms are the entries of the matrix of the selfadjoint two
body interaction operator defined on the two particles symmetric space v :
LI(R?*®) — LI(R*®)

Vktmn = (Pk V 01,0 Om V @n) L2(R24) (6)

where @, V 05 1= 1(pm ® ©n + ¢n ® 1) € L2(R??) is the symmetric tensor
product. Such coefficients satisfy the following relation vximn = Vmnki-
The number operator N given in (3) can be equivalently written as

N = Za,tak. (7)
k

Now consider the normal mode expansion with index & € N¢ through the time
dependent ay(t) := [, G (x)V(t, z)d,

V(t,x) =) an(t)en() (®)
k

We can now say that these time dependent operators ag(t) : F — F satisfy
(formally) the following infinite family of coupled operator equations

Zak(t) = [ak(t)a H} = Z Ukm am(t) + Z Vkimn a;f(t)am(t)an(t) (9)

lmn

Notice that ag(t) — [ag(t), H] is a well posed operator map on Fock. In the
next section, we are going to show a regularized (and rigorous) version for the
righthand side of this equation.

2.2 Assumptions on the physical potentials
The external potential u € C?(R?%; R ) is such that
cllz]|? < u(z) < 2l2]*”, (10)

for some ¢, 2, g > 0 and p € N. The simplest example is the isotropic harmonic
trap u(z) := 37 ||z|/
The interaction potential v : R? — R, is assumed to be a measurable posi-
tive function such that v(z) = v(—z) and belonging to the Hardy class, i.e.
satisfying

vl 2 may < Coll¥llarmay, Vo € HY(RY), (11)

for some C, > 0 that we will call the Hardy constant of v. We recall that
the H! - Sobolev norm reads |\1/J||§{1(Rd) = ||1/)H%2(Rd) + ”V’(/)”iQ(]Rd)' In the
bounded case v € L®(R%) we can set C, = [|v o (ga). For the Coulomb
case v(x) := 1/||z|| with d = 3 the optimal Hardy constant reads C, = 2.
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In particular, the well known Hardy inequality (see [6], [31]) for the Coulomb
potential and d > 3 reads

lo@1* 4 .
/Rd EE dz < d—27 /R [Vatp(2)]|“dz.

In Appendix 4.1 we prove that, if v fulfills (11) then the same inequality (in the
sense of semipositive operators) is realized for the bosonic field ¥ (z), namely

/Rdv(:ﬂ)2kl7T(x)d7(x)dx < 2 (/R ot (2)0 (2)dz + 9

= €2 (N4 Hypee). (12)

v, (x)vxwx)d:p).

Moreover, a consequence (see Proposition 8) is that H;p; given in (1) fulfills
1
0< Hint < §C’UN(N + Hfree)~ (13)

Such an operator inequality, which implies H < Hg,; + %C’UN(N + Hpree) <
£ N% (see Lemma 5) provides, for 8 > 0 and £, := 2((1 + 2)3? + C,), the
lower bound

e BN < o—FH (14)

that will be useful in the determination of a quantitative estimate for the
critical temperature shown in Section 3.6.

3 Main results
3.1 UV - regularization

The normal modes a(t), k € N¢, of the field operator W(t,z) solves equation
(9) which is an infinite system of countably many strongly coupled operator
equations. We regularize this system by inserting an ultra-violet (UV) cut-off
A € N, requiring the sum to run only on multi-indices of norm lesser than A.
We thus define the following norm |k| := max;e(i,... 4} ki so that the set of
multi-indices having norm lesser than a positive integer A is an hypercube of
side A, with volume easy to compute by

A
dYoi= Y 1=at=1 (15)

Notice that the norm ||k| := k1 + --- + kq is equivalent to the above one,
since |k| < ||k|| < d|k| and ||k||/d < |k| < ||k||. The Hamiltonian and number
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operators in this setting are given by
A
Nai=) alap, (16)
k

A A
1
Hp = E Ukm alam + 5 E Uklmnaia;raman = Hezt,A + Hint,A . (17)

km klmn
We stress that, for any A > 1,
[NA,Ha] =0. (18)
Then, employing the short-hand notation Z,? = > k. kj<a We consider the
Heisenberg equations V |k| < A for initial data ax 4(0) := aj

A A
iar,A(t) = [ak,a(t), Ha] = Z Ukm am, A(t) + Z Vkimn alT,A(t)am,A(t)an,A(t)-

lmn

(19)

Here the operators N4, Hx and ag 4(t) can be represented as Wick operators
defined on the Bargmann-Fock space Fg(C¥), see the brief review in [39] or the
textbooks [12], section 10.2.2 in [18], section 1.6 in [23]. We recall that Fp(C")
is isomorphic to a subset of the bosonic Fock space F := @, -, L}(RI) =

D,,-(L?(R?))®=". The Bargmann-Fock space is isomorphic (see pp. 48-49 in
[23]) to the direct sum of the symmetric tensor products

Fe(CH)~EPovircF (20)

n>0
where the (finite dimensional) subspace b, of the single particle space reads
ha = Span{gpl,goQ, i € L2(RY) | ke N, |k| < A}
¢ := dim(h,) = A%
Let us now define the related orthogonal projector
74 F = Fp(ChH (21)

(acting on any single sector) and notice that

Hi=maHmy

and in particular Heze 4 = mTAHezt = Hezema, N4 = AN = N7y, Whereas in
general mgH;pnt 7 Hint, 4 thus we have only the general link Hpe 4 = mAHipne ma.
We stress moreover that

ﬂ'A(H — HA)27T'A = 7TAH(]1 - 7TA)H7TA = WAHint(]l — 7T/1)Hm,gﬂ'/1 7& 0. (22)
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Such an inequality tells us that, for general interaction terms H;,:, the many
body quantum dynamics does not preserve Fp(C*) nor the operators defined
on it and moved under unitary conjugation in the Heisenberg picture. In par-
ticular, we have the inequality between semipositive operators

2
TA(H—Hp)tma > (WA(H - HA)27TA) > 0. (23)

The lefthand side of (23) will appear in the trace (52) to estimate the UV
remainder of the quantum evolved annihilation operator, namely the difference
U (t) — W, (t) where the UV - regularized field operator is defined as

![/ () \IlAtx Zak/] (pk (24)

We now denote w > 0 as the lowest elgenvalue of the semipositive operator
h = —1A, + u(z) defined in Section 2.2, then it is smaller than the lowest
eigenvalue of the matrix ugm := (@r, h ©m)L2ray Where we assume |k, |m| <
A. Taking into account the interaction part in (17) which is the restriction of
the semipositive interaction part H;,; contained in (4), we have

Hi>wNy (25)
namely the operator Hy — w N4 is semipositive definite. In the harmonic trap
case u(z) = 3@?[|z||?, we have w = Jdw.

Remark 2 Since the notation becomes heavy, the subscript A on the operators
ai, A, marking these latter operators as satisfying the finite system of equations
(19), will not be carried in the following Sections. Still, to remind us of the
presence of the cut-off, all other relevant quantities will maintain the subscript.

In order to turn the coupled equations of Wick operators in (19) into coupled
equations of Wick symbols we need to use coherent states ¢, € Fp(C’), see
Section 4.4, which are given by the eigenvectors of the annihilation operators
akPa = apda, ap€C.
Now, by taking the quantum expectation of ay solving (19) over coherent states
(namely, computing the Wick symbol)
ap(t, a, @) = (da, ar(t)da) (26)

we obtain the following problem with initial data ax(0, o, @) := ax,

iay(t, o, @) Zukm am(t, a, @) + Z'Uklmn Basaf (Dam (D)an(t)da)  (27)

Imn
This would correspond to the scalar and discrete coupled Hartree equations
(45), if not for the generic failure of the Wick symbol of operator product to
map onto the pointwise one, namely

(Baral (H)am (H)an(t)da) # (bara) ()Pa) - (Param(t)Pa) - (Pasan(t)da)-

To obtain a closed system of equations for the family of functions ay(t, o, @)
we will make use of Wick deformation quantization, see Proposition 2.



Gibbs estimates for the convergence to Hartree dynamics 9

3.2 Gaussian thermal measures
Motivated from the inequality (25), a candidate to define a weighted trace is
the following Gibbsian operator

e~ BwNa

= W7 B = (kBT)_la (28)

[/
for which we recall the next useful result (see Prop. 1 in [39]).

Lemma 1 Consider the number operator N, := Z}? aLak, then for any X\ in
R, and any Wick operator F : Fg(C*) — Fp(C’) we have that

Tr(Fe MNa) o aw (e~ Na) )
7fRE:Xﬁ;Y t4¥<¢a’F¢a>er€_ANA) da A da

:/ (ba, Fa) (e* — 1)~ Dll® g A da
ct

where o := g + ip and da A da = 7 ¢dgdp.

The above result follows from the trace formula involving Wick and anti-Wick
operators (see section 7.6.1 in [18]) and thanks to the direct computation

oaw (e N1) = eMe=(€=Dla® anq Tr(e ™N4) = [oaw (e N7~ tdada =
(¥ (e* — 1))".

A direct consequence of Lemma 1 is that tracing an operator F against g4, for
A := Bw, is equivalent to averaging its Wick symbol f(«a, @) := (¢q, Fo,) over
C! ~ R?* with respect to a normalized gaussian measure y, that is

Tr(Fon) = /«: (@) dpo, ), (29)

with the Gaussian thermal measure linked to B := e — 1
du(a,a) == B* e~ Blo’ da A da . (30)

When B — 400 (i.e. T — 0T) the measure concentrates at o = 0, or equiva-
lently the trace becomes the projector onto the ground state ¢y of the number
operator, namely Tr(Fp,) — (¢, Féo).

Definition 1 Let w > 0 be the lowest eigenvalue of the single particle operator
h. We introduce a (quantum invariant) weighted norm of fields © by

[STEES QA/ ©'(2)0(z)dz). (31)
Rd
Remark 3 We stress the inequality between Wick symbols

= onforf

dam dam
n=1

(¢a, FTFda) = |f(a, @) + (@) = [fla,@))*.  (32)
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Thus, the weighted operator norm ||©]« in Def. 1 has a lower bound given by
sum of the L?(p)-norms of the Wick symbols ¥y (a, @) := (¢, erda), e =
fRd ok (2)0(z)dx,

A A
10123 [ (buerte) Pauton.d) = 3 Wity (39
k k

Notice that also in the case of arbitrary operators on Fock, e : F — F,
the bracket with respect to the coherent states ¢, € Fp(C’) C F fulfills
(Pareledn) = (ba, el (TA+1—Ta)e, a) = (P, Tae TACTAGR) + (Do, TaeT (1 —
TA)eTAda) > (Do, TaelTrem AP ). Whence (33) still holds true.

In view of the above observations, we have the next

Proposition 1 The following identities hold

1
Tr(alaves) = [ londu(a,a) = . (34)
CZ
_ 2
To((a])afen) = [ fonftdntana) = 5. (3)
ct
More in general, for any o >0
- _ 1 o
/(cf lag|”dp(a, @) = Go2 r (5 + 1) ) (36)

where I' : RY — RT is the Buler Gamma function.

Definition 2 (L? - Gaussian thermal norm) Let O(z) := Y, i () ey
and related Wick symbols 9y (@, o) := (@, ega). Let p be the Gaussian thermal
measure (30). In view of Def. 1 and Remark 3, we now introduce

A
1
16115 = —a D 19kl 72 < 1O (37)
k

We remind the one to one correspondence between Wick operators and related
Wick symbols. Thus, [|©||, is another well posed norm definition for field
operators, which is furthermore sharper than the norm ||©||, as shown in (33).
Here we choose to normalize the sum since ZQ 1 = A4, Notice also that this
norm is invariant under discrete Hartree flow (45) thanks to the invariance of
the measure du (see Prop 4).
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3.3 The Gibbs measure

We show that the L? - norm computed through the Gibbs measure can be
controlled by the Gaussian measure introduced above. Let us consider the
Hamiltonian function defined on the complex phase space C* ~ R?¢ given by
H(o, @) := (pa, Hadqa), where Hy is the many body operator (17), which reads

A A
1
H(Oé, d) = kz Uk Ok Oy, + 5 MZ Vilmmn Ok QO Oy, - (38)

The Gibbs measure is defined as

dG(a, @) : 1

_ —\H(a,& —
= TR da h da e M) o A da (39)

where o := g +ip and da Ada := 7 “dqdp. Notice that the ellipticity property
H(a, &) > Tpmin|a|? implies the upper bound

0< e—AH(Ohd) < e_>\"'min|0“2 (40)

where the value 7,,;,, > 0 is the smallest eigenvalue of the positive definite
matrix (ug;)1<k,j<¢ linked to the quadratic part of H and given the anti-Wick

symbol (see [23]) of e~ 2N with e 1= A 75 + 1 We have
o aw (e V) (a, @) = (A Tmin + 1)f e Aminlal? (41)

Now define
OAW (e—)\oﬁ)

TAWE ) daAda = (ATmin)’ e il da nda. (42)
Tr(e=*oN)

dm(a, @) :=
and notice that there is ¢z > 0 such that (see Lemma 8)
(ATmin) ™" < CH/S”‘H(O"&) do A dé. (43)

A consequence of (40) - (43) is that V f € L?(m) with the gaussian measure
dm we have the following inequality between norms

1fllz2g) < Ver 1 llezm) = Ver £l (44)

where the equivalence with the Gaussian thermal measure p defined in (30) is
obtained by setting A7, = B. A direct application of (44) is that the upper
bounds in Theorem 1 can be seen as L? - Gibbs estimates on the Wick symbols
of the operators.
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3.4 Convergence to the effective field

Let us consider the Hamiltonian flow on the phase space linked to (38), namely
the solution of the (finite) system of coupled discrete Hartree equations

iék: - Z Ukm Cm + Z Vkimn Clcmcn (45)

lmn

with initial data ¢ (0, , @) := ay. The Hartree functional on 1 € L2(R%)
- 1
£(4,5) = (0, e} + 5 (0% [ PY) (46)

when restricted on the span ¥, (z) = ZQ Ak k() gives the reduced scalar
Hartree equation on L?(R?)

i)y = , 47
Wy = 81/) (¢A ¥a) (47)
with initial data ¥.(0,z) := ZQ ay pr(x). This corresponds to the whole
family of equations (45). Notice that (unless v = 0) this is not the projected
Hartree dynamics, namely ¢4 (t) # w4t (t) but it is still a nice approximating
version of the full Hartree flow solving

i = (h+vx [y]?) . (48)
The regularized effective field is defined by

A
v (1) =t ) =Y alt)en(@) (49)
k

where the Wick operators cg(t) : Fg(C*) — Fp(C") are the ones such that the
symbols read (¢, Ck(t)da) = ck(t, @, @). In other words, cg(t) are the operators
that can be associated, by the link between Wick operators and Wick symbols
(see Section 4.4), to the components ¢ of the above Hamiltonian flow. The
well posedness of these operators is studied in details in the Section 3 of [45]. In
view of this setting, the bracket with respect to the coherent state ¢, € Fg(C¥)
associated to a fixed point o € C* gives

(Ga, WY (t, 7)) ch (t,, @) pr(x) = Ya(t, @) (50)

namely the Wick symbol of \Ilglo), evaluated at «, is the solution 1, of the
reduced Hartree equation (47).

Remark 4 The initial data o € C* will be then distributed over the measure j:
this is our approach to introduce a Gaussian thermal estimate for the deviation
of the quantum field ¥(t) from the effective field lI//(lo) (t).
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We can now state the main result of the paper, to estimate the deviation of
quantum field dynamics from the effective one, through the norm || - ||, given
in (37), by the next

Theorem 1 (Main Result) Let W(t) be the solution of (2), let Wx(t) be as

in (24), Ll'//(lo) (t) given in (49) and v the interaction potential in the Hardy class
with constant Cy,. Then, for B>1, A >1 and t > 0 we have

WO @), = % (51)

where B := e — 1 and B := (kgT)~'. The UV - remainder satisfies

W) = Va@®)ll, <[W(E) = Valt)lls

< % Tr(oal (1 — 7a)Hine|)? ¢ (52)
4 A4\ 2
< 50 (§> ¢ (53)

with gp = e PNa /Tr(e=PNaY and |A| := VATA. The quantum fluctuation
around the effective field \Us?) (t) fulfills

29
1Va@) =W 0l < 5 Co (1 +24) 5t (54)

With respect to the above results, we have the following observations:

e The inequality | f[[r2g) < /ex [|fl, between Gibbs and gaussian norms
(see Section 3.3) ensures that the main Theorem can be rewritten in terms
of Gibbs estimates.

e By the simple application of the triangular inequality taking into account
(53) - (54) one gets an explicit bound for |W(t) — Wi ()],

e The norm can be rescaled as VB || - | ., so that W(/?)(t) has norm one and
both (53) - (54) still work as vanishing estimates as B — +o0.

e By (54) we have thus proved there is a plenty of effective (and not equiv-
alent) dynamics for any fixed value ¢, coming from the low temperature
asymptotics of the UV - regularized quantum many body Hamiltonian op-
erators on Bargmann-Fock space.

e The bound (52) is obtained thanks to [[W(t) —WA(t)]|, < |V (t) = VA0,
where the bigger one is the weighted operator norm given in Def. 1. This
norm is then estimated from above by the operator version of the L* - norm,
i.e. the Schatten norm with index 4 and weight given by the semipositive
trace one 4. The projector from Fock to Bargmann 74 : F — Fg(C),
see (21), weakly converges to identity as A — +oco. The term (1 — 74 )H;pnt
measures the way H;,,: does not preserve the UV - cutoff, since for A := (1—
74 )Hint we have the nonzero term |A|* = mgH ;i (1—72)H,, (1—m2)Hinema
in the trace (52).
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e Our estimates by L?(u) - norm is linear in time, whereas the trace norm
used to prove the convergence of the one particle density operator usually
exhibits bounds with exponential growth in time. See also Sect. 3.7 on the
link between these different notions of convergence.

e The interaction potential v is not rescaled with respect to the number of
particles N, nor depending on the temperature T .

e The upper bound (53) is not sharp since we do expect, by a more refined
analysis, a vanishing behavior Tr(oa|(1 — 74)Hin|*) — 07 as A — 4o for
any fixed B. For (54) we can expect a better upper bound uniform with
respect to A.

Bogoliubov, in [15], (see also [19]) assumed an expansion of the time dependent
field operator by the operator valued distribution

V(t,z) = VO (t,2) + O(t,2)

where WO (¢t z) := (¢, 2) 1, for 1)(t,z) solving the scalar Gross-Pitaevskii
equation, 1 is the identity on the Fock space, and © the so-called normal
fluid excitation field. Notice also the strong similarity between the Bogoliubov
superfluid order parameter ¥(0-%) (t,2) decomposed by

OOt )= Y (<<pk, w(t»m(mﬂ) i (@)

keNd

and the effective field y'//(lo)(t,x) = Z,f cr(t)or(x) we introduced in (49). In
particular, the operator (@, (t))r2ra)1 is a Wick operator whose symbol
(bas (01, V() 2Ry L Do) = (pk, (1)) L2(ray is the k-th Fourier component of
1 (t) solving Hartree

i) = (h+vx[y]*) ¥ (55)

for a fixed initial data 1o € L?(R?). Such components solves the family of
discrete Hartree equations (45) without a cut-off, i.e. A = 400, and initial
data (@k, o) 2(rey.- Whereas we recall that the scalar terms ci(t, o, @) =
(da, i (t)do) determined by solving (45) are the k-th components of the A -
regularized coupled discrete Hartree equations but with arbitrary initial data
ay, € C. This means that \IJS?)(t, x) contains the information of the regularized
Hartree flow for any fixed initial data.

3.5 The first order correction
The first order correction W) (¢, x) to the effective field ¥(¥) (¢, x), that easily

comes from the iteration of the integral equation for the quantum evolved
Wick symbols

¢
ar(t,w, @) = e 0a,(0,w, @) Jr/ e L0 L ap(s, w,@)ds
0
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reads, in the operator valued distribution form, as

vW(t,z) = Z@k ) OPiak(e3 (1,))

t
o) (t,w, @) = e 0a(0,w, @) + /0 e~ t=9)Lo £, e=i5L0 g, (0, w, @)ds.

Clearly, w((t, :c) is the first order correction of the effective quantum field
O (¢, 2) := Zk () Opyik (e~ °a(0,-)) that we have considered in The-
orem 1. The straightforward generalization of Theorem 1 is the estimate for
the quantum fluctuation of lI/(l)(t x) with respect to the quantum dynamics

Wa(t, ) = Y7 on(@) Opyiae(an(t,-)) given by

d 9 2
_gy < A 2 4d+4¢ L
124 =20l < 20—y (G G (1240444 5

5d+%5
1+1 4 +g .2
B2+i

~ 92°C,

and where (% Cy (1+ 2/1)4‘”%) is the constant appearing in the estimate for

the zero-th order fluctuation |¥4 — 1]//(10) ||, showed in Theorem 1.

This proves that the first order correction ||[¥4 — W/(ll)H . is thus better with
respect to the zero-th order effective fluctuation: both from the dependence
on B as well as with respect to dependence on the Hardy constant 0 < C,, <1
(now supposed smaller than one) of the interaction potential.

3.6 A bound on the temperature

We now set a fortiori bound between the total number N > 2 of bosons and
the average of N, with respect to the canonical Gibbs operator

e—BHa

Gy = Te(e=P"1)

(56)
with energy operator Hy as in (17). We recall that the number operator N4
is defined on the Bargmann-Fock space F(C?), £ := A%, which is isomorphic
to a subset of the bosonic Fock space F, see (20). For A — 400 we have that
Fp(C*) asymptotically recovers F as well as H4, N, weakly converge to H, N
(see Sect. 3.1). We require VA > 1 that the number of expected particles with
respect to the operator G4 cannot be bigger than NV

TI‘(GANA) < N. (57)

By defining 8 :=1/(kpT), h:= 1 and in analogy with the case of the free gas
of bosons in the box (see page 16) we now exhibit an interval 0 < T < T of
temperatures such that (57) is fulfilled ¥A > 1. In our work we are interested
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in the setting given in Sect. 2.2 where the interaction potential belongs to the
Hardy class on R?. In Lemma 5 we prove the functional inequality between
semipositive operators wN, < H, < Q;N’/’l, for _QI’) = 2(14£2)3? +2C,,, where
the external potential fulfills 0 < u(z) < 2||z||?, £ > 0, p > 2. This allows,
by the setting B := e%“ — 1, and thanks to the inequality (see Lemma 7)

Tr(e=P“NaN4)

Tr Ny < ———rn 2~
(GaNa) < Tr(e %N

to consider the new and more restrictive condition

Tr(e_f@“’N/‘ NA)

— 7 < N. 5
Tr(e PN (58)

In particular, we also prove (see Lemma 7) that the following interval of
temperatures

~ re) 3
0<T§’€Bln(1ojrA:m) =T, 4= - )2(!"2;) (59)

imply, VA > 1, the inequality (58) and thus also (57). Easily notice that
sup,>y Ap < 400, and that the function [[z||” approximate, as p — 400, the

box potential for the volume ||z|| < 1. We stress moreover that, for large values
of N,
w

kp

The inequality in (59) can be rewritten as

T~ —A, N2 (60)

1
B> ——
_ApN27

(61)
We have thus shown an interval of temperatures uniform with respect to the
UV cutoff parameter A > 1. The setting B > 1 used in Theorem 1 can be
replaced with (61) and the related estimates (53) - (54) can be modified in
the proof of the main Theorem and become dependant on both B than N.
Alternatively, one can fix the additional condition A, N 2 > 1 and take into
account the same estimates.

On the other hand, the value (59) is obtained by a (A - independent) lower
bound for Tr(G4N,) and gives a larger interval of temperatures than the sharp
one for the non regularized condition

Tr(GN) < N. (62)

Indeed, in the free case of the box potential, the optimal value of this bound
for the temperatures grows as N2/3.

The free case in the box. We remind that the temperature under which
there is experimental evidence of BEC for N non-interacting (i.e. v = 0) bosons
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confined by a 3d box potential in a volume V = L? is given by the interval

0 < T <T, where , , ,
1 5/N\35 2
T.:= ( ) ’ (7) s 2mh (63)
¢(3/2) V/ mkp
where ( is the Riemann zeta function, m the mass of the particles and kg the

Boltzmann constant. Among all various approaches, (63) can be derived from
the inequality

€ 1
T‘I‘(WN) - Z eﬁﬁ(“i-‘rni—&-ni) 1 < N (64)
(g ny,n.)EN3{0}

where H = Hy,... on F with single particle state space L?(T3), and thus the
first excited energy value reads €1 := % linked to all the other energies by
en = €1(n2+n, +n2). The equality in the lefthand side of (64) can be proved
by application the so-called quantum Wick Theorem, as it can be seen in the

formula (1.28) and (1.31) in [25].

3.7 One particle density operator, thermal estimates and correlations

The one particle density operator I' : L?(R%) — L?(R?) associated to v/N-
rescaled coherent states on Fock ¢, 5, € F centered on a fixed ap € L?(RY)
with ||agl|z2 = 1, evaluated with respect to the field operator W(¢t, z) solving
(2) has integral kernel

1
<¢\/ﬁa0 ) N¢\/Ntx0
= STV (1) ¥ (t,2))

D(t,z,y) =

> <¢\/Na07 \UT(ta y)w(tv x)d)\/ﬁoé0>

where 7y is defined as the rank one projector into ¢ NG In particular, it is
easily seen that I' > 0 and Tr(T") = 1.

The term ¥(%Y) (¢ ) := 4(t,z) 1 has one particle density operator with inte-
gral kernel

Tolt, 2,) = 10t ) (t,2)

namely is the rank one projector I, onto the single particle state (%)
solving the scalar Hartree equation (55) with a fixed initial data ¢(0) € L?(R%)
and [[¢(#)[7. = N.

A standard result in the literature (see for example [9] and references therein)
can be given by the trace norm Tr|A| := Trv AT A convergence

exp(exp(C't))
VN

for some C' > 0. This can be proved under various assumptions on initial data
and about the scaling of the interaction potential v in terms of N.

Tr|D(t) — Myey| S (65)
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Notice that the operator 6" associated to g4 (in place of 7y) and evaluated
for the deviation field © 4 with integral kernel

OT(t,2,y) = Tr(a®N (1, y)Oa(t, ), O :=Wa — 7},
fulfills the inequalities (see Proposition 10)
1 i
Te|oT| > |67 |lus > ﬁﬂ(m ol (t,z)0(t, z) d:c). (66)
A e

The righthand side of (66) is the rescaled norm [|©||? introduced in Def. 1,

1©4112 == Tr (04 /R ©},(t, )04 (t, ) d).

The norm ||©||,, is sharp with respect to |||, (see Remark 3). It follows that
1 2 2
16T lns = 5 [1©ll% = [1©a[5 - (67)

Remark 5 The lower bound for ||dT|lgs can be interpreted as an indicator
for the growth of particles correlation in the framework of thermal measures.
Since (54) is an upper bound, a sharp value for ||©4]|, grows at most linearly
in time. Such an observation is a novelty in the study of lower bounds for
quantum correlations, which are difficult to recover by quantitative bounds.

Notice also that the UV-regularized one particle density operator
Ta(t,z,y) = Tr(eaW)y (8, y)Va(t, 7)) (68)
and the regularized effective one
PPt a,y) = Tr(eaW ) (6 )W (t,0) (69)

satisfy the Hilbert-Schmidt operator estimate

s =Tl = [ IFa(to.9) =T (0l dody

< ©al14 + 2102 Tr(aNA) + 4IO4]1"* (Tr(0aNA))* + 21|©4]l. Tr(2aN.A)

Al A3 Al
<10l + 2@l 5 +4l0alF (5 ) + 200l - (70)
It is remarkable that ||©4]|x can be used to control from above the quantity
(T4 — FE;]) |4, as it can be used to control from the bottom the norm [|6T||gs.
Moreover, we do expect that this estimate can be improved with respect to
the dependence on A.



Gibbs estimates for the convergence to Hartree dynamics 19

3.8 Assessment of the convergence

In order to prove Theorem 1, we first need to write explicitly the equations of
motion for the Wick symbols aj given in (26).

Remark 6 In this subsection, since we have long computations within various
proofs, we use the compact notation (a|F|a) = (¢, Foa) where ¢, € Fp(C")
are the coherent states in the Bargmann-Fock space and ( , ) is the scalar
product on Fg(C¥) as given in (107).

Proposition 2 ay, satisfies the following Cauchy problem
1ay = (,C() + El)ak (71)

where ax(0) = ag, Lo := {-,H} is the Lie derivative along the Hamiltonian
flow associated to H given in (38) and

O_éiaO_lj 60&1‘80[]‘ B 8ai5‘aj 86486@- ’

A
1 PH 02 PH 02
L= izij P)

Proof. The operator Heisenberg equation ia(t) = [ag(t), H4] with initial data
ai(0) := ay, turns, in terms of Wick symbols, into

Zakf(t) = {O/k(t),H}w, ak(o) = Q.
Recalling the explicit form of the Wick brackets, we obtain
A

1Z PH an(t)  PH Par(t)
oy
ij

2ak(t) - {ak(t),,H}w - {ak(t)vH} + 5 @ia@j 80@80@' B 6()41‘804]‘ 65%85@‘

since {-,H}, does not contain O(9?) terms because H is a polynomial of
degree 2 in o and in &. The identification of £y and £ is now straight-forward.
]
Proposition 3 The deviation term §i(t) := ag(t) — ck(t) satisfies

iy = Lok + Lyay

for 6,(0) := ax(0) — cx(0) = 0. Furthermore,

t
Su(t) = / e~ =Lo L a1 (5)ds,
0

where e~ L0 denotes the pull-back by the Hamiltonian flow b5,.
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Proof. Since i¢, = {cx, H} = Loc, and the Lie derivative Ly is linear, it follows
Z(Sk = i(dk — ék) = Eo(ak — Ck) + Liay = Lodg + Liag.

Thus, a standard argument for perturbed semigroups gives

¢ ¢
a(t) = e~ Lo 5L (0) + / e~ Ht=)Lor g (s)ds = / e~ Mt=8)Lop gy (s)ds.
0 0

O

We can now compute an estimate for the L2(C*, dy,)-norm of 8, but first we
need to bear in mind the following Proposition.

Proposition 4 The gaussian measure p is invariant under the discrete Hartree
flow, that is
dp(P3 () = dp(a) Ve > 0.

Furthermore, averages with respect to p are invariant under the full quantum
evolution, namely for all F € P,(a,al)

/ (ol F(a(t),a (1)) o) du(a) = / (a|F(a,al) |0 dua), €= A"
ct

ct

Proof. Since |a|? is the Wick symbol of N4, the measure, interpreted as a
volume form on coherent phase space, can be written as

A
1 2
du(a) = 7 e~ Blel Hdozk A day,.
k

Since {N4, H} = 0, we obtain (in short form)

e—Blal* A _
dp(Pyy) = 7 Hd(%)md(@%)k = det(d(PY))du
k

where det(d(®%,)) = 1 since P4, is a one-parametre group of symplectomor-
phisms.

The second result follows by recalling the definition of u with respect to the
Wick map.

/(C’Z (| F(a(t),a'(t)) |a) du(a) = Tr(F(a(t),a' (t))a)
= Tr(e!™MaF(a,aMe 1p,) = Tr(F(a,at)oq)

where in the last passage cyclicity of the trace and [H, 04] = 0 were employed.
O
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Proposition 5 The norm of the deviation &y satisfies the following upper

bound.
oz < ([ ( [, antoran) as) (72)

Proof. By Proposition 3,

19:(8) /c/[ LIy e (o)
0,t

For fixed times s,u, employing the Cauchy-Schwarz inequality in L2(C*, du)
the previous expression becomes

Se(®)1? g/
[0k (11, o

However, since by Proposition 4 the measure p is invariant under the scalar
flow, we have that

e =)o L ay (S)H et WLor, g (u)H dsdu.
m

yH

H@%(tfsmoﬁlak (S)HH = [ L1ax (5)]],

hence

160(6) / / 1 Cran (s |“||c1ak<>||udsdu—(/ 1 ()], d )

O

2

3.9 Computation of the remainder ||L1aq (s)]],

In Proposition 2 we have the term

i O?H  9%ay(s) O*H  0%aq(s)
0

Lia — ;
114 a;0a; doda; D00 Da;0a

therefore taking into account the explicit expression of H and employing equa-

tions (118) - (119) to transform the second derivatives of a4(s) into coherent

expectations of commutators, through simple algebraic manipulations we may

write
1 A
Liag(s) =5 > Vhtmn (aman (a] ag(s)alal |a) — 2a0man, (o] a,(s)a] |a)
klmn

—aain (0] amanag(s) |o) + 2apaiam (ol anag(s) |a) ).

(73)
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Lemma 2 The following inequalities holds true.

Nl

(a aiajaga; lo)? < 24 2|ei| + 2[ay] + |aiay],

Nl=

(af aiaj [a)2 <14 |ayl.

Proof. The inequalities are obtained by using the CCRs to bring the as to the
right and by sublinearity of the square root function,

1 1
(a aiajaza; la)? = (af1+6; + ala; + a;faj + 25153131' + a;ra}aiaj |a)2
S 2 +2|Oél| +2|OLJ| + ‘OéiOlj‘.

(aaiaf [a)? = \/(alalai +1]a) < 1+]asl.

Proposition 6 The squared-module of Liaq(s) may be estimated from above
by the product of a time-dependent Wick symbol and a time-independent poly-
nomaial

[L1aq(s)]? < (o] ag(s)af(s) ) (p(e, @))?,
where p : Ct — RY is defined as

A
pla, @) =3 Z [Vkimn| (| ko amam |+ agaram |+ ag o o |+ |akar |+ aman]).-

klmn

Proof. Employing the following form of the triangular inequality, |z + w| <
(|2 + |w]) Vz,w € C and taking into account equation (73), we have that
|L1a4(s)| has the upper bound

A
Ukl
I

klmn

(] ag(s)a] o)

(o aq(s)a;ia;( |a) ‘ + 2|k man|

—|—|akal\‘ (] amanag(s) o) ’ n 2|akalam\‘ (] anag(s) o) H

Using the Cauchy-Schwarz inequality and the previous Lemma for the first
two summands,

1 1
[(alag()aaf [o)| < (ala(s)al(s) [a)* (af acara]a] |a)?

Nl=

< (o] ag(s)al(s) ) 2 (2 + 2fove| + 2|cu| + |awaul).-

and moreover

1
2

[(alag(s)a] )] < {alay(s)a}(s) o) (ol aia] |0} ¥ < (alay(s)af(s)]a)* (1 + Jau])



Gibbs estimates for the convergence to Hartree dynamics 23

obtaining analogous expressions for the third and fourth one, and taking into
account index symmetrisation, eventually we are lead to

A
|L1a,(s)]* < (a] aq(s)afl(s) o) { Z |Vt | [|akalaman| + 3|lakagony| +

klmn
2
+3 |agaman| + 2|agag| + 2|aman|} } )

Overestimating each of the constant factors multiplying the polynomial sum-
mands with 3, the statement is proven. [

Proposition 7 The norm ||L1aq(s)|, has an upper bound not depending on
q and s indeces. In particular, assuming B > 1 we have

||‘C1aq Z |Uklmn|

klmn

Proof. Due to the previous Proposition, it is clear that

|Lrag(s)]2 < / (o] ag(s)al(s) o) (@) d(a)

< ([ lalsa(o)s}(s) il an(@)* 71,

< (/@ (o] aq(s)af(s)a(s)a}(s) o) d(e )

:(/c (alagalagal o) du(a ) Ip* H

where in the second inequality we used Cauchy-Schwarz inequality with respect
to u, and in the last one the invariance of the measure under the full quantum
evolution. Let us compute the two terms.

/C[ (o aqagaqag |o) dp(e) = /U (o, 1+ Bagaq + (32)232, a)du(a)

3 2
_ 2 4
7/(C£1+3|04q| Flogltdi(o) =1+ 2 + =

where in the last equality we applied Proposition 1. Meanwhile,

A
171 = [, {3 sl [lnncrancnl

klmn
4
Hlakaram| + |axaman| + laxar] + laman| | } du(a).

We now look for an upper bound for the integral

4
I:= /e |:|Oék0él06m0£n| + |agaiam | + ok aman | + o] + Iozmozn\] du(a)
c
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which can be written as the sum of several terms. Moreover, the intergral over
phase space does not depend on the index. Thus, we can exhibit the bound

41\2
I< 54(5) /(CZ loman|* du(a)

41\ 2 2 (412 .54
4 4

— —_— < _—

(5 ([ loul" dute))” < 5 (74)
The above norm has thus the bound
A 4
2 (41)% . 51
I?[[,, < (Z 3|“klmn|> —pi (75)
klmn

Then, in view of all the above calculations, and assuming B > 1,

1 3 2\3
11y, < ?)} (1+ 2+ 2)°

< (3 ) T2 (14 5+ 2)°

klmn

A 12.5 28 A
< ( Z 3|Uklmn|)7 < E Z |'Uklmn‘- (76)

klmn klmn

O

In view of the previous statements, we can now show the proof of the main
result of the paper.
Proof of Theorem 1. Recall that

12 )7 = Adchk Mz (77)

for ¢ (t) solving the family of coupled discrete Hartree equations (45) and
where measure p is invariant under the flow. Thus, by defining ni (@, o) =
|k |? we get

A
1 1 1 1
12 O = 127 O = 12 X Ikl = w4’ 5 =5 (18
k

namely the statement ||Ll7/(10)||# = ﬁ.
As for the second statement, notice that

W(t) —wa@)l, < Ad [HIAW () = Wa(t)]2 < Ad [W(t) —wa(t)|?
1 —pBwNy

= Tr( T L. BTA(t,x)BA(t,z)dx) (79)
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for B(t,x) := W(t,x) — W(t,z). A standard semigroup argument gives
t

BA(t) = eiHAtBA(O)e_i’H/‘t —l—/ etHa(t—s) [H—Hu, V(s)] e~ Halt=s) g
0

whence
t

Ba@®)l« < \\eiH”tBA(O)e_iH”tl\*+/ [e™AE=IH—H 4, W(s)le™ M=), ds.
0

Thus, since [N4,Ha] = 0 and the trace is invariant under any unitary conju-
gation of operators,

1Ba(®)[lx < [[Ba(0)]l« +/0 IH = Ha, V()]s ds

< [BA(O)]l« +/O [(H = HA)W(s)[l« + [[W(s)(H = Ha)ll« ds. (80)

In particular, |[W(s)(H —Hx)|lx = [[(H—HA)W¥(s)|lx and

e~ BwNa

[W(s)(H = Ha) 2 = T SH=H) [ (o) (s, (H-H.)

Tr(e—BwNa

whence
e—BwNa

W) (H = Ha) 2 =T (s

H— HAN(H — HA)).

Taking into account that Hy = m4Hws we have HyN = HymgN = HyN, =
NaH. Moreover, [H, N] = 0 whence

e~ BwNa

Tr(e—BwNa)

—BwN
= Tr( ;(H — HA)2NA)
Tr(e—FwNa)

MBS

[W(s)(H = Ha)ll. =Te( NA(H = H)?)

[N

Since H = H.,; + H;,: we can write
[W(s)(H = Ha)llx < IW(s)(Hext — Heawt,a)ll« + [[W(s)(Hint — Hine,a) |«
but WAHemt = He."ct,/l = ﬂ-AHefct,A SO that
7T/1(Hewt - Hemt,/l)27r/1 - 7T-/1(Hea:75 - Hewt,/l)(Hewt - Hezt,A)ﬂ-A =0.

Thus, by the setting 04 := e~ #“N4 /Tr(e=#“N4) we can write down

1

19 (s)(H = Ha) [« < Tr (04(Hint = Hint2)*Nat )
and the operator version of Holder inequality gives

1
1

< [ (23] [ (oo = Hin )]
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A direct computation (thanks to Proposition 1) shows that

(NN

< A e (oatHl — Hine))]

The zero-time term in (80)

IBAOIE = Te( s [ BA0.B4(0,2))
x Te(e ANy Jo, 040 :

fulfills |B4(0)]|2 = 0. Indeed,

BAa(O) =V -V, =V —7,Vmy
=T—map)Vrp+maVI—7p) + T —7)W{I — 74)

whence the trace reduces to

e—PwN4
IBAO)E = Te( iy [ ma¥ @)= m) (e o)
e—BwNa
= Tr( W(WANWA - Ad WA\UT({,E)’]TAW(SL')WA dw))

From ¥ (z) = ), appr(x) we have (ma¥ama)(x) = ZQ ar, Apk(x) as well as the
adjoint equality (WAW};WA)(:L’) = Zﬁ aLAgok(x). Since Ny := Z,? aL}AahA =
mANT 4 we have that |[BA(0)]|2 = 0.
In view of the above computations,
1 As RNE:
1) = Va)lly < 72t [T 0a(Hine —Hinea)*) |

2
1
1

2t
B3

[Tr( oA (Hine = Hine,1)*) |

In view of Lemma 4 we can write

2t

(&) = Wa(®)ll, < —3 Tr(oal(L — ma)Hine|)*,
2

and thanks to Lemma 6, the next bound reads

2t A%\2
W) ~va®ll, < 2 20.() =

d
) -2 (3)

To conclude, by combining the results of Propositions 5 and 7, we find that
the difference ||a,(t) — cq(t)||L2(#) fulfills the relation:

lag(t) = a2y = 182 2 < 1L1agllo(, ¢ (81)
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where
2° 8 14d g
1£1aq]l 2y < 5 }:hmm4<2A V2C, (1 +24)%
klmn
29 ddad
< ECv(l + 2/1) T = bA,B~ (82)

Consequently, the deviation of the effective field W(O)( t) from the quantum
field W4 (t) is controlled by

[N

1a(t) — 2 ()0 = ( AdZnaq (Do) Sbast.  (83)

d

4 Appendix
4.1 Hardy potentials and interaction operator inequalities

Lemma 3 For the Hardy potentials v > 0 in (11) with Hardy constant C,,,
the annihilation operator distribution ¥(x) fulfills

AmeWWMMS@(@W%WWM+WVMWWMMM)

where < is the inequality between semipositive operators.

Proof. We first notice that, for any fixed x € R? the operators ¥ (z)¥(z)
and VW1 (2)V,¥(z) preserve all the sectors L2(R") of the Fock space. Now
consider an arbitrary ¢ € L2(R"), so that

(i, W1 () (2)0) 2 any = (B (@), () ) 2 acn1)
(<p,VmLT/T(z)leP(x)(p)Lg(Rdn) = <Vzu7(x)80’VIW(I)WLE(WM—D)-

Moreover, V,¥(z)p = V.(¥(z)¢). Now define ¢(x) := ¥(x)p, and denote
Vj(z) == (¥(2), €j) L2(racn—1)y Where e; with j € N is a complete orthonormal
set in L2(R¥™=1). Thus, the above equalities turns into

(o, U (@)W (2)9) L2 (any = Z [ (2)[?

(o, Vol (2) Vol (2)0) 2 (rin) = Zwmj

Now apply Hardy inequality for all the functions ; so that

202 ([ wi@Pda [ 19050 d) Z/ 21y () 2
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where the lower bound can be rewritten as

[ @ S pw@Pds = [ @ o, @) m do

— (o0 [ o@P 0 (@@ do g hgzcan
R
from which the statement follows. [

Proposition 8 For the Hardy potentials (11), the interaction operator Hipn:
in (1) fulfills

Cy
0< Hint < 7N(N + Hfree) (84)
where C, is the Hardy constant.

Proof. We begin by noticing that

Hot 1= 5 [ VIV @)oo = )W (@)W (u)dedy

can be rewritten as

Hoe =5 [ V([ W@t = nw)ds) v

The operator version of Holder inequality gives a bound for

/ W (@)o( — )V (z)dz = / (W ()W () ol — ) (W ()W () b de
Rd Rd

< (/Rd \IJT(SU)\U(x)dx) 2 (/Rd o(@ — y)Q\UT(x)\U(x)dx)%
=N (/Rd v(z — y)Q\IJT(:r)\U(x)dx> %.

Furthermore, recalling Lemma 3 and by applying a simple argument of trans-
lation invariance we get

/ o(z — )20 (@) ¥ (2)dr < C2(N +Hppeo), ¥y € R (85)
Rd

Whence, we get the upper bound by the semipositive operator

D=

< Cv N%(N + Hfree)%
S Cv (N + Hfree)'

< N% (Cg(N + Hfree))

where for the last inequality we used N, Hpee > 0 and [N, Hyyee] = 0. Thus,

Hot < 5 [ V1) (C0 (N + o)) Wi (56)
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Now recall that W(y) = >, ¢r(y)ar, Hfree = ZkHVWcH%ﬁLak and N =
Dok aLak. Rewrite the estimate (86) as
Cy t
Hint < 7 zk:ak(N + Hfree)ak
C, Cy
= ? ;al[(N + Hfme),ak} —+ ? galak(N + Hfree)

Thanks to commutation rules [N,ag] = —ay and [Hyree,an] = —||Vr||22ak
we conclude

C, C, C,
Hint S *7(N + Hfree) + ?N(N + Hfree) S ?N(N + Hfree)-
Il

Remark 7 Let K be the harmonic oscillator Hamiltonian on Fock space, then
Hiree <K= (%]l + N) < 3N and thus

Cy

Notice moreover that [H,:, N] = [H — Hezt, N] = 0 and whence [H;n, N2 = 0
so that
0 < H?, <4C2N*. (88)
We stress anyway that [Hine, Na] # 0 since [Hipg, ma] # 0.
Lemma 4 Let H;y,, and Hipe a be as in (1) - (17). Then,
Tr(ea(Hine = Hine.))® = Tr(oalA")*
where A := (1 — w)H;pe-
Proof. We begin by the identity Hin 4 = maHinema so that
Ta(Hint = Hine,a)? = maHint (1 — 74)Hine
(Hint = Hine.2)?ma = Hie (1 — ma)Hinema -
Thus,
TA(Hint — Hinea) 74 = TaAHine (1 — ma)HZ (1 — m2)Hipi .
For D := Hjpt (1 — m4)Hin: = ATA = |A|? and A := (1 — 74)H;n; we have
TaA(Hine — Hint,A)47rA = m4D?mp = ma|Al*7 4.

Whence,

Tr(oa(Hint — Hine.a)Y)F = Tr(oa|A[Y)3.
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Lemma 5 Let H be as in (1) under the assumption that u(x) < Q|z|??,
2>0,p>2, and v(x) in the Hardy class with constant C,. Then,

H < (201 + 2)37 + 20, N7 = )N

Proof. Recall that H;,; < 2C,N2, that H.,; preserves all the n-sectors of the
Fock space, and that the related restriction reads

He;rt Hg‘{:‘ee + Zu free + QZ ||.’17 ||2p
i=1
< HE‘Z?? + Q(Z ||£L' H2> f’l"(’? + “Q(K HS‘TlP) .

Moreover, K — H™ < K < 3N and [K —H{")_ 3N] = 0. This allows the upper

free frees
bound
HO) < HEY 4+ QENM)P < 3N + 2(3NM)P < 2(1 + 2)37 (N™)?

where N(™) denotes the restriction of the number operator to the n-sector.
Recalling (87), Hin: < 2C,N2, from which we get the statement. (]

Remark 8 Notice that Tr(e #“N1) = [, oaw (e #“N1)(a, @) 7~ dada with
(=A% and o a4y (eP<Na) := (B + 1) e~ Blol®, Then

A% BAL
Tr(e—ﬁwNA) — (%) = (%) B S eATj.

Since wNy < Hjy < QI’JNI/’1 for 2, := (2(1+ £2)3? +2C,) and recalling the com-
mutation rule [Ha,N4] = 0 then e~PN, < e PHa < e=BwNa which directly
gives the inequalities 1 < Tr(e#H4) < Tr(e=P“Na) as well as Tr(e #%N4) <
Tr(e_BWNA).

Lemma 6 For A := (1 — w4)H;n: we have

A\ 2
Tr(ealAl)t <20, ()

B

Proof. In view of the previous Lemma,
Tr(oalAl*) = Tr(oaHin:(1 — m2)HZ (1 — 72)Hint).
Recalling (88), we have
Tr(oalAl?) < 4C?Tr(oaHine (1 — A )N (T — 74)Hine).

Since [N, 74] = 0 and [H;n¢, N4] = 0 then

Tr(oa|Al*) < 4C2Tr(0aAN*Hipnt (1 — m4)Hint)
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In particular, Tr(oAN%4HintmaHint) = Tr(/oaNAHintmaHint/0aN%) > 0. Thus,
Tr(oa|Al") < 407 Tr(eaNGH;,,) = 4C7 Tr(yoaNAHE,  /0aN%)

Now apply H;,; < 2C,N2, so that

AdN8
Tr(oalAl*) < 4203 Tr(oaN%) < 4201‘}1 Tr(oaN4)® = 2403 (§> '
(]
Lemma 7 Let 3:=1/(kpT), Ha as in (17) and G, := %' Then,

Tr(e=P“NaN,)

< :
Tr(GaNa) < Tr(e— PG

Moreover, the following (A - independent) interval of temperatures

: F()y2g w3
O<T§k31n<1bjr,4:m) T, Ap::< - )2((2) (89)

implies the next inequality VA > 1

Tr(e P“NaN4)
Tr(e_ﬂQ;Ni)

and thus also Tr(GyNy) < N.

<N, (90)

Proof. In view of Remark 8, and recalling that £ := A%,

Tr(e P“NaN,)  Tr(e P“NaNy)
O = TR ) = T T ) .

(B

In particular, 8{k1 + ko + ...+ ke =n | 0 < o; <n} > { and

Te(e P2 = 3" e PDn” gk + ko + ... + ke = n} (92)

n=0

o0 o0
>0y e P > 4/ e P% dg.
n=0 0

More in details,

oo - INC Y
/ efﬁﬂpa: dr = (P) .
0 p (/3(21/7)5

We now set the (uniform with respect to ¢) bound

1
Tr(GaANy) < % <N (93)
() 1

P (say)r
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so that Tr(GaN,) < N is consequently fulfilled. The righthand side is equiva-
lent to

1
L _IG) (04)
NB ™ p (B)r
hence, recalling B := ¥ — 1,
(v8) = (5 50 = () s o
NB) =\ ) sy~ Uy ) m(B+ @2y
n (B + 1 I'(t)\rwNe
n(B+ )<( P72 (96)
Bp - p 2, ’

Notice that, since p > 2, g(B) := In (B + 1)/BP is a strictly decreasing function
for B > 1, and thus can be inverted. Anyway, in order to simplify the study of
the interval of temperatures, we fix the stronger condition (that still ensures
TI‘(GA NA) S N)

< < (97)
BP Br/2 P 2
The righthand side reads
1 F(l) 2/, w2
5=(7) () (98)

which turns into

w F(%) 2/ wN\;
0<T§k31n(1+ﬁ); A= (=) ()" (99)

O

Lemma 8 Let us recall the multi-index notation ||k|| := k1 + ke + ... + k¢ and
k! := ki ko! ... k¢! for k € N°. Then, for H as in (38) and constant

e(l;~n(p,€)
- 1
T (i) (0 (100)

with n(p, £) := Y pene IFNIP /K and where $2,, := 2((1+$2)3P + C,,) we have the
inequality

(A Tomin) ¢ < CH/e’m(""d) da A da. (101)
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Proof. Recall that H(«, @) := (o, Hya) and thanks to Lemma 5, Hy < .Q;Nf/’l
so that H(a, @) < §2) (o, NYa). Thus,

(A Tmin)ié < (A Tmin)il o (7—mz’n)7Z
fe—)\?‘-[(a,&) daNda — fe—/\Q;)(a,N’jloO da A da - fe—Q;)(B,Niﬁ) dﬁ/\ dB
(102)
where in the last equality we used the change of variables v Aa = . A further
upper bound is given integrating just over the ball B C C* centered at zero
with radius one. Thus,

()\ Tmin)ie (Tmin)iZ
& < 7 =
Je e danda = [ e %END B A df

(103)

Now apply the decomposition of a coherent state into eigenfunctions of the
k —
number operator, namely |8) = e 1A /2%, %\M, |82 := BB so that

(B,NEB) = 718" Y, o BEZ ||k |7, This gives, for any |8| < 1 the simplified
upper bound (3,N48) < >, o & k[P =: n(p, ). We conclude with the new

bound

(Tmm)—ee+0;~ n(p,L) (Tmm)—ée+ﬂ;- n(p,l)

= [ymtdBdp 2(0))

(104)

O

4.2 An upper bound for the interaction coefficients

We show that the Hardy constant of the interaction potential allows an upper
bound for the interaction coefficients.

Proposition 9 Let |k|, |I|,|m]|, |n| < A and let vgimn be as in (6). Then,

|Uklmn| S \/501; (1 —+ 2/1)%
Proof. Recall that

Vklmn = (Pk V 01,0 Pm V Pn) L2(R24)

= /Rgd 2r(W)@1(W)v(r — y)om(x)en(z) dedy

where v(z —y) = v(y — ) and Y V @ 1= (Pm @ On + ©n @ Pm)/2 € L2(R??)
is the symmetric tensor product. As a consequence, it is easily seen that

el < [ lom@) len(@) ([ oo =)l lonl ) dy ) do
< [ len@l lew@l oo ( [ oo =) lorw)l dy)” da

1
< /Rd |om (@) [@n(@)] ColllrllZe ey + IV@rll2ra))? do

1
< llemllze@a) lenllz@ay Co (1 + I Vrl|Z2gay) 2 -
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In particular, for d = 1, the eigenfunctions of the harmonic oscillator fulfill

e,
2 dx?

so that normalization || fx||z2(r) = 1 and integration by parts imply

/1 dfk‘ dz < /]dfk‘ dz < (1+ 2k).

It follows, for d =1,2,3

ol hio= (54 R) fe

IVorlF2 @y < (1 424)%

We thus conclude with the following bound

d
2

|Uklmn| < \[201; (1 + 2/1) .
(]

4.3 A lower bound for the density operator
Proposition 10 Let IT : Fg(C') — Fp(C’) be a trace one semipositive op-

erator, £ := A%. Let ©(t,x) := Z? er k() and e, : Fp(C*) — Fp(Ch).
Define 6I'V) : L2(R?) — L?*(R?) with integral kernel

OrW(t,2,y) = Te(LIO)(t,y)@(t, 7).

Then,
(1) 1 i
160 @ |l > —dTr(H ol (t,2)0,(t, z) dx). (105)
A R
Proof. Let K(t,z,y) be the integral kernel of I')f o (1)
165V |2 = Tr(6rWT o 6r®W) = » K(t,x,x)dx.
Thus, since 67Dt = 5
K(t,z,y) :/ SV (t, 2, 2) 60V (t, z,y) dz
R4
= / Te(I1O',(t, 2)0 4 (t, ) Tr(I1O' (£, ¥)O 4(t, 2)) d=.

Rd

As a consequence, the kernel on the diagonal x = y reads

K(t,z,z) = /R ) Te(I1O1(t, 2)O 4(t, z)) Tr(ITOT (£, 2)O A(t, 2)) dz

= /R ) (0 (t, 2)0a(t, ) IT) Tr(ITOF (£, 2)O A(t, 2)) dz
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The finite normal mode decomposition allows for

A A

Ktaa) =33 [ Te(eledD) Te(Telen) 1)) a)on(z) d:

lk pm
A

= Z Tr(ezrekﬁ) Tr(HeLez) or(2)Pu(z)
lkp

and the related integral satisfies

A A
K(t,z,z)do =" Tr(efe,II) Tr(Ileje)) = Y |Tr(ITefe;)?
Re Ik 1k
A A
Z | Tr( Hekek = Z:(Tr(ﬂe;fcek))2 .
k k
The next inequality then follows
1 A 1 1 &
2 2
( g K(t,z,x) d;v) > (%:(Tr(ﬂelek)f) > F%:Tr(ﬂezek)

and thanks to the equivalence

Tr (H
]Rd

ol (t,2)0,(t, z) dx) =3 Tr(ITefer)
k

we get the statement above. [J

4.4 Bargmann-Fock space, Wick operators and coherent phase space

Let A(C*) be the set of the anti-analytic functions ¢ : C* — C. The Bargmann-
Fock space is defined as

Fp(CTY) = {w e A(CY) | /\¢(2)|2 e 1Pz pdz < +oo} (106)
with the scalar product (here z := x + i¢ and dz A dZ := 7~ *dxdf)

:/w elldz/\dz

=5 | 0@ —i&)p(w — i) e~ dyqe (107)
T R2¢

Coherent states in F(C) are, with normalization factor e~2!°* | given by

|0) = ¢a(2) 1= e>FEE, (108)
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The creation and annihilation operators on Fp(C’) are defined as

9¢(2)

0z, ’

(ary)(2) == (alv)(2) = z(2). (109)

The vector space C* with £ := A% and d = 1,2,3 equipped with linear coor-
dinates o = (ag)|x|<4 can be called coherent phase space, since its points are
the coherent state eigenvalues,

ak:¢o¢ - akd)a (110)

We denote the space of (finite) power series in (o, @) as

i) = {olon) = 3= D ematar}

ij nm

The space of power series in terms of a,al will be indicated with

PA(a,aT) = { a, aT ZZC” nm( }

ij nm

These definitions should be read in terms of multi-indices; for instance o =

d
[ a?pp.

Definition 3 The Wick quantization map W : P, (a, &) — P4(a,af) is given
by the following properties:

1. W[l] = ].7.[;
2. Wlaf + bg] = aW[f] + bW[g] for all f,g € Pa(«a, @) and Va,b € C;

3. normal form compatibility, i.e. W[a}'aT'] = W[a'a7] = (a;r)”a}";

The inverse map f := W™1[F] is the Wick symbol of the operator F, given by
the expectation over coherent states,

WL PA(a7aT) — Pala, @) .

In particular, (dq, (a Z)” al'¢a) = aj'a’" . This map sends polynomials into
polynomial operators exprebsed in normal form via the prescription o — a,
a — af. For general Wick operators, namely F := Op,;,(f) when f is not a

polynomial, one can set

(OPyiek (f /f “lelP+ez go A da, (111)
J(5a) = qu’Fja;, ¥ € Fu(Ch, (112)

for which we address the reader to [7], [8], [12], [16], [23].
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The Wick star product is defined as:
fxg =W WIfW[g]], (113)
which is linear and associative.
Proposition 11 By defining the Wick parenthesis as
{f9}w:=Frxg—g*f (114)

the following properties can be stated: Ya,b € C,

linearity: {af +bg,h}w = a{f, h}w + {9, h}w;

skew-symmetry: {f, gtw = —{9, f}w;

*-Leibniz property: {f, gx h}w = {f, g% h}w + g% {f, h}uw;

Jacobi identity" {fa {97 h}w}w + {hv {fa g}w}w + {ga {ha f}w}w =0.

o~

The Wick product admits the asymptotic expansion (see [8])

oo A
- 1o g
A EDDED D e, S IR (115)

n=0k1,....kn "

which shows that the x - product may be seen as an algebraic deformation
of the point-wise product between coherent phase space functions. Denoting
by O(6?) terms containing derivatives of at least order 2, notice that Wick
parenthesis can be seen as an algebraic deformation of the Poisson parenthesis,

{fag}w = {f7g} + 0(62)5

A

af o of 0
o=y 00 L %
k

day, Oy, Oay, 0oy, '

A straightforward application of the above properties shows some useful rela-
tions between phase space derivation and operator multiplication:

(pa-arF(a,al)ga) = (ak + 62}@) [ (a, @) (116)
(6o (a2 )al ) = (ak ; ai) f () (117)
OF (0,8) = (0 [a1. F(a,21)}o0) (113)

au,
8 (2,6) = (b, [Flara"), al]60). (119)

80ék
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