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The Minimalist Foundation, MF for short, is a two-level foundation for constructive mathematics 
ideated by Maietti and Sambin in 2005 and then fully formalized by Maietti in 2009. MF serves 
as a common core among the most relevant foundations for mathematics in the literature by 
choosing for each of them the appropriate level of MF to be translated in a compatible way, 
namely by preserving the meaning of logical and set-theoretical constructors. The two-level 
structure consists of an intensional level, an extensional one, and an interpretation of the latter 
in the former in order to extract intensional computational content from mathematical proofs 
involving extensional constructions used in everyday mathematical practice.

In 2013 a completely new foundation for constructive mathematics appeared in the literature, 
called Homotopy Type Theory, for short HoTT, which is an example of Voevodsky’s Univalent 
Foundations with a computational nature.

So far no level of MF has been proved to be compatible with any of the Univalent Foundations 
in the literature. Here we show that both levels of MF are compatible with HoTT. This result is 
made possible thanks to the peculiarities of HoTT which combines intensional features of type 
theory with extensional ones by assuming Voevodsky’s Univalence Axiom and higher inductive 
quotient types. As a relevant consequence, MF inherits entirely new computable models.
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1. Introduction

Constructive mathematics is distinguished from ordinary classical mathematics for developing proofs governed by a constructive 
way of reasoning which confers them an algorithmic nature. In the literature there are foundations for constructive mathematics that 
are suitable to make this visible by allowing to view constructive proofs as programs. Examples of these foundations can be found 
in type theory and they include Martin-Löf’s intensional dependent type theory [29] and Coquand-Huet’s Calculus of Constructions 
[4]. However, there is no standard foundation for constructive mathematics, but a plurality of different approaches.

In 2005 in [27] Maietti and Sambin embarked on the project of building a Minimalist Foundation, called MF, to serve as a 
common core among the most relevant foundations for constructive mathematics in type theory, category theory and axiomatic 
set theory. Indeed, MF is intended to be “minimalist in set existence assumptions” but “maximalist in conceptual distinctions and 
compatibility with other foundations”.

To meet this purpose, MF was conceived as a two-level theory consisting of an extensional level, called emTT, formulated in a 
language close to that of everyday mathematical practice and interpreted via a quotient model in a further intensional level, called 
mTT, designed as a type-theoretic base for a proof-assistant. The key idea is that the two-level structure should allow the extraction 
of intensional computational contents from constructive mathematical proofs involving extensional constructions typical of usual 
mathematical practice.

A complete two-level formal system for MF was finally designed in 2009 in [14]. There, some of the most relevant constructive 
and classical foundations have been related to MF by choosing the appropriate level of MF to be translated into it in a compatible

way, namely by preserving the meaning of logical and set-theoretical constructors so that proofs of mathematical theorems in one 
theory are understood as proofs of mathematical theorems in the target theory with the same meaning.

Moreover, computational models for MF and its extensions with inductive and coinductive topological definitions have been 
presented in [19], [11], [21] and [20] in the form of Kleene realizability interpretations which validate the Formal Church’s Thesis 
stating that all the number-theoretic functions are computable.

In 2013 the book [37] presented a completely new foundation for constructive mathematics, called Homotopy Type Theory, for 
short HoTT, as an example of Voevodsky’s Univalent Foundations, for short UFs. Voevodsky introduced UFs with the aim of better 
formalizing his mathematical work on abstract homotopy theory and higher category theory and at the same time fully checking the 
correctness of his proofs on a modern proof-assistant.

More precisely, HoTT is an intensional type theory extending Martin-Löf’s theory as presented in [29] with the so-called Uni-

valence Axiom proposed by Voevodsky to guarantee that “isomorphic” structures can be treated as equal besides deriving some 
other extensional principles. Another remarkable property of HoTT is that it can be equipped with primitive higher inductive types, 
including set quotients (see [37]).

The computational contents of HoTT-proofs as programs have been recently explored with the introduction of cubical type 
theories in [3,6] and a normalization procedure for a variant of them has been given in [33].

So far no level of MF has been proved to be compatible with Univalent Foundations. Here we show that both levels of MF are 
compatible with HoTT. This result is made possible thanks to the peculiarities of HoTT which combines intensional features of 
type theory with extensional ones by assuming Voevodsky’s Univalence Axiom and higher inductive quotient types. In particular, 
we will crucially use the Univalence Axiom instantiated for homotopy propositions and function extensionality. The fact that we can 
interpret both levels of MF into a single framework is a remarkable property of HoTT, which is not shared by any other foundation 
for mathematics to our knowledge.

In more detail, we interpret MF-types as homotopy sets and MF-propositions as h-propositions and both the mTT-collection of 
small propositions and the emTT-power collection of subsets as the homotopy set of h-propositions in the first universe of HoTT.

This should be contrasted with the relationship between MF and the intensional version of Martin-Löf Type Theory, for short 
MLTT, shown in [14]: in MLTT we can interpret only the intensional level of MF by identifying propositions with sets.

The main difficulty encountered in this work concerns the interpretation of the extensional level emTT of MF. Indeed, the 
interpretation of mTT into HoTT just required a careful handling of proof terms witnessing the fact that certain HoTT-types are 
h-propositions and h-sets. Instead, there is no straightforward way of interpreting emTT into HoTT, because emTT includes Martin-

Löf’s extensional propositional equality in the style of [16].

We managed to solve this issue by employing a technique already used in [14] to interpret emTT over the intensional level of

MF: emTT-types and terms are interpreted as HoTT-types and terms up to a special class of isomorphisms, called canonical as in 
[14], by providing a kind of realizability interpretation in the spirit of the interpretation of true judgements in Martin-Löf’s type theory 
described in [16,17]. We introduce the category 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 of the h-sets contained in the non-univalent universe Setmf (which is an 
inductive universe of h-sets in the univalent universe 𝑈1) equated under canonical isomorphisms and then we define an interpretation 
of emTT-judgements into it. In particular emTT-type and term judgements are interpreted as HoTT-type and term judgements up to 
2

canonical isomorphisms. Furthermore, the emTT-definitional equality 𝐴 = 𝐵 𝑡𝑦𝑝𝑒 [Γ] of two emTT-types 𝐴 𝑡𝑦𝑝𝑒 [Γ] and 𝐵 𝑡𝑦𝑝𝑒 [Γ]
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is interpreted as the existence of a canonical isomorphism that connects the HoTT-type representatives interpreting the emTT-types 
𝐴 𝑡𝑦𝑝𝑒 [Γ] and 𝐵 𝑡𝑦𝑝𝑒 [Γ], which turn out to be propositionally equal in HoTT thanks to Univalence. In turn, this interpretation is 
based on another auxiliary partial (multi-functional) interpretation of emTT-raw syntax into HoTT-raw syntax, which makes use of 
canonical isomorphisms.

It must be stressed that the resulting interpretation of emTT into HoTT is simpler than that of emTT within mTT in [14], since 
we can avoid any quotient model construction thanks to (effective) set-quotients and Univalence. This interpretation turns out to 
be very similar to that presented in [30,38] which makes effective the interpretation of extensional aspects of type theory into 
an intensional base theory originally presented in [9]. However, in [30,38] there is a use of an heterogenous equality instead of 
canonical isomorphisms as in [9]. Moreover, the interpretation of emTT into mTT does not show the compatibility of emTT with 
mTT exactly because of the lack of Univalence and effective quotients in mTT.

Observe that it does not appear possible to identify “compatible” subsystems of HoTT corresponding to each level of MF: in HoTT

the interpretation of the existential quantifier allows to derive both the axiom of unique choice and the rule of unique choice as it 
happens in the internal logic of a topos like that described in [13], while in each level of MF these principles are not generally valid 
[15,26,24], since the existential quantifier in MF is defined in a primitive way.

As a relevant consequence of the results presented here, both levels of MF inherit new computable models, where constructive 
functions are seen as computable, as those in [33] and in [36]. We leave to future work to relate them with those available for MF

and in particular with the predicative variant of Hyland’s Effective Topos in [19].

2. Preliminaries about MF and HoTT

In this section we recall some basic facts about MF and HoTT that will turn out to be useful later. We will refer mainly to [14]

for MF and to [37] for HoTT.

2.1. The two levels of MF

MF is a two-level foundation for constructive mathematics, which was first conceived in [27] and then fully developed in [14]. 
It consists of an intensional level, called mTT, and an extensional one, called emTT, together with an interpretation of the latter 
in the first. Both levels of MF extend a version of Martin-Löf’s type theory with a primitive notion of proposition: mTT extends the 
intensional type theory in [29], while emTT extends the extensional version presented in [16].

The resulting two-level theory is strictly predicative in the sense of Feferman as first shown in [19].

A peculiarity of MF with respect to Martin-Löf’s type theories is that types at each level of MF are built by using four basic distinct 
sorts: small propositions, propositions, sets and collections. The relations between these sorts are shown on the following diagram 
where the inclusion mimics a subtyping relation:

small propositions sets

𝐩𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝐬 𝐜𝐨𝐥𝐥𝐞𝐜𝐭𝐢𝐨𝐧𝐬

In particular, the distinction between sets and collections is meant to recall that between sets and classes in axiomatic set theory, 
while the word “small” attached to propositions is taken from algebraic set theory [12]. Indeed, small propositions are defined as 
those propositions that are closed under intuitionistic connectives and quantifiers and whose equalities are restricted to sets.

More formally, the basic forms of judgement in MF include

𝐴 𝑠𝑒𝑡 [Γ] 𝐵 𝑐𝑜𝑙𝑙 [Γ] 𝜙 𝑝𝑟𝑜𝑝 [Γ] 𝜓 𝑝𝑟𝑜𝑝𝑠 [Γ]

to which we add the meta-judgement

𝐴 type [Γ]

where ‘type’ is to be interpreted as a meta-variable ranging over the four basic sorts.

We warn the reader that the type constructors of both levels of mTT and emTT are respectively defined in an inductive way 
mutually involving all the four sorts, i.e. we can not give a definition of collections independently from that of sets or propositions 
or small propositions and the same holds for the definition of each of these sorts.

The set-constructors of mTT and emTT include those of first order Martin-Löf’s type theory, respectively as presented in [29] and 
[16], together with list types. We just recall their notation: 𝑁0 stands for the empty set, 𝑁1 for the singleton set, 𝐿𝑖𝑠𝑡(𝐴) for the set 
of lists over the set 𝐴, Σ𝑥∈𝐴𝐵(𝑥) and Π𝑥∈𝐴𝐵(𝑥) stand respectively for the indexed sum and the dependent product of the family of 
sets 𝐵(𝑥) 𝑠𝑒𝑡 [𝑥 ∈𝐴] indexed on the set 𝐴, 𝐴 +𝐵 for the disjoint sum of the set 𝐴 with the set 𝐵.

Moreover, sets of emTT are distinguished from those of mTT, because they are closed under effective quotients 𝐴∕𝑅 on a set 𝐴, 
provided that 𝑅 is a small equivalence relation 𝑅(𝑥, 𝑦) 𝑝𝑟𝑜𝑝𝑠 [𝑥 ∈𝐴, 𝑦 ∈𝐴].

In addition, both the sets of mTT and those of emTT include also their small propositions 𝜙 𝑝𝑟𝑜𝑝𝑠 thought as sets of their proofs.

Moving now to describe collections of mTT and emTT, we recall that they both include their sets and the indexed sum Σ𝑥∈𝐴𝐵(𝑥)
of the family of collections 𝐵(𝑥) 𝑐𝑜𝑙𝑙 [𝑥 ∈ 𝐴] indexed on a collection 𝐴. But, whilst mTT-collections include the proper collection 
3

of small propositions 𝗉𝗋𝗈𝗉𝗌 and the collection of small propositional functions 𝐴 → 𝗉𝗋𝗈𝗉𝗌 over a set 𝐴 (which are definitely not sets 



Theoretical Computer Science 991 (2024) 114421M. Contente and M.E. Maietti

predicatively when 𝐴 is not empty!), the collections of emTT include the power-collection of the singleton (1), that is the quotient 
of the collection of small propositions under the relation of equiprovability, and the power-collection 𝐴 → (1) of a set 𝐴, that can 
be written simply as (𝐴).

In addition, both collections of mTT and those of emTT include propositions 𝜙 𝑝𝑟𝑜𝑝 viewed as collections of their proofs.

Both propositions of mTT and of emTT include propositional connectives and quantifiers according to the following grammar: for 
𝜙 and 𝜓 generic propositions, 𝜙 ∧𝜓 denotes the conjunction, 𝜙 ∨𝜓 the disjunction, 𝜙 → 𝜓 the implication, ∀𝑥 ∈𝐴.𝜙 the universal 
quantification and ∃𝑥 ∈ 𝐴.𝜙 the existential quantification, for any collection 𝐴. Finally, mTT-propositions include a propositional 
equality type between terms of a type 𝐴, called “intensional propositional equality”, that is denoted with the type

𝖨𝖽(𝐴,𝑎, 𝑏)

since it has the same rules as Martin-Löf’s intensional identity type in [29] except that its elimination rule is restricted to act towards 
propositions only (see [14]). Instead, emTT-propositions include an extensional propositional equality between terms of a type 𝐴
that is denoted with the type

𝖤𝗊(𝐴,𝑎, 𝑏)

since it has the same rules as the propositional equality type in [16] and thus its elimination rule is given by the so-called reflection 
rule.

Furthermore, propositions of emTT are assumed to be proof-irrelevant by imposing that if a proof of a proposition exists, this is 
unique and equal to a canonical proof term called 𝗍𝗋𝗎𝖾. These facts are represented by the following rules

prop-mono)
𝜙 𝑝𝑟𝑜𝑝 [Γ] 𝑝 ∈ 𝜙 [Γ] 𝑞 ∈ 𝜙 [Γ]
𝑝 = 𝑞 ∈ 𝜙 [Γ]

prop-true)
𝜙 𝑝𝑟𝑜𝑝 𝑝 ∈ 𝜙

𝗍𝗋𝗎𝖾 ∈ 𝜙
In this sense, emTT extends the logic of true judgements as presented in [16,17], since we replace the judgement 𝐴 𝑡𝑟𝑢𝑒 [Γ] with the 
judgement 𝗍𝗋𝗎𝖾 ∈𝐴 [Γ], where 𝐴 is a proposition.

Finally, both in mTT and in emTT small propositions are defined as those propositions closed under propositional connectives, 
quantifications over sets and propositional equality over a set. For example, in mTT (resp. in emTT) the propositional equality 
𝖨𝖽(𝐴, 𝑎, 𝑏) (resp. 𝖤𝗊(𝐴, 𝑎, 𝑏)) and the quantifications ∀ 𝑥 ∈ 𝐴.𝜙 or ∃ 𝑥 ∈ 𝐴.𝜙 are all small propositions if 𝐴 is a set and 𝜙 is a small 
proposition, too.

Remark 2.1. It is important to stress that elimination of propositions in mTT as well as in emTT acts only toward propositions and 
not toward proper sets and collections. In this way, mTT and emTT do not generally validate choice principles, including unique 
choice, thanks to the results in [15,26,24], and similarly to what happens in the Calculus of Constructions, as first shown in [35].

Observe that in mTT term congruence rules are replaced by an explicit substitution rule for terms:

repl)

𝑐(𝑥1,… , 𝑥𝑛) ∈ 𝐶(𝑥1,… , 𝑥𝑛) [𝑥1 ∈𝐴1,… , 𝑥𝑛 ∈𝐴𝑛(𝑥1,… , 𝑥𝑛−1) ]
𝑎1 = 𝑏1 ∈𝐴1 … 𝑎𝑛 = 𝑏𝑛 ∈𝐴𝑛(𝑎1,… , 𝑎𝑛−1)

𝑐(𝑎1,… , 𝑎𝑛) = 𝑐(𝑏1,… , 𝑏𝑛) ∈ 𝐶(𝑎1,… , 𝑎𝑛)

As a consequence, the 𝜉-rule for dependent products is no more available. This modification is crucial in order to obtain a sound 
Kleene-realizability interpretation for mTT as required in [27] and shown in [11,21,20].1

Finally, in order to make the interpretation of mTT into HoTT smoother, differently from the version of mTT presented in [14], 
we encode small propositions into the collection of small propositions via an operator as follows:

Pr1) ⊥̂ ∈ 𝗉𝗋𝗈𝗉𝗌 Pr2)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌

𝑝 ∨̂ 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌
Pr3)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌
𝑝 →̂𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌

Pr4)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌

𝑝 ∧̂ 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌
Pr5)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 [𝑥 ∈𝐴] 𝐴 𝑠𝑒𝑡
̂(∀𝑥 ∈𝐴)𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌

Pr6)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 [𝑥 ∈𝐴] 𝐴 𝑠𝑒𝑡
̂(∃𝑥 ∈𝐴)𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌

Pr7)
𝐴 𝑠𝑒𝑡 𝑎 ∈𝐴 𝑏 ∈𝐴
𝖨𝖽(𝐴,𝑎, 𝑏) ∈ 𝗉𝗋𝗈𝗉𝗌

Therefore, elements of the collection of small propositions can be decoded as small propositions by means of a decoding operator 
as follows

𝜏-Pr)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌
𝜏(𝑝) 𝑝𝑟𝑜𝑝𝑠

and this operator satisfies the following definitional equalities:
4

1 The issue of the relation between the 𝜉-rule and Kleene-style realizability was first spotted in [18] and is also discussed in [11].
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eq-Pr1) 𝜏(⊥̂) = ⊥𝑝𝑟𝑜𝑝𝑠 eq-Pr2)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌

𝜏(𝑝 ∨̂ 𝑞) = 𝜏(𝑝) ∨ 𝜏(𝑞)𝑝𝑟𝑜𝑝𝑠

eq-Pr3)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌
𝜏(𝑝 →̂ 𝑞) = 𝜏(𝑝)→ 𝜏(𝑞)𝑝𝑟𝑜𝑝𝑠

eq-Pr4)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌

𝜏(𝑝 ∧̂ 𝑞) = 𝜏(𝑝) ∧ 𝜏(𝑞)𝑝𝑟𝑜𝑝𝑠

eq-Pr5)
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 [𝑥 ∈𝐴] 𝐴 𝑠𝑒𝑡

𝜏(̂(∀𝑥 ∈𝐴)𝑝) = (∀𝑥 ∈𝐴) 𝜏(𝑝)𝑝𝑟𝑜𝑝𝑠
eq-Pr6)

𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 [𝑥 ∈𝐴] 𝐴 𝑠𝑒𝑡

𝜏(̂(∃𝑥 ∈𝐴)𝑝) = (∃𝑥 ∈𝐴) 𝜏(𝑝)𝑝𝑟𝑜𝑝𝑠

eq-Pr7)
𝐴 𝑠𝑒𝑡 𝑎 ∈𝐴 𝑏 ∈𝐴
𝜏( 𝖨𝖽(𝐴,𝑎, 𝑏) ) = 𝖨𝖽(𝐴,𝑎, 𝑏)𝑝𝑟𝑜𝑝𝑠

A link between mTT and emTT is shown in [14] by interpreting emTT within a quotient model over mTT. Such a quotient 
model was related to a free quotient completion construction in [24]. Roughly speaking, thanks to the interpretation in [14], emTT

types are seen as quotients of the corresponding intensional mTT-types and thus emTT can be regarded as a fragment of a quotient 
completion of the intensional level.

More specifically, the interpretation of emTT in mTT relies upon the definition of a particular class of isomorphisms called 
canonical isomorphisms, between dependent quotient types over mTT, similar to so called dependent setoids. It must be observed that 
the idea of using canonical isomorphisms to interpret extensional aspects of type theory into intensional type theory in [14] was 
predated by M. Hofmann’s work in [9] with the main difference that the target theory in [9] is not a pure intensional type theory as 
in [14] where a setoid model is used. Moreover, Hofmann’s interpretation is not effective because of the use of the axiom of choice 
in the meta-theory. The interpretation in [14] is closer to the effective translation presented in [30,38] which refined Hofmann’s one 
by employing a notion of heterogeneous equality.

Through this class of isomorphisms it is possible to define a category of quotients over mTT up to canonical isomorphisms within 
which to interpret emTT correctly.

We underline that the interpretation of emTT within mTT for some relevant constructors has been implemented and verified in 
[8].

Our main task in this paper is to show the compatibility of each level of MF with Homotopy Type Theory in [37]. For this purpose 
we make explicit the notion of compatibility between theories implicit in [27] by stating that a theory 𝐓1 is said to be compatible with 
another theory 𝐓2 if and only if there exists a translation from 𝐓𝟏 to 𝐓𝟐 preserving the meaning of logical and set-theoretical constructors

so that proofs of mathematical theorems in one theory are understood as proofs of mathematical theorems in the target theory with 
the same meaning.

2.2. Useful properties of HoTT

In 2013, with the appearance of the book [37], a completely new foundation for constructive mathematics showed up under 
the name of Homotopy Type Theory, for short HoTT. It was introduced as an example of Voevodsky’s Univalent Foundation with 
the remarkable property of combining intensional features of type theory with extensional ones. Indeed, it extends Martin-Löf’s 
intensional type theory, for short MLTT, in [29] with Voevodsky’s Univalence Axiom and higher inductive types, including quotients 
of homotopy sets and propositional truncation.

As a consequence, the first order types of HoTT are the same as those of MLTT and therefore of the intensional level mTT of MF. 
For the sake of clarity, we denote these types in HoTT following [37]: the empty type is denoted with 0, the unit type with 1, the 
list type constructor with 𝖫𝗂𝗌𝗍, the dependent product type constructor with Π, the dependent sum constructor with Σ and the sum 
type constructor with +. Further, we recall the notation of the following higher inductive types: propositional truncation is denoted 
with ||𝐴|| for any type 𝐴 and quotients with 𝐴∕𝑅 for any homotopy set 𝐴 and an equivalence relation 𝑅. As usual, the special cases 
of the type constructors Π and Σ, when 𝐵 does not depend on 𝐴, are respectively denoted by → and ×.

Voevodsky’s Univalence Axiom states that

(UA) the map 𝗂𝖽𝗍𝗈𝖾𝗊𝗏 ∶ (𝐴 =𝑈𝑖 𝐵)→ (𝐴 ≃𝐵) is an equivalence

where ‘≃’ denotes the type of equivalences and 𝗂𝖽𝗍𝗈𝖾𝗊𝗏 is the function which from a proof of equality of two types in the same universe 
𝑈𝑖, for some index 𝑖, produces an equivalence, all as defined in [37].

This in turn implies

(𝐴 =𝑈 𝐵) ≃ (𝐴 ≃ 𝐵)

We recall from [37] the following notations and definitions which characterize h-sets and h-propositions by singling out some 
proof-terms (it does not matter which they are, it only matters that we can single out some of them!) proving the statements which 
will be used in the next sections:

𝗂𝗌𝖲𝖾𝗍(𝐴) ∶≡ Π𝑥,𝑦∶𝐴 Π𝑝,𝑞∶𝑥=𝐴𝑦 𝑝 =𝐼𝑑𝐴 𝑞 𝗂𝗌𝖯𝗋𝗈𝗉(𝐴) ∶≡ Π𝑥,𝑦∶𝐴 𝑥 =𝐴 𝑦
5

Definition 2.2. A type 𝐴 is an h-proposition if 𝗂𝗌𝖯𝗋𝗈𝗉(𝐴) is provable in HoTT.
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Definition 2.3. A type 𝐴 is an h-set if 𝗂𝗌𝖲𝖾𝗍(𝐴) is provable in HoTT.

Lemma 2.4. If 𝐴 is an h-set, then Id𝐴 is an h-proposition, i.e. there exists a proof-term

𝔭𝐼𝑑 ∶ Π𝐴∶𝑈𝑖 Π𝑠∶𝗂𝗌𝖲𝖾𝗍(𝐴) Π𝑎,𝑏∶𝐴 𝗂𝗌𝖯𝗋𝗈𝗉(Id𝐴(𝑎, 𝑏))

Since h-levels are cumulative (see Thm 7.1.7 [37]), in particular the following holds:

Lemma 2.5. Every h-proposition is an h-set: i.e. there exists a proof-term

𝔰𝑐𝑜𝑒 ∶ Π𝐴∶𝑈𝑖 𝗂𝗌𝖯𝗋𝗈𝗉(𝐴)→ 𝗂𝗌𝖲𝖾𝗍(𝐴).

Now we recall the notion of isomorphism between two h-sets:

Definition 2.6 (Isomorphism between h-sets). Given two h-sets 𝐴 and 𝐵, a function 𝑓 ∶ 𝐴 → 𝐵 in HoTT is an isomorphism if there 
exists 𝑔 ∶𝐵→𝐴 such that we can prove

Π𝑥∶𝐴 Id𝐴(𝑔(𝑓 (𝑥)), 𝑥) × Π𝑦∶𝐵 Id𝐵(𝑓 (𝑔(𝑦)), 𝑦)

We also recall the rules of the propositional truncation ||𝐴|| of a type 𝐴 given in [34]: ||𝐴|| is a higher inductive type generated 
from the following two introductory constants

|− | ∶𝐴→ ||𝐴|| 𝗌𝗊𝐴 ∶ Π𝑥,𝑦∶||𝐴|| 𝑥 =||𝐴|| 𝑦

by means of the elimination constructor:

E-|| ||
𝐶 ∶𝑈𝑖 𝑡𝑦𝑝𝑒 𝑒 ∶ ||𝐴|| 𝑐 ∶ 𝐶 [𝑥 ∶𝐴] 𝑠 ∶ Π𝑥,𝑦∶𝐶 𝑥 =𝐶 𝑦

𝑖𝑛𝑑||𝐴||(𝑒, 𝑐, 𝑠) ∶ ||𝐴||→ 𝐶

satisfying the definitional equality rule

C-|| ||
𝐶 ∶𝑈𝑖 𝑡𝑦𝑝𝑒 𝑎 ∶𝐴 𝑐 ∶ 𝐶 [𝑥 ∶𝐴] 𝑠 ∶ Π𝑥,𝑦∶𝐶 𝑥 =𝐶 𝑦

𝑖𝑛𝑑||𝐴||(|𝑎|, 𝑐, 𝑠) ≡ 𝑐(𝑎) ∶ 𝐶

The presence of propositional truncation makes possible to represent logical notions in a way alternative to the propositions-as-

types paradigm by using h-propositions in a way similar to what happens in the internal dependent type theory of a topos or of a 
regular theory as described in [13].

In more detail, in HoTT the constant falsum ⟂ is identified with 0, the propositional conjunction symbol ∧ with ×, the universal 
quantifier symbol ∀ with Π, thanks to the following lemma derived from [37]:

Lemma 2.7. The empty type 0 and the unit type 1 are h-propositions. Further, h-propositions are closed under × and Π (and thus also →), 
i.e. there exists the following proof-terms

𝔭1 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(1) 𝔭0 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(0)
𝔭→ ∶ Π𝐴,𝐵∶𝑈𝑖 Π𝑞∶𝗂𝗌𝖯𝗋𝗈𝗉(𝐵) 𝗂𝗌𝖯𝗋𝗈𝗉(𝐴→𝐵)
𝔭× ∶ Π𝐴,𝐵∶𝑈𝑖 Π𝑝∶𝗂𝗌𝖯𝗋𝗈𝗉(𝐴),𝑞∶𝗂𝗌𝖯𝗋𝗈𝗉(𝐵) 𝗂𝗌𝖯𝗋𝗈𝗉(𝐴 ×𝐵)
𝔭Π ∶ Π𝐴∶𝑈𝑖 Π𝐵∶𝐴→𝑈𝑖 Π𝑝∶Π𝑥∶𝐴 𝗂𝗌𝖯𝗋𝗈𝗉(𝐵(𝑥))𝗂𝗌𝖯𝗋𝗈𝗉(Π𝑥∶𝐴𝐵(𝑥))
𝔭|| || ∶ Π𝐴∶𝑈𝑖 𝗂𝗌𝖯𝗋𝗈𝗉(||𝐴||)

Proof. See Chapter III in [37]. □

Thanks to the notation introduced above we can define

𝔭|| || ∶≡ 𝜆𝐴.𝗌𝗊(𝐴)

Moreover, since h-propositions are not closed under Σ and + (e.g. 1 + 1 is not a h-proposition), we need to apply propositional 
truncation to define disjunction and existential quantification exactly as it happens in the internal dependent type theory of a topos 
[13]: 𝑃 ∨𝑄 is identified with ||𝑃 +𝑄|| and ∃𝑥∈𝐴 𝑃 (𝑥) with ||Σ𝑥∶𝐴 𝑃 (𝑥)||.

We recall introduction and elimination rules of disjunction and existential quantifiers as defined in HoTT to fix the notation and 
6

recall some properties:
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Definition 2.8. The disjunction of h-propositions 𝑃 and 𝑄 is defined as

𝑃 ∨𝑄 ∶≡ ||𝑃 +𝑄||

Its canonical introductory constructors are defined as follows: for 𝑝 ∶ 𝑃 and 𝑞 ∶𝑄

𝗂𝗇𝗅∨(𝑝) ∶≡ |𝗂𝗇𝗅(𝑝)| ∶ 𝑃 ∨𝑄 𝗂𝗇𝗋∨(𝑞) ∶≡ |𝗂𝗇𝗋(𝑞)| ∶ 𝑃 ∨𝑄

and its eliminator constructor is defined as follows: for any 𝐶 such that 𝑠 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝐶), any 𝑒 ∶ 𝑃 ∨𝑄 and any 𝑙1(𝑥) ∶ 𝐶 [𝑥 ∶ 𝑃 ] and 
𝑙2(𝑦) ∶ 𝐶 [𝑦 ∶𝑄]

𝗂𝗇𝖽∨(𝑒, 𝑥.𝑙1(𝑥), 𝑦.𝑙2(𝑦), 𝑠 ) ∶≡ 𝗂𝗇𝖽|| ||(𝑒 , 𝑧.𝗂𝗇𝖽+(𝑧, 𝑥.𝑙1(𝑥) , 𝑦.𝑙2(𝑦) ), 𝑠 ) ∶ 𝐶

The disjunction as defined above satisfies the usual 𝛽-definitional equalities:

Lemma 2.9. The disjunction defined in Definition 2.8 satisfies the following 𝛽 definitional equalities: for any 𝐶 such that 𝑠 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝐶), any 
𝑝 ∶ 𝑃 and 𝑞 ∶𝑄, and any 𝑙1(𝑥) ∶ 𝐶 [𝑥 ∶ 𝑃 ] and 𝑙2(𝑦) ∶ 𝐶 [𝑦 ∶𝑄] it holds in HoTT

𝗂𝗇𝖽∨(𝗂𝗇𝗅∨(𝑝), 𝑥.𝑙1(𝑥) , 𝑦.𝑙2(𝑦), 𝑠) ≡ 𝑙1(𝑝) ∶ 𝐶 𝗂𝗇𝖽∨(𝗂𝗇𝗋∨(𝑞), 𝑥.𝑙1(𝑥) , 𝑦.𝑙2(𝑦), 𝑠) ≡ 𝑙2(𝑞) ∶ 𝐶

Definition 2.10. For any h-set 𝐴 and any predicate or family of h-propositions 𝑃 (𝑥) [𝑥 ∶𝐴], the existential quantification is defined 
as

∃𝑥∶𝐴 𝑃 (𝑥) ∶≡ ||Σ𝑥∶𝐴 𝑃 (𝑥)||

Its canonical introductory constructor is defined as follows: for 𝑎 ∶ 𝐴 and 𝑝 ∶ 𝑃 (𝑎)

(𝑎,∃ 𝑝) ∶≡ |(𝑎, 𝑝)| ∶ ∃𝑥∶𝐴 𝑃 (𝑥)

and its elimination constructor in turn as follows: for any 𝐶 such that 𝑠 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝐶), any 𝑒 ∶ ∃𝑥∶𝐴 𝑃 (𝑥) and any

𝑙(𝑥, 𝑦) ∶ 𝐶 [𝑥 ∶𝐴, 𝑦 ∶ 𝑃 (𝑥)]

𝗂𝗇𝖽∃(𝑒, 𝑥.𝑦.𝑙(𝑥, 𝑦), 𝑠 ) ∶≡ 𝗂𝗇𝖽|| ||(𝑒 , 𝑧.𝗂𝗇𝖽Σ(𝑧, 𝑥.𝑦.𝑙(𝑥, 𝑦) ), 𝑠 ) ∶ 𝐶

The existential quantification as defined above satisfies the usual 𝛽-definitional equality:

Lemma 2.11. The existential quantifier defined in Definition 2.10 satisfies the following 𝛽 definitional equality: for any 𝐶 such that 𝑠 ∶
𝗂𝗌𝖯𝗋𝗈𝗉(𝐶), any 𝑎 ∶𝐴 and 𝑝 ∶ 𝑃 (𝑎) and any 𝑞 ∶𝑄 and 𝑙(𝑥, 𝑦) ∶ 𝐶 [𝑥 ∶𝐴, 𝑦 ∶ 𝑃 (𝑥)] it holds in HoTT

𝗂𝗇𝖽∃((𝑎,∃ 𝑝), 𝑥.𝑦.𝑙(𝑥, 𝑦), 𝑠 ) ≡ 𝑙(𝑎, 𝑝) ∶ 𝐶

We also encode the fact that the disjunction ∨ and the existential quantifier ∃ are h-propositions by means of the following 
proof-terms:

𝔭∨ ∶≡ 𝜆𝐴,𝐵. 𝔭|| ||(𝐴+𝐵) ∶ Π𝐴,𝐵∶𝑈𝑖 𝗂𝗌𝖯𝗋𝗈𝗉(𝐴 ∨𝐵)
𝔭∃ ∶≡ 𝜆𝐴,𝐵. 𝔭|| ||(Σ𝑥∶𝐴 𝐵(𝑥)) ∶ Π𝐴∶𝑈𝑖 Π𝐵∶𝐴→𝑈𝑖 𝗂𝗌𝖯𝗋𝗈𝗉(∃𝑥∶𝐴𝐵(𝑥))

It is worth to recall from [37] that the notion of type equivalence of h-propositions coincides with that of logical equivalence:

Lemma 2.12. Two h-propositions 𝑃 and 𝑄 are equivalent as types, namely 𝑃 ≃𝑄 holds, if and only if they are logically equivalent, namely 
𝑃 ↔𝑄, and by Univalence, also 𝑃 =𝑈𝑖 𝑄 holds for 𝑃 , 𝑄 in 𝑈𝑖.

Further, we can state the following basic lemma:

Lemma 2.13. If 𝑃 ∶ 𝑈𝑖 and 𝑠 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝑃 ), then | − | ∶ 𝑃 → ||𝑃 || is an isomorphism, i.e. there is an inverse | − |−1 ∶ ||𝑃 || → 𝑃 which 
satisfies | − |◦| − |−1 =||𝑃 || 𝗂𝖽||𝑃 || and | − |−1◦| − | =𝑃 𝗂𝖽𝑃 . Therefore 𝑃 =𝑈𝑖 ||𝑃 || holds.

Proof. We can simply define |𝑧|−1 ∶≡ 𝗂𝗇𝖽|| ||(𝑧, (𝑥).𝑥, 𝑠) since 𝑃 is a h-proposition. Note that for any 𝑧 ∶ ||𝑃 || it is validated 
|(|𝑧|−1)| =||𝑃 || 𝑧 only propositionally while |(|𝑝|)|−1 ≡ 𝑝 ∶ 𝑃 holds for any 𝑝 ∶ 𝑃 . The rest follows by Univalence and because 𝑃 is an 
7

h-proposition. □
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Remark 2.14. Lemma 2.13 is crucial to provide a “canonical presentation” of all h-propositions up to propositional equality in terms 
of ||𝐴|| for some type 𝐴 thanks to the fact that the operator || − || is extensionally idempotent as follows from Proposition 2.13. 
Therefore we could interpret also the conjunction, implication and universal quantifiers as follows

𝑃 ∧𝑄 ∶≡ ||𝑃 ×𝑄||
𝑃 →𝑄 ∶≡ ||𝑃 →𝑄||
∀𝑥∶𝐴 𝑃 (𝑥) ∶≡ ||Π𝑥∶𝐴 𝑃 (𝑥)||

Accordingly, the following proof-terms witness that they are h-propositions:

𝔭||×|| ∶≡ 𝜆𝐴,𝐵. 𝔭|| ||(𝐴 ×𝐵) ∶ Π𝐴,𝐵∶𝑈𝑖 𝗂𝗌𝖯𝗋𝗈𝗉(||𝐴 ×𝐵||)
𝔭||→|| ∶≡ 𝜆𝐴,𝐵. 𝔭|| ||(𝐴→𝐵) ∶ Π𝐴,𝐵∶𝑈𝑖 𝗂𝗌𝖯𝗋𝗈𝗉(||𝐴→ 𝐵||)
𝔭||Π|| ∶≡ 𝜆𝐴,𝐵. 𝔭|| ||(Π𝑥∶𝐴𝐵(𝑥)) ∶ Π𝐴∶𝑈𝑖Π𝐵∶𝐴→𝑈𝑖 𝗂𝗌𝖯𝗋𝗈𝗉(||Π𝑥∶𝐴𝐵(𝑥)||)

Definition 2.15. Given 𝑎 ∶𝐴 and 𝑏 ∶𝐵 and 𝑐 ∶ ||𝐴 ×𝐵|| and 𝑠 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝐴) and 𝑡 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝐵) we define

(𝑎,∧ 𝑏) ∶≡ |(𝑎, 𝑏)| ∶ ||𝐴 ×𝐵|| 𝗉𝗋1∧(𝑐) ∶≡ 𝗂𝗇𝖽|| ||( 𝑐, 𝑥.𝗉𝗋1(𝑥), 𝑠 )
𝗉𝗋2∧(𝑐) ∶≡ 𝗂𝗇𝖽|| ||( 𝑐, 𝑥.𝗉𝗋2(𝑥), 𝑡 )

Definition 2.16. Given 𝑎 ∶𝐴 and 𝑏 ∶𝐵 [𝑥 ∶𝐴] and 𝑐 ∶ ||𝐴 →𝐵|| and 𝑠 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝐵) we define

𝜆→𝑥.𝑏 ∶≡ |𝜆𝑥.𝑏| ∶ ||𝐴→𝐵|| 𝑐→(𝑎) ∶≡ 𝗂𝗇𝖽|| ||( 𝑐, 𝑥.𝑥(𝑎), 𝑠 )

Definition 2.17. Given 𝑎 ∶𝐴 and 𝑏 ∶𝐵(𝑥) [𝑥 ∶𝐴] and 𝑐 ∶ ||Π𝑥∶𝐴 𝐵(𝑥)|| and 𝑠 ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝐵(𝑎)) we define

𝜆∀𝑥.𝑏 ∶≡ |𝜆𝑥.𝑏| ∶ ||Π𝑥∶𝐴 𝐵(𝑥)|| 𝑐∀(𝑎) ∶≡ 𝗂𝗇𝖽|| ||( 𝑐, 𝑥.𝑥(𝑎), 𝑠 )

Lemma 2.18. The usual 𝛽-definitional equalities for the projections of conjunctions in Definition 2.15

𝗉𝗋1∧((𝑎,∧ 𝑏) ) ≡ 𝑎 𝗉𝗋2∧((𝑎,∧ 𝑏) ) ≡ 𝑏

for functions of implications in Definition 2.16 and universal quantifiers in Definition 2.17

(𝜆→𝑥.𝑏)→(𝑎) ≡ 𝑏[𝑎∕𝑥] (𝜆∀𝑥.𝑏)∀(𝑎) ≡ 𝑏[𝑎∕𝑥]

according to the notion of substitution in the appendix of [37], all hold in HoTT.

Proof. They follow by elimination of the truncation and usual 𝛽-definitional equalities for the corresponding types under trunca-

tion. □

We will crucially use the fact that h-sets are closed under the following type constructors:

Lemma 2.19. H-sets are closed under Π (and hence →), Σ (and hence ×), and + and 𝖫𝗂𝗌𝗍. Furthermore, for any h-set 𝐴 and any equivalence 
relation 𝑅 defined as an h-proposition, then the higher quotient type 𝐴∕𝑅 is an h-set. Therefore, the following proof-terms exist:

𝔰1 ∶ 𝗂𝗌𝖲𝖾𝗍(1) 𝔰0 ∶ 𝗂𝗌𝖲𝖾𝗍(0) 𝔰ℕ ∶ 𝗂𝗌𝖲𝖾𝗍(ℕ)
𝔰Π ∶ Π𝐴∶𝑈𝑖 Π𝐵∶𝐴→𝑈𝑖 Π𝑠∶Π𝑥∶𝐴 𝗂𝗌𝖲𝖾𝗍(𝐵(𝑥))𝗂𝗌𝖲𝖾𝗍(Π𝑥∶𝐴𝐵(𝑥))
𝔰Σ ∶ Π𝐴∶𝑈𝑖 Π𝐵∶𝐴→𝑈𝑖 Π𝑠∶𝗂𝗌𝖲𝖾𝗍(𝐴) Π𝑡∶Π𝑥∶𝐴 𝗂𝗌𝖲𝖾𝗍(𝐵(𝑥))𝗂𝗌𝖲𝖾𝗍(Σ𝑥∶𝐴𝐵(𝑥))
𝔰+ ∶ Π𝐴,𝐵∶𝑈𝑖 Π𝑠∶𝗂𝗌𝖲𝖾𝗍(𝐴) Π𝑡∶𝗂𝗌𝖲𝖾𝗍(𝐵) 𝗂𝗌𝖲𝖾𝗍(𝐴+𝐵)
𝔰𝖫𝗂𝗌𝗍 ∶ Π𝐴∶𝑈𝑖Π𝑠∶𝗂𝗌𝖲𝖾𝗍(𝐴) 𝗂𝗌𝖲𝖾𝗍(𝖫𝗂𝗌𝗍(𝐴))
𝔰𝑄 ∶ Π𝐴∶𝑈𝑖 Π𝑅∶𝐴→𝐴→𝑈𝑖 Π𝑠∶𝗂𝗌𝖲𝖾𝗍(𝐴) Π𝑝∶𝗂𝗌𝖯𝗋𝗈𝗉(𝑅) Π𝑟∶equiv(𝑅) 𝗂𝗌𝖲𝖾𝗍(𝐴∕𝑅)

where equiv(𝑅) is an abbreviation for the fact that 𝑅 is an equivalence relation.

For any natural number index 𝑖, the type of h-sets within 𝑖 is defined as follows

𝖲𝖾𝗍𝑈𝑖 ∶≡ Σ(𝑋∶𝑈𝑖) 𝖨𝗌𝖲𝖾𝗍(𝑋)

Remark 2.20. The Lemma 2.19 follows from [32] where more abstractly it is shown that the category of h-sets and functions within

HoTT equated under propositional equality, is a locally cartesian closed pretopos with well-founded trees, or W-types, as defined in 
[22]. In particular note that set-quotients satisfy effectiveness in the sense that, given the quotient function 𝗊 ∶𝐴 → 𝐴∕𝑅 sending an 
8

element 𝑎 of 𝐴 to its equivalence class 𝗊(𝑎) ∶𝐴∕𝑅, for any 𝑎, 𝑏 ∶𝐴 it follows 𝗊(𝑎) =𝐴∕𝑅 𝗊(𝑏) ↔ 𝑅(𝑎, 𝑏) (see 10.1.3 in [37]).



Theoretical Computer Science 991 (2024) 114421M. Contente and M.E. Maietti

Another key property of HoTT, missing in MLTT, which we will crucially employ to interpret mTT-collections of small propo-

sitions and emTT-power-collections of subsets of a set, is that h-sets are closed under a sub-universe classifier 𝖯𝗋𝗈𝗉𝑈0 of those 
h-propositions living in the universe 𝑈0

𝖯𝗋𝗈𝗉𝑈0 ∶= Σ(𝑋∶𝑈0) 𝗂𝗌𝖯𝗋𝗈𝗉(𝑋)

Indeed, from section 2 of [32] it follows:

Lemma 2.21. 𝖯𝗋𝗈𝗉𝑈0 is an h-set.

The proof-term inhabiting 𝗂𝗌𝖲𝖾𝗍(𝖯𝗋𝗈𝗉𝑈0 ) is denoted by 𝔰𝖯𝗋𝗈𝗉𝟢 .

Remark 2.22. However, 𝖯𝗋𝗈𝗉𝑈0 is not ‘small’, since it is not a type in 𝑈0, but it lives in a higher universe (see section 10.1 in [37]). 
This is compulsory to keep HoTT predicative.

Further, we can assume that if 𝐴 ∶ 𝑈𝑖 and 𝑅(𝑥, 𝑦) ∶ 𝑈𝑖 [𝑥 ∶ 𝐴, 𝑦 ∶ 𝐴], then 𝐴∕𝑅 ∶ 𝑈𝑖 motivated by the cubical interpretation of 
higher inductive types given in [5].

Moreover, h-sets within a universe 𝑈𝑖 of HoTT can be organized into a category 𝖲𝖾𝗍𝑈𝑖 as defined in [37].

It is known that the principle of indiscernibility of identicals can be derived in type theory from the elimination rule for propo-

sitional equality. Such principle is called transport in [37] and says that, given a type family 𝑃 over 𝐴 and a proof 𝑝 ∶ 𝑥 =𝐴 𝑦, there 
exists a map 𝗍𝗋𝗉(𝑝, −) ∶ 𝑃 (𝑥) → 𝑃 (𝑦). In particular, the following property holds for transport, that will turn out to be useful later:

Lemma 2.23. Suppose 𝑓 ∶ Π(𝑥∶𝐴)𝐵(𝑥). Then there exists a map

𝖺𝗉𝖽𝑓 ∶ Π(𝑝∶𝑥=𝐴𝑦)(𝗍𝗋𝗉(𝑝,𝑓 (𝑥)) =𝐵(𝑦) 𝑓 (𝑦))

Proof. The proof is a simple application of the elimination rule for propositional equality. □

Finally, we recall two principles of HoTT that we will crucially use to meet our goals. One is the propositional extensionality 
principle which is an instance of the Univalence Axiom applied to h-propositions in the first universe 𝑈0:

𝗉𝗋𝗈𝗉𝖾𝗑𝗍 ∶ Π𝑃 ,𝑄∶𝖯𝗋𝗈𝗉𝑈0 (𝑃 ↔𝑄)→ (𝑃 =𝑈0 𝑄).

The other is the principle of function extensionality for h-sets:

𝖿𝗎𝗇𝖾𝗑𝗍 ∶ (Π𝑥∶𝐴(𝑓 (𝑥) =𝐵(𝑥) 𝑔(𝑥))) → 𝑓 =Π𝑥∶𝐴𝐵(𝑥) 𝑔.

More precisely, we will use function extensionality applied to h-sets up to those within the second universe 𝑈1. The reason is 
that, while sets of both mTT and emTT will be interpreted as h-sets in the first universe 𝑈0, collections of both mTT and emTT will 
be interpreted as h-sets at most in the second universe 𝑈1.

3. The compatibility of mTT with HoTT

The main aim of the present section is to show that the intensional level mTT of MF is compatible with HoTT, according to the 
definition of compatibility given in section 2. In order to achieve this result, we need to make use of many new tools introduced in 
the context of HoTT and not available in MLTT.

Indeed, the resulting interpretation must be contrasted with the interpretation of mTT in MLTT outlined in [14]: there the notion 
of proposition is identified with the notion of set, while here we are going to interpret mTT-propositions as h-propositions.

It is well known that the interpretation of dependent type theories à la Martin-Löf must be done by induction on the raw syntax 
of mTT-judgements since types and terms are recursively defined in a mutual way together with their definitional equalities.

Then, we can define a partial interpretation (𝐽 )‚ by induction on the associated raw syntax of mTT-types and terms in the raw 
syntax of types and terms of HoTT as follows: we interpret all types of mTT including proper mTT-collections as h-sets, where the 
“smallness” character of mTT-sets is captured by h-sets living in the first universe 𝑈0. Hence, mTT-sets and mTT-small proposi-

tions are interpreted as h-sets and h-propositions in 𝑈0. On the other hand, mTT-collections and mTT-propositions are interpreted, 
respectively, as h-sets and h-propositions in 𝑈1.

Definition 3.1 (Interpretation of mTT-syntax). We define this interpretation as an instantiation of a partial interpretation of the raw 
syntax of types and terms of mTT in those of HoTT

(−)‚ ∶ Raw-syntax (mTT) ⟶ Raw-syntax (HoTT)

assuming to have defined two auxiliary partial functions: one meant to associate to some type symbols of HoTT a proof-term 
9

expressing that they are h-propositions
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𝗉𝗋𝖯(−) ∶ Raw-syntax (HoTT) ⟶ Raw-syntax (HoTT)

and another meant to associate to some type symbols of HoTT a proof-term expressing that they are h-sets

𝗉𝗋𝖲(−) ∶ Raw-syntax (HoTT) ⟶ Raw-syntax (HoTT)

by relying on proofs given in Lemmas 2.7 and 2.19 taken from [37] and [32].

We then extend (−)‚ to contexts of mTT in those of HoTT as follows: ([ ])‚ is defined as the empty context ⋅ in HoTT and (Γ, 𝑥 ∶𝐴)‚
is defined as Γ‚, 𝑥 ∶ 𝐴‚. Also the assumption of variables is interpreted as the assumption of variables in HoTT: (𝑥 ∈ 𝐴 [Γ])‚ is 
interpreted as 𝑥 ∶𝐴‚ [Γ‚], provided that 𝑥 ∶𝐴‚ is in Γ‚.

Then, the mTT-judgements are interpreted as follows:

(𝐴 𝑠𝑒𝑡 [Γ])‚ is defined as 𝐴‚ ∶𝑈0 [Γ‚] such that 𝗉𝗋𝖲(𝐴‚) ∶ 𝗂𝗌𝖲𝖾𝗍(𝐴‚) is derivable

(𝐴 𝑐𝑜𝑙 [Γ])‚ is defined as 𝐴‚ ∶𝑈1 [Γ‚] such that 𝗉𝗋𝖲(𝐴‚) ∶ 𝗂𝗌𝖲𝖾𝗍(𝐴‚) is derivable

(𝑃 prop𝑠 [Γ])‚ is defined as 𝑃 ‚ ∶𝑈0 [Γ‚] such that 𝗉𝗋𝖯(𝑃 ‚) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝑃 ‚) is derivable

(𝑃 prop [Γ])‚ is defined as 𝑃 ‚ ∶𝑈1 [Γ‚] such that 𝗉𝗋𝖯(𝑃 ‚) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝑃 ‚) is derivable

(𝐴 =𝐵 𝑠𝑒𝑡 [Γ])‚ is defined as (𝐴‚,𝗉𝗋𝖲(𝐴‚)) ≡ (𝐵‚,𝗉𝗋𝖲(𝐵‚)) ∶ 𝖲𝖾𝗍𝑈0 [Γ‚]
(𝐴 =𝐵 𝑐𝑜𝑙 [Γ])‚ is defined as (𝐴‚,𝗉𝗋𝖲(𝐴‚)) ≡ (𝐵‚,𝗉𝗋𝖲(𝐵‚)) ∶ 𝖲𝖾𝗍𝑈1 [Γ‚]
(𝑃 =𝑄 prop𝑠 [Γ])‚ is defined as (𝑃 ‚,𝗉𝗋𝖯(𝑃 ‚)) ≡ (𝑄‚,𝗉𝗋𝖯(𝑄‚)) ∶ 𝖯𝗋𝗈𝗉𝑈0 [Γ‚]
(𝑃 =𝑄 prop [Γ])‚ is defined as (𝑃 ‚,𝗉𝗋𝖯(𝑃 ‚)) ≡ (𝑄‚,𝗉𝗋𝖯(𝑄‚)) ∶ 𝖯𝗋𝗈𝗉𝑈1 [Γ‚]
(𝑎 ∈𝐴 [Γ])‚ is defined as 𝑎‚ ∶𝐴‚ [Γ‚]
(𝑎 = 𝑏 ∈𝐴 [Γ])‚ is defined as 𝑎‚ ≡ 𝑏‚ ∶𝐴‚ [Γ‚]

The interpretation of the raw types and terms of mTT as raw types and terms of HoTT is spelled out in the Appendix A.

The following substitution lemmas state that substitution on types and terms in mTT corresponds to substitution on types and 
terms in HoTT:

Lemma 3.2. If 𝐴 is a raw-type in mTT, 𝑏 is a mTT raw-term and 𝑥 is a variable occurring free in 𝐴, then

(𝐴[𝑏∕𝑥])‚ ∶≡ 𝐴‚[𝑏‚∕𝑥‚].

If 𝑎 and 𝑏 are mTT raw-terms and 𝑥 is a variable occurring free in 𝑎, then

(𝑎[𝑏∕𝑥])‚ ∶≡ 𝑎‚[𝑏‚∕𝑥‚].

Theorem 3.3 (Validity). If  is a derivable judgement in mTT, then the interpretation of  holds in HoTT. Moreover, if 𝑃 𝑝𝑟𝑜𝑝 [Γ] and 
𝑃 𝑝𝑟𝑜𝑝𝑠 [Γ] are derivable judgements in mTT, then 𝗉𝗋𝖲(𝑃 ‚) ∶ 𝗂𝗌𝖲𝖾𝗍(𝑃 ‚) [Γ‚] is derivable in HoTT and 𝗉𝗋𝖲(𝑃 ‚) ∶≡ 𝔰𝑐𝑜𝑒((𝑃 )‚, 𝗉𝗋𝖯(𝑃 ‚)).

Proof. The proof is by induction over the derivation of 𝐽 .
The validity of judgements forming mTT-sets follows from the definitions given above, the Lemmas 2.7, 2.19 and the closure of 

the first universe 𝑈0 under set-theoretic constructors as in [29].

The subtyping rules

𝑃 𝑝𝑟𝑜𝑝𝑠 [Γ]
𝑃 𝑠𝑒𝑡 [Γ]

𝐩𝐫𝐨𝐩𝐬-𝐢𝐧𝐭𝐨-𝐬𝐞𝐭 𝑃 𝑝𝑟𝑜𝑝 [Γ]
𝑃 𝑐𝑜𝑙 [Γ]

𝐩𝐫𝐨𝐩-𝐢𝐧𝐭𝐨-𝐜𝐨𝐥

are interpreted as follows: by induction hypothesis, 𝑃 ‚ ∶𝑈0 [Γ‚] and 𝗉𝗋𝖯(𝑃 ‚) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝑃 ‚) [Γ‚]; furthermore, we also have

𝗉𝗋𝖲(𝑃 ‚) ∶ 𝗂𝗌𝖲𝖾𝗍(𝑃 ‚) [Γ‚], which is given by 𝔰𝑐𝑜𝑒(𝑃 ‚, 𝗉𝗋𝖯(𝑃 ‚)), and thus the conclusion follows. The other subtyping rule is validated 
by a similar argument.

The rules 𝐩𝐫𝐨𝐩𝐬-𝐢𝐧𝐭𝐨-𝐩𝐫𝐨𝐩 and 𝐬𝐞𝐭-𝐢𝐧𝐭𝐨-𝐜𝐨𝐥 are trivially validated by cumulativity of universes and by definition of the interpre-

tation.

The definition of the interpretation for judgemental equalities trivially validates the conversion rules of mTT. In particular, those 
for mTT-disjunction and existential quantifier follow from Lemmas 2.9 and 2.11.

The collection of small proposition 𝗉𝗋𝗈𝗉𝗌 is interpreted as 𝖯𝗋𝗈𝗉𝑈0 ∶𝑈1 with 𝔰𝗉𝗋𝗈𝗉𝟢 ∶ 𝗂𝗌𝖲𝖾𝗍(𝖯𝗋𝗈𝗉𝑈0 ).
Note that the validity of the encoding of mTT-small propositions satisfies the usual compatibility rules like

𝑝1 = 𝑝2 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ] 𝑞1 = 𝑞2 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ]
𝑝1 ∧ 𝑞1 = 𝑝2 ∧ 𝑞2 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ]

since the interpretation of the encoding of small propositions into 𝖯𝗋𝗈𝗉𝗌 is carried out by using the partial function 𝗉𝗋𝖯(−) associating 
to the HoTT-type 𝗉𝗋1(𝑝‚) × 𝗉𝗋1(𝑞‚) the proof-term 𝔭×(𝗉𝗋1(𝑝‚), 𝗉𝗋1(𝑞‚), 𝗉𝗋2(𝑝‚), 𝗉𝗋2(𝑞‚) ) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝗉𝗋1(𝑝‚) × 𝗉𝗋1(𝑞‚)).
10

In this sense the interpretation (−)‚ depends on the chosen proof-terms of lemmas 2.4, 2.5, 2.7, 2.19, 2.21 and definitions 2.8, 2.10.
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Moreover, the rule for the decoding operator 𝜏
𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ]
𝜏(𝑝) 𝑝𝑟𝑜𝑝𝑠 [Γ]

𝜏-Pr

is validated by our interpretation, since the premise is interpreted as 𝑝‚ ∶ 𝖯𝗋𝗈𝗉𝑈0 [Γ‚] and thus it follows that 𝗉𝗋1(𝑝‚) ∶ 𝑈0 [Γ‚] and 
𝗉𝗋2(𝑝‚) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝗉𝗋1(𝑝‚)) [Γ‚], which is the interpretation of the conclusion by our definition.

Then, observe that the encoding rules are validated by construction. We just spell out the validity of the rule

𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ] 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ]
𝑝∧̂𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ]

Pr4

We know that (𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ])‚ ∶≡ 𝑝‚ ∶ 𝖯𝗋𝗈𝗉𝑈0 [Γ‚] and that (𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ])‚ ∶≡ 𝑞‚ ∶ 𝖯𝗋𝗈𝗉𝑈0 [Γ‚] by inductive hypothesis. Hence, 
𝗉𝗋1(𝑝‚) ∶ 𝑈0 [Γ‚] and 𝗉𝗋1(𝑞‚) ∶ 𝑈0 [Γ‚] with 𝗉𝗋2(𝑝‚) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝗉𝗋1(𝑝‚)) [Γ‚] and 𝗉𝗋2(𝑞‚) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝗉𝗋1(𝑝‚)) [Γ‚], from which we can 
derive 𝗉𝗋1(𝑝‚) × 𝗉𝗋1(𝑞‚) ∶ 𝑈0 [Γ‚] with 𝔭×(𝗉𝗋1(𝑝‚), 𝗉𝗋1(𝑞‚), 𝗉𝗋2(𝑝‚), 𝗉𝗋2(𝑞‚)) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝗉𝗋1(𝑝‚) × 𝗉𝗋1(𝑞‚)) [Γ‚]. This lets us conclude that 
(𝑝∧̂𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ]) is well defined.

Finally, the conversion rules associated to the decoding operator are all easily validated by construction as well. We just spell out 
the validity of the rule

𝑝 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ] 𝑞 ∈ 𝗉𝗋𝗈𝗉𝗌 [Γ]
𝜏(𝑝∧̂𝑞) = 𝜏(𝑝) ∧ 𝜏(𝑞) 𝑝𝑟𝑜𝑝𝑠 [Γ]

eq-Pr4

Indeed, let us assume the premises as valid. Since (𝜏(𝑝∧̂𝑞)[Γ])‚ ∶≡ 𝗉𝗋1( (𝑝∧̂𝑞)‚ ) ∶ 𝑈0 [Γ‚] with 𝗉𝗋2( (𝑝∧̂𝑞)‚ ) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝗉𝗋1( (𝑝∧̂𝑞)‚ )), 
but 𝗉𝗋1( (𝑝∧̂𝑞)‚ ) ≡ (𝗉𝗋1(𝑝‚) × 𝗉𝗋1(𝑞‚)) ∶ 𝑈0 [Γ‚] and, on the other hand, (𝜏(𝑝) ∧ 𝜏(𝑞) [Γ])‚ ∶≡ (𝗉𝗋1(𝑝‚) × 𝗉𝗋1(𝑞‚)) ∶ 𝑈0 [Γ‚] with 
𝗉𝗋2((𝜏(𝑝) ∧ 𝜏(𝑞) [Γ])‚) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(𝗉𝗋1(𝑝‚) × 𝗉𝗋1(𝑞‚)), then the validity of the definitional equality 𝜏(𝑝∧̂𝑞) = 𝜏(𝑝) ∧ 𝜏(𝑞) 𝑝𝑟𝑜𝑝𝑠 [Γ] trivially 
follows. □

Remark 3.4. The interpretation of two definitionally equal mTT-types results in definitionally equal pairs in HoTT- that is, not only 
the corresponding types in HoTT are definitionally equal, but also the associated proof-terms witnessing that such types are h-sets 
or h-propositions. The fact that the interpretation depends on chosen proof-terms as observed above is fundamental to achieve this 
result. Also the validity of the coercion of propositions into sets relies on this fact.

Remark 3.5 (Alternative interpretation of mTT in HoTT). Observe that it is possible to define an alternative interpretation of mTT

in HoTT which also implies the compatibility of the first with the latter. In this interpretation, we take the truncated version of all

h-propositions as interpretations of mTT-propositions. This choice will be compulsory later when we will define the interpretation 
for emTT, since there we shall take into account canonical isomorphisms between h-propositions. We refer to the Appendix B for the 
definition of this alternative interpretation.

4. Canonical isomorphisms and the category 𝗦𝗲𝘁𝒎𝒇∕≅𝒄

In this section, we inductively define a set of canonical isomorphisms over HoTT in order to be able to define a category, called 
𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

, of h-sets and functions up to canonical isomorphisms. This category could be formalized within HoTT as a H-category in 
the sense of [31] provided that we extend HoTT with the inductive type of canonical isomorphisms, or, alternatively, it could be 
simply defined in the meta-theory as done in [14]. The category 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 will be used to interpret the extensional level of emTT in

HoTT: its role will be the same as that of the category Q(𝐦𝐓𝐓)∕ ≅ built over mTT in [14] to interpret emTT within mTT.

Definition 4.1. An indexed isomorphism 𝜇𝐵
𝐴
∶𝐴 →𝐵 [Γ] is an isomorphism from the h-set 𝐴 to the h-set 𝐵 under the context Γ with 

an inverse (𝜇𝐵
𝐴
)−1 ∶ 𝐵→𝐴 [Γ] which satisfies

Π𝑥∶𝐴 Id𝐴( (𝜇𝐵𝐴 )
−1(𝜇𝐵𝐴 (𝑥)), 𝑥) × Π𝑦∶𝐵 Id𝐵(𝜇𝐵𝐴 (𝜇

𝐵
𝐴 )

−1(𝑦)), 𝑦)

Definition 4.2. Given a dependent type 𝐵 [Γ] let us define the notion of transport by induction on the number of assumptions in Γ:

1. If Γ is empty, there are no transports;

2. If Γ ∶≡ Δ, 𝑥 ∶𝐸 and 𝐵 ∶≡ 𝐶(𝑥) then a transport operation it is simply

𝗍𝗋𝗉1(𝑝,−) ∶ 𝐶(𝑥) → 𝐶(𝑥′) [Δ, 𝑥 ∶𝐸,𝑥′ ∶𝐸,𝑝 ∶ 𝑥 =𝐸 𝑥′]

where 𝗍𝗋𝗉1(𝑝, −) ∶≡ 𝗍𝗋𝗉(𝑝, −) and 𝗍𝗋𝗉(𝑝, −) is the usual transport map as given in Section 2.

3. If Γ ∶≡ Δ, 𝑥 ∶𝐸, 𝑦1 ∶𝐷1, … 𝑦𝑛 ∶𝐷𝑛 with 𝑛 ≥ 1 and 𝐵 ∶≡ 𝐶(𝑥, 𝑦1, … , 𝑦𝑛) then a transport operation it is simply

𝗍𝗋𝗉𝑛+1(𝑝,−) ∶ 𝐶(𝑥, 𝑦1,… , 𝑦𝑛) → 𝐶(𝑥′, 𝗍𝗋𝗉1(𝑝, 𝑦1),… 𝗍𝗋𝗉𝑛(𝑝, 𝑦𝑛))
[Δ, 𝑥 ∶𝐸,𝑦1 ∶𝐷1,…𝑦𝑛 ∶𝐷𝑛,𝑥′ ∶𝐸,𝑝 ∶ 𝑥 =𝐸 𝑥′]
11

where 𝗍𝗋𝗉𝑛+1(𝑝, −) ∶≡ 𝗂𝗇𝖽𝐼𝑑 (𝑝, 𝑥.(𝜆𝑤.𝑤)) is defined by eliminating toward



Theoretical Computer Science 991 (2024) 114421M. Contente and M.E. Maietti

𝐶(𝑥, 𝑦1,… , 𝑦𝑛)) → 𝐶(𝑥′, 𝗍𝗋𝗉1(𝑝, 𝑦1),… , 𝗍𝗋𝗉𝑛(𝑝, 𝑦𝑛))

To avoid an heavy notation in the following we simply write 𝗍𝗋𝗉(𝑝, −) instead of 𝗍𝗋𝗉𝑛(𝑝, −) when it is clear from the context which 
is the transport map.

Remark 4.3. Since we are concerned with h-sets 𝐴 ∶𝑈𝑖 [Γ], the transport operations 𝗍𝗋𝗉(𝑝, −) do not depend on the proof-term 𝑝.

Lemma 4.4. If 𝜇𝐵
𝐴
∶ 𝐴 → 𝐵 [Γ] and 𝜈𝐵

𝐴
∶ 𝐴 → 𝐵 [Γ] are indexed isomorphisms, and for any 𝑥 ∶ 𝐴, 𝜇𝐵

𝐴
(𝑥) =𝐵 𝜈𝐵𝐴 (𝑥), then 𝜇𝐵

𝐴
=𝐴→𝐵 𝜈𝐵𝐴

holds.

Proof. The statement follows immediately from function extensionality. □

In the following we give a definition of canonical isomorphisms between dependent h-sets. This definition is meant to generalize

the notion of transport between dependent types on equal elements, by enlarging the notion of equality to include that among 
arbitrary truncated h-propositions which are equivalent.

Remark 4.5. It must be stressed that canonical isomorphisms do not coincide with all the isomorphisms, because they need to 
preserve their canonical elements. On the other hand, assuming that for any type in the universe 𝑈0 and 𝑈1 the associated identity 
map is a canonical isomorphism yields a contradiction in presence of the Univalence Axiom. We thank one of the anonymous referee 
for this last observation.

To this purpose we first introduce an inductive universe of h-sets (within 𝑈1) equipped with an inductive elimination, formally 
given as an inductive-recursive definition added to HoTT, but it would be enough to define it in the meta-theory.2 This universe will 
be used to interpret sets of emTT:

Definition 4.6. Let Setmf be the type inductively generated from the following inductive clauses:

- If 𝐴 ∶≡ 𝖯𝗋𝗈𝗉𝑈0 , or 𝐴 ∶≡ 𝟎, or 𝐴 ∶≡ 𝟏, or 𝐴 ∶≡ ℕ then 𝐴 ∶ Setmf [Γ] for any context Γ.

- ||𝐵|| ∶ Setmf [Γ] for any type 𝐵 ∶𝑈1 [Γ].
- Σ𝑥∶𝐵 𝐶(𝑥) ∶ Setmf [Γ] for any 𝐵 ∶ Setmf [Γ] and 𝐶(𝑥) ∶ Setmf [Γ, 𝑥 ∶𝐵].
- Π𝑥∶𝐵 𝐶(𝑥) ∶ Setmf [Γ] for any 𝐵 ∶ Setmf [Γ] and 𝐶(𝑥) ∶ Setmf [Γ, 𝑥 ∶𝐵].
- 𝐵 +𝐶 ∶ Setmf [Γ] for any 𝐵 ∶ Setmf [Γ] and 𝐶 ∶ Setmf [Γ].
- 𝖫𝗂𝗌𝗍(𝐵) ∶ Setmf [Γ] for any 𝐵 ∶ Setmf [Γ].
- 𝐵∕𝑅 ∶ Setmf [Γ] for any h-set 𝐵 ∶ 𝑈0 [Γ] and an equivalence relation 𝑅 ∶ 𝖯𝗋𝗈𝗉𝑈0 [Γ, 𝑥 ∶ 𝐵, 𝑦 ∶ 𝐵] such that 𝐵 ∶ Setmf [Γ] and 
𝑅(𝑥, 𝑦) ∶ Setmf [Γ, 𝑥 ∶ 𝐵, 𝑦 ∶𝐵].

Then, we are ready to define by recursion on Setmf the type 𝖢𝗂𝗌𝗈(𝐴, 𝐵) of canonical isomorphisms between h-sets A and B in Setmf
as a subtype of 𝐴 → 𝐵. Formally, it is given again as an inductive-recursive definition, where each 𝖢𝗂𝗌𝗈(𝐴, 𝐵) is thought as a set of 
codes, together with a decoding function from 𝖢𝗂𝗌𝗈(𝐴, 𝐵) to 𝐴 →𝐵.

Definition 4.7. The type of indexed canonical isomorphisms 𝜇𝐴2
𝐴1

∶𝐴1 →𝐴2 [Γ] is the type inductively generated from the following 
inductive clauses:

- If 𝐴 ∶≡ 𝖯𝗋𝗈𝗉𝑈0 , or 𝐴 ∶≡ 𝟎, or 𝐴 ∶≡ 𝟏, or 𝐴 ∶≡ ℕ, then the identity morphism 𝗂𝖽𝐴𝐴 ∶≡ 𝜆𝑥.𝑥 ∶ 𝐴 → 𝐴 [Γ] is a canonical 

isomorphism, which is trivially an isomorphism whose inverse 𝜇𝐴2
𝐴1

−1
is the identity.

- If 𝐴1 ∶≡ ||𝐵1|| ∶ 𝑈𝑖 and 𝐴2 ∶≡ ||𝐵2|| ∶ 𝑈𝑖, then any isomorphism (with a chosen inverse) 𝜇||𝐵2||
||𝐵1||

∶ ||𝐵1|| → ||𝐵2|| [Γ] is 

canonical and we denote the chosen inverse with 𝜇𝐴2
𝐴1

−1
.

- If 𝐴1 ∶≡ Σ𝑥∶𝐵1 𝐶1(𝑥) [Γ] and 𝐴2 ∶≡ Σ𝑥′∶𝐵2 𝐶2(𝑥
′) [Γ] and 𝜇𝐵2

𝐵1
∶𝐵1 → 𝐵2 [Γ] and 𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
∶ 𝐶1(𝑥) → 𝐶2(𝜇

𝐵2
𝐵1
(𝑥)) [Γ, 𝑥 ∶ 𝐵1]

are canonical isomorphisms, then any function

𝜇
Σ𝑥′∶𝐵2 𝐶2(𝑥

′)
Σ𝑥∶𝐵1 𝐶1(𝑥)

∶ Σ𝑥∶𝐵1 𝐶1(𝑥) → Σ𝑥′∶𝐵2 𝐶2(𝑥
′) [Γ]

such that
12

2 This approach is taken because 𝑈1 lacks an inductive elimination which would be contradictory with the Univalence Axiom.
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𝜇
Σ𝑥′∶𝐵2 𝐶2(𝑥

′)
Σ𝑥∶𝐵1 𝐶1(𝑥)

(𝑧) = (𝜇𝐵2
𝐵1
(𝗉𝗋1(𝑧)) , 𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝗉𝗋1(𝑧)))

𝐶1(𝗉𝗋1(𝑧))
(𝗉𝗋2(𝑧)) )

for any 𝑧 ∶ Σ𝑥∶𝐵1 𝐶1(𝑥), is a canonical isomorphism with inverse

𝜇
𝐴2
𝐴1

−1
∶≡ 𝜆𝑧.( 𝜇𝐵2

𝐵1

−1
(𝗉𝗋1(𝑧)) , (𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝜇𝐵2
𝐵1

−1
(𝗉𝗋1(𝑧)))

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝗉𝗋1(𝑧)))

)−1◦𝗍𝗋𝗉(𝑝𝜇−1,−)(𝗉𝗋2(𝑧)) )

where 𝑝𝜇 ∶ 𝜇
𝐵2
𝐵1
(𝜇𝐵2
𝐵1

−1
(𝗉𝗋1(𝑧)) =𝐵2 𝗉𝗋1(𝑧) and provided that 𝜇𝐵2

𝐵1
and 𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
come equipped with inverses 𝜇𝐵2

𝐵1

−1
and 

𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)

−1

respectively.

- If 𝐴1 ∶≡ Π𝑥∶𝐵1 𝐶1(𝑥) [Γ] and 𝐴2 ∶≡ Π𝑥′∶𝐵2 𝐶2(𝑥
′) [Γ] and 𝜇𝐵2

𝐵1
∶𝐵1 → 𝐵2 [Γ] and 𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
∶ 𝐶1(𝑥) → 𝐶2(𝜇

𝐵2
𝐵1
(𝑥)) [Γ, 𝑥 ∶ 𝐵1]

are canonical isomorphisms, then any function

𝜇
Π𝑥′∶𝐵2 𝐶2(𝑥

′)
Π𝑥∶𝐵1 𝐶1(𝑥)

∶ Π𝑥∶𝐵1 𝐶1(𝑥)→Π𝑥′∶𝐵2 𝐶2(𝑥
′) [Γ]

such that

𝜇
Π𝑥′∶𝐵2 𝐶2(𝑥

′)
Π𝑥∶𝐵1 𝐶1(𝑥)

(𝑓 ) = 𝜆𝑥′ ∶𝐵2.( 𝗍𝗋𝗉(𝑝𝜇 ,−)◦𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝜇
𝐵−12
𝐵1

(𝑥′)) )

𝐶1(𝜇
𝐵−12
𝐵1

(𝑥′))
)(𝑓 (𝜇
𝐵−12
𝐵1

(𝑥′)) )

is a canonical isomorphism, for any 𝑓 ∶ Π𝑥∶𝐵1 𝐶1(𝑥) and for any 𝑝𝜇 ∶ 𝜇
𝐵2
𝐵1
(𝜇
𝐵−12
𝐵1

(𝑥′)) =𝐵2 𝑥
′ where the body after the lambda is 

the arrow

𝐶1(𝜇
𝐵−12
𝐵1

(𝑥′))

𝜇
𝐶2(𝜇
𝐵2
𝐵1

((𝜇
𝐵−12
𝐵1

(𝑥′))))

𝐶1(𝜇
𝐵−12
𝐵1

(𝑥′))
𝐶2(𝜇
𝐵2
𝐵1
(𝜇
𝐵−12
𝐵1

(𝑥′)) )
𝗍𝗋𝗉(𝑝𝜇,−)

𝐶2(𝑥′)

applied to the value 𝑓 (𝜇
𝐵−12
𝐵1

(𝑥′)). The associated inverse is given by

(𝜇𝐴2
𝐴1
)−1 = 𝜆𝑓 ′.𝜆𝑥 ∶ 𝐵1.( (𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1 (𝑥) )−1(𝑓 ′(𝜇𝐵2
𝐵1
(𝑥)) ))

provided that 𝜇𝐵2
𝐵1

and 𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
come equipped with inverses 𝜇𝐵2

𝐵1

−1
and 𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)

−1

respectively.

- If 𝐴1 ∶≡ 𝐵1 + 𝐶1 and 𝐴2 ∶≡ 𝐵2 + 𝐶2 and 𝜇𝐵2
𝐵1

∶ 𝐵1 → 𝐵2 [Γ] and 𝜇𝐶2
𝐶1

∶ 𝐶1 → 𝐶2 [Γ] are canonical isomorphisms, then any 
function

𝜇
𝐵2+𝐶2
𝐵1+𝐶1

∶ 𝐵1 +𝐶1 → 𝐵2 +𝐶2 [Γ]

such that

𝜇
𝐵2+𝐶2
𝐵1+𝐶1

(𝑧) = 𝗂𝗇𝖽+(𝑧, 𝑧0.𝗂𝗇𝗅(𝜇
𝐵2
𝐵1
(𝑧0)), 𝑧1.𝗂𝗇𝗋(𝜇

𝐶2
𝐶1
(𝑧1)))

for any 𝑧 ∶ 𝐵1 +𝐶1, is a canonical isomorphism with inverse

𝜇
𝐴2
𝐴1

−1
= 𝜆𝑧.𝗂𝗇𝖽+(𝑧, 𝑧0.𝗂𝗇𝗅(𝜇

𝐵2
𝐵1

−1
(𝑧0)), 𝑧1.𝗂𝗇𝗋(𝜇

𝐶2
𝐶1

−1
(𝑧1)))

provided that 𝜇𝐵2
𝐵1

and 𝜇𝐶2
𝐶1

come equipped with inverses 𝜇𝐵2
𝐵1

−1
and 𝜇𝐶2
𝐶1

−1
.

- If 𝐴1 ∶≡ 𝖫𝗂𝗌𝗍(𝐵1) and 𝐴2 ∶≡ 𝖫𝗂𝗌𝗍(𝐵2) and 𝜇𝐵2
𝐵1

∶ 𝐵1 →𝐵2 [Γ] is a canonical isomorphism, then any function

𝜇
𝖫𝗂𝗌𝗍(𝐵2)
𝖫𝗂𝗌𝗍(𝐵1)

∶ 𝖫𝗂𝗌𝗍(𝐵1)→𝖫𝗂𝗌𝗍(𝐵2) [Γ]

such that

𝜇
𝖫𝗂𝗌𝗍(𝐵2)
𝖫𝗂𝗌𝗍(𝐵1)

(𝑧) = 𝗂𝗇𝖽𝖫𝗂𝗌𝗍(𝑧, 𝜖, (𝑥, 𝑦, 𝑧).𝖼𝗈𝗇𝗌(𝑧,𝜇
𝐵2
𝐵1
(𝑦))
13

for any 𝑧 ∶ 𝖫𝗂𝗌𝗍(𝐵1), is a canonical isomorphism with inverse
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𝜇
𝐴2
𝐴1

−1
= 𝜆𝑧.𝗂𝗇𝖽𝖫𝗂𝗌𝗍(𝑧, 𝜖, (𝑥, 𝑦, 𝑧).𝖼𝗈𝗇𝗌(𝑧,𝜇

𝐵2
𝐵1

−1
(𝑦))

provided that 𝜇𝐵2
𝐵1

comes equipped with inverse 𝜇𝐵2
𝐵1

−1
.

- If 𝐴1 ∶≡ 𝐵1∕𝑅1 and 𝐴2 ∶≡ 𝐵2∕𝑅2, for 𝑅1, 𝑅2 equivalence relations, and 𝜇𝐵2
𝐵1

∶ 𝐵1 → 𝐵2 [Γ] is a canonical isomorphism and 

𝑅1(𝑥, 𝑦) ↔𝑅2(𝜇
𝐵2
𝐵1
(𝑥) , 𝜇𝐵2
𝐵1
(𝑦)) [Γ, 𝑥 ∶ 𝐵1, 𝑦 ∶ 𝐵1] holds, then any function

𝜇
𝐵2∕𝑅2
𝐵1∕𝑅1

∶ 𝐵1∕𝑅1 → 𝐵2∕𝑅2 [Γ]

such that

𝜇
𝐵2∕𝑅2
𝐵1∕𝑅1

(𝑧) = 𝗂𝗇𝖽𝑄(𝑧,𝑥.𝜇
𝐵2
𝐵1
(𝑥))

for any 𝑧 ∶ 𝐵1∕𝑅1, is a canonical isomorphism with inverse

𝜇
𝐴2
𝐴1

−1
= 𝜆𝑧.𝗂𝗇𝖽𝑄(𝑧,𝑥.𝜇

𝐵2
𝐵1

−1
(𝑥))

provided that 𝜇𝐵2
𝐵1

comes equipped with an inverse 𝜇𝐵2
𝐵1

−1
.

Lemma 4.8. Canonical isomorphisms are closed under substitution: if 𝜇𝐵
𝐴
∶𝐴 →𝐵 [Γ] is a canonical isomorphism and

Γ ∶≡ Δ, 𝑥 ∶𝐸, 𝑦1 ∶ 𝐶1, … , 𝑦𝑛 ∶ 𝐶𝑛 then the result

𝜇𝐵
𝐴
[𝑒∕𝑥][𝑦′𝑖∕𝑦𝑖]𝑖=1,…,𝑛 ∶ 𝐴[𝑒∕𝑥][𝑦

′
𝑖∕𝑦𝑖]𝑖=1,…,𝑛 → 𝐵[𝑒∕𝑥][𝑦

′
𝑖∕𝑦𝑖]𝑖=1,…,𝑛

[Δ, 𝑦′1 ∶ 𝐶1[𝑒∕𝑥],… , 𝑦
′
𝑛 ∶ 𝐶𝑛[𝑒∕𝑥][𝑦

′
𝑖∕𝑦𝑖]𝑖=1,…,𝑛−1]

of the substitution in 𝜇𝐵
𝐴

of the variable 𝑥 with 𝑒 ∶𝐸 [Δ] is a canonical isomorphism.

Proof. The proof is by structural induction over the definition of canonical isomorphism. □

Lemma 4.9. Any h-set 𝐴 [Γ] of HoTT in Setmf has canonical transport operations.

Proof. By induction on the formation of the type. Here, we just show that the transport operations of the form 𝗍𝗋𝗉1(𝑝, −) are canonical 
for some type constructors since the canonicity of those of the form 𝗍𝗋𝗉𝑛(𝑝, −) follows analogously for all the types.

- Non dependent ground types have just the identities as transport operations and these are canonical by Definition 4.7.

- If 𝐴 ∶≡ ||𝐵|| and Γ ∶≡ Δ, 𝑥 ∶𝐸, then transport operations are canonical by Definition 4.7, since they are isomorphisms.

- If 𝐴 ∶≡ Σ𝑦∶𝐵 𝐶(𝑦) and Γ ∶≡ Δ, 𝑥 ∶𝐸, then

𝗍𝗋𝗉(𝑝, 𝑧) ∶𝐴→𝐴[𝑥′∕𝑥] [Δ, 𝑥 ∶𝐸,𝑥′ ∶𝐸,𝑝 ∶ 𝑥 =𝐸 𝑥′]

satisfies

𝗍𝗋𝗉(𝑝, 𝑧) = ( 𝗍𝗋𝗉(𝑝,𝗉𝗋1(𝑧)) , 𝗍𝗋𝗉(𝑝,𝗉𝗋2(𝑧)) )

which follows by Id-elimination and is canonical by Definition 4.7, since by inductive hypothesis the transport operations of 𝐵
and 𝐶(𝑦) are canonical.

- If 𝐴 ∶≡ Π𝑦∶𝐵 𝐶(𝑦) and Γ ∶≡ Δ, 𝑥 ∶𝐸 then

𝗍𝗋𝗉(𝑝,−) ∶𝐴 → 𝐴[𝑥′∕𝑥] [Δ, 𝑥 ∶𝐸,𝑥′ ∶𝐸,𝑝 ∶ 𝑥 =𝐸 𝑥′]

for any 𝑓 ∶ Π𝑦∶𝐵 𝐶(𝑦) satisfies

𝗍𝗋𝗉(𝑝,𝑓 ) = 𝜆𝑧. 𝗍𝗋𝗉𝐶 (𝑝, 𝑓 ( 𝗍𝗋𝗉𝐵(𝑝−1, 𝑧) ) ))

where 𝑝−1 is the reverse path in [37].

This is canonical by Definition 4.7, since the transport operations of 𝐵 and 𝐶(𝑦) along 𝑝 and 𝑝−1 are all canonical by inductive 
hypothesis.

- If 𝐴 ∶≡ 𝐵 +𝐶 and Γ ∶≡ Δ, 𝑥 ∶𝐸, then

𝗍𝗋𝗉(𝑝, 𝑧) ∶𝐴→𝐴[𝑥′∕𝑥] [Δ, 𝑥 ∶𝐸,𝑥′ ∶𝐸,𝑝 ∶ 𝑥 =𝐸 𝑥′]

satisfies

𝗍𝗋𝗉(𝑝, 𝑧) = 𝗂𝗇𝖽+(𝑧, 𝑧1.𝗂𝗇𝗅(𝗍𝗋𝗉(𝑝, 𝑧1)) , 𝑧2.𝗂𝗇𝗋(𝗍𝗋𝗉(𝑝, 𝑧2)))
14

which is canonical since the transport operations of 𝐵 and 𝐶 are canonical by inductive hypothesis.
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- If 𝐴 ∶≡ 𝐵∕𝑅 and Γ ∶≡ Δ, 𝑥 ∶𝐸, then

𝗍𝗋𝗉(𝑝, 𝑧) ∶𝐴→𝐴[𝑥′∕𝑥] [Δ, 𝑥 ∶𝐸,𝑥′ ∶𝐸,𝑝 ∶ 𝑥 =𝐸 𝑥′]

satisfies

𝗍𝗋𝗉(𝑝, 𝑧) = 𝗂𝗇𝖽𝑄(𝑧,𝑤.[𝗍𝗋𝗉(𝑝,𝑤)] )

which is canonical by Definition 4.7 since the transport operations of 𝐵 are canonical by inductive hypothesis.

- If 𝐴 ∶≡ 𝖫𝗂𝗌𝗍(𝐵), then it follows in a similar manner that it has canonical transport operations. □

Corollary 4.10. For any transport operation its inverse is a canonical isomorphism as well.

Proof. Note that 𝗍𝗋𝗉𝑖(𝑝−1, −) is the inverse of 𝗍𝗋𝗉𝑖(𝑝, −) as shown in Example 2.4.9 [37]. □

Canonical isomorphisms are unique, are closed under composition and they have canonical inverses:

Proposition 4.11. The following properties of canonical isomorphisms hold:

- identities are canonical: For any h-set 𝐴 ∶𝑈1 [Γ] in Setmf , the map 𝗂𝖽𝐴 ∶𝐴 →𝐴 [Γ] is a canonical isomorphism;

- uniqueness of canonical isomorphisms: For any h-sets 𝐴1, 𝐴2 ∶ 𝑈1 [Γ] in Setmf , if 𝜇
𝐴2
𝐴1

∶ 𝐴1 → 𝐴2 [Γ] and 𝜈𝐴2
𝐴1

∶ 𝐴1 → 𝐴2 [Γ] are 

canonical isomorphisms, then 𝜇𝐴2
𝐴1
(𝑧) =𝐴2 𝜈

𝐴2
𝐴1

(𝑧) [Γ, 𝑧 ∶𝐴1];

- closure under composition: For any h-sets 𝐴1, 𝐴2 ∶ 𝑈1 [Γ] in Setmf , if 𝜇
𝐴2
𝐴1

∶ 𝐴1 → 𝐴2 [Γ] and 𝜇𝐴3
𝐴2

∶ 𝐴2 → 𝐴3 [Γ] are canonical 

isomorphisms, then 𝜇𝐴3
𝐴2
◦𝜇𝐴2
𝐴1

∶𝐴1 →𝐴3 [Γ] is a canonical isomorphism.

- closure under canonical inverse: For any h-sets 𝐴1, 𝐴2 ∶𝑈1 [Γ] in Setmf , each canonical isomorphism

𝜇
𝐴2
𝐴1

∶𝐴1 →𝐴2 [Γ]

is an isomorphism in the sense of Definition 4.1 with a canonical inverse.

Proof. All the statements are proved simultaneously by structural induction over the definition of canonical isomorphisms. For each 
point we just show some cases since the others follow analogously.

1. First point.

If 𝐴 ∶≡ ||𝐶||, then that 𝗂𝖽𝐴 is a canonical isomorphism trivially follows, since the identity map is an isomorphism.

If 𝐴 ∶≡ Σ𝑥∶𝐵 𝐶(𝑥), then by induction hypothesis 𝗂𝖽𝐵 and 𝗂𝖽𝐶(𝑥) are canonical isomorphisms, hence

𝜈Σ𝑥∶𝐵𝐶(𝑥)(𝑧) = (𝗂𝖽𝐵(𝗉𝗋1(𝑧)), 𝗂𝖽
𝐶(𝗂𝖽𝐵 (𝗉𝗋1(𝑧))
𝐶(𝗉𝗋1(𝑧))

(𝗉𝗋2(𝑧))) ≡ (𝗉𝗋1(𝑧),𝗉𝗋2(𝑧)).

But we know that (𝗉𝗋1(𝑧), 𝗉𝗋2(𝑧)) = 𝑧, hence 𝜈Σ𝑥∶𝐵𝐶(𝑥)(𝑧) = 𝗂𝖽Σ𝑥∶𝐵𝐶(𝑥)(𝑧) which means that 𝗂𝖽Σ𝑥∶𝐵𝐶(𝑥) is a canonical isomorphism 
since by hypothesis its transports are canonical.

If 𝐴 ∶≡ 𝐵 + 𝐶 with canonical transport operations, then by induction hypothesis 𝗂𝖽𝐵 and 𝗂𝖽𝐶 are canonical isomorphisms, 
therefore

𝜈𝐵+𝐶 (𝑧) ∶≡ 𝗂𝗇𝖽+(𝑧, 𝑧0.𝗂𝗇𝗅(𝗂𝖽𝐵(𝑧0)), 𝑧1.𝗂𝗇𝗋(𝗂𝖽𝐶 (𝑧1))) ≡ 𝗂𝗇𝖽+(𝑧, 𝑧0.𝗂𝗇𝗅(𝑧0), 𝑧1.𝗂𝗇𝗋(𝑧1))

for any 𝑧 ∶ 𝐵 +𝐶 , but 𝗂𝗇𝖽+(𝑧, 𝑧0.𝗂𝗇𝗅(𝑧0), 𝑧1.𝗂𝗇𝗋(𝑧1)) = 𝑧 and hence 𝜈𝐵+𝐶 (𝑧) = 𝗂𝖽𝐵+𝐶 (𝑧), which implies that the latter is a canonical 
isomorphism.

The other cases are similar.

2. Second point.

For non-dependent ground types, the result is immediate since canonical isomorphisms are the identities.

Suppose 𝐴1 ∶≡ ||𝐵1|| and 𝐴2 ∶≡ ||𝐵2||. Then 𝜇||𝐵2||
||𝐵1||

(𝑥) =||𝐵2||
𝜈
||𝐵2||
||𝐵1||

(𝑥) for any 𝑥 ∶ ||𝐵1||, since ||𝐵2|| is a h-proposition.

If 𝐴1 ∶≡ Σ𝑥∶𝐵1 𝐶1(𝑥) and 𝐴2 ∶≡ Σ𝑥′∶𝐵2 𝐶2(𝑥
′) then both 𝜇𝐴2

𝐴1
and 𝜈𝐴2
𝐴1

are defined componentwise as in Definition 4.7. Let 

us assume that 𝜇𝐵2
𝐵1

and 𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
are the components of the first and 𝜈𝐵2

𝐵1
and 𝜈
𝐶2(𝜈
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
are those of the latter.

Then, by inductive hypothesis

𝜇
𝐵2
𝐵1
(𝑥) =𝐵2 𝜈

𝐵2
𝐵1

(𝑥) [Γ, 𝑥 ∶ 𝐵1]
15

and
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𝗍𝗋𝗉(𝑝, 𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
(𝑦)) =
𝐶2(𝜈
𝐵2
𝐵1

(𝑥))
𝜈
𝐶2(𝜈
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
(𝑦) [Γ, 𝑥 ∶ 𝐵1, 𝑦 ∶ 𝐶1(𝑥), 𝑝 ∶ 𝜇

𝐵2
𝐵1
(𝑥) =𝐵2 𝜈

𝐵2
𝐵1

(𝑥) ]

therefore

𝜇
Σ𝑥′∶𝐵2 𝐶2(𝑥

′)
Σ𝑥∶𝐵1 𝐶1(𝑥)

(𝑧) =Σ𝑥′∶𝐵2𝐶2(𝑥
′) 𝜈

Σ𝑥′∶𝐵2 𝐶2(𝑥
′)

Σ𝑥∶𝐵1 𝐶1(𝑥)
(𝑧) [Γ, 𝑧 ∶ Σ𝑥∶𝐵1 𝐶1(𝑥)]

and, by Lemma 4.4, we conclude 𝜇
Σ𝑥′∶𝐵2 𝐶2(𝑥

′)
Σ𝑥∶𝐵1 𝐶1(𝑥)

= 𝜈
Σ𝑥′∶𝐵2 𝐶2(𝑥

′)
Σ𝑥∶𝐵1 𝐶1(𝑥)

.

If 𝐴1 ∶≡ Π𝑥∶𝐵1 𝐶1(𝑥) and 𝐴2 ∶≡ Π𝑥′∶𝐵2 𝐶2(𝑥
′), let us consider any two canonical isomorphisms which we denote as

𝜇
𝐴2
𝐴1

= 𝜆𝑓.𝜆𝑧.( 𝗍𝗋𝗉(𝑝𝜇 ,−)◦𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝜇
𝐵−12
𝐵1

(𝑥′)) )

𝐶1(𝜇
𝐵−12
𝐵1

(𝑥′))
)(𝑓 (𝜇
𝐵−12
𝐵1

(𝑧)) )

and

𝜈
𝐴2
𝐴1

= 𝜆𝑓.𝜆𝑧.( 𝗍𝗋𝗉(𝑝𝜈 ,−)◦𝜈
𝐶2(𝜈
𝐵2
𝐵1

(𝜈
𝐵−12
𝐵1

(𝑥′)) )

𝐶1(𝜈
𝐵−12
𝐵1

(𝑥′))
)(𝑓 (𝜈
𝐵−12
𝐵1

(𝑧)) )

where 𝑝𝜇 ∶ 𝜇
𝐵2
𝐵1
(𝜇
𝐵−12
𝐵1

(𝑧)) =𝐵2 𝑧 and 𝑝𝜈 ∶ 𝜈
𝐵2
𝐵1

(𝜈
𝐵−12
𝐵1

(𝑧)) =𝐵2 𝑧. Now, since for any 𝑓 ∶ 𝐴1 and any 𝑥 ∶ 𝐵1 by inductive hypothesis 
there exists a proof 𝑞 of type

𝜇
𝐵2
𝐵1
(𝑥) = 𝜈𝐵2
𝐵1

(𝑥)

and the same holds for their inverses, which are canonical by inductive hypothesis.

Therefore there exists a proof 𝑞′ ∶ 𝜇𝐵2
𝐵1

−1
(𝑧) = 𝜈𝐵2
𝐵1

−1
(𝑧) for 𝑧 ∶ 𝐵2 and by Lemma 2.23 we get a proof of the equality

𝗍𝗋𝗉(𝑞′,−)(𝑓 (𝜇𝐵2
𝐵1

−1
(𝑧)) ) = 𝗍𝗋𝗉(𝑞′, 𝑓 (𝜇𝐵2

𝐵1

−1
(𝑧)) )) = 𝑓 (𝜈𝐵2

𝐵1

−1
(𝑧))

Moreover, we have also a proof

𝑞′′ ∶ 𝜇𝐵2
𝐵1
(𝜇
𝐵−12
𝐵1

(𝑧)) = 𝜈𝐵2
𝐵1

(𝜈𝐵2
𝐵1

−1
(𝑧))

being each member equal to 𝑧 ∶ 𝐵2.

Furthermore, by uniqueness of canonical morphisms from 𝐶1(𝜇
𝐵2
𝐵1

−1
(𝑧)) to 𝐶2(𝜈

𝐵2
𝐵1

(𝜈𝐵2
𝐵1

−1
(𝑧))) which follows by inductive 

hypothesis we have a proof of the following equality

𝜈
𝐶2(𝜈
𝐵2
𝐵1

(𝜈𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜈
𝐵2
𝐵1

−1
(𝑧))

◦𝗍𝗋𝗉(𝑞′,−) = 𝗍𝗋𝗉(𝑞′′,−)◦𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝜇𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝑧))

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝑧))
𝜇
𝐶2(𝜇
𝐵2
𝐵1

(−−))

𝐶1(−−)

𝗍𝗋𝗉(𝑞′ ,−)

𝐶2(𝜇
𝐵2
𝐵1
(𝜇𝐵2
𝐵1

1 (𝑧)))

𝗍𝗋𝗉(𝑞′′ ,−)

𝐶1(𝜈
𝐵2
𝐵1

−1
(𝑧))
𝜈
𝐶2(𝜈
𝐵2
𝐵1

(−−))

𝐶1(−−)

𝐶2(𝜈
𝐵2
𝐵1

(𝜈𝐵2
𝐵1

1 (𝑧)))

and hence

𝗍𝗋𝗉(𝑝𝜈,−)◦( 𝜈
𝐶2(𝜈
𝐵2
𝐵1

(𝜈𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜈
𝐵2
𝐵1

−1
(𝑧))

◦𝗍𝗋𝗉(𝑞′,−) ) = 𝗍𝗋𝗉(𝑝𝜈,−)◦(𝗍𝗋𝗉(𝑞′′,−)◦𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝜇𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝑧))

)

16

Moreover, knowing that transports commute because they are uniquely determined up to propositional equality we get
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𝗍𝗋𝗉(𝑝𝜈,−)◦𝗍𝗋𝗉(𝑞′′,−) = 𝗍𝗋𝗉(𝑝𝜇,−)

𝐶2(𝜇
𝐵2
𝐵1
(𝜇𝐵2
𝐵1

−1
(𝑧)))

𝗍𝗋𝗉(𝑝𝜇,−)

𝗍𝗋𝗉(𝑞′′ ,−) 𝐶2(𝑧)

𝐶2(𝜈
𝐵2
𝐵1

(𝜈𝐵2
𝐵1

−1
(𝑧)))

𝗍𝗋𝗉(𝑝𝜈 ,−)

and we conclude

𝗍𝗋𝗉(𝑝𝜇,−)◦ 𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝜇𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝑧))

= 𝗍𝗋𝗉(𝑝𝜈,−)◦( 𝜈
𝐶2(𝜈
𝐵2
𝐵1

(𝜈𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜈
𝐵2
𝐵1

−1
(𝑧))

◦𝗍𝗋𝗉(𝑞′,−) )

which applied to 𝑓 (𝜇
𝐵−12
𝐵1

(𝑧)) and recalling that 𝗍𝗋𝗉(𝑞′, −)(𝑓 (𝜇
𝐵−12
𝐵1

(𝑧))) = 𝑓 (𝜈𝐵2
𝐵1

−1
(𝑧)) immediately gives

𝜇
𝐴2
𝐴1
(𝑓, 𝑧) = ( 𝗍𝗋𝗉(𝑝𝜇,−)◦ 𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝜇𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝑧))

)(𝑓 (𝜇
𝐵−12
𝐵1

(𝑧)))

= 𝗍𝗋𝗉(𝑝𝜈,−)◦( 𝜈
𝐶2(𝜈
𝐵2
𝐵1

(𝜈𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜈
𝐵2
𝐵1

−1
(𝑧))

◦𝗍𝗋𝗉(𝑞′,−) )(𝑓 (𝜇
𝐵−12
𝐵1

(𝑧)))

= 𝗍𝗋𝗉(𝑝𝜈,−)◦𝜈
𝐶2(𝜈
𝐵2
𝐵1

(𝜈𝐵2
𝐵1

−1
(𝑧)))

𝐶1(𝜈
𝐵2
𝐵1

−1
(𝑧))
𝑓 (𝜈𝐵2
𝐵1

−1
(𝑧))

= 𝜈𝐴2
𝐴1

(𝑓, 𝑧)

and hence

𝜇
𝐴2
𝐴1

= 𝜈𝐴2
𝐴1

If 𝐴1 ∶≡ 𝐵1 +𝐶1 and 𝐴2 ∶≡ 𝐵2 +𝐶2 then both 𝜇𝐴2
𝐴1

and 𝜈𝐴2
𝐴1

are defined as in Definition 4.7: in particular, 𝜇𝐵2
𝐵1

and 𝜇𝐶2
𝐶1

are 

canonical isomorphisms as well as 𝜈𝐵2
𝐵1

and 𝜈𝐶2
𝐶1

.

Then, by inductive hypothesis

𝜇
𝐵2
𝐵1
(𝑥) =𝐵2 𝜈

𝐵2
𝐵1

(𝑥) [Γ, 𝑥 ∶ 𝐵1]

and

𝜇
𝐶2
𝐶1
(𝑦) =𝐶2 𝜈

𝐶2
𝐶1
(𝑦) [Γ, 𝑦 ∶ 𝐶1]

therefore it trivially follows that

𝜇
𝐶1+𝐶2
𝐵1+𝐵2

(𝑧) =𝐶1+𝐶2 𝜈
𝐶1+𝐶2
𝐵1+𝐵2

(𝑧) [Γ, 𝑧 ∶𝐵1 +𝐵2]

and by Lemma 4.4 𝜇
𝐶1+𝐶2
𝐵1+𝐵2

= 𝜈𝐶1+𝐶2
𝐵1+𝐵2

.

If 𝐴1 ∶≡ 𝐵1∕𝑅1 and 𝐴2 ∶≡ 𝐵2∕𝑅2 then 𝜇𝐴2
𝐴1

and 𝜈𝐴2
𝐴1

are defined as in Definition 4.7: hence we can assume that 𝜇𝐵2
𝐵1

and 𝜈𝐵2
𝐵1

are canonical isomorphisms and that the following propositions 𝑅1(𝑥, 𝑦) ↔𝑅2(𝜇
𝐵2
𝐵1
(𝑥), 𝜇𝐵2
𝐵1
(𝑦)) and 𝑅1(𝑥, 𝑦) ↔𝑅2(𝜈

𝐵2
𝐵1

(𝑥), 𝜈𝐵2
𝐵1

(𝑦))
hold.

Then, by inductive hypothesis

𝜇
𝐵2
𝐵1
(𝑥) =𝐵2 𝜈

𝐵2
𝐵1

(𝑥) [Γ, 𝑥 ∶ 𝐵1]

and hence
17

𝑅2(𝜇
𝐵2
𝐵1
(𝑥), 𝜇𝐵2
𝐵1
(𝑦))↔𝑅2(𝜈

𝐵2
𝐵1

(𝑥), 𝜈𝐵2
𝐵1

(𝑦)) [Γ, 𝑥 ∶𝐵1, 𝑦 ∶𝐵1].
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Therefore it trivially follows that

𝜇
𝐵2∕𝑅2
𝐵1∕𝑅1

(𝑧) =𝐵2∕𝑅2 𝜈
𝐵2∕𝑅2
𝐵1∕𝑅1

(𝑧) [Γ, 𝑧 ∶ 𝐵1∕𝑅1]

and by Lemma 4.4 𝜇
𝐵2∕𝑅2
𝐵1∕𝑅1

= 𝜈𝐵2∕𝑅2
𝐵1∕𝑅1

.

3. Third point.

For non-dependent ground types, the composition is the identity and hence is canonical by definition.

For truncated types, since isomorphisms are closed under composition and any isomorphism between truncated types is 
canonical by definition, then it immediately follows that the composition of canonical isomorphisms between truncated types is 
canonical too.

If 𝐴1 ∶≡ Σ𝑥∶𝐵1𝐶1(𝑥) and 𝐴2 ∶≡ Σ𝑥′∶𝐵2𝐶2(𝑥
′) and 𝐴3 ∶≡ Σ𝑥′′∶𝐵3𝐶3(𝑥

′′), then by definition of canonical isomorphisms

𝜇
𝐴2
𝐴1

= 𝜆𝑧.(𝜇𝐵2
𝐵1
(𝗉𝗋1(𝑧)), 𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝗉𝗋1(𝑧))

𝐶1(𝗉𝗋1(𝑧))
(𝗉𝗋2(𝑧))) )

and

𝜇
𝐴3
𝐴2

= 𝜆𝑧.(𝜇𝐵3
𝐵2
(𝗉𝗋1(𝑧)), 𝜇

𝐶3(𝜇
𝐵3
𝐵2

(𝗉𝗋1(𝑧)))

𝐶2(𝗉𝗋1(𝑧))
(𝗉𝗋2(𝑧)) )

Now the composition of 𝜇𝐴3
𝐴2

◦𝜇𝐴2
𝐴1

applied to 𝑧 ∶ Σ𝑥∶𝐵1𝐶1(𝑥) amounts to

𝜇
𝐴3
𝐴2
◦𝜇𝐴2
𝐴1
(𝑧) = 𝜇

Σ𝑥′′∶𝐵3𝐶3(𝑥
′′)

Σ𝑥′∶𝐵2𝐶2(𝑥
′) ◦𝜇

Σ𝑥′∶𝐵2𝐶2(𝑥
′)

Σ𝑥∶𝐵1𝐶1(𝑥)
(𝑧)

= (𝜇𝐵3
𝐵2
(𝜇𝐵2
𝐵1
(𝗉𝗋1(𝑧)) ) , 𝜇

𝐶3(𝜇
𝐵3
𝐵2

(𝜇𝐵2
𝐵1

(𝗉𝗋1(𝑧)))

𝐶2(𝜇
𝐵2
𝐵1

(𝗉𝗋1(𝑧))
(𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝗉𝗋1(𝑧)))

𝐶1(𝗉𝗋1(𝑧))
(𝗉𝗋2(𝑧)) ) )

which is a canonical isomorphism by Definition 4.7 since 𝜇𝐵3
𝐵2
◦𝜇𝐵2
𝐵1

and 𝜇𝐶3
𝐶2
◦𝜇𝐶2
𝐶1

are canonical isomorphisms by inductive hy-

pothesis.

If 𝐴1 ∶≡ Π𝑥∶𝐵1𝐶1(𝑥) and 𝐴2 ∶≡ Π𝑥′∶𝐵2𝐶2(𝑥
′) and 𝐴3 ∶≡ Π𝑥′′∶𝐵3𝐶3(𝑥

′′), then, by definition of canonical isomorphisms

𝜇
𝐴2
𝐴1

= 𝜆𝑓.𝜆𝑥′ ∶𝐵2.( 𝗍𝗋𝗉(𝑝𝜇𝐴2
𝐴1

,−)◦𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝜇
𝐵−12
𝐵1

(𝑥′)) )

𝐶1(𝜇
𝐵−12
𝐵1

(𝑥′))
)(𝑓 (𝜇
𝐵−12
𝐵1

(𝑥′)) )

for any 𝑝
𝜇
𝐴2
𝐴1

∶ 𝜇𝐵2
𝐵1
(𝜇
𝐵−12
𝐵1

(𝑥′)) =𝐵2 𝑥
′ and

𝜇
𝐴3
𝐴2

= 𝜆𝑓.𝜆𝑥′′ ∶𝐵3.(𝗍𝗋𝗉(𝑝𝜇𝐴3
𝐴2

,−)◦𝜇
𝐶3(𝜇
𝐵3
𝐵2

(𝜇
𝐵−13
𝐵2

(𝑥′′)) )

𝐶2(𝜇
𝐵3
𝐵2

−1
(𝑥′′))

)(𝑓 ((𝜇𝐵3
𝐵2

−1
(𝑥′′))) )

for any 𝑝
𝜇
𝐴3
𝐴2

∶ 𝜇𝐵3
𝐵2
(𝜇𝐵3
𝐵2

−1
(𝑥′′)) = 𝑥′′.

Hence, for any 𝑥′′ ∶𝐵3 and 𝑓 ∶ Π𝑥′′∶𝐵3𝐶3(𝑥
′′) their composition becomes

𝜇
𝐴3
𝐴2
◦𝜇𝐴2
𝐴1
(𝑓,𝑥′′) = 𝜇

Π𝑥′′∶𝐵3𝐶3(𝑥
′′)

Π𝑥′∶𝐵2𝐶2(𝑥
′) ◦𝜇

Π𝑥′∶𝐵2𝐶2(𝑥
′)

Π𝑥∶𝐵1𝐶1(𝑥)
(𝑓,𝑥′′)

= (𝗍𝗋𝗉(𝑝
𝜇
𝐴3
𝐴2

,−)◦𝜇
𝐶3(𝜇
𝐵3
𝐵2

(−−) )

𝐶2(−−)
)◦( 𝗍𝗋𝗉(𝑝′
𝜇
𝐴2
𝐴1

,−)◦𝜇
𝐶2(𝜇
𝐵2
𝐵1

(−−))

𝐶1(−−)
(𝑓 (𝜇𝐵2
𝐵1

−1
(𝜇𝐵3
𝐵2

−1
(𝑥′′))))

= (𝗍𝗋𝗉(𝑝
𝜇
𝐴3
𝐴2

,−)◦𝗍𝗋𝗉(𝑝′′
𝜇
𝐴2
𝐴1

,−))◦( 𝜇
𝐶3(𝜇
𝐵3
𝐵2

(−−) )

𝐶2(−−)
)◦𝜇
𝐶2(𝜇
𝐵2
𝐵1

(−−))

𝐶1(−−)
(𝑓 (𝜇𝐵2
𝐵1

−1
(𝜇𝐵3
𝐵2

−1
(𝑥′′))))

where 𝑝′
𝜇
𝐴2
𝐴1

∶≡ 𝑝
𝜇
𝐴2
𝐴1

[𝜇𝐵3
𝐵2

−1
(𝑥′′)∕𝑥′] and 𝑝′′

𝜇
𝐴2
𝐴1

∶≡ 𝑝
𝜇
𝐴2
𝐴1

[𝜇𝐵2
𝐵1

−1
◦𝜇𝐵3
𝐵2

−1
(𝑥′′)∕𝑥′]. In particular, the last equality follows by unique-

−1 −1 −1
18

ness of canonical isomorphisms from 𝐶2(𝜇
𝐵2
𝐵1
(𝜇𝐵2
𝐵1

(𝜇𝐵3
𝐵2

(𝑧)))) to 𝐶3(𝜇
𝐵3
𝐵2
(𝜇𝐵3
𝐵2

(𝑧))) from this other equality
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𝐶2(𝜇
𝐵2
𝐵1
(𝜇𝐵2
𝐵1

−1
(𝜇𝐵3
𝐵2

−1
(𝑥′′))))

𝜇
𝐶3(𝜇
𝐵3
𝐵2

(−−))

𝐶2(−−)

𝗍𝗋𝗉(𝑝′
𝜇
𝐴2
𝐴1

,−)

𝐶2(𝜇
𝐵3
𝐵2

−1
(𝑥′′))

𝜇
𝐶3(𝜇
𝐵3
𝐵2

(−−))

𝐶2(−−)

𝐶3(𝜇
𝐵3
𝐵2
(𝜇𝐵2
𝐵1
(𝜇𝐵2
𝐵1

−1
(𝜇𝐵3
𝐵2

−1
(𝑥′′)))))

𝗍𝗋𝗉(𝑝′′
𝜇
𝐴2
𝐴1

,−)
𝐶3(𝜇
𝐵3
𝐵2
(𝜇𝐵3
𝐵2

−1
(𝑥′′)))

Hence, 𝜇𝐴3
𝐴2
◦𝜇𝐴2
𝐴1

is a canonical isomorphism because consists of compositions of canonical isomorphisms by inductive hypothesis 
beside the fact that transport operations compose.

If 𝐴1 ∶≡ 𝐵1 +𝐶1 and 𝐴2 ∶≡ 𝐵2 +𝐶2 and 𝐴3 ∶≡ 𝐵3 +𝐶3, then by definition of canonical isomorphisms

𝜇
𝐴2
𝐴1

= 𝜆𝑧.𝗂𝗇𝖽+(𝑧, 𝑧0.𝗂𝗇𝗅(𝜇
𝐵2
𝐵1
(𝑧0)), 𝑧1.𝗂𝗇𝗋(𝜇

𝐶2
𝐶1
(𝑧1)))

and

𝜇
𝐴3
𝐴2

= 𝜆𝑧.𝗂𝗇𝖽+(𝑧, 𝑧0.𝗂𝗇𝗅(𝜇
𝐵3
𝐵2
(𝑧0)), 𝑧1.𝗂𝗇𝗋(𝜇

𝐶3
𝐶2
(𝑧1)))

Let us consider the composition 𝜇𝐴3
𝐴2

◦𝜇𝐴2
𝐴1

applied to 𝑧 ∶𝐵1 +𝐶1, for which we get 𝜇𝐴3
𝐴2
(𝜇𝐴2
𝐴1
(𝑧)), then

𝜇
𝐵3+𝐶3
𝐵1+𝐶1

(𝑧) = 𝗂𝗇𝖽+(𝑧, 𝑧0.𝗂𝗇𝗅(𝜇
𝐵3
𝐵2
(𝜇𝐵2
𝐵1
(𝑧0))), 𝑧1.𝗂𝗇𝗋(𝜇

𝐶3
𝐶2
(𝜇𝐶2
𝐶1
(𝑧1)))

which amounts to 𝜇𝐴3
𝐴2
(𝜇𝐴2
𝐴1
(𝑧)) and is a canonical isomorphism by Definition 4.7.

If 𝐴1 ∶≡ 𝐵∕𝑅1 and 𝐴2 ∶≡ 𝐵2∕𝑅2 and 𝐴3 ∶≡ 𝐵3∕𝑅3, then by inductive hypothesis

𝜇
𝐴2
𝐴1

= 𝜆𝑧.𝗂𝗇𝖽𝑄(𝑧,𝑥.𝜇
𝐵2
𝐵1
(𝑥))

and

𝜇
𝐴3
𝐴2

= 𝜆𝑧.𝗂𝗇𝖽𝑄(𝑧,𝑥.𝜇
𝐵3
𝐵2
(𝑥))

are canonical isomorphisms. Then, let us consider the composition 𝜇𝐴3
𝐴2
◦𝜇𝐴2
𝐴1

applied to 𝑧 ∶ 𝐵1∕𝑅1, so that we get 𝜇𝐴3
𝐴2
(𝜇𝐴2
𝐴1
(𝑧)), 

then

𝜇
𝐵3∕𝑅3
𝐵1∕𝑅1

(𝑧) ∶≡ 𝗂𝗇𝖽𝑄(𝑧,𝑥.𝜇
𝐵3
𝐵2
(𝜇𝐵2
𝐵1
(𝑥)))

which amounts to 𝜇𝐴3
𝐴2
(𝜇𝐴2
𝐴1
(𝑧)) and is a canonical isomorphism by Definition 4.7.

4. Fourth point.

For non-dependent ground types the inverse is the identity which is canonical by definition.

Canonical isomorphisms between truncated types have canonical inverse by Definition 4.7.

If 𝐴1 ∶≡ Σ𝑥∶𝐵1 𝐶1(𝑥) [Γ] and 𝐴2 ∶≡ Σ𝑥′∶𝐵2 𝐶2(𝑥
′) [Γ] and 𝜇𝐵2

𝐵1
∶𝐵1 → 𝐵2 [Γ] and 𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
∶ 𝐶1(𝑥) → 𝐶2(𝜇

𝐵2
𝐵1
(𝑥)) [Γ, 𝑥 ∶ 𝐵1]

are canonical isomorphisms, then the inverse of 𝜇𝐴2
𝐴1

given as in Definition 4.7,

𝜇
𝐴2
𝐴1

−1
∶≡ 𝜆𝑧.( 𝜇𝐵2

𝐵1

−1
(𝗉𝗋1(𝑧)) , (𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝜇𝐵2
𝐵1

−1
(𝗉𝗋1(𝑧)))

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝗉𝗋1(𝑧)))

)−1◦𝗍𝗋𝗉(𝑝𝜇−1,−)(𝗉𝗋2(𝑧)) )

is canonical by construction: it is composed of inverses of canonical isomorphisms, which are canonical by inductive hypothesis, 
and transports, which are canonical by Lemma 4.9. It amounts to be an inverse since the following equality holds by uniqueness 
19

of canonical isomorphisms
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𝐶2(𝗉𝗋1(𝑧))
𝗍𝗋𝗉(𝑝𝜇−1 ,−)

𝐶2(𝜇
𝐵2
𝐵1
(𝜇𝐵2
𝐵1

−1
(𝗉𝗋1(𝑧))))

(𝜇𝐶2(−−)
𝐶1(−−)

)−1

𝐶2(𝜇
𝐵2
𝐵1
(𝜇𝐵2
𝐵1

−1
(𝗉𝗋1(𝑧))))

𝗍𝗋𝗉(𝑝𝜇,−)

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝗉𝗋1(𝑧)))

𝜇
𝐶2(−−)
𝐶1(−−)

If 𝐴1 ∶≡ Π𝑥∶𝐵1 𝐶1(𝑥) [Γ] and 𝐴2 ∶≡ Π𝑥′∶𝐵2 𝐶2(𝑥
′) [Γ] and 𝜇𝐵2

𝐵1
∶𝐵1 → 𝐵2 [Γ] and 𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1(𝑥)
∶ 𝐶1(𝑥) → 𝐶2(𝜇

𝐵2
𝐵1
(𝑥)) [Γ, 𝑥 ∶ 𝐵1]

are canonical isomorphisms, then the inverse of 𝜇𝐴2
𝐴1

given as in Definition 4.7

(𝜇𝐴2
𝐴1
)−1 = 𝜆𝑓 ′.𝜆𝑥 ∶ 𝐵1.( (𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1 (𝑥) )−1(𝑓 ′(𝜇𝐵2
𝐵1
(𝑥)) ))

is a canonical since we can show that: for 𝑞𝜇 proof of (𝜇𝐵2
𝐵1
)−1(𝜇𝐵2
𝐵1
(𝑥)) = 𝑥 and for any 𝑓 ′ ∶ Π𝑥′∶𝐵2 𝐶2(𝑥

′) and 𝑥 ∶ 𝐵1

(𝜇𝐴2
𝐴1
)−1(𝑓 ′)(𝑥) = ( 𝗍𝗋𝗉(𝑞𝜇 ,−)◦( ( 𝜇

𝐶2((𝜇
𝐵2
𝐵1

)◦( 𝜇𝐵2
𝐵1

−1
)(−))

𝐶1 (𝜇
𝐵−12
𝐵1

(−))
)−1 )◦𝗍𝗋𝗉(𝑞𝜇−1,−) )(𝑓 ′(𝜇

𝐵2
𝐵1
(𝑥)) )

where the right member is the application of a composition of isomorphisms which are canonical by inductive hypothesis, because 
by uniqueness of canonical isomorphisms

𝗍𝗋𝗉(𝑞𝜇 ,−)◦( (𝜇
𝐶2((𝜇
𝐵2
𝐵1

)◦( 𝜇𝐵2
𝐵1

−1
)(−))

𝐶1 (𝜇
𝐵−12
𝐵1

(−))
)−1◦𝗍𝗋𝗉(𝑞𝜇−1,−) ) = (𝜇

𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1 (𝑥) )−1

and diagrammatically

𝐶2(𝜇
𝐵2
𝐵1
(𝑥))

𝗍𝗋𝗉(𝑞𝜇−1 ,−)

(𝜇
𝐶2(𝜇
𝐵2
𝐵1

(𝑥))

𝐶1 (𝑥) )−1

𝐶1(𝑥)

𝐶2(𝜇
𝐵2
𝐵1
(𝜇𝐵2
𝐵1

−1
(𝜇𝐵2
𝐵1
(𝑥))))

(𝜇
𝐶2((𝜇
𝐵2
𝐵1

◦𝜇
𝐵2
𝐵1

−1
)(−))

𝐶1 (𝜇
𝐵−12
𝐵1

(−))

)−1

𝐶1(𝜇
𝐵2
𝐵1

−1
(𝜇𝐵2
𝐵1
(𝑥)))

𝗍𝗋𝗉(𝑞𝜇 ,−)

The other canonical isomorphisms obtained by different clauses can be easily shown to be equipped with canonical inverses 
by applying the inductive hypothesis to the canonical isomorphisms of lower type complexity. □

In [31] Palmgren discussed the issue of equality on objects in categories as formalized in type theory and he defined E-categories

and H-categories. In this approach a fundamental role is played by the notion of setoid and proof-irrelevant dependent setoid as 
defined in [14].

Definition 4.12. An 𝐸-category consists of the following data: a type 𝐶 of objects, a dependent setoid of morphisms 𝖧𝗈𝗆(𝑎, 𝑏) for 
any 𝑎, 𝑏 ∶ 𝐶 and a composition operation ◦ ∶ 𝖧𝗈𝗆(𝑏, 𝑐) × 𝖧𝗈𝗆(𝑎, 𝑏) →𝖧𝗈𝗆(𝑎, 𝑏), that is an extensional function in the sense that it 
preserves the relevant equivalence relations and that satisfy the usual associativity and identity conditions.

We can impose equality on objects in a 𝐸-category in a way compatible with composition. This leads to the following definition:

Definition 4.13. An 𝐻 -category is an 𝐸-category where the type of objects 𝐶 is equipped with an equivalence relation ∼𝐶 and there 
exists a family of isomorphisms 𝜏𝑎,𝑏,𝑝 ∈ 𝖧𝗈𝗆(𝑎, 𝑏) for each 𝑝 ∶ 𝑎 ∼𝐶 𝑏 such that

H1 : 𝜏𝑎,𝑎,𝑝 = 1𝑎 for any 𝑝 ∶ 𝑎 ∼𝐶 𝑎;
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H2 : 𝜏𝑎,𝑏,𝑝 = 𝜏𝑎,𝑏,𝑞 for any 𝑝, 𝑞 ∶ 𝑎 ∼𝐶 𝑏;



Theoretical Computer Science 991 (2024) 114421M. Contente and M.E. Maietti

H3 : 𝜏𝑏,𝑐,𝑞◦𝜏𝑎,𝑏,𝑝 = 𝜏𝑎,𝑐,𝑟 for any 𝑝 ∶ 𝑎 ∼𝐶 𝑏, 𝑞 ∶ 𝑏 ∼𝐶 𝑐 and 𝑟 ∶ 𝑎 ∼𝐶 𝑐.

Definition 4.14. Let 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 be the category of h-sets in Setmf up to canonical isomorphisms and functions as morphisms defined 
as follows: the objects of 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 are equivalent classes of h-sets 𝐴 ∶ Setmf equated under canonical isomorphisms, i.e. an object 
of 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 is an equivalence class [𝐴] of h-sets 𝐴 in Setmf where two objects 𝐴 and 𝐵 of 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 are declared equal, by writing 
[𝐴] =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

[𝐵], if there exists a canonical isomorphism 𝜏𝐵
𝐴
∶ 𝐴 → 𝐵. (Note that by Univalence, the equality [𝐴] =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

[𝐵]
implies that 𝐴 =𝑈1 𝐵 holds in HoTT as well.)

Morphisms of 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 from an object [𝐴] to an object [𝐵], indicated with 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 ([𝐴], [𝐵]), are determined by functions 
𝑓 ∶ 𝐴′ → 𝐵′ between h-sets 𝐴′ and 𝐵′ such that [𝐴′] =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

[𝐴] and [𝐵′] =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐
[𝐵] and given two functions 𝑓 ∶ 𝐴′ → 𝐵′

and 𝑔 ∶ 𝐴′′ → 𝐵′′ with [𝐴′] =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐
[𝐴′′] and [𝐵′] =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

[𝐵′′], we define 𝑓 =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐
𝑔 when 𝜇𝐵′′

𝐵′
◦𝑓 =𝐴′→𝐵′′ 𝑔◦𝜇𝐴

′′

𝐴′
holds for 

canonical isomorphisms 𝜇𝐴′′
𝐴′

∶ 𝐴′ → 𝐴′′ and 𝜇𝐵′′
𝐵′

∶ 𝐵′ → 𝐵′′. We denote such morphisms with [𝑓 ] ∶ [𝐴] → [𝐵] and when 
there is no loss of generality we implicitly mean that 𝑓 ∶𝐴 →𝐵. (Note that the morphism equality [𝑓 ] = [𝑔] for arrows 𝑓, 𝑔 ∶𝐴 →𝐵
implies the propositional equality 𝑓 =𝐴→𝐵 𝑔.)

Composition of morphisms of [𝑓 ] ∶ [𝐴] → [𝐵] and [𝑔] ∶ [𝐵] → [𝐶] is defined as [𝑔◦𝑓 ] for representatives 𝑓 ∶ 𝐴′ → 𝐵′ and 
𝑔 ∶𝐵′ → 𝐶 ′.

The identity morphism from [𝐴] to [𝐴] is the equivalence class [𝗂𝖽𝐴] ∶ [𝐴] → [𝐴] of the identity morphism in HoTT.

Remark 4.15. The category 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 is a small H-category in the sense of Definition 4.13 by taking as objects of C the setoid 
whose support is 𝖲𝖾𝗍𝑚𝑓 and whose equality 𝐴′ =C 𝐵

′ is defined as the truncation of the assumed inductive type ||𝖢𝗂𝗌𝗈(𝐴′, 𝐵′)|| and 
the hom-set between two objects 𝖧𝗈𝗆(𝐴′, 𝐵′) is the setoid having as support the set of arrows 𝐴′ → 𝐵′, and whose equality for 
𝑓, 𝑔 ∶𝐴′ → 𝐵′ is the propositional equality 𝑓 = 𝑔. Moreover, for any 𝑝 ∶ ||𝖢𝗂𝗌𝗈(𝐴′, 𝐵′)|| we define 𝜏𝐴′ ,𝐵′ ,𝑝 ∶≡ 𝗂𝗇𝖽|| ||(𝑝, 𝑧.𝑧), which 
is well defined since any canonical isomorphism between two h-sets is unique up to propositional equality and satisfy the required 
properties of an H-category as shown in Proposition 4.11.

5. The compatibility of emTT with HoTT

In this section, we show that also the extensional level emTT of MF is compatible with HoTT. We are going to define a direct 
interpretation In𝐷 ∶ emTT ⟶ 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

, that is based on a multi-functional partial interpretation from emTT raw-syntax to HoTT

raw-syntax. As in the case of Definition 3.1, we assume to have defined two auxiliary partial maps 𝗉𝗋𝖯 and 𝗉𝗋𝖲, both from HoTT raw-

syntax to HoTT raw-syntax, where the first is meant to associate to a type symbol of HoTT a (chosen) proof that it is a h-proposition, 
while the second associates to a type symbol of HoTT a (chosen) proof that it is a h-set.

We stress the fact that the interpretation crucially relies upon canonical isomorphisms as defined in Definition 4.7. Indeed, it is 
only by means of canonical isomorphisms that we can interpret correctly the definitional equalities and the conversions of emTT. 
This means that when we are defining the interpretation for a raw type or a raw term depending on some other raw terms, we assume 
that the type of this term has been corrected by means of canonical isomorphisms.

In this sense, the interpretation bears some resemblance to the interpretation of emTT in mTT given in [14], but it has a more 
direct flavor, since we can avoid any setoid model construction thanks to the availability of set quotients as higher inductive types 
within HoTT.

Further, another important difference with the interpretation presented in [14] is due to the assumption of the Univalence Axiom. 
Indeed, the axiom plays a fundamental role in showing the compatibility of emTT with HoTT since it allows to convert the canonical 
isomorphism interpreting two definitionally equal emTT-types into propositional equal HoTT-types. The lack of a similar principle in 
mTT prevents the interpretation in [14] from achieving a full compatibility result of emTT with mTT.

We will indicate the interpretation multi-function with (−)▾ and the case when canonical isomorphisms are required with (−)▾̃. 
The notation (−)▾̃ is similar to that used in [14]. Given an expression 𝑎 of emTT raw-syntax, we write 𝑎▾̃ instead of 𝑎▾. Moreover, 
we introduce the following definitions:

Definition 5.1. Given 𝐴 𝑡𝑦𝑝𝑒 [Γ] and 𝐵 𝑡𝑦𝑝𝑒 [Γ], the judgement 𝐴 =𝑒𝑥𝑡 𝐵 means that there exists a canonical isomorphism 𝜇𝐵
𝐴

relating 
𝐴 and 𝐵.

Definition 5.2. If 𝐶 𝑡𝑦𝑝𝑒 [Γ] and 𝐷 𝑡𝑦𝑝𝑒 [Δ], the judgement 𝐶 [Γ] =𝑒𝑥𝑡 𝐷 [Δ] means the following: given Γ ∶≡ 𝑥1 ∶𝐴1, … , 𝑥𝑛 ∶𝐴𝑛
and Δ ∶≡ 𝑦1 ∶ 𝐵1, … , 𝑦𝑛 ∶ 𝐵𝑛, we can derive 𝐴1 =𝑒𝑥𝑡 𝐵1, … , 𝐴𝑛 =𝑒𝑥𝑡 𝐵𝑛[𝜇

𝐵1
𝐴1
(𝑥1)∕𝑦1, … , 𝜇𝐵𝑛−1

𝐴𝑛−1
(𝑥𝑛−1)∕𝑦𝑛−1] and also 𝐶 =𝑒𝑥𝑡 𝐷̃ [Γ], 

where 𝐷̃ ∶≡ 𝐷[𝜇𝐵1
𝐴1
(𝑥1)∕𝑦1, … , 𝜇𝐵𝑛

𝐴𝑛
(𝑥𝑛)∕𝑦𝑛] for some canonical isomorphisms 𝜇𝐵𝑖

𝐴𝑖
for 𝑖 = 1, … , 𝑛 and 𝜇𝐷

𝐶
.

Definition 5.3. Given 𝑐 ∶ 𝐶 [Γ] and 𝐷 [Δ] such that 𝐶 [Γ] =𝑒𝑥𝑡 𝐷 [Δ], where Γ ∶≡ 𝑥1 ∶𝐴1, … , 𝑥𝑛 ∶𝐴𝑛 and Δ ∶≡ 𝑦1 ∶ 𝐵1, … , 𝑦𝑛 ∶
𝐵𝑛, the judgement 𝑐 ∶𝑒𝑥𝑡 𝐷 [Δ] means that we can derive 𝑐 ∶ 𝐷̃ [Γ], where 𝑐 ∶≡ 𝜇𝐷

𝐶
(𝑐(𝜇𝐵1
𝐴1
(𝑥1), … , 𝜇𝐵𝑛

𝐴𝑛
(𝑥𝑛))) for some canonical 
21

isomorphisms 𝜇𝐵𝑖
𝐴𝑖

for 𝑖 = 1, … , 𝑛 and 𝜇𝐷
𝐶

.
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Definition 5.4. The judgement 𝑎 =𝑒𝑥𝑡 𝑏 ∶𝑒𝑥𝑡 𝐴 [Γ] means that we can derive 𝑝 ∶ 𝑎 =𝐴 𝑏̃.

The definitions given above specify the meaning of the notation 𝑎 for any raw-expression 𝑎 of emTT and thus the notation (−)▾̃, 
which we will adopt in the next definition.

Definition 5.5 (interpretation of emTT raw-syntax). We define a partial multifunctional interpretation of raw terms and types of emTT

into those of HoTT

(−)▾ ∶ Raw-syntax (emTT) ⟶ Raw-syntax (HoTT)

assuming to have defined two auxiliary partial functions

𝗉𝗋𝖯(−) ∶ Raw-syntax (HoTT) ⟶ Raw-syntax (HoTT)

and

𝗉𝗋𝖲(−) ∶ Rawsyntax (HoTT) ⟶ Rawsyntax (HoTT)

The definition of (−)▾ for contexts of emTT is the following: ([ ])▾ is defined as 1 and (Γ, 𝑥 ∈ 𝐴)▾ is defined as Γ▾, 𝑥 ∶ 𝐴▾. 
Furthermore, (𝑥 ∈𝐴 [Γ])▾ is defined as 𝑥 ∶𝐴▾ [Γ▾], provided that 𝑥 ∶𝐴▾ is in Γ▾.

The interpretation of emTT-judgements is defined as follows:

(𝐴 𝑠𝑒𝑡 [Γ])▾ is defined as 𝐴▾ ∶𝑈0 [Γ▾] such that 𝗉𝗋𝖲(𝐴▾) ∶ 𝗂𝗌𝖲𝖾𝗍(𝐴▾) is derivable

(𝐴 𝑐𝑜𝑙 [Γ])▾ is defined as 𝐴▾ ∶𝑈1 [Γ▾] such that 𝗉𝗋𝖲(𝐴▾) ∶ 𝗂𝗌𝖲𝖾𝗍(𝐴▾) is derivable

(𝑃 prop𝑠 [Γ])▾ is defined as ||𝑃 ▾|| ∶𝑈0 [Γ▾] such that 𝗉𝗋𝖯(||𝑃 ▾||) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(||𝑃 ▾||) is derivable

(𝑃 prop [Γ])▾ is defined as ||𝑃 ▾|| ∶𝑈1 [Γ▾] such that 𝗉𝗋𝖯(||𝑃 ▾||) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(||𝑃 ▾||) is derivable

(𝐴 =𝐵 𝑠𝑒𝑡 [Γ])▾ is defined as (𝐴▾,𝗉𝗋𝖲(𝐴▾)) =𝑒𝑥𝑡 (𝐵▾,𝗉𝗋𝖲(𝐵▾)) ∶ 𝖲𝖾𝗍𝑈0 [Γ▾]
(𝐴 =𝐵 𝑐𝑜𝑙 [Γ])▾ is defined as (𝐴▾,𝗉𝗋𝖲(𝐴▾)) =𝑒𝑥𝑡 (𝐵▾,𝗉𝗋𝖲(𝐵▾)) ∶ 𝖲𝖾𝗍𝑈1 [Γ▾]
(𝑃 =𝑄 prop𝑠 [Γ])▾ is defined as (||𝑃 ▾||,𝗉𝗋𝖯(||𝑃 ▾||)) =𝑒𝑥𝑡 (||𝑄▾||,𝗉𝗋𝖯(||𝑄▾||)) ∶ 𝖯𝗋𝗈𝗉𝑈0 [Γ▾]
(𝑃 =𝑄 prop [Γ])▾ is defined as (||𝑃 ▾||,𝗉𝗋𝖯(||𝑃 ▾||)) =𝑒𝑥𝑡 (||𝑄▾||,𝗉𝗋𝖯(||𝑄▾||)) ∶ 𝖯𝗋𝗈𝗉𝑈1 [Γ▾]
(𝑎 ∈𝐴 [Γ])▾ is defined as 𝑎▾̃ ∶𝑒𝑥𝑡 𝐴▾ [Γ▾]
(𝑎 = 𝑏 ∈𝐴 [Γ])▾ is defined as 𝑎▾̃ =𝑒𝑥𝑡 𝑏▾̃ ∶𝐴▾ [Γ▾]

The interpretation of emTT-constructors is defined as follows:

(Σ𝑥∈𝐴𝐵(𝑥) [Γ])▾ ∶≡ Σ𝑥∶𝐴▾ 𝐵(𝑥)▾ [Γ▾]
(⟨𝑎, 𝑏⟩)▾ ∶≡ (𝑎▾̃, 𝑏▾̃)
(ElΣ(𝑑, 𝑐))▾ ∶≡ 𝗂𝗇𝖽Σ(𝑑▾̃, 𝑥.𝑦.𝑐(𝑥, 𝑦)▾̃)
𝗉𝗋𝖲((Σ𝑥∈𝐴𝐵(𝑥) )▾) ∶≡ 𝔰Σ(𝐴▾, 𝜆𝑥 ∶𝐴▾.𝐵(𝑥)▾,𝗉𝗋𝖲(𝐴▾), 𝜆𝑥 ∶𝐴▾.𝗉𝗋𝖲(𝐵(𝑥)▾))

(Π𝑥∈𝐴𝐵(𝑥) [Γ])▾ ∶≡ Π𝑥∶𝐴▾ 𝐵(𝑥)▾ [Γ▾] (𝜆𝑥.𝑏(𝑥))▾ ∶≡ 𝜆𝑥.𝑏(𝑥)▾̃
𝗉𝗋𝖲((Π𝑥∈𝐴𝐵(𝑥))▾) ∶≡ 𝔰Π(𝐴▾, 𝜆𝑥 ∶𝐴▾.𝐵(𝑥)▾, 𝜆𝑥 ∶𝐴▾.𝗉𝗋𝖲(𝐵(𝑥)▾)) (𝖠𝗉(𝑓, 𝑎))▾ ∶≡ 𝑓 ▾̃(𝑎▾̃)

(𝖭𝟢 [Γ])▾ ∶≡ 0 [Γ▾] (𝖾𝗆𝗉0(𝑐))▾ ∶≡ 𝗂𝗇𝖽0(𝑐▾̃)
𝗉𝗋𝖲((𝖭𝟢)▾) ∶≡ 𝔰0

(𝖭𝟣 [Γ])▾ ∶≡ 1 [Γ▾] (⋆)▾ ∶≡ ⋆
𝗉𝗋𝖲((𝖭𝟣)▾) ∶≡ 𝔰1 (El𝖭𝟣

(𝑡, 𝑐))▾ ∶≡ 𝗂𝗇𝖽𝟣(𝑡▾̃, 𝑐▾̃)

(𝐴+𝐵 [Γ])▾ ∶≡ 𝐴▾ +𝐵▾ [Γ▾]
(𝗂𝗇𝗅(𝑎))▾ ∶≡ 𝗂𝗇𝗅(𝑎▾̃) (𝗂𝗇𝗋(𝑏))▾ ∶≡ 𝗂𝗇𝗋(𝑏▾̃)
(El+(𝑐, 𝑑𝐴, 𝑑𝐵))▾ ∶≡ 𝗂𝗇𝖽+(𝑐▾̃, 𝑥.𝑑𝐴(𝑥)▾̃, 𝑦.𝑑𝐵(𝑦)▾̃)
𝗉𝗋𝖲((𝐴+𝐵)▾) ∶≡ 𝔰+(𝐴▾,𝐵▾,𝗉𝗋𝖲(𝐴▾),𝗉𝗋𝖲(𝐵▾))

(𝖫𝗂𝗌𝗍(𝐴) [Γ])▾ ∶≡ 𝖫𝗂𝗌𝗍(𝐴▾) [Γ▾] (𝜖)▾ ∶≡ 𝗇𝗂𝗅 (𝖼𝗈𝗇𝗌(𝓁, 𝑎))▾ ∶≡ 𝖼𝗈𝗇𝗌(𝓁▾̃, 𝑎▾̃)
𝗉𝗋𝖲((𝖫𝗂𝗌𝗍(𝐴))▾) ∶≡ 𝔰𝖫𝗂𝗌𝗍(𝐴▾,𝗉𝗋𝖲(𝐴▾)) (El𝖫𝗂𝗌𝗍(𝑐, 𝑑, 𝑙))▾ ∶≡ 𝗂𝗇𝖽𝖫𝗂𝗌𝗍(𝑐▾̃, 𝑑▾̃, 𝑥.𝑦.𝑧.𝑙(𝑥, 𝑦, 𝑧)▾̃)

(𝐴∕𝑅 [Γ])▾ ∶≡ 𝐴▾∕𝑅▾ [Γ▾] ([𝑎])▾ ∶≡ 𝗊(𝑎▾̃)
𝗉𝗋𝖲((𝐴∕𝑅)▾) ∶≡ 𝔰𝑄(𝐴▾,𝑅▾,𝗉𝗋𝖲(𝐴▾),𝗉𝗋𝖯(𝑅▾), 𝑟▾) for some term 𝑟 (El𝑄(𝑝, 𝑐))▾ ∶≡ 𝗂𝗇𝖽𝖰(𝑝▾̃, 𝑐▾̃)
22

(𝗍𝗋𝗎𝖾 ∈𝑅(𝑎, 𝑏) [Γ])▾ ∶≡ 𝑝 ∶𝑅(𝑎, 𝑏)▾ [Γ▾] for some term 𝑝



Theoretical Computer Science 991 (2024) 114421M. Contente and M.E. Maietti

((1) [Γ])▾ ∶≡ 𝖯𝗋𝗈𝗉𝑈0 [Γ▾]
([𝐴])▾ ∶≡ (||𝐴▾||,𝗉𝗋𝖯(||𝐴▾||))
𝗉𝗋𝖲(((1))▾) ∶≡ 𝔰𝖯𝗋𝗈𝗉𝟢
(𝗍𝗋𝗎𝖾 ∈𝐴↔ 𝐵 [Γ])▾ ∶≡ 𝑝 ∶ ||𝐴▾||↔ ||𝐵▾|| [Γ▾] for some term 𝑝

(𝐴 → (1) [Γ])▾ ∶≡ 𝐴▾ → 𝖯𝗋𝗈𝗉𝑈0 [Γ▾] (𝜆𝑥.𝑏(𝑥))▾ ∶≡ 𝜆𝑥.𝑏(𝑥)▾̃

𝗉𝗋𝖲((𝐴 → (1))▾) ∶≡ 𝔰Π(𝐴▾, 𝜆 ∶𝐴▾.𝖯𝗋𝗈𝗉𝑈0 ,𝔰𝖯𝗋𝗈𝗉𝟢 ) (𝖠𝗉(𝑓, 𝑎))▾ ∶≡ 𝑓 ▾̃(𝑎▾̃)

(⊥ [Γ])▾ ∶≡ ||0|| [Γ▾] (𝗍𝗋𝗎𝖾 ∈ 𝐶 [Γ])▾ ∶≡ 𝗂𝗇𝖽⊥▾ (𝑐▾̃) ∶ 𝐶▾ [Γ▾] for some term 𝑐
𝗉𝗋𝖯((⊥)▾) ∶≡ 𝔭|| ||(0) 𝗉𝗋𝖲((⊥)▾) ∶≡ 𝔰𝑐𝑜𝑒((⊥)▾,𝗉𝗋𝖯((⊥)▾))

(𝐴 ∨𝐵 [Γ])▾ ∶≡ 𝐴▾ ∨𝐵▾ [Γ▾]
(𝗍𝗋𝗎𝖾 ∈𝐴 ∨𝐵 [Γ])▾ ∶≡ 𝗂𝗇𝗅∨(𝑎▾̃) ∶𝐴▾ ∨𝐵▾ [Γ▾] for some term 𝑎

(𝗍𝗋𝗎𝖾 ∈𝐴 ∨𝐵 [Γ])▾ ∶≡ 𝗂𝗇𝗋∨(𝑏▾̃) ∶𝐴▾ ∨𝐵▾ [Γ▾] for some term 𝑏

(𝗍𝗋𝗎𝖾 ∈ 𝐶 [Γ])▾ ∶≡ 𝗂𝗇𝖽∨(𝑑▾̃, 𝑥.𝑐1(𝑥)▾̃, 𝑦.𝑐2(𝑦)▾̃) ∶ 𝐶▾ [Γ▾] for some terms 𝑐1, 𝑐2, 𝑑
𝗉𝗋𝖯((𝐴 ∨𝐵)▾) ∶≡ 𝔭∨(𝐴▾,𝐵▾)
𝗉𝗋𝖲((𝐴 ∨𝐵)▾) ∶≡ 𝔰𝑐𝑜𝑒((𝐴 ∨𝐵)▾,𝗉𝗋𝖯((𝐴 ∨𝐵)▾))

(𝐴 ∧𝐵 [Γ])▾ ∶≡ ||𝐴▾ ×𝐵▾|| [Γ▾]
(𝗍𝗋𝗎𝖾 ∈𝐴 ∧𝐵 [Γ])▾ ∶≡ (𝑎▾̃,∧ 𝑏▾̃) ∶ ||𝐴▾ ×𝐵▾|| [Γ▾] for some terms 𝑎, 𝑏

(𝗍𝗋𝗎𝖾 ∈𝐴 [Γ])▾ ∶≡ 𝗉𝗋1∧(𝑐▾̃) ∶𝐴▾ [Γ▾] for some term 𝑐

(𝗍𝗋𝗎𝖾 ∈𝐵 [Γ])▾ ∶≡ 𝗉𝗋2∧(𝑐▾̃) ∶ 𝐵▾ [Γ▾] for some term 𝑐
𝗉𝗋𝖯((𝐴 ∧𝐵)▾) ∶≡ 𝔭||×||(𝐴▾,𝐵▾)
𝗉𝗋𝖲((𝐴 ∧𝐵)▾) ∶≡ 𝔰𝑐𝑜𝑒((𝐴 ∧𝐵)▾,𝗉𝗋𝖯((𝐴 ∧𝐵)▾))

(𝐴→𝐵 [Γ])▾ ∶≡ ||𝐴▾ →𝐵▾|| [Γ▾]
(𝗍𝗋𝗎𝖾 ∈𝐴→ 𝐵 [Γ])▾ ∶≡ 𝜆→𝑥.𝑏▾̃ ∶ ||𝐴▾ →𝐵▾|| [Γ▾] for some term 𝑏

(𝗍𝗋𝗎𝖾 ∈𝐵 [Γ])▾ ∶≡ 𝑓 ▾̃→(𝑎▾̃) ∶𝐵▾ [Γ▾] for some terms 𝑎,𝑓
𝗉𝗋𝖯((𝐴→ 𝐵)▾) ∶≡ 𝔭||→||(𝐴▾,𝐵▾)
𝗉𝗋𝖲((𝐴→𝐵)▾) ∶≡ 𝔰𝑐𝑜𝑒((𝐴→𝐵)▾,𝗉𝗋𝖯((𝐴→ 𝐵)▾))

(∃𝑥∈𝐴𝐵(𝑥) [Γ])▾ ∶≡ ∃𝑥∶𝐴▾ 𝐵(𝑥)▾ [Γ▾]
(𝗍𝗋𝗎𝖾 ∈ ∃𝑥∈𝐴𝐵(𝑥) [Γ])▾ ∶≡ (𝑎▾̃,∃ 𝑏▾̃) ∶ ∃𝑥∶𝐴▾ 𝐵(𝑥)▾ [Γ▾] for some terms 𝑎, 𝑏

(𝗍𝗋𝗎𝖾 ∈ 𝐶 [Γ])▾ ∶≡ 𝗂𝗇𝖽∃(𝑑▾̃, 𝑥.𝑦.𝑐(𝑥, 𝑦)▾̃) ∶ 𝐶▾ [Γ▾] for some terms 𝑐, 𝑑
𝗉𝗋𝖯((∃𝑥∈𝐴𝐵(𝑥))▾) ∶≡ 𝔭∃(𝐴▾, 𝜆𝑥 ∶𝐴▾.𝐵(𝑥)▾ )
𝗉𝗋𝖲((∃𝑥∈𝐴𝐵(𝑥))▾) ∶≡ 𝔰𝑐𝑜𝑒((∃𝑥∈𝐴𝐵(𝑥))▾, 𝗉𝗋𝖯((∃𝑥∈𝐴𝐵(𝑥))▾))

(∀𝑥∈𝐴𝐵(𝑥) [Γ])▾ ∶≡ ||Π𝑥∶𝐴▾ 𝐵(𝑥)▾|| [Γ▾]
(𝗍𝗋𝗎𝖾 ∈ ∀𝑥∈𝐴𝐵(𝑥) [Γ])▾ ∶≡ 𝜆∀𝑥.𝑏(𝑥)▾̃ ∶ ||Π𝑥∶𝐴▾ 𝐵(𝑥)▾|| [Γ▾] for some term 𝑏

(𝗍𝗋𝗎𝖾 ∈𝐵(𝑎) [Γ])▾ ∶≡ (𝑓 ▾̃)∀(𝑎▾̃) ∶𝐵(𝑎)▾ [Γ▾] for some terms 𝑎,𝑓
𝗉𝗋𝖯((∀𝑥∈𝐴𝐵(𝑥))▾) ∶≡ 𝔭||Π||(𝐴▾, 𝜆𝑥 ∶𝐴▾.𝐵(𝑥)▾)
𝗉𝗋𝖲((∀𝑥∈𝐴𝐵(𝑥))▾) ∶≡ 𝔰𝑐𝑜𝑒((∀𝑥∈𝐴𝐵(𝑥))▾, 𝗉𝗋𝖯((∀𝑥∈𝐴𝐵(𝑥))▾))

(Eq(𝐴,𝑎, 𝑏) [Γ])▾ ∶≡ ||Id𝐴▾ (𝑎▾̃, 𝑏▾̃)|| [Γ▾]
(𝗍𝗋𝗎𝖾 ∈ Eq(𝐴,𝑎, 𝑎) [Γ])▾ ∶≡ |𝗋𝖾𝖿 𝗅𝑎▾̃ | ∶ ||Id𝐴▾ (𝑎

▾̃, 𝑎▾̃)|| [Γ▾] for some term 𝑎

𝗉𝗋𝖯((Eq(𝐴,𝑎, 𝑏))▾) ∶≡ 𝔭|| ||(𝐴▾, 𝑎▾̃, 𝑏▾̃, Id𝐴▾ (𝑎▾̃, 𝑏▾̃))
𝗉𝗋𝖲((Eq(𝐴,𝑎, 𝑏))▾) ∶≡ 𝔰𝑐𝑜𝑒((Eq(𝐴,𝑎, 𝑏))▾ , 𝗉𝗋𝖯((Eq(𝐴,𝑎, 𝑏))▾))

Remark 5.6. We could alternatively give a single clause for judgements with the proof-term ‘𝗍𝗋𝗎𝖾’, namely (𝗍𝗋𝗎𝖾)▾ ∶≡ 𝑝 for some 
proof-term 𝑝 in HoTT. This would allow us to avoid to specify the interpretation of 𝗍𝗋𝗎𝖾 for each term constructor, since all these 
cases would be particular instances of this generic clause, but then we should make explicit how to recover them in the validity 
theorem.

Definition 5.7. Let (−)⧫ be a multifunctional interpretation from the raw-syntax of emTT-types and terms judgements to the raw-

syntax of HoTT-types and terms judgements defined as follows:

( )⧫ ∶≡ ( )▾ if  is a type judgement
23

( )⧫ ∶≡ ( )▾̃ if  is a term judgement



Theoretical Computer Science 991 (2024) 114421M. Contente and M.E. Maietti

In order to define the interpretation of emTT-judgements into the category 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 , we need to allow the possibility of regarding 
dependent types as arrows into the category and the following definition is introduced for this purpose:

Definition 5.8. Let Γ be a context in HoTT, then we define by induction over the length of Γ the indexed closure 𝑆𝑖𝑔(Γ), which 
comes equipped with projections 𝜋𝑛𝑖 (𝑧) for 𝑧 ∶ 𝑆𝑖𝑔(Γ) and 𝑖 = 1, … , 𝑛

If Γ ∶≡ 𝑥 ∶𝐴, then 𝑆𝑖𝑔 (Γ) ∶≡ 𝐴 and 𝜋11 (𝑧) ∶≡ 𝑧
If Γ ∶≡ Δ, 𝑥 ∶𝐴 of length 𝑛+ 1, then 𝑆𝑖𝑔 (Γ) ∶≡ (Σ𝑧∶𝑆𝑖𝑔(Δ) 𝐴[𝜋𝑛1 (𝑧)∕𝑥1,… , 𝜋

𝑛
𝑛 (𝑧)∕𝑥𝑛])

where 𝜋𝑛+1𝑖 (𝑤) ∶≡ 𝜋𝑛𝑖 (𝜋1(𝑤)) for 𝑖 = 1, … , 𝑛 and 𝜋𝑛+1
𝑛+1(𝑤) ∶≡ 𝜋2(𝑤) for any 𝑤 ∶ Σ𝑧∶𝑆𝑖𝑔(Δ)𝐴[𝜋𝑛1 (𝑧)∕𝑥1, … , 𝜋𝑛𝑛 (𝑧)∕𝑥𝑛].

Moreover, we denote 𝑎 the result of the substitution of the free variables 𝑥1, … , 𝑥𝑛 in a term 𝑎 with 𝜋𝑛𝑖 (𝑧) for 𝑖 = 1, … , 𝑛 and 
𝑧 ∶ 𝑆𝑖𝑔(Γ).

The definition of the multi-function interpretation (−)⧫ from the raw-syntax of emTT to the raw-syntax of HoTT allows us to 
define a direct interpretation In𝐷 : emTT →𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

of emTT-judgements into the category 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 described in Definition 4.14.

Definition 5.9. The interpretation In𝐷 : emTT →𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐
is defined by using the partial multi-function (−)⧫ in the following way:

- An emTT-type judgements is interpreted as a projection in 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐
In𝐷 (𝐴 𝑡𝑦𝑝𝑒 [Γ]) ∶≡ [𝜋1] ∶ [𝑆𝑖𝑔(Γ⧫,𝐴⧫)] → [𝑆𝑖𝑔(Γ⧫)]

which amounts to derive 𝐴⧫ [Γ⧫] in HoTT with canonical transports.

- An emTT-type equality judgement is interpreted as the equality of type interpretations in 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐
In𝐷 (𝐴 =𝐵 𝑡𝑦𝑝𝑒 [Γ]) ∶≡ In𝐷 (𝐴 𝑡𝑦𝑝𝑒 [Γ]) =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

InD (𝐵 𝑡𝑦𝑝𝑒 [Γ])

which amounts to derive 𝐴⧫ [Γ⧫] =𝑒𝑥𝑡 𝐵⧫ [Γ⧫] and hence 𝐴⧫ =𝑈1 𝐵
⧫ [Γ⧫].

- An emTT-term judgement is interpreted as a section of the interpretation of the corresponding type

In𝐷 (𝑎 ∈𝐴 [Γ]) ∶≡ [⟨𝑧, 𝑎⧫⟩] ∶ [𝑆𝑖𝑔(Γ⧫)]→ [𝑆𝑖𝑔(Γ⧫,𝐴⧫)]

which amounts to derive 𝑎⧫ ∶𝐴⧫ [Γ⧫] in HoTT with 𝐴⧫ [Γ⧫] equipped with canonical transports.

- An emTT-term equality judgement is interpreted as the equality of term interpretations in 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐
In𝐷 (𝑎 = 𝑏 ∈𝐴 [Γ]) ∶≡ In𝐷 (𝑎 ∈𝐴 [Γ]) =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

In𝐷 (𝑏 ∈𝐴 [Γ])

which amounts to derive 𝑎⧫ =
𝐴⧫ 𝑏

⧫ [Γ⧫], for some 𝑎⧫ ∶𝐴⧫ [Γ⧫] and 𝑏⧫ ∶𝐴⧫ [Γ⧫].

In the following, given Γ ∶≡ Δ′, 𝑥𝑛 ∶ 𝐴𝑛, Δ′′ with Δ′′ ∶≡ 𝑥𝑛+1 ∶ 𝐴𝑛+1, … , 𝑥𝑚 ∶ 𝐴𝑚, then for every 𝑎 ∶ 𝐴𝑛 [Δ′] and for any type 
𝐵 𝑡𝑦𝑝𝑒 [Γ], we denote the substitution of 𝑥𝑛 with 𝑎 in 𝐵 as

𝐵[𝑎∕𝑥𝑛] 𝑡𝑦𝑝𝑒 [Δ′,Δ′′
𝑎 ]

instead of the extended form

𝐵[𝑎∕𝑥𝑛][𝑥′𝑖∕𝑥𝑖]𝑖=𝑛+1,…,𝑚 𝑡𝑦𝑝𝑒 [Δ
′,Δ′′
𝑎 ]

where

Δ′′
𝑎 ∶≡ 𝑥′
𝑛+1 ∶𝐴

′
𝑛+1,… , 𝑥

′
𝑚 ∶𝐴

′
𝑚

and

𝐴′𝑗 ∶≡ 𝐴𝑗 [𝑎𝑛∕𝑥𝑛][𝑥
′
𝑖∕𝑥𝑖]𝑖=𝑛+2,…,𝑚

if 𝑛 + 2 ≤ 𝑚, otherwise 𝐴′
𝑛+1 ∶≡ 𝐴𝑛+1[𝑎𝑛∕𝑥𝑛]. Moreover, if Δ′′ is the empty context, then Δ′′

𝑎 is the empty context as well. We use 
similar abbreviations also for terms.

Lemma 5.10 (Substitution). For any emTT-judgement 𝐵 𝑡𝑦𝑝𝑒 [Γ] interpreted in 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 as

[𝜋1] ∶ [𝑆𝑖𝑔(Γ⧫, 𝑦 ∶𝐵⧫)]→ [𝑆𝑖𝑔(Γ⧫)]

if Γ ∶≡ Δ′, 𝑥𝑛 ∈𝐴𝑛, Δ′′, then for every emTT-judgement 𝑎 ∈𝐴𝑛 [Δ′] interpreted as [⟨𝑧, 𝑎⧫⟩] ∶ [𝑆𝑖𝑔(Δ′⧫)] → [𝑆𝑖𝑔(Δ′⧫, 𝑥𝑛 ∈𝐴
⧫
𝑛 )],

′′⧫ ′′⧫
24

In𝐷(𝐵[𝑎∕𝑥𝑛] 𝑡𝑦𝑝𝑒 [Δ′,Δ′′
𝑎 ]) =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

[𝜋1] ∶ [𝑆𝑖𝑔(Δ′⧫,Δ𝑎 , 𝑦 ∈𝐵⧫[𝑎⧫∕𝑥𝑛])]→ [𝑆𝑖𝑔(Δ′⧫,Δ𝑎 )]
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Similarly, for any emTT-judgement 𝑏 ∈ 𝐵 [Γ], where 𝐵 and Γ are exactly as specified above, and which is interpreted as

[⟨𝑧, 𝑏
⧫
⟩] ∶ [𝑆𝑖𝑔(Γ⧫)] → [𝑆𝑖𝑔(Γ⧫, 𝑦 ∶ 𝐵⧫)],

In𝐷(𝑏[𝑎∕𝑥𝑛] ∈ 𝐵[𝑎∕𝑥𝑛] [Δ′,Δ′′
𝑎 ]) =𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐

[⟨𝑧, 𝑏⧫[𝑎⧫∕𝑥𝑛] ⟩ ] ∶ [𝑆𝑖𝑔(Δ′⧫,Δ′′⧫
𝑎 )]→ [𝑆𝑖𝑔(Δ′⧫,Δ′′⧫

𝑎 , 𝑦 ∈𝐵⧫[𝑎⧫∕𝑥𝑛])].

Proof. By induction over the interpretation of raw types and terms after noting that canonical isomorphisms are closed under 
substitution. □

Theorem 5.11. If 𝐴 𝑡𝑦𝑝𝑒 [Γ] is derivable in emTT, then In𝐷 (𝐴 𝑡𝑦𝑝𝑒 [Γ]) is well-defined.

If 𝑎 ∈𝐴 [Γ] is derivable in emTT, then In𝐷 (𝑎 ∈𝐴 [Γ]) is well-defined.

If 𝐴 𝑡𝑦𝑝𝑒 [Γ], 𝐵 𝑡𝑦𝑝𝑒 [Γ] and 𝐴 =𝐵 [Γ] are derivable in emTT, then In𝐷 (𝐴 =𝐵 [Γ]) is well-defined.

If 𝑎 ∈𝐴 [Γ], 𝑏 ∈𝐴 [Γ] and 𝑎 = 𝑏 ∈𝐴 [Γ] are derivable in emTT, then In𝐷 (𝑎 = 𝑏 ∈𝐴 [Γ]) is well-defined.

Therefore, emTT is valid with respect to the interpretation In𝐷 .

Proof. The proof is by induction over the derivation of judgements. Sets in 𝖲𝖾𝗍𝑚𝑓 form a Π-pretopos, therefore they possess enough 
structure to interpret emTT-type and term constructors. Note that conversion rules are interpreted correctly by canonical isomor-

phisms, since it is possible to coerce a term along a canonical isomorphism for the definitions given above. Indeed the rule

𝑎 ∈𝐴 [Γ] 𝐴 = 𝐵 𝑡𝑦𝑝𝑒 [Γ]
𝑎 ∈ 𝐵 [Γ]

𝖼𝗈𝗇𝗏

is interpreted as follows: by inductive hypothesis, In𝐷(𝑎 ∈ 𝐴 [Γ]) is well-defined and amounts to derive 𝑎⧫ ∶ 𝐴⧫ [Γ⧫] for some 𝑎⧫
and some 𝐴⧫ 𝑡𝑦𝑝𝑒 [Γ⧫] in HoTT; further, In𝐷(𝐴 = 𝐵 𝑡𝑦𝑝𝑒 [Γ]) is well-defined too and amounts to derive 𝐴⧫ =𝑒𝑥𝑡 𝐵⧫ [Γ⧫] for some 
canonical isomorphism 𝜇 ∶𝐴⧫ →𝐵⧫ [Γ⧫] and for some 𝐴⧫ 𝑡𝑦𝑝𝑒 [Γ⧫], 𝐵⧫ 𝑡𝑦𝑝𝑒 [Γ⧫] in HoTT and thus, by Univalence, it boils down 
to 𝐴⧫ =𝑈𝑖 𝐵

⧫ [Γ⧫]. Therefore, In𝐷(𝑎 ∈ 𝐵 [Γ]) is well-defined, since 𝜇(𝑎) ∶ 𝐵⧫ [Γ⧫, 𝑎 ∶ 𝐴⧫] is derivable and, moreover, such an 
isomorphism is unique up to propositional equality.

The power collection of the singleton (1) is interpreted as 𝖯𝗋𝗈𝗉𝑈0 ∶ 𝑈1 together with a proof 𝗉𝗋𝖲(((1)⧫)) ∶ 𝗂𝗌𝖲𝖾𝗍(((1)⧫)). The 
introduction rule

𝐴 𝑝𝑟𝑜𝑝𝑠 [Γ]
[𝐴] ∈ (1) [Γ]

I-P

is validated as follows: by induction hypothesis, In𝐷(𝐴 𝑝𝑟𝑜𝑝𝑠 [Γ]) is well-defined and amounts to derive ||𝐴⧫|| ∶ 𝑈0 [Γ⧫] together 
with 𝗉𝗋𝖯(||𝐴⧫||) ∶ 𝗂𝗌𝖯𝗋𝗈𝗉(||𝐴⧫||). Therefore the conclusion is immediately valid, since it boils down to derive the following judgement

(||𝐴⧫||, 𝗉𝗋𝖯(||𝐴⧫||)) ∶ 𝖯𝗋𝗈𝗉𝑈0 [Γ⧫].
Then there are the following two rules:

𝗍𝗋𝗎𝖾 ∈𝐴↔ 𝐵 [Γ]
[𝐴] = [𝐵] ∈ (1) [Γ]

𝖾𝗊-(1) [𝐴] = [𝐵] ∈ (1) [Γ]
𝗍𝗋𝗎𝖾 ∈𝐴↔𝐵 [Γ]

𝖾𝖿𝖿 -(1)

For the first: by induction hypothesis, In𝐷(𝗍𝗋𝗎𝖾 ∈ 𝐴 ↔ 𝐵 [Γ]) is well-defined and hence there exists a proof-term 𝑝 such that 
𝑝 ∶ ||𝐴⧫|| ↔ ||𝐵⧫|| [Γ⧫] is derivable and (𝗍𝗋𝗎𝖾)⧫ ∶≡ 𝑝, but then by Propositional Extensionality we can infer ||𝐴⧫|| =𝑈0 ||𝐵

⧫|| [Γ⧫]
and then the conclusion is valid, because (||𝐴⧫||, 𝗉𝗋𝖯(||𝐴⧫||)) =𝖯𝗋𝗈𝗉𝑈0

(||𝐵⧫||, 𝗉𝗋𝖯(||𝐵⧫||)) holds. The latter instead trivially follows 

by definition of (−)⧫.

For emTT-quotients we have the effectiveness rule:

𝑎 ∈𝐴 [Γ] 𝑏 ∈𝐴 [Γ] [𝑎] = [𝑏] ∈𝐴∕𝑅 [Γ] 𝐴∕𝑅 𝑠𝑒𝑡 [Γ]
𝗍𝗋𝗎𝖾 ∈𝑅(𝑎, 𝑏) [Γ]

𝖾𝖿𝖿 -𝑄

which is interpreted as follows: by induction hypothesis, In𝐷 applied to the premises is well-defined and this amounts to derive that 
there exist 𝑎⧫, 𝑏⧫ in HoTT such that 𝑎⧫ ∶ 𝐴⧫ [Γ⧫], 𝑏⧫ ∶ 𝐴⧫ [Γ⧫], 𝗊(𝑎⧫) =

𝐴⧫∕𝑅⧫ 𝗊(𝑏⧫) [Γ⧫] are derivable and 𝐴⧫∕𝑅⧫ ∶ 𝑈0 [Γ⧫]
together with a proof 𝗉𝗋𝖲(𝐴⧫∕𝑅⧫) ∶ 𝗂𝗌𝖲𝖾𝗍(𝐴⧫∕𝑅⧫) is derivable as well for some 𝐴⧫ and 𝑅⧫. Since set quotients in HoTT are 
effective (see Remark 2.20), then the interpretation of the conclusion is well-defined and the effectiveness rule is validated by our 
interpretation. Indeed, for some HoTT-term 𝑝 such that (𝗍𝗋𝗎𝖾)⧫ ∶≡ 𝑝, we can derive 𝑝 ∶𝑅(𝑎, 𝑏)⧫ [Γ⧫].

The reflection rule for extensional propositional equality

𝗍𝗋𝗎𝖾 ∈ Eq(𝐴,𝑎, 𝑏) [Γ]
𝑎 = 𝑏 ∈𝐴 [Γ]

E-Eq

is trivially validated by our interpretation. Indeed, if we assume that In𝐷 is well-defined for the premise, then this means that 
𝑝 ∶ Id
𝐴⧫ (𝑎

⧫, 𝑏⧫) [Γ⧫] is derivable for some 𝑎⧫, 𝑏⧫ ∶ 𝐴⧫ and some proof-term 𝑝. But then the interpretation of the conclusion is 
25

well-defined as well, since it amounts to derive 𝑝 ∶ Id
𝐴⧫ (𝑎

⧫, 𝑏⧫) [Γ⧫] for some 𝑝.
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In general, the interpretation of the judgements with proof-term 𝗍𝗋𝗎𝖾 works by restoring a corresponding proof-term in the 
intensional setting: In𝐷(𝗍𝗋𝗎𝖾 ∈ 𝐴 [Γ]) amounts to derive that there exists a term 𝑝 such that 𝑝 ∶ 𝐴⧫ [Γ⧫] is derivable in HoTT and 
where 𝑝 corresponds to (𝗍𝗋𝗎𝖾)⧫. By way of example, let us consider the following rule:

𝑎 ∈𝐴 [Γ]
𝗍𝗋𝗎𝖾 ∈ Eq(𝐴,𝑎, 𝑎) [Γ]

I-Eq

By induction hypothesis, In𝐷(𝑎 ∈ 𝐴 [Γ]) is well-defined and hence we can derive 𝑎⧫ ∶ 𝐴⧫ [Γ⧫] for some term 𝑎⧫ in HoTT; then 
the interpretation of the conclusion is also well-defined, since |𝗋𝖾𝖿 𝗅

𝑎⧫ | ∶ ||Id𝐴⧫ (𝑎
⧫, 𝑎⧫)|| [Γ⧫] is derivable and (𝗍𝗋𝗎𝖾)⧫ ∶≡ |𝗋𝖾𝖿 𝗅

𝑎⧫ |. 
Therefore, the rule I-Eq is validated by our interpretation.

Finally, note that the validity of 𝛽-rules also depends on the substitution Lemma 5.10. □

Remark 5.12. An important feature of the interpretation of emTT is that it can be regarded as an extension of Martin-Löf’s interpre-

tation of true judgements [16,17]. A judgement of the form 𝐴 𝑡𝑟𝑢𝑒 must be read intuitionistically as ‘there exists a proof of 𝐴’. In emTT

we know that there exists a unique canonical inhabitant for propositions denoted by 𝗍𝗋𝗎𝖾 and hence we have that 𝐴 𝑡𝑟𝑢𝑒 ∶≡ 𝗍𝗋𝗎𝖾 ∈𝐴. 
By applying the interpretation defined above, we can recover a proof-term 𝑝 such that 𝑝 ∶𝐴⧫. Such 𝑝 could be considered as a typed 
realizer. Indeed, as a result of the validity of the interpretation, true judgments are endowed with computational content. However, 
this result was already achieved in the interpretation of emTT in mTT given in [14]. We just remark that this applies also to the 
present interpretation.

Remark 5.13. We could have interpreted emTT within HoTT in another way by employing as an intermediate step the interpretation 
of emTT within the quotient model construction Q(𝐦𝐓𝐓)∕ ≅ done in [14]. The reason is that this quotient model construction could 
be functorially mapped into 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 by employing set-quotients of HoTT and a variation of the interpretation (−)∙ of mTT within

HoTT where all emTT propositions are interpreted as truncated propositions (as in Remark 2.14) in order to guarantee that the 
canonical isomorphisms defined in [14] between extensional dependent types, which are actually dependent setoids (the word 
“setoid” was avoided in [14] because mTT-types are not all called sets!), are sent to canonical isomorphisms of HoTT as defined in 
4.7.

The existence of such an alternative interpretation into 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 is also expected for categorical reasons. First, Q(𝐦𝐓𝐓)∕ ≅ is an 
instance of a general categorical construction called elementary quotient completion in [25,23]. Second, such a completion satisfies a 
universal property with respect to suitable Lawvere’s elementary doctrines closed under stable effective quotients including as an 
example the elementary doctrine of h-propositions indexed over a suitable syntactic category of h-sets of HoTT thanks to the presence 
of set-quotients in HoTT. However, it is not guaranteed that the resulting translation from emTT into HoTT shows that emTT is 
compatible with HoTT by construction. We think that the best way to show this would be to check that this alternative interpretation 
is “isomorphic” to the one described in this section according to a suitable notion of isomorphism between interpretations of emTT

which would be better described after shaping both interpretations in categorical terms as functors from a suitable syntactic category 
of emTT into a category with families, in the sense of [7], built out of 𝖲𝖾𝗍𝑚𝑓 ∕≅𝑐 . The precise definition of this alternative compatible 
translation of emTT within HoTT and the possible use of an heterogeneous equality as in [1,38] are left to future work.

Remark 5.14. Note that the interpretations of mTT and emTT within HoTT presented in the previous section, interpret both the 
mTT-universe of small propositions 𝖯𝗋𝗈𝗉𝗌 and the emTT power-collection (1) of the singleton set as the set 𝖯𝗋𝗈𝗉𝑈0 of h-propositions 
in the first universe up to propositional equality. Indeed, we could have interpreted the equality judgements of mTT concerning the 
definitional equality of types and terms as done for emTT.

However, we have chosen to interpret the definitional equality of mTT-types and terms as definitional equality of types and terms 
of HoTT to preserve not only the meaning of mTT-sets and propositions but also the type-theoretic distinction between definitional 
and propositional equality which disappears in the extensional version of dependent type theories as emTT.

Remark 5.15 (Related Works). Of course, the already cited work by M. Hofmann in [9,10] is related to the one presented here, being 
related to the interpretation of emTT into mTT in [14] as said in the Introduction. Hofmann aimed to show the conservativity of 
extensional type theory over the intensional one extended with function extensionality and uniqueness of identity proofs axioms. His 
approach is semantic since he employed a category with families quotiented under canonical isomorphisms. The drawback of using 
such a semantic approach is that the whole development relies on the Axiom of Choice, which allows to pick out a representative 
from each equivalence class involved in the construction.

Hofmann’s interpretation was made effective later in [30,38] by defining a syntactical translation which is closed to our inter-

pretation of emTT into HoTT. Both interpretations are actually multifunctional since they associate to any judgment in the source 
extensional type theory a set of possible judgements in the target intensional type theory linked by means of an heterogenous equality 
in [30,38] and by canonical isomorphisms in ours.

Note that our interpretation does not achieve any conservativity result over HoTT: first, emTT is not an extension of HoTT and 
moreover the derivability of the axiom of unique choice in HoTT prevents any conservativity result because it is not valid in emTT
26

(see Remark 2.1).
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6. Conclusions

We have shown how to interpret both levels of MF within HoTT in a compatible way by preserving the meaning of logical 
and set-theoretical constructors. Higher inductive set-quotients, Univalence for h-propositions in the first universe 𝑈0 and function 
extensionality for h-sets within the second universe 𝑈1 are the additional principles on the top of Martin-Löf’s type theory which 
are needed to interpret emTT within HoTT in a way that preserves compatibility. On the other hand, the interpretation also works 
thanks to the possibility of defining canonical isomorphisms within HoTT. Further, the interpretation of emTT-propositions extends 
the interpretation of true judgements in the sense of [16,17].

In the future we hope to investigate the alternative translation of emTT within HoTT mentioned in Remark 5.13. Moreover, we 
would like to employ an extension of HoTT with Palmgren’s superuniverse to interpret both levels of MF extended with inductive 
and coinductive definitions as in [20,28].

As a relevant consequence of the results shown here, both levels of MF inherit a computable model where proofs are seen as 
programs in [33] and a model witnessing its consistency with Formal Church’s thesis in [36]. We leave to future work to relate them 
with those already available for MF extended with Church’s thesis in [19], [11], [21], [20], and in particular with the predicative 
variant of Hyland’s Effective Topos in [19]. It would also be very relevant from the computational point of view to relate MF and its 
extensions in [20] with Berger and Tsuiki’s logic presented in [2] as a framework for program extraction from proofs.
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Appendix A. The translation of mTT-syntax in HoTT

Here we spell out the interpretation of the raw syntax of mTT-types and terms as raw types and terms of HoTT. First of all, all 
variables in mTT are translated as variables of HoTT without changing the name

𝑥‚ ∶≡ 𝑥

Then the interpretation of specific mTT-types and terms is defined in the following table:

(𝗉𝗋𝗈𝗉𝗌)‚ ∶≡ 𝖯𝗋𝗈𝗉𝑈0
𝗉𝗋𝖲((𝗉𝗋𝗈𝗉𝗌)‚) ∶≡ 𝔰𝖯𝗋𝗈𝗉𝟢
(𝜏(𝑝))‚ ∶≡ 𝗉𝗋1(𝑝‚)
𝗉𝗋𝖯((𝜏(𝑝))‚) ∶≡ 𝗉𝗋2(𝑝‚)
𝗉𝗋𝖲((𝜏(𝑝))‚) ∶≡ 𝔰𝑐𝑜𝑒((𝜏(𝑝))‚,𝗉𝗋𝖯((𝜏(𝑝))‚))

(⊥̂)‚ ∶≡ (0, 𝔭0) (⊤̂)‚ ∶≡ (𝟏, 𝔭1 )
(𝑝∨̂𝑞)‚ ∶≡ (𝗉𝗋1(𝑝‚) ∨ 𝗉𝗋1(𝑞‚) , 𝔭∨(𝗉𝗋1(𝑝‚),𝗉𝗋1(𝑞‚) ))
(𝑝∧̂𝑞)‚ ∶≡ (𝗉𝗋1(𝑝‚) × 𝗉𝗋1(𝑞‚) , 𝔭×(𝗉𝗋1(𝑝‚),𝗉𝗋1(𝑞‚),𝗉𝗋2(𝑝‚),𝗉𝗋2(𝑞‚) ))
(𝑝→̂𝑞)‚ ∶≡ (𝗉𝗋1(𝑝‚)→𝗉𝗋1(𝑞‚) , 𝔭→(𝗉𝗋1(𝑝‚),𝗉𝗋1(𝑞‚),𝗉𝗋2(𝑝‚),𝗉𝗋2(𝑞‚) ))
(∃̂𝑥∈𝐴 𝑝(𝑥))‚ ∶≡ (∃𝑥∶𝐴‚ 𝑝(𝑥)‚, 𝔭∃(𝐴‚, 𝜆𝑥.𝗉𝗋1(𝑝(𝑥)‚)) )
(∀̂𝑥∈𝐴 𝑝(𝑥))‚ ∶≡ (Π𝑥∶𝐴‚ 𝑝(𝑥)‚ , 𝔭Π(𝐴‚, 𝜆𝑥.𝗉𝗋1(𝑝(𝑥)‚), 𝜆𝑥.𝗉𝗋2(𝑝(𝑥)‚)))
(Îd(𝐴,𝑎, 𝑏))‚ ∶≡ (Id𝐴‚ (𝑎‚, 𝑏‚) , 𝔭𝐼𝑑 (𝐴‚,𝗉𝗋𝖲(𝐴‚), 𝑎‚, 𝑏‚ ))

(𝐴 → 𝗉𝗋𝗈𝗉𝗌)‚ ∶≡ 𝐴‚ → 𝖯𝗋𝗈𝗉𝑈0 (𝜆𝑥.𝑏(𝑥))‚ ∶≡ 𝜆𝑥.𝑏(𝑥)‚
27

𝗉𝗋𝖲((𝐴 → 𝗉𝗋𝗈𝗉𝗌)‚) ∶≡ 𝔰Π(𝐴‚, 𝜆𝑥 ∶𝐴‚.𝖯𝗋𝗈𝗉𝑈0 ,𝔰𝖯𝗋𝗈𝗉𝟢 ) (𝖠𝗉(𝑓, 𝑎))‚ ∶≡ 𝑓‚(𝑎‚)
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(Σ𝑥∈𝐴𝐵(𝑥) )‚ ∶≡ Σ𝑥∶𝐴‚ 𝐵(𝑥)‚
(⟨𝑎, 𝑏⟩)‚ ∶≡ (𝑎‚, 𝑏‚)
(ElΣ(𝑑, 𝑐))‚ ∶≡ 𝗂𝗇𝖽Σ(𝑑‚, 𝑥.𝑦.𝑐(𝑥, 𝑦)‚)
𝗉𝗋𝖲((Σ𝑥∈𝐴𝐵(𝑥) )‚) ∶≡ 𝔰Σ(𝐴‚, 𝜆𝑥 ∶𝐴‚.𝐵(𝑥)‚,𝗉𝗋𝖲(𝐴‚), 𝜆𝑥 ∶𝐴‚.𝗉𝗋𝖲(𝐵(𝑥)‚))

(Π𝑥∈𝐴𝐵(𝑥))‚ ∶≡ Π𝑥∶𝐴‚ 𝐵(𝑥)‚, (𝜆𝑥.𝑏(𝑥))‚ ∶≡ 𝜆𝑥.𝑏(𝑥)‚
𝗉𝗋𝖲((Π𝑥∈𝐴𝐵(𝑥))‚) ∶≡ 𝔰Π(𝐴‚, 𝜆𝑥 ∶𝐴‚.𝐵(𝑥)‚, 𝜆𝑥 ∶𝐴‚.𝗉𝗋𝖲(𝐵(𝑥)‚)) (𝖠𝗉(𝑓, 𝑎))‚ ∶≡ 𝑓‚(𝑎‚)

(𝖭𝟢)‚ ∶≡ 0 (𝖾𝗆𝗉0(𝑐))‚ ∶≡ 𝗂𝗇𝖽0(𝑐‚)
𝗉𝗋𝖲((𝖭𝟢)‚) ∶≡ 𝔰0

(𝖭𝟣)‚ ∶≡ 1 (⋆)‚ ∶≡ ⋆
𝗉𝗋𝖲((𝖭𝟣)‚) ∶≡ 𝔰1 (El𝖭𝟣

(𝑡, 𝑐))‚ ∶≡ 𝗂𝗇𝖽𝟣(𝑡‚, 𝑐‚)

(𝐴+𝐵)‚ ∶≡ 𝐴‚ +𝐵‚,

(𝗂𝗇𝗅(𝑎))‚ ∶≡ 𝗂𝗇𝗅(𝑎‚)
(𝗂𝗇𝗋(𝑏))‚ ∶≡ 𝗂𝗇𝗋(𝑏‚)
(El+(𝑐, 𝑑𝐴, 𝑑𝐵))‚ ∶≡ 𝗂𝗇𝖽+(𝑐‚, 𝑥.𝑑𝐴(𝑥)‚, 𝑦.𝑑𝐵(𝑦)‚)
𝗉𝗋𝖲((𝐴+𝐵)‚) ∶≡ 𝔰+(𝐴‚,𝐵‚,𝗉𝗋𝖲(𝐴‚),𝗉𝗋𝖲(𝐵‚))

(𝖫𝗂𝗌𝗍(𝐴))‚ ∶≡ 𝖫𝗂𝗌𝗍(𝐴‚), (𝜖)‚ ∶≡ 𝗇𝗂𝗅 (𝖼𝗈𝗇𝗌(𝓁, 𝑎))‚ ∶≡ 𝖼𝗈𝗇𝗌(𝓁‚, 𝑎‚)
𝗉𝗋𝖲((𝖫𝗂𝗌𝗍(𝐴))‚) ∶≡ 𝔰𝖫𝗂𝗌𝗍(𝐴‚,𝗉𝗋𝖲(𝐴‚)) (El𝖫𝗂𝗌𝗍(𝑐, 𝑑, 𝑙)‚ ∶≡ 𝗂𝗇𝖽𝖫𝗂𝗌𝗍(𝑐‚, 𝑑‚, 𝑥.𝑦.𝑧.𝑙(𝑥, 𝑦, 𝑧)‚)

(⊥)‚ ∶≡ 0 (𝗋𝟢(𝑐))‚ ∶≡ 𝗂𝗇𝖽𝟢(𝑐‚)
𝗉𝗋𝖯((⊥)‚) ∶≡ 𝔭0
𝗉𝗋𝖲((⊥)‚) ∶≡ 𝔰𝑐𝑜𝑒((⊥)‚,𝗉𝗋𝖯((⊥)‚))

(𝐴 ∨𝐵)‚ ∶≡ 𝐴‚ ∨𝐵‚
(𝗂𝗇𝗅∨(𝑎))‚ ∶≡ 𝗂𝗇𝗅∨(𝑎‚) (𝗂𝗇𝗋∨(𝑏))‚ ∶≡ 𝗂𝗇𝗋∨(𝑏‚)
(El∨(𝑑, 𝑐𝐴, .𝑐𝐵))‚ ∶≡ 𝗂𝗇𝖽∨(𝑑‚, 𝑥.𝑐1(𝑥)‚, 𝑦.𝑐2(𝑦)‚)
𝗉𝗋𝖯((𝐴 ∨𝐵)‚) ∶≡ 𝔭∨(𝐴‚,𝐵‚)
𝗉𝗋𝖲((𝐴 ∨𝐵)‚) ∶≡ 𝔰𝑐𝑜𝑒((𝐴 ∨𝐵)‚,𝗉𝗋𝖯((𝐴 ∨𝐵)‚))

(𝐴 ∧𝐵)‚ ∶≡ 𝐴‚ ×𝐵‚ (⟨𝑎,∧ 𝑏⟩)‚ ∶≡ (𝑎‚, 𝑏‚)
𝗉𝗋𝖯((𝐴 ∧𝐵)‚) ∶≡ 𝔭×(𝐴‚,𝐵‚,𝗉𝗋𝖯(𝐴‚),𝗉𝗋𝖯(𝐵‚) ) (𝜋𝑖(𝑐))‚ ∶≡ 𝗉𝗋𝑖(𝑐‚) (for 𝑖=(1,2))

𝗉𝗋𝖲((𝐴 ∧𝐵)‚) ∶≡ 𝔰𝑐𝑜𝑒((𝐴 ∧𝐵)‚,𝗉𝗋𝖯((𝐴 ∧𝐵)‚))

(𝐴→𝐵)‚ ∶≡ 𝐴‚ →𝐵‚ (𝜆→𝑥.𝑏)‚ ∶≡ 𝜆𝑥.𝑏‚
𝗉𝗋𝖯((𝐴→ 𝐵)‚) ∶≡ 𝔭→(𝐴‚,𝐵‚,𝗉𝗋𝖯(𝐴‚),𝗉𝗋𝖯(𝐵‚)) (𝖠𝗉→(𝑓, 𝑎))‚ ∶≡ 𝑓‚(𝑎‚)
𝗉𝗋𝖲((𝐴→𝐵)‚) ∶≡ 𝔰𝑐𝑜𝑒((𝐴→𝐵)‚,𝗉𝗋𝖯((𝐴→𝐵)‚))

(∃𝑥∈𝐴𝐵(𝑥))‚ ∶≡ ∃𝑥∶𝐴‚ 𝐵(𝑥)‚
(⟨𝑎,∃ 𝑏⟩)‚ ∶≡ (𝑎‚,∃ 𝑏‚)
(El∃(𝑑, 𝑐))‚ ∶≡ 𝗂𝗇𝖽∃(𝑑‚, 𝑥.𝑦.𝑐(𝑥, 𝑦)‚)
𝗉𝗋𝖯((∃𝑥∈𝐴𝐵(𝑥))‚) ∶≡ 𝔭∃(𝐴‚, 𝜆𝑥 ∶𝐴‚.𝐵(𝑥)‚ )
𝗉𝗋𝖲((∃𝑥∈𝐴𝐵(𝑥))‚) ∶≡ 𝔰𝑐𝑜𝑒((∃𝑥∈𝐴𝐵(𝑥))‚, 𝗉𝗋𝖯((∃𝑥∈𝐴𝐵(𝑥))‚))

(∀𝑥∈𝐴𝐵(𝑥))‚ ∶≡ Π𝑥∶𝐴‚ 𝐵(𝑥)‚ (𝜆∀𝑥.𝑏(𝑥))‚ ∶≡ 𝜆𝑥.𝑏(𝑥)‚
𝗉𝗋𝖯((∀𝑥∈𝐴𝐵(𝑥))‚) ∶≡ 𝔭Π(𝐴‚, 𝜆𝑥 ∶𝐴‚.𝐵(𝑥)‚, 𝜆𝑥 ∶𝐴‚.𝗉𝗋𝖯(𝐵(𝑥)‚)) (𝖠𝗉∀(𝑓, 𝑎))‚ ∶≡ 𝑓‚(𝑎‚)
𝗉𝗋𝖲((∀𝑥∈𝐴𝐵(𝑥))‚) ∶≡ 𝔰𝑐𝑜𝑒((∀𝑥∈𝐴𝐵(𝑥))‚, 𝗉𝗋𝖯((∀𝑥∈𝐴𝐵(𝑥))‚))

(Id(𝐴,𝑎, 𝑏))‚ ∶≡ Id𝐴‚ (𝑎‚, 𝑏‚)
(𝗂𝖽𝖠(𝑎))‚ ∶≡ 𝗋𝖾𝖿 𝗅𝑎‚
(ElId(𝑝, 𝑐))‚ ∶≡ 𝗂𝗇𝖽Id(𝑝‚, 𝑥.𝑐(𝑥)‚)
𝗉𝗋𝖯((Id(𝐴,𝑎, 𝑏))‚) ∶≡ 𝔭𝐼𝑑 (𝐴‚,𝗉𝗋𝖲(𝐴‚), 𝑎‚, 𝑏‚)
𝗉𝗋𝖲((Id(𝐴,𝑎, 𝑏))‚) ∶≡ 𝔰𝑐𝑜𝑒((Id(𝐴,𝑎, 𝑏))‚ , 𝗉𝗋𝖯((Id(𝐴,𝑎, 𝑏))‚))
28
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Appendix B. An alternative translation of mTT-syntax in HoTT

Definition 6.1. We define a partial interpretation of the raw syntax of types and terms of mTT in the raw-syntax of HoTT

(−)∙ ∶ Raw-syntax (mTT) ⟶ Raw-syntax (HoTT)

assuming to have defined two auxiliary partial functions:

𝗉𝗋𝖯(−) ∶ Raw-syntax (HoTT) ⟶ Raw-syntax (HoTT)

and

𝗉𝗋𝖲(−) ∶ Raw-syntax (HoTT) ⟶ Raw-syntax (HoTT)

(−)∙ is defined on contexts and judgements of mTT exactly as the interpretation in Definition 3.1.

In the case of mTT term and type constructors all clauses are defined as the corresponding ones in the previous table with the 
exception of those which are listed below:

(𝗉𝗋𝗈𝗉𝗌)∙ ∶≡ 𝖯𝗋𝗈𝗉𝑈0
𝗉𝗋𝖲((𝗉𝗋𝗈𝗉𝗌)∙) ∶≡ 𝔰𝖯𝗋𝗈𝗉𝟢
(𝜏(𝑝))∙ ∶≡ ||𝗉𝗋1(𝑝∙)||
𝗉𝗋𝖯((𝜏(𝑝))∙) ∶≡ 𝗉𝗋2(𝑝∙)
𝗉𝗋𝖲((𝜏(𝑝))∙) ∶≡ 𝔰𝑐𝑜𝑒((𝜏(𝑝))∙,𝗉𝗋𝖯((𝜏(𝑝))∙))

(⊥̂)∙ ∶≡ (||0||, 𝔭|| ||(0)) (⊤̂)∙ ∶≡ (||𝟏||, 𝔭|| ||(1) )
(𝑝∨̂𝑞)∙ ∶≡ (𝗉𝗋1(𝑝∙) ∨ 𝗉𝗋1(𝑞∙) , 𝔭∨(𝗉𝗋1(𝑝∙),𝗉𝗋1(𝑞∙) ))
(𝑝∧̂𝑞)∙ ∶≡ (||𝗉𝗋1(𝑝∙) × 𝗉𝗋1(𝑞∙)|| , 𝔭||×||(𝗉𝗋1(𝑝∙),𝗉𝗋1(𝑞∙)))
(𝑝→̂𝑞)∙ ∶≡ (||𝗉𝗋1(𝑝∙)→𝗉𝗋1(𝑞∙)|| , 𝔭||→||(𝗉𝗋1(𝑝∙),𝗉𝗋1(𝑞∙)))
(∃̂𝑥∈𝐴 𝑝(𝑥))∙ ∶≡ (∃𝑥∶𝐴∙ 𝑝(𝑥)∙, 𝔭∃(𝐴∙, 𝜆𝑥.𝗉𝗋1(𝑝(𝑥)∙)) )
(∀̂𝑥∈𝐴 𝑝(𝑥))∙ ∶≡ (||Π𝑥∶𝐴∙ 𝑝(𝑥)∙|| , 𝔭|| ||(Π𝑥∶𝐴∙ 𝗉𝗋1(𝑝(𝑥)∙) )
(Îd(𝐴,𝑎, 𝑏))∙ ∶≡ (||Id𝐴∙ (𝑎∙, 𝑏∙)|| , 𝔭|| ||( Id𝐴∙ (𝑎∙, 𝑏∙) )

(⊥)∙ ∶≡ ||0|| (𝗋𝟢(𝑐))∙ ∶≡ 𝗂𝗇𝖽⊥∙ (𝑐∙)
𝗉𝗋𝖯((⊥)∙) ∶≡ 𝔭|| ||(0) 𝗉𝗋𝖲((⊥)∙) ∶≡ 𝔰𝑐𝑜𝑒((⊥)∙,𝗉𝗋𝖯((⊥)∙))

(𝐴 ∧𝐵)∙ ∶≡ ||𝐴∙ ×𝐵∙|| (⟨𝑎,∧ 𝑏⟩)∙ ∶≡ (𝑎∙,∧ 𝑏∙)
𝗉𝗋𝖯((𝐴 ∧𝐵)∙) ∶≡ 𝔭||×||(𝐴∙,𝐵∙) (𝜋𝑖(𝑐))∙ ∶≡ 𝗉𝗋𝑖∧(𝑐∙) (for 𝑖=(1,2))

𝗉𝗋𝖲((𝐴 ∧𝐵)∙) ∶≡ 𝔰𝑐𝑜𝑒((𝐴 ∧𝐵)∙,𝗉𝗋𝖯((𝐴 ∧𝐵)∙))

(𝐴→𝐵)∙ ∶≡ ||𝐴∙ →𝐵∙|| (𝜆→𝑥.𝑏)∙ ∶≡ 𝜆→𝑥.𝑏∙
𝗉𝗋𝖯((𝐴→ 𝐵)∙) ∶≡ 𝔭||→||(𝐴∙,𝐵∙) (𝖠𝗉→(𝑓, 𝑎))∙ ∶≡ 𝑓 ∙→(𝑎∙)
𝗉𝗋𝖲((𝐴→𝐵)‚) ∶≡ 𝔰𝑐𝑜𝑒((𝐴→𝐵)‚,𝗉𝗋𝖯((𝐴→𝐵)‚))

(∀𝑥∈𝐴𝐵(𝑥))∙ ∶≡ ||Π𝑥∶𝐴∙ 𝐵(𝑥)∙|| (𝜆∀𝑥.𝑏(𝑥))∙ ∶≡ 𝜆∀𝑥.𝑏(𝑥)∙
𝗉𝗋𝖯((∀𝑥∈𝐴𝐵(𝑥))∙) ∶≡ 𝔭||Π||(𝐴∙, 𝜆𝑥 ∶𝐴∙.𝐵(𝑥)∙) (𝖠𝗉∀(𝑓, 𝑎))∙ ∶≡ 𝑓 ∙∀(𝑎

∙)
𝗉𝗋𝖲((∀𝑥∈𝐴𝐵(𝑥))‚) ∶≡ 𝔰𝑐𝑜𝑒((∀𝑥∈𝐴𝐵(𝑥))‚, 𝗉𝗋𝖯((∀𝑥∈𝐴𝐵(𝑥))‚))

(Id(𝐴,𝑎, 𝑏))∙ ∶≡ ||Id𝐴∙ (𝑎∙, 𝑏∙)||
(𝗂𝖽𝖠(𝑎))∙ ∶≡ |𝗋𝖾𝖿 𝗅𝑎∙ |
(ElId(𝑝, 𝑐))∙ ∶≡ 𝗂𝗇𝖽|| ||(𝑝∙, 𝑧.𝗂𝗇𝖽Id(𝑧,𝑥.𝑐(𝑥)∙) )
𝗉𝗋𝖯((Id(𝐴,𝑎, 𝑏))∙) ∶≡ 𝔭|| ||(𝐴∙, 𝑎∙, 𝑏∙, Id𝐴∙ (𝑎∙, 𝑏∙) )
𝗉𝗋𝖲((Id(𝐴,𝑎, 𝑏))‚) ∶≡ 𝔰𝑐𝑜𝑒((Id(𝐴,𝑎, 𝑏))‚ , 𝗉𝗋𝖯((Id(𝐴,𝑎, 𝑏))‚))

It is possible to show a validity theorem for this interpretation by an argument quite similar to that in 3.3.
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