
An extensional Kleene realizability semantics for
the Minimalist Foundation
Maria Emilia Maietti and Samuele Maschio1

1 Dipartimento di Matematica, University of Padova, Via Trieste, 63 - I-35121
Padova, Italy, {maietti,maschio}@math.unipd.it

Abstract
We build a Kleene realizability semantics for the two-level Minimalist Foundation MF, ideated
by Maietti and Sambin in 2005 and completed by Maietti in 2009. Thanks to this semantics we
prove that both levels of MF are consistent with the (Extended) formal Church Thesis CT.

Since MF consists of two levels, an intensional one, called mTT, and an extensional one,
called emTT, linked by an interpretation, it is enough to build a realizability semantics for the
intensional level mTT to get one for the extensional one emTT, too. Moreover, both levels
consists of type theories based on versions of Martin-Löf’s type theory.

Our realizability semantics for mTT is a modification of the realizability semantics by Beeson
in 1985 for extensional first order Martin-Löf’s type theory with one universe. So it is formalized in
Feferman’s classical arithmetic theory of inductive definitions, called‘ID1. It is called extensional
Kleene realizability semantics since it validates extensional equality of type-theoretic functions
extFun, as in Beeson’s one.

The main modification we perform on Beeson’s semantics is to interpret propositions, which
are defined primitively in MF, in a proof-irrelevant way. As a consequence, we gain the validity
of CT. Recalling that extFun+ CT+ AC are inconsistent over arithmetics with finite types, we
conclude that our semantics does not validate the Axiom of Choice AC on generic types. On the
contrary, Beeson’s semantics does validate AC, being this a theorem of Martin-Löf’s theory, but
it does not validate CT. The semantics we present here appears to be the best Kleene realizability
semantics for the extensional level emTT. Indeed Beeson’s semantics is not an option for emTT
since AC on generic sets added to it entails the excluded middle.

1998 ACM Subject Classification Computability Theory, Lambda Calculus and related systems

Keywords and phrases Realizability, Type Theory, formal Church Thesis

1 Introduction

A foundation for mathematics should be called constructive only if the mathematics arising
from it could be considered genuinely computable. One way to show this is to produce a
realizability model of the foundation where arbitrary sets are interpreted as data types and
functions between them are interpreted as programs. A key example is Kleene’s realizability
model for first-order Intuitionist Arithmetics validating the Formal Church Thesis.

Here we will show how to build a realizability model for the Minimalist Foundation, for
short MF, ideated by Maietti and Sambin in [13] and then completed by Maietti in [9],
where it is explicit how to extract programs from its proofs. In particular we show that
MF is consistent with the (Extended) Church Thesis, for short CT. This result is part of a
project to know to what extent MF enjoys the same properties as Heyting arithmetics.

The Minimalist Foundation is intended to constitute a common core among the most
relevant constructive and classical foundations. One of its novelties is that it consists of
two levels: an intensional level, called mTT, which should make evident the constructive

© Maria Emilia Maietti and Samuele Maschio;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 An extensional Kleene realizability

contents of mathematical proofs in terms of programs, and an extensional level, called
emTT, formulated in a language close as much as possible to that of ordinary mathematics.
Both intensional and extensional levels of MF consist of type systems based on versions
of Martin-Lof’s type theory with the addition of a primitive notion of propositions: the
intensional one is based on [17] and the extensional one on [16]. Actually mTT can be
considered a predicative version of Coquand’s Calculus of Constructions [4].

To build a realizability model for the two-level Minimalist Foundation, it is enough to
build it for its intensional level mTT. Indeed an interpretation for the extensional level
emTT can be then obtained from an interpretation of mTT by composing this with the
interpretation of emTT in a suitable setoid model of mTT as in [9] and analyzed in [11].
Moreover, since the interpretation of CT from the extensional level to the intensional one is
equivalent to CT itself according to [9], a model showing consistency of mTT with CT can
be turned into a model showing consistency of emTT with CT.

Here, we build a realizability model for mTT+ CT by suitably modifying Beeson’s
realizability semantics [2] for the extensional version of first order Martin-Löf’s type theory
with one universe [16]. So, as Beeson’s semantics our model is based on Kleene realizability
semantics of intuitionistic arithmetics and it is formalized in Feferman’s classical arithmetic
theory of inductive definitions, called ‘ID1 ([5]). The theory ‘ID1 is formulated in the language
of second-order arithmetics and it consists of PA (Peano Arithmetic) plus the existence of
some (not necessary the least) fix point for positive parameter-free arithmetical operators.

We call our Kleene realizability semantics extensional since it validates extensional equality
of type-theoretic functions extFun, as Beeson’s one.

The main modification we perform to Beeson’s semantics is to interpret propositions,
which are defined primitively in MF, in a proof-irrelevant way. More in detail we interpret
mTT-sets as Beeson interpreted Martin-Löf’s sets, propositions are interpreted as total
quotients of Kleene realizability interpretation of intuitionistic connectives, and the universe
of mTT-small propositions is interpreted as a suitable quotient of some fix point including
all the codes of small propositions by using the technique Beeson adopted to interpret
Martin-Löf’s universe.

As a consequence in our model we gain the validity of CT but we loose the validity of the
full Axiom of Choice AC. Instead in Beeson’s semantics, AC is valid, being this a theorem
of Martin-Löf’s theory, but CT is not. All these results follow from the well known fact that
extFun+ CT+ AC over arithmetics with finite types are inconsistent. Therefore in the
presence of extFun as in our emTT, either one validates CT as we do here, or AC as in
Beeson’s semantics. Recalling that the addition of AC on generic sets in emTT entails the
excluded middle, Beeson’s semantics is not an option for emTT. Therefore the semantics
we present here appears to be the best Kleene realizability semantics for the extensional level
emTT.

Actually a consistency proof for emTT with CT could also be obtained by interpreting
this theory in the internal theory of Hyland’s effective topos [7]. But here we have obtained
a proof in a predicative theory, whilst classical, as ‘ID1. As a future work we intend to
generalize the notion of effective topos to that of a predicative effective topos in order to
extract the categorical structure behind our realizability interpretation.

2 The Minimalist Foundation

In [9] a two-level formal system, called Minimalist Foundation, for short MF, is completed
following the design advocated in [13]. The two levels of MF are both given by a type

M.E. Maietti and S. Maschio 3

theory à la Martin-Löf: the intensional level, called mTT, is an intensional type theory
including aspects of Martin-Löf’s one in [17] (and extending the set-theoretic version in
[13] with collections), and its extensional level, called emTT, is an extensional type theory
including aspects of extensional Martin-Löf’s one in [16]. Then a quotient model of setoids
à la Bishop [3, 6, 1, 19] over the intensional level is used in [9] to interpret the extensional
level in the intensional one. A categorical study of this quotient model has been carried on
in [11, 10, 12] and related to the construction of Hyland’s effective topos [7, 8].

MF was ideated in [13] to be constructive and minimalist, that is compatible with (or
interpretable in) most relevant constructive and classical foundations for mathematics in the
literature. According to these desiderata, MF has the following peculiar features (for a more
extensive description see also [14]):

MF has two types of entities: sets and collections. This is a consequence of
the fact that a minimalist foundation compatible with most of constructive theories in
the literature, among which, for example, Martin-Löf’s one in [17], should be certainly
predicative and based on intuitionistic predicate logic, including at least the axioms
of Heyting arithmetic. For instance it could be a many-sorted logic, such as Heyting
arithmetic of finite types [20], where sorts, that we call types, include the basic sets we
need to represent our mathematical entities. But in order to represent topology in an
intuitionistic and predicative way, then MF needs to be equipped with two kinds of
entities: sets and collections. Indeed, the power of a non-empty set, namely the discrete
topology over a non-empty set, fails to be a set in a predicative foundation, and it is only
a collection.
MF has two types of propositions. This is a consequence of the previous characteristic.
Indeed the presence of sets and collections, where the latter include the representation
of power-collections of subsets, yields to distinguish two types of propositions to remain
predicative: those closed under quantifications on sets, called small propositions in [9],
from those closed under any kind of quantification, called propositions in [9]. This
distinction is crucial in the definition of “subset of a set” we adopt in MF: a subset of a
set A is indeed an equivalence class of small propositional functions from A.
MF has two types of functions. As in Coquand’s Calculus of Constructions [4], or
Feferman’s predicative theories [5], in MF we distinguish the notion of functional relation
from that of type-theoretic function. In particular in MF only type-theoretic functions
between two sets form a set, while functional relations between two sets form generally a
collection.
This restriction is crucial to make MF compatible with classical predicative theories
as Feferman’s predicative theories [5]. Indeed it is well-known that the addition of the
principle of excluded middle can turn a predicative theory where functional relations
between sets form a set, as Aczel’s CZF or Martin-Löf’s type theory, into an impredicative
one where power-collections become sets.

2.1 The intensional level of the Minimalist Foundation
Here we describe the intensional level of the Minimalist Foundation in [9], which is represented
by a dependent type theory called mTT. This type theory is written in the style of Martin-
Löf’s type theory [17] by means of the following four kinds of judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the type judgement (expressing that something is a specific type), the type equality
judgement (expressing when two types are equal), the term judgement (expressing that

4 An extensional Kleene realizability

something is a term of a certain type) and the term equality judgement (expressing the
definitional equality between terms of the same type), respectively, all under a context Γ.

The word type is used as a meta-variable to indicate four kinds of entities: collections,
sets, propositions and small propositions, namely

type ∈ {col, set, prop, props }

Therefore, in mTT types are actually formed by using the following judgements:

A set [Γ] B col [Γ] φ prop [Γ] ψ props [Γ]

saying that A is a set, that B is a collection, that φ is a proposition and that ψ is a small
proposition.

Here, contrary to [9] where we use only capital latin letters as meta-variables for all types,
we use greek letters ψ, φ as meta-variables for propositions and capital latin letters A,B as
meta-variables for set or collections.

As in the intensional version of Martin-Löf’s type theory, in mTT there are two kinds of
equality concerning terms: one is the definitional equality of terms of the same type given by
the judgement

a = b ∈ A [Γ]

which is decidable, and the other is the propositional equality written

Id(A, a, b) prop [Γ]

which is not necessarily decidable.
We now proceed by briefly describing the various kinds of types in mTT, starting from

small propositions and propositions and then passing to sets and finally collections.
Small propositions in mTT include all the logical constructors of intuitionistic predicate

logic with equality and quantifications restricted to sets:

φ props ≡ ⊥ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | (∀x ∈ A) φ(x) | (∃x ∈ A) φ(x) | Id(A, a, b)

provided that A is a set.
Then, propositions in mTT include all the logical constructors of intuitionistic predicate

logic with equality and quantifications on all kinds of types, i.e. sets and collections. Of
course, small propositions are also propositions.

φ prop ≡ φ props | φ ∧ ψ | φ ∨ ψ | φ→ ψ | (∀x ∈ D) φ(x) | (∃x ∈ D) φ(x) | Id(D, d, b)

In order to close sets under comprehension, for example to include the set of positive
natural numbers {x ∈ N | x ≥ 1}, and to define operations on such sets, we need to think
of propositions as types of their proofs: small propositions are seen as sets of their proofs
while generic propositions are seen as collections of their proofs. That is, we add to mTT
the following rules

props-into-set) φ props
φ set

prop-into-col) φ prop

φ col

Before explaining the difference between the notion of set and collection we describe their
constructors in mTT.

M.E. Maietti and S. Maschio 5

Sets in mTT are characterized as inductively generated types and they include the
following:

A set ≡ φ props | N0 | N1 | N | List(A) | (Σx ∈ A)B(x) | A+B | (Πx ∈ A)B(x)

where the notation N0 stands for the empty set, N1 for the singleton set, N for the set of
natural numbers, List(A) for the set of Lists on the set A, (Σx ∈ A)B(x) for the indexed
sum of the family of sets B(x) set [x ∈ A] indexed on the set A, A + B for the disjoint
sum of the set A with the set B, (Πx ∈ A)B(x) for the product type of the family of sets
B(x) set [x ∈ A] indexed on the set A.

It is worth noting that the set N of the natural numbers is not present in a primitive
way in mTT since its rules can be derived by putting N ≡ List(N1). Here we add it to the
syntax of mTT because it plays a prominent role in realizability and we want to interpret it
directly in ‘ID1 to avoid complications due to list encodings.

Finally, collections in mTT include the following types:

D col ≡ A set | φ prop | props | A→ props | (Σx ∈ D)E(x)

and all sets are collections thanks to the following rule:

set-into-col) A set

A col

where props stands for the collection of (codes for) small propositions and A→ props for the
collection of propositional functions of the set A, while (Σx ∈ D)E(x) stands for the indexed
sum of the collection family E(x) col [x ∈ D] indexed on the collection D.

Note that the collection of small propositions props is defined here with codes à la Tarski
as in [17], contrary to the version in [9], to make the interpretation easier to understand. Its
rules are the following.
Elements of the collection of small propositions are generated as follows:

Pr1) ⊥̂ ∈ props Pr2)
p ∈ props q ∈ props

p∨̂q ∈ props

Pr3)
p ∈ props q ∈ props

p“→q ∈ props
Pr4)

p ∈ props q ∈ props

p∧̂q ∈ props

Pr5)
A set a ∈ A b ∈ A

Îd(A, a, b) ∈ props
Pr6)

p(x) props [x ∈ B] B setÿ�(∃x ∈ B)p(x) ∈ props

Pr7)
p(x) ∈ props [x ∈ B] B setÿ�(∀x ∈ B)p(x) ∈ props

Elements of the collection of small propositions can be decoded as small propositions via
an operator as follows

τ -Pr) p ∈ props

τ(p) props

and this operator satisfies the following definitional equalities:

6 An extensional Kleene realizability

eq-Pr1) τ(⊥̂) = ⊥ props eq-Pr2)
p ∈ props q ∈ props

τ(p∨̂q) = τ(p) ∨ τ(q) props

eq-Pr3)
p ∈ props q ∈ props

τ(p“→q) = τ(p)→ τ(q) props
eq-Pr4)

p ∈ props q ∈ props

τ(p∧̂q) = τ(p) ∧ τ(q) props

eq-Pr5)
A set a ∈ A b ∈ A

τ(Îd(A, a, b)) = Id(A, a, b) props
eq-Pr6)

p(x) props [x ∈ B] B set

τ(ÿ�(∃x ∈ B)p(x)) = (∃x ∈ B)τ(p(x)) props

eq-Pr7)
p(x) ∈ props [x ∈ B] B set

τ(ÿ�(∀x ∈ B)p(x)) = (∀x ∈ B)τ(p(x)) props

In the realizability interpretation of mTT we need to define a subset of natural numbers
including codes of mTT-sets in order to define the subset of codes of small propositions
closed under quantification on sets. The existence of such a subset of set codes says that the
realizability interpretation is actually interpreting an extension of mTT with a collection of
sets. In order to simplify the definition of the realizability interpretation, we interpret an
extension of mTT, which we call mTTs, with the addition of the collection Set of set codes
whose related rules are the following. We don’t give any elimination and conversion rule as
those of universes à la Tarski in [17] since it would not be validated in the model (because
we do not have least fix-points in ‘ID1).

Collection of sets

F-Se) Set col

Elements of the collection of sets are generated as follows:

See) N̂0 ∈ Set Ses) N̂1 ∈ Set

Sel)
a ∈ Set‘List(a) ∈ Set

Seu)
a ∈ Set b ∈ Set

a+̂b ∈ Set

SeΣ)
a(x) Set [x ∈ B] B setÿ�(Σx ∈ B)a(x) ∈ Set

SeΠ)
a(x) Set [x ∈ B] B setÿ�(Πx ∈ B)a(x) ∈ Set

sp-i-p) p ∈ props

p ∈ Set

mTT can be viewed as a predicative version of the Calculus of Constructions [4], for
short CoC. The main difference with respect to CoC is that mTT distinguishes between
sets and collections in a way similar to the distinction between sets and classes in axiomatic
set theory. However, all types of mTT, i.e. small propositions, propositions, sets and
collections, are predicative entities in the sense that their elements can be generated in an
inductive way by a finite number of rules. According to the notion of set in Bishop [3] and
Martin-Löf [15], all mTT-types are actually sets, and in fact mTT-types can be interpreted
as sets in the intensional version of Martin-Löf’s type theory in [17]. The mTT-distinction
between sets and collections, and the corresponding distinction between small propositions
and propositions, is motivated by the need of distinguishing between predicative entities
whose notion of element is a closed concept, and these are called sets, and those entities whose
notion of element is an open concept, and these are called collections. The motivating idea is
that a set is inductively generated by a finite number of rules whose associated inductive
principle does not vary when the theory mTT is extended with new entities (sets, collections
or propositions). On the contrary a collection is inductively generated by a finite number of
rules which may vary when the theory is extended with new entities. Typical examples of

M.E. Maietti and S. Maschio 7

collections are universes (of sets or propositions): if we extend the theory mTT with a new
small proposition, then we need to add a new rule inserting this new small proposition in
the collection of small propositions.

We recall from [13] that the distinction between propositions and sets is crucial to avoid
the validity of choice principles.

Finally, it is worth noting that in mTT we restrict substitution term equality rules to
explicit substitution term equality rules of the form

sub)

c(x1, . . . , xn) ∈ C(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)]

a1 = b1 ∈ A1 . . . an = bn ∈ An(a1, . . . , an−1)
c(a1, . . . , an) = c(b1, . . . , bn) ∈ C(a1, . . . , an)

in place of usual term equality rules preserving term constructions typical of Martin-Löf’s
type theory in [17]. This restriction, and in particular the absence of the so called ξ-rule of
lambda-terms

ξ
c = c′ ∈ C [x ∈ B]

λxB .c = λxB .c′ ∈ (Πx ∈ B)C
seems to be crucial to prove consistency of mTT with AC+CT, as advocated in [13],
by means of a realizability semantics à la Kleene, but this is still an open problem (the
realizability semantics given here does not help to solve this since it can not validate AC
on all types). It is worth to recall from [9] that our restriction of term equality does not
affect the possibility of adopting mTT as the intensional level of a two-level constructive
foundation as intended in [13]. Indeed the term equality rules of mTT suffice to interpret an
extensional level including extensional equality of functions, as that represented by emTT,
by means of the quotient model described in [9] and studied abstractly in [11, 10, 12].

2.2 The extensional level of the Minimalist Foundation
Here we briefly describe the extensional level emTT of the Minimalist Foundation. This is
an extensional dependent type theory extending extensional Martin-Löf’s type theory in [16]
with primitive (proof-irrelevant) propositions, power-collections and quotients.

The rules of emTT are formulated by using the same kinds of judgements used for mTT.
The main peculiar characteristics of emTT in comparison to mTT are the following.

1. A primary difference between emTT and mTT is the usual difference between the so
called intensional version of Martin-Löf’s type theory [17] and its extensional one in [16]
and this is the fact that the definitional equality of terms

a = b ∈ A [Γ]

is no longer decidable in emTT as it is in the intensional mTT. This is in turn due to
the fact that the propositional equality of emTT as that of [16], called Eq(A, a, b), is
extensional in the sense that the provability of Eq(A, a, b) [Γ] in emTT is equivalent to
the derivation of the judgement a = b ∈ A [Γ]. Instead, in mTT only the derivation of
the definitional equality judgement a = b ∈ A [Γ] implies internally the provability of the
intensional propositional equality Id(A, a, b) [Γ] under a generic context.

2. Another peculiar feature of emTT employs the distinction between propositions and sets:
this is the addition of proof-irrelevance for propositions captured by the following rules

prop-mono) φ prop [Γ] p ∈ φ [Γ] q ∈ φ [Γ]
p = q ∈ φ [Γ]

prop-true) φ prop p ∈ φ
true ∈ φ

8 An extensional Kleene realizability

saying that a proof of a proposition is unique and equal to a canonical proof term
called true. Of course, these rules can not be added to an extensional theory identifying
propositions with sets as Martin-Löf’s one in [16], because they would trivialize all
constructors. Moreover, these rules are not present in the intensional level mTT because
proof-irrelevance is a typical extensional condition. Indeed, emTT-propositions can be
thought of as quotients of intensional propositions under the total equivalence relation
between proofs.

3. Other key differences between the type theories mTT and emTT are the addition in
emTT of quotient sets

A/ρ set [Γ]

provided that ρ is a small equivalence relation ρ props [x ∈ A, y ∈ A] on the set A, and
the addition of the power-collection of the singleton and of the power-collection of a
generic set A

P(1) A→ P(1)

4. A further difference between the type theories mTT and emTT concerns the equality
rules between terms. Indeed in emTT equality rules between terms are the usual ones
typical of an extensional type theory in [16] preserving all term constructors. In particular,
equality of lambda-functions is extensional, namely it is possible to prove

(∀x ∈ A)Eq(B(x), f(x) , g(x)) → Eq((Πx ∈ A)B(x) , λx.f(x) , λx.g(x))

This proposition is not necessarily provable at the intensional level mTT when substituting
the extensional propositional equality Eq(A, a, b) with the intensional one Id(A, a, b).

We end by recalling from [9] that a model for mTT can be turned into a model for emTT
by using the interpretation of emTT into mTT described in [9]. Therefore in the following
we are going to define a realizability interpretation just for mTT, to get one also for emTT.

2.3 Untyped syntax of mTTs

Usually in type theory the syntax is introduced in fieri; for example terms are introduced
typically after deriving some conditions or constraints which are required to define them.
However for semantical purposes it looks more convenient to present the syntax a priori in a
partial way by eliminating parts of usual restrictions.

Therefore, since we want to define a realizability interpretation for mTTs, we introduce
here the syntax of all mTTs-type and term constructors in a partial way and we refer the
reader to look at [9] for all the mTT-rules. Then we will define a partial interpretation for
terms of our extended syntax and check that this interpretation is well defined in case the
constraints for introducing them are validated by the model.

I Definition 1. Let [x] be a context, i. e. [x] = [x1, ..., xn] is a possibly empty list of distinct
variables. Terms, small propositions, sets, propositions and collections in context are defined
according to the following conditions. If
1. t [x] , t′ [x] , t′′ [x] , s [x, y] , s′ [x, y] , r [x, y, z] , q [x, y, z, u] are terms in context;
2. φ [x] , φ′ [x] , ψ [x, y] are small propositions in context;
3. A [x] , A′ [x] , B [x, y] are sets in context;
4. η [x] , η′ [x] , ρ [x, y] are propositions in context;
5. D [x] , E [x, y] are collections in context,
then

M.E. Maietti and S. Maschio 9

1. xi [x] is a term in context;
the empty set eliminator emp0(t) [x] is a term in context;
the singleton constant ? [x] and the singleton eliminator ElN1(t, t′) [x] are terms in context;
the zero constant 0 [x], the successor constructor succ(t) [x] and the eliminator of natural
numbers ElN (t, t′, (y, z)r) [x] are terms in context1;
the lambda abstraction of dependent product λy.s [x] and its application Ap(t, t′) [x] are
terms in context;
the pairing of strong indexed sum 〈t, t′〉 [x] and its eliminator ElΣ(t, (y, z)r) [x] are terms
in context;
the first injection of binary disjoint sum inl(t) [x] and its second injection inr(t) [x] and its
eliminator El+(t, (y)s, (y)s′) [x] are terms in context;
the empty list ε [x], the list constructor cons(t, t′) [x] and its eliminator ElList(t, t′, (y, z, u)q) [x]
are terms in context;
the false eliminator r0(t) [x] is a term in context;
the pairing of conjunction 〈t,∧ t′〉 [x], and its first and second projections π∧1 (t) [x] and
π∧2 (t) [x] are terms in context;
the first injection of disjunction inl∨(t) [x], the second injection of disjunction inr∨(t) [x]
and its eliminator El∨(t, (y)s, (y)s′) [x] are terms in context;
the lambda abstraction of implication λ→y.s [x] and its application Ap→(t, t′) [x] are terms
in context;
the pairing of existential quantification 〈t,∃ t′〉 [x] and its eliminator El∃(t, (y, z)r) [x] are
terms in context;
the lambda abstraction of universal quantification λ∀y.s [x] and its application Ap∀(t, t′) [x]
are terms in context;
the Propositional Identity term constructor id(t) [x] and its eliminator ElId(t, t′, t′′, (y)s) [x] 2
are terms in context;
the empty set code ”N0[x], the singleton code ”N1[x], the natural numbers set code “N [x], the
dependent product code (◊�Πy ∈ A)s[x], the dependent sum code (◊�Σy ∈ A)s[x], the disjoint
sum code t“+t′[x], the list code ‘List(t)[x], the falsum code “⊥, the conjunction code t∧̂t′,
the disjunction code t∨̂t′, the implication code t→̂t′, the existential quantification code
(◊�∃y ∈ A)s [x], the universal quantification code (∀̂y ∈ A)s [x] and the propositional identity
code “Id(A, t, t′) [x] are terms in context;

2. ⊥ [x] is a small proposition in context;
τ(t) [x] is a small proposition in context;
φ ∧ φ′ [x], φ ∨ φ′ [x] and φ→ φ′ [x] are small propositions in context;
(∃y ∈ A)ψ [x] and (∀y ∈ A)ψ [x] are small propositions in context;
Id(A, t, t′) is a small proposition in context;

3. φ [x] is a set in context;
N0 [x] , N1 [x] and N [x] are sets in context;
(Πy ∈ A)B [x], (Σy ∈ A)B [x], A+A′ [x] and List(A) [x] are sets in context;

1 the rules for these constructors derive from those of List(N1) in mTT by identifying 0 with ε, succ(t)
with cons(t, ?) and ElN (t, t′, (y, z)r) with ElList(N1)(t, t′, (y, y′, z)r)

2 In the rules for Id(A, a, b) of mTT the eliminator ElId(p, (x)c) is substituted by an eliminator
ElId(a, b, p, (x)c) with explicit reference to a ∈ A and b ∈ A. The rules remain the same.

10 An extensional Kleene realizability

4. φ [x] is a proposition in context;
η ∧ η′ [x], η ∨ η′ [x] and η → η′ [x] are propositions in context;
(∃y ∈ D) ρ [x] and (∀y ∈ D) ρ [x] are propositions in context;
Id(D, t, t′) is a proposition in context;

5. η [x] is a collection in context;
A [x] is a collection in context;
Set [x] is a collection in context;
props [x] is a collection in context;
A→ props [x] is a collection in context;
(Σy ∈ D)E [x] is a collection in context.

For sets in context A [x] we define an abbreviation Â [x] as follows:

1. “⊥, ”N0, ”N1 and “N were already defined;
2. ¤�((Πy ∈ A)B) = (◊�Πy ∈ A) “B, ¤�((Σy ∈ A)B) = (◊�Σy ∈ A) “B,
3. ◊�A+A′ = Â“+Â′, ◊�List(A) = ‘List(Â),
4. ÷φ ∧ φ′ = φ̂ ∧̂“φ′, ÷φ ∨ φ′ = φ̂ ∨̂“φ′, ◊�φ→ φ′ = φ̂ →̂“φ′,
5. ¤�((∃y ∈ A)ψ) = (◊�∃y ∈ A) ψ̂, ¤�((∀y ∈ A)ψ) = (◊�∀y ∈ A) ψ̂, Ÿ�Id(A, t, s) = “Id (A, t, s),
6. ‘τ(t) = t.

It is clear that the previous definition is overabundant with respect to the common use
in type theory. We introduced some terms which we will never find in any standard type
theory, as for example the term 0∧̂ElN1(λx.x, λ→y.y) which is obtained by gluing together
terms which usually have types which are not compatible. For example 0 is usually typed as
a natural number, while ∧̂ connects small propositional terms.

3 The realizability interpretation for mTTs

The preliminary step in the presentation of the Kleene realizability interpretation consists in
presenting the theory of Inductive Definitions ‘ID1 in which we will interpret mTTs.

3.1 The system ‘ID1

The system ‘ID1 is a predicative fragment of second-order arithmetic, more precisely it is
the predicative fragment of second-order arithmetic extending Peano arithmetics with some
(not necessarily least) fix points for each positive arithmetical operator. Its number terms
are number variables (we assume that these variables are equal to those of mTTs), the
constant 0 and the terms built by applying the unary successor functional symbol succ and
the binary sum and product functional symbols + and ∗ to number terms. Set terms are
only set variables X,Y, Z.... The arithmetical formulas are obtained starting from t = s and
tεX with t, s number terms and X a set variable, by applying the connectives ∧,∨,¬,→ and
the number quantifiers ∀x, ∃x. Moreover let us give the following two definitions.

I Definition 2. An occurrence of a set variable X is positive in an arithmetical formula ϕ if
and only if ϕ is tεX for some number term t or ϕ is ψ ∧ ψ′, ψ′ ∧ ψ, ψ ∨ ψ′, ψ′ ∨ ψ , ψ′ → ψ,
∃xψ or ∀xψ and the occurrence of X is a positive occurrence of X in ψ.

I Definition 3. An arithmetical formula ϕ with exactly one free number variable n and one
free set variable X which occurs only positively is called an admissible formula.

M.E. Maietti and S. Maschio 11

In order to define the system ‘ID1 we add to the language of arithmetic a unary predicate
symbol Pϕ for every admissible formula ϕ . The atomic formulas of ‘ID1 are
1. t = s with t and s number terms,
2. tεX with t a number term and X a set variable,
3. Pϕ(t) with t a number term and ϕ an admissible formula.
All formulas of ‘ID1 are obtained by atomic formulas by applying connectives, number
quantifiers and set quantifiers.

The axioms of ‘ID1 are the axioms of Peano Arithmetic plus the following three axiom
schemata:
1. Comprehension schema: for all formulas ϕ(x) of ‘ID1 without set quantifiers

∃X∀x(xεX ↔ ϕ(x))

2. Induction schema: for all formulas ϕ(x) of ‘ID1

(ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(succ(x))))→ ∀xϕ(x)

3. Fix point schema: for all admissible formulas ϕ

ϕ[Pϕ/X]↔ Pϕ(x)

where ϕ[Pϕ/X] is the result of substituting in ϕ all instances of xεX with Pϕ(x).

The system ‘ID1 allows us to define predicates as fix points, by using axiom schema 3, if
they are presented in a appropriate way (i. e. using admissible formulas).

A definable class C of ‘ID1 is a formal writing {x|ϕ(x)} where ϕ(x) is a formula of ‘ID1.
In this case we write xεC as a shorthand for ϕ(x).

Notation of computable operators in ‘ID1.
As it is well known, it is certainly possible to express a Gödelian coding of recursive

functions in ‘ID1 using Kleene’s predicate since it is already possible to do this in PA.
In particular we can consider a definitional extension of ‘ID1 (which we still call ‘ID1)
in which there are terms with Kleene’s brackets {t}(s) and there is a predicate {t}(s) ↓
stating that the term with Kleene’s brackets is well defined (s is in the domain of the
recursive function coded by t). We will write {t}(s1, ..., sn) as a shorthand defined by
induction: it is {t}(s1) if n = 1 while if n > 1 and if we have already defined {t}(s1, ..., sn),
then {t}(s1, ..., sn+1) = {{t}(s1, ..., sn)}(sn+1). We denote by succ a numeral for which in
{succ}(x) = succ(x) in ‘ID1.

As we well know, the s-m-n lemma (see e. g. [18]) gives the structure of a partial combinat-
orial algebra to natural numbers endowed with Kleene application and this structure can be
expressed in ‘ID1. In particular we can find numerals p,p1,p2 representing a fixed primitive
recursive bijective pairing function with primitive recursive first and second projections.
We will write p1(x), p2(x) and 〈x, y〉 as abbreviations for {p1}(x), {p2}(x) and {p}(x, y)
respectively. It is also possible to define a numeral ite3 representing the definition by cases
({ite}(n,m, l) ' 4m if n = 0, {ite}(n,m, l) ' l if n 6= 0). We can also encode recursively

3 if then else
4 a ' b means that a ↓ if and only if b ↓ and in this case a = b in ÎD1

12 An extensional Kleene realizability

finite list of natural numbers with natural numbers in such a way that the empty list is coded
by 0 and the concatenation is a recursive function which can be coded by a numeral cnc.
We have moreover numerals rec and listrec representing natural numbers recursion and
lists recursion. These numbers in particular satisfy the following requirements:
1. {rec}(n,m, 0) ' n;
2. {rec}(n,m, k + 1) ' {m}(k, {rec}(n,m, k));
3. {listrec}(n,m, 0) ' n;
4. {listrec}(n,m, cnc(k, l)) ' {m}(k, l, {listrec}(n,m, k)).
For this representation of lists, the component functions (−)j , turn out to be recursive.

Moreover we can always define λ-terms Λn.t in ‘ID1 for terms t built with numerals, vari-
ables and Kleene application, in such a way that {Λx.t}(n) ' t[n/x] and {Λx1...Λxn.t}(n) '
Λx2...Λxn.t[n/x1].

3.2 The definition of interpretation
The realizability interpretation for mTTs we are going to describe is a modification of
Beeson’s realizability semantics [2] for the extensional version of first order Martin-Löf’s type
theory with one universe [16]. So it will be given in ‘ID1 as Beeson’s one. Here we describe
the key points of such an interpretation on which we follow Beeson’s semantics:

- all types of mTTs are interpreted as quotients of definable classes of ‘ID1, intended
as classes of “their realizers”. In particular we use Beeson’s technique of interpreting
Martin-Löf’s universe to interpret the collection of (codes for) small propositions of
mTTs. In order to do this it is crucial to have fix points and hence this is why we work
in the theory ‘ID1;

- terms are interpreted as (codes) of recursive functions;
- equality between terms in context is interpreted as extensional equality of recursive
functions;

- the interpretation of substitution will be proven to be equivalent to the substitution in
interpretation;

- we interpret λ-abstraction by using s-m-n lemma of computability, but then, in order
to validate the condition of the previous point, we impose equality of type-theoretic
functions to be extensional. Therefore the principle of Extensional Equality of Functions
will turn out to be valid in our model.

Instead we do not follow Beeson’s semantics in the interpretation of propositions:

- in order to validate formal Church Thesis we interpret propositions as trivial5 quotients
of original Kleene realizability. As a consequence Martin-Löf’s isomorphism of propositions-
as-sets together with the validity of the Axiom of Choice is not validated in our
realizability semantics contrary to Beeson’s one.

We can summarize the interpretation of terms and types with the following table:

Terms (codes) of recursive functions
Collections Quotients of definable classes (C,')
Propositions quotients of definable classes on trivial '

5 a quotient is trivial if it is determined by a trivial relation i. e. a relation for which all pairs of elements
are equivalent

M.E. Maietti and S. Maschio 13

The interpretation of terms
Before giving the interpretation of mTTs-terms, we need to present explicitly a convention
about how to encode mTTs-sets with numerals. We will code sets as {p}(a, 〈b1, ..., bn〉),
where a is a number coding a particular constructor and 〈b1, ..., bn〉 is a lists of codes for
ingredients needed by the constructor itself. The following table makes evident the choices
for a:

N0, N1, N Π Σ + List ⊥ ∧ ∨ → ∃ ∀ Id

1 2 3 4 5 6 7 8 9 10 11 12

Notice that codes for small propositions must have a > 5.
We can now proceed to the definition of the interpretation of mTTs-terms.

I Definition 4. Terms in context t[x1, ..., xn] are interpreted as numerals

I(t[x1, ..., xn]) = Λx1...Λxn.I(t)

where I(t) are terms of the extended language of ‘ID1 defined as follows
1. If x is a variable, then I(x) = x;
2. I(emp0(t)) = I(r0) = 0;
3. I(?) = 0 and I(ElN1(t, t′)) = I(t′);
4. I(0) = 0 and I(succ(t)) = {succ}(I(t)),
I(ElN (t, t′, (y, z)r)) = {rec}(I(t′),Λy.Λz.I(r), I(t));

5. I(λy.s) = I(λ→y.s) = I(λ∀y.s) = Λy.I(s),
I(Ap(t, t′)) = I(Ap→(t, t′)) = I(Ap∀(t, t′)) = {I(t)}(I(t′));

6. I(〈t, t′〉) = I(〈t,∧ t′〉) = I(〈t,∃ t′〉) = {p}(I(t), I(t′)),
I(ElΣ(t, (y, z)r)) = I(El∃(t, (y, z)r)) = {Λy.Λz.I(r)}({p1}(I(t)), {p2}(I(t))),
I(π∧1 (t)) = {p1}(I(t)),
I(π∧2 (t)) = {p2}(I(t));

7. I(inl(t)) = I(inl∨(t)) = {p}(0, I(t)),
I(inr(t)) = I(inr∨(t)) = {p}(1, I(t)),
I(El+(t, (y)s, (y)s′)) = I(El∨(t, (y)s, (y)s′)) =
{ite}(p1(I(t)), {Λy.I(s)}({p2}(I(t))), {Λy.I(s′)}({p2}(I(t))));

8. I(ε) = 0 and I(cons(t, t′)) = {cnc}(I(t), I(t′)),
ElList(t, t′, (y, z, u)q) = {listrec}(I(t′),Λy.Λz.Λu.I(q), I(t));

9. I(id(t)) = 0,
I(ElId(t, t′, t′′, (y)s)) = {Λy.I(s)}(I(t));

10. I(”N0) = {p}(1, 0), I(”N1) = {p}(1, 1) and I(“N) = {p}(1, 2),
I((◊�Πy ∈ A)s) = {p}(2, ({p}(I(Â), (Λy.I(s))))),
I((◊�Σy ∈ A)s) = {p}(3, ({p}(I(Â), (Λy.I(s))))),
I(t“+t′) = {p}(4, ({p}(I(t), I(t′))),
I(‘List(t)) = {p}(5, I(t)),
I(“⊥) = {p}(6, 0),
I(t∧̂t′) = {p}(7, ({p}(I(t), I(t′))),
I(t∨̂t′) = {p}(8, ({p}(I(t), I(t′))),
I(t→̂t′) = {p}(9, ({p}(I(t), I(t′))),
I((◊�∃y ∈ A)s) = {p}(10, ({p}(I(Â), (Λy.I(s))))),
I((◊�∀y ∈ A)s) = {p}(11, ({p}(I(Â), (Λy.I(s))))),

14 An extensional Kleene realizability

I(“Id(A, t, t′)) = {p}(12, ({p}(I(Â), ({p}(I(t), I(t′)))))),

For the sake of example let us consider the interpretation of the term in context t[x, y, z]
defined as “Id(Id(N, x, x), y, z)[x, y, z]:

I(t)[x, y, z]) = Λx.Λy.Λz.I(“Id(Id(N, x, x), y, z))
= Λx.Λy.Λz.{p}(12, {p}(I(⁄�Id(N, x, x)), {p}(y, z))
= Λx.Λy.Λz.{p}(12, {p}(I(“Id(N, x, x)), {p}(y, z)))
= Λx.Λy.Λz.{p}(12, {p}({p}(12, {p}(I(“N), {p}(x, x))), {p}(y, z)))
= Λx.Λy.Λz.{p}(12, {p}({p}(12, {p}({p}(1, 2), {p}(x, x))), {p}(y, z))).

We say that an interpretation of a term in context t[x] is well defined if I(t[x]) ↓ is
provable in ‘ID1. Notice that the interpretations of terms in non-empty contexts are always
well defined.

Notice moreover that in ‘ID1
1. I(ElN1(?, t′)) ' I(t′);
2. I(ElN (0, t, (y, z)s)) ' I(t);
3. I(ElN (succ(t′), t, (y, z)s)) ' I(s)[I(t′)/y, I(ElN (t′, t, (y, z)s))/z]
4. I(Ap(λy.s, t)) ' I(s)[I(t)/y];
5. I(Ap→(λ→y.s, t)) ' I(s)[I(t)/y];
6. I(Ap∀(λ∀y.s, t)) ' I(s)[I(t)/y];
7. I(ElΣ(〈t, t′〉, (y, z)r)) ' I(r)[I(t)/y, I(t′)/z];
8. I(El∃(〈t,∃ t′〉, (y, z)r)) ' I(r)[I(t)/y, I(t′)/z];
9. I(π∧1 (〈t,∧ t′〉)) ' I(t);
10. I(π∧2 (〈t,∧ t′〉)) ' I(t′);
11. I(El+(inl(t), (y)s, (y)s′)) ' I(s)[I(t)/y];
12. I(El+(inr(t), (y)s, (y)s′)) ' I(s′)[I(t)/y];
13. I(El∨(inl∨(t), (y)s, (y)s′)) ' I(s)[I(t)/y];
14. I(El∨(inr∨(t), (y)s, (y)s′)) ' I(s′)[I(t)/y];
15. I(ElId(t, id(t), (y)s)) ' I(s)[I(t)/y];
16. I(ElList(ε, t′, (y, z, u)q)) ' I(t′);
17. I(ElList(cons(t, t′′), t′, (y, z, u)q)) ' I(q)[I(t)/y, I(t′′)/z, I(ElList(t, t′, (y, z, u)q))/u].

The interpretation of sets
Here we define the interpretation of sets in mTTs with the exception of those obtained as
τ(p) for some term p. Every such a set is interpreted as a definable quotient of a definable
class of ‘ID1 (and actually of HA). This means that every set A is interpreted as a pair

I(A) = (J (A) , ∼I(A))

where J (A) is a definable class of ‘ID1 and ∼I(A) is a definable equivalence relation on the
class J (A).

Since sets in mTT include small propositions, here we also define a realizability rela-
tion between natural numbers and propositions. Indeed it is more convenient to define
the realizability interpretation of propositions by adopting an extension of usual Kleene’s
interpretation of intuitionistic connectives.

Note that we use the notation I(A)[s/y] to mean the definable class in which we substitute
y with s in the membership and in the equivalence relation of I(A).

M.E. Maietti and S. Maschio 15

I Definition 5. We define in ‘ID1 a realizability relation n φ between natural numbers
and small propositions, by induction on the definition of small propositions φ, simultaneously
together with the definition of the following formulas nεJ (A) and n ∼I(A) m for sets A, by
induction on the definition of sets (with the exception of those obtained using τ(p) for some
term p), as follows:

(⊥) n ⊥ is ⊥;
(∧) n φ ∧ φ′ is (p1(n) φ) ∧ (p2(n) φ′);
(∨) n φ ∨ φ′ is (p1(n) = 0 ∧ p2(n) φ) ∨ (p1(n) 6= 0 ∧ p2(n) φ′);

(→) n φ→ φ′ is ∀t ((t φ) → ({n}(t) φ′));
(∃) n (∃x ∈ A)ψ is p1(n) εJ (A) ∧ (p2(n) ψ)[p1(n)/x];
(∀) n (∀x ∈ A)ψ is ∀x (x εJ (A) → ({n}(x) ψ));
(Id) n Id(A, t, s) is I(t) ∼I(A) I(s);

(N0) n εJ (N0) is ⊥ and
n ∼I(N0) m is ⊥;

(N1) n εJ (N1) is n = 0 and
n ∼I(N1) m is n = 0 ∧ n = m;

(N) n εJ (N) is n = n and
n ∼I(N) m is n = m;

(Π) n εJ ((Πx ∈ A)B) is
∀x (x εJ (A)→ {n}(x) ∈ J (B)) ∧ ∀x∀y (x ∼I(A) y → {n}(x) ∼I(B) {n}(y)}6 and
n ∼I((Πx∈A)B) m is
n εJ ((Πx ∈ A)B) ∧mεJ ((Πx ∈ A)B) ∧ ∀x (x εJ (A)→ {n}(x) ∼I(B) {m}(x));

(Σ) n εJ ((Σx ∈ A)B) is p1(n) εJ (A) ∧ ∀x (x ∼I(A) p1(n)→ p2(n) εJ (B)) and
n ∼I((Σx∈A)B) m is the conjunction of n εJ ((Σx ∈ A)B) ∧mεJ ((Σx ∈ A)B) and
p1(n) ∼I(A) p1(m) ∧ ∀x (x ∼I(A) p1(n)→ p2(n) ∼I(B) p2(m));

(+) n εJ (A+A′) is (p1(n) = 0 ∧ p2(n) εJ (A)) ∨ (p1(n) = 1 ∧ p2(n) εJ (A′)) and
n ∼I(A+A′) m is the conjunction of n εJ (A+A′) ∧mεJ (A+A′) ∧ p1(n) = p1(m) and
(p1(n) = 0 ∧ p2(n) ∼I(A) p2(m)) ∨ (p1(n) = 1 ∧ p2(n) ∼I(A′) p2(m));

(List) n εJ (List(A)) is ∀j (j < lh(n) → (n)j εJ (A)) and
n ∼I(List(A)) m is the conjunction of n εJ (List(A)) ∧ mεJ (List(A)) and
lh(n) = lh(m) ∧ ∀j (j < lh(n) → (n)j ∼I(A) (m)j);

(ψ) n εJ (ψ) is n ψ and
n ∼I(ψ) m is n εJ (ψ) ∧ mεJ (ψ) (i. e. proof-irrelevance).

I Remark. We can notice some preliminary properties of this realizability interpretation:
1. for every set A we have that ∼I(A) is really a definable equivalence relation on the

definable class J (A), in fact

n εJ (A) `‘ID1
n ∼I(A) n

n ∼I(A) m `‘ID1
m ∼I(A) n

n ∼I(A) m ∧ m ∼I(A) l `‘ID1
n ∼I(A) l

6 Note that the variable x may be in I(B) here and in the following definition for Π and Σ sets, as it
comes from the definition of the untyped syntax.

16 An extensional Kleene realizability

2. for every set A we have that

n ∼I(A) m `‘ID1
n εJ (A) ∧mεJ (A)

3. if numerical sets are defined according to the following conditions
a. N0, N1 and N are numerical sets;
b. if A and B are numerical sets, then (Σx ∈ A)B, A+B and List(A) (if they are well

defined) are numerical sets,
then the equality of the interpretation of numerical sets is numerical, which means that

n ∼I(A) m `‘ID1
n = m

4. for all propositions ψ, the equivalence relation ∼I(ψ) is trivial (i. e. all pairs of elements
of I(ψ) are equivalent). This means that uniqueness of propositional proofs, called
proof-irrelevance, is imposed.

The encoding of all mTTs-sets
In the previous sections we have seen the interpretation of mTTs-sets which include small
propositions. It remains to define the interpretation of proper collections, including that of
sets, small propositions and small propositional functions on a set.

The interpretation of the collection of small propositions Set in ‘ID1 is the most difficult
point and to define it we mimick the technique adopted by Beeson [2] to interpret Martin-Löf’s
universe via a fix point of some arithmetical operator with positive parameters. Hence, it is
to define the interpretation of Set, and in turn of the collection of small propositions props
and of small propositional functions A→ props on a set A, that we need to employ the full
power of ‘ID1 with fix points.

The idea is to define a ‘ID1-formula which defines codes of sets with their interpretation
as a fix point. It appears necessary to define called Set(n) expressing that n is a code of an
mTTs-set together with its realizability interpretation in ‘ID1. Observe that in mTTs the
type of all sets is not present and hence no mTTs-type will be interpreted as {n|Set(n)}.
As in Beeson’s semantics, to define the formula Set(n) of set codes with their arithmetical
interpretation in ‘ID1 we need to encode membership and equality of sets: tεn and t ≡n s.
In turn in order to define them, we need to represent the notion of a family of sets used to
interpret an mTTs-dependent set.

A family of sets coded by m on a set coded by n could be described by the following
formula:

Set(n) ∧ ∀t (t ε n → Set({m}(t)))∧

∀t∀s (t ≡n s → (∀j (j ε {m}(t) ↔ j ε {m}(s)) ∧ ∀j∀k (j ≡{m}(t) k ↔ j ≡{m}(s) k))).

But in this formula not all occurrences of t ε n and t ≡n s are positive. However it is
classically equivalent to the conjunction of the formula Set(n) ∧ (¬t ε n ∨ Set({m}(t))) and
the formula ∀t∀s (¬t ≡n s ∨ (P1 ∧ P2)) where P1 is

∀j ((¬j ε {m}(t) ∨ j ε {m}(s)) ∧ (¬j ε {m}(s) ∨ j ε {m}(t)))

and P2 is

∀j∀k ((¬j ≡{m}(t) k ∨ j ≡{m}(s) k) ∧ (¬j ≡{m}(s) k ∨ j ≡{m}(t) k))

M.E. Maietti and S. Maschio 17

simply substituting all the instances of the schema a → b with the classically equivalent
¬a ∨ b. Now the trick consists in defining some predicates t 6 ε n and t 6≡n s mimicking
the negations of t ε n and t ≡n s as fix point predicates, too, in order to get a a positive
arithmetical operator. Note that the use of a classical arithmetic theory with fix points
seems unavoidable to be able to interpret the collection of sets via a positive arithmetical
operator.

From now on we write

Fam(m,n) ≡ Set(n) ∧ ∀t (t 6 ε n ∨ Set({m}(t))) ∧ ∀t∀s (t 6≡n s ∨ (P ′1 ∧ P ′2))

where P ′1 and P ′2 are obtained from P1 and P2 with the mentioned primitive negated
membership and equality predicates

∀j ((j 6 ε {m}(t) ∨ j ε {m}(s)) ∧ (j 6 ε {m}(s) ∨ j ε {m}(t))) and

∀j∀k ((j 6≡{m}(t) k ∨ j ≡{m}(s) k) ∧ (j 6≡{m}(s) k ∨ j ≡{m}(t) k)).

In order to define the positive clauses for the codes of sets we must introduce some
notations. In this way we transform the clauses for realizability for sets automatically in the
clauses needed to define the fix points Set(n), tεn, t 6 ε n, t ≡n s and t 6≡n s.

First of all, we define a function [] which assigns a value to a set according to the table
in section 3.2 as follows.
1. if σ is one of the symbolsA, A′, B, φ, φ′, ψ, t, s, then [σ] is a, a′, {b}(x), c, c′, {d}(x), e, f

respectively;
2. if σ is N0, N1, N , (Πx ∈ A)B, (Σx ∈ A)B, A + A′, List(A) then [σ] is 〈1, 0〉, 〈1, 1〉,
〈1, 2〉, 〈2, 〈a, b〉〉, 〈3, 〈a, b〉〉, 〈4, 〈a, a′〉〉, 〈5, a〉 respectively;

3. if σ is ⊥, φ ∧ φ′, φ ∨ φ′, φ → φ′, (∃x ∈ A)ψ, (∀x ∈ A)ψ, Id(A, t, s) then [σ] is 〈6, 0〉,
〈7, 〈c, c′〉〉, 〈8, 〈c, c′〉〉, 〈9, 〈c, c′〉〉, 〈10, 〈a, d〉〉, 〈11, 〈a, d〉〉, 〈12, 〈a, 〈e, f〉〉〉 respectively.

We denote by []−1 the inverse function of []. Now, all clauses in the realizability interpreta-
tion of sets are defined using formulas which are obtained starting from arithmetical formulas
or primitive formulas with ε or ∼, by using connectives, first order quantifiers or explicit
instances of substitution in x. For such formulas ϕ we define ϕ+ as follows:

1. if ϕ is arithmetical, then ϕ+ is defined as ϕ itself. If ϕ is a primitive formulas with ε or ∼
we will transform εJ (σ) and ∼I(σ) in ε [σ] and ≡[σ] respectively, in order to obtain ϕ+;

2. (ϕ[α/x])+ is ϕ+[α/x];
3. (ϕ ∧ ϕ′)+ is ϕ+ ∧ ϕ′+;
4. (ϕ ∨ ϕ′)+ is ϕ+ ∨ ϕ′+;
5. (ϕ→ ϕ′)+ is ϕ+ ∨ ϕ′+;
6. (∀uϕ)+ is ∀uϕ+ for every variable u;
7. (∃uϕ)+ is ∃uϕ+ for every variable u;

where ϕ is defined by the following clauses:
1. if ϕ is an arithmetical formula ϕ is ¬ϕ;
2. if ϕ is a relation between two terms through ε, 6 ε, ≡ or 6≡, then ϕ is obtained by

transforming them in 6 ε, ε, 6≡ or ≡ respectively;
3. ϕ ∧ ϕ′ is ϕ ∨ ϕ′;
4. ϕ ∨ ϕ′ is ϕ ∧ ϕ′;
5. ∀uϕ is ∃uϕ for every variable u;
6. ∃uϕ is ∀uϕ for every variable u;

18 An extensional Kleene realizability

We can now define the positive clauses we needed. For τ equal to 〈1, 0〉, 〈1, 1〉, 〈1, 2〉,
〈2, 〈a, b〉〉, 〈3, 〈a, b〉〉, 〈4, 〈a, a′〉〉, 〈5, a〉, 〈6, 0〉, 〈7, 〈c, c′〉〉, 〈8, 〈c, c′〉〉, 〈9, 〈c, c′〉〉, 〈10, 〈a, d〉〉,
〈11, 〈a, d〉〉, 〈12, 〈a, 〈e, f〉〉〉 we have the following clauses7:

1. Set(τ) if Cond(τ);
2. n ε τ if Cond(τ) ∧ (n εJ ([τ]−1))+;
3. n 6 ε τ if Cond(τ) ∧ (n εJ ([τ]−1))+;
4. n ≡τ m if Cond(τ) ∧ (n ∼I([τ]−1) m)+;
5. n 6≡τ m if Cond(τ) ∧ (n ∼I([τ]−1) m)+;

where Cond(τ) is

1. > if τ has first component 1 or 6;
2. Fam(b, a) if τ has first component 2 or 3;
3. Set(a) ∧ Set(a′) if τ has first component 4;
4. Set(a) if τ has first component 5;
5. Set(c) ∧ Set(c′) ∧ π1(c) > 5 ∧ π1(c′) > 5 if τ has first component 7, 8 or 9;
6. Fam(d, a) ∧ ∀x (x 6 ε a ∨ π1({d}(x)) > 5) if τ has first component 10, 11;
7. Set(a) ∧ e ε a ∧ f ε a if τ has first component 12.

By sake of example we present here the clauses for codes of Π-sets.

Set(〈2, 〈a, b〉〉) if Fam(b, a);
n ε 〈2, 〈a, b〉〉 if

Fam(b, a) ∧ ∀x (x 6 ε a ∨ {n}(x) ε {b}(x)) ∧ ∀x∀y (x 6≡a y ∨ {n}(x) ≡{b}(x) {n}(y));

n 6 ε 〈2, 〈a, b〉〉 if

Fam(b, a) ∧ (∃x (x ε a ∧ {n}(x) 6 ε {b}(x)) ∨ ∃x∃y (x ≡a y ∧ {n}(x) 6≡{b}(x) {n}(y)));

n ≡〈2,〈a,b〉〉 m if

Fam(b, a) ∧ n ε 〈2, 〈a, b〉〉 ∧ mε 〈2, 〈a, b〉〉 ∧ ∀x (x 6 ε a ∨ {n}(x) ≡{b}(x) {m}(x));

n 6≡〈2,〈a,b〉〉 m if

Fam(b, a) ∧ (n 6 ε 〈2, 〈a, b〉〉 ∨ m 6 ε 〈2, 〈a, b〉〉 ∨ ∃x (x ε a ∧ {n}(x) 6≡{b}(x) {m}(x))

The formulas Set(n), tεn, t 6 ε n, t ≡n s and t 6≡n s are components of a predicate Pθ(n)
defined in ‘ID1 as a fix point of an operator θ(n,X) defined by glueing together the clauses
expressing the code of each mTTs-set-constructor with its interpretation in ‘ID1.

7 By nεJ ([τ]−1) and n ∼I([τ]−1) m we mean the right-hand side of the respective clause in the realizability
interpretation of sets, taking into account that for small propositions membership coincides with the
realizability relation.

M.E. Maietti and S. Maschio 19

The interpretation of collections
Here we extend the realizability relation, membership and equality in definition5 in order to
interpret collections, propositions and the decoding operators.

I Definition 6. n φ between natural numbers and mTT-propositions and formulas
nεJ (D) and n ∼I(D) m for collections D are defined by including all clauses in definition 5
plus the following:
1. n τ(p) and n εJ (τ(p)) are both given by n ε I(p)

n ∼I(τ(p)) m is n εJ (τ(p)) ∧mεJ (τ(p));

2. The realizability relation n η for propositions is completely analogous to the realizability
relation for small propositions and the interpretation of propositions is given by the class
of realizers equipped with the trivial equivalence relation;

3. Σ-collections are interpreted exactly in the same way as Σ-sets;

4. nεJ (Set) is Set(n) ∧ ∀t (t ε n↔ ¬t 6 ε n) ∧ ∀t∀s (t ≡n s↔ ¬t 6≡n s). This is because 6 ε
and 6≡, which are defined by fix point, don’t behave necessarily as negations of ε and ≡
and hence we need to add ∀t (t ε n↔ ¬t 6 ε n) and ∀t∀s (t ≡n s↔ ¬t 6≡n s);
The interpretation of n ∼I(Set) m is

n εJ (Set) ∧ mεJ (Set) ∧ ∀t (t ε n↔ t εm) ∧ ∀t∀s (t ≡n s↔ t ≡m s);

5. n εJ (props) is n εJ (Set) ∧ π1(n) > 5 ∧ ∀t∀s (t ε n ∧ s ε n↔ t ≡n s) (recall that small
propositions are encoded with π1(n) > 5 and enjoy the proof-irrelevance);
The interpretation of n ∼I(props) m is n εJ (props) ∧ mεJ (props) ∧ ∀t (t ε n↔ t εm);

6. n εJ (A→ props) is ∀t∀s (t ∼I(A) s → {n}(t) ∼I(props) {n}(s))
and n ∼I(A→props) m is
n εJ (A→ props) ∧ mεJ (A→ props) ∧ ∀t (t εJ (A) → {n}(t) ∼I(props) {m}(t))

The interpretation of judgements
We now need to say how judgements are interpreted in our realizability model. First of all,
if A = (A, 'A) and B = (B, 'B) are definable classes of ‘ID1 equipped with a definable
equivalence relation, then we denote with A .= B the formula

∀t∀s (t 'A s ↔ t 'B s).

The judgements of mTTs are interpreted as follows:

1. if type ∈ {set, col, props, prop}, the interpretation of A type is I(A) .= I(A);
2. if type ∈ {set, col, props, prop}, the interpretation of A = B type is I(A) .= I(B);
3. the judgement t ∈ A is interpreted as I(t);
4. the judgement t = s ∈ A is interpreted as I(t) ∼I(A) I(s).

5. if type ∈ {set, col, props, prop}, the interpretation of A type [x1 ∈ A1, ..., xn ∈ An] is

∀x1∀y1...∀xn∀yn (x1 ∼I(A1) y1 ∧ ... ∧ xn ∼I(An) yn → I(A) .= I(A) [y1/x1, ..., yn/xn])

20 An extensional Kleene realizability

6. if type ∈ {set, col, props, prop}, the interpretation of A = B type [x1 ∈ A1, ..., xn ∈ An] is

∀x1...∀xn (x1 εJ (A1) ∧ ... ∧ xn εJ (An) → I(A) .= I(B))

7. the judgement t ∈ A[x1 ∈ A1, ..., xn ∈ An] is interpreted as

∀x1∀y1...∀xn∀yn (x1 ∼I(A1) y1 ∧ ...∧ xn ∼I(An) yn → I(t) ∼I(A) I(t) [y1/x1, .., yn/xn])

8. the judgement t = s ∈ A[x1 ∈ A1,, xn ∈ An] is interpreted as

∀x1...∀xn (x1 εJ (A1) ∧ ... ∧ xn εJ (An) → I(t) ∼I(A) I(s))

3.3 The validity theorem
A judgement J in the language of mTTs is validated by the realizability model (R � J) if‘ID1 ` I(J), where I(J) is the interpretation of J according to the previous section. We say
that a proposition φ is validated by the model (R � φ), if its interpretation can be proven to
be inhabited, which means that‘ID1 ` ∃r(rεJ (φ)) which is equivalent to ‘ID1 ` ∃r(r φ).

In order to prove how substitution is interpreted in a easy way, it is convenient to modify
the presentation of mTTs-rules, into an equivalent system (still denoted by mTTs), where
we supply the information that the members in a type equality judgement are types, and
members of term equality judgements are typed terms as follows with the warning of avoiding
repetitions of same judgements: for type ∈ {set, col, props, prop}

any rule J1...Jn
A = B type [Γ] is changed to J1...Jn, A type [Γ] , B type [Γ]

A = B type [Γ]

any rule J1...Jn
b ∈ B [Γ] is changed to J1...Jn, B type [Γ]

b ∈ B [Γ]

any rule J1...Jn
a = b ∈ A [Γ] is changed to J1...Jn, a ∈ A type [Γ] , b ∈ A type [Γ]

a = b ∈ A type [Γ]
the substitution rule subT) and sub) in [9] are changed to

subTm)

C(x1, . . . , xn) type [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)]
a1 ∈ A1, . . . , an ∈ An(a1, . . . , an−1) b1 ∈ A1, . . . , bn ∈ An(b1, . . . , bn−1)
a1 = b1 ∈ A1 . . . an = bn ∈ An(a1, . . . , an−1)

C(a1, . . . , an) = C(b1, . . . , bn) type

subm)

c(x1, . . . , xn) ∈ C(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)]
C(x1, . . . , xn) type [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)]
a1 ∈ A1, . . . , an ∈ An(a1, . . . , an−1) b1 ∈ A1, . . . , bn ∈ An(b1, . . . , bn−1)
a1 = b1 ∈ A1 . . . an = bn ∈ An(a1, . . . , an−1)

c(a1, . . . , an) = c(b1, . . . , bn) ∈ C(a1, . . . , an)
the formation rules F-Σ), F-∃) and F-∀) are changed to

F-Σ)

B col

C(x) col [x ∈ B]
Σx∈BC(x) col F-∃)

B col

C(x) prop [x ∈ B]
∃x∈BC(x) prop F-∀)

B col

C(x) prop [x ∈ B]
∀x∈BC(x) prop

M.E. Maietti and S. Maschio 21

the elimination rules E-Π) and E-∀) are changed to

E-Πm)

C(x) set [x ∈ B] C(b) set
b ∈ B f ∈ Πx∈BC(x)

Ap(f, b) ∈ C(b) E-∀m)

C(x) prop [x ∈ B] C(b) prop
b ∈ B f ∈ ∀x∈BC(x)

Ap∀(f, b) ∈ C(b)
Note that each mTTs-type is a collection and therefore in deriving a typed term b ∈ B

under a context the addition of the information that the type B is a collection in the premise
is certainly valid.

I Theorem 7 (Validity theorem). For every judgement J in the language of mTTs , if J
can be proven in mTTs (mTTs ` J), then J is validated by the model (R � J).

Proof. In order to prove the validity theorem it is necessary to prove by induction on the
height of the proof tree in mTTs these three facts at the same time:
1. for every judgement J in the language of mTTs, if mTTs ` J then R � J ;
2. (substitution) If mTTs ` C type [x1 ∈ A1, ..., xn ∈ An] for type ∈ {set, col, props, prop}

for all

mTTs ` a1 ∈ A1[y1 ∈ B1, ..., ym ∈ Bm], ...,

mTTs ` an ∈ An[a1/x1, ..., an−1/xn−1][y1 ∈ B1, ..., ym ∈ Bm],

if R � a1 ∈ A1[y1 ∈ B1, ..., ym ∈ Bm],...,

R � an ∈ An[a1/x1, ..., an−1/xn−1][y1 ∈ B1, ..., ym ∈ Bm],

then‘ID1 ` ∀y1...∀ym (y1 εJ (B1) ∧ ... ∧ ym εJ (Bm) →

I(C) [I(a1)/x1, ..., I(an)/xn] .= I(C [a1/x1, ..., an/xn])

and if mTTs ` c ∈ C[x1 ∈ A1, ..., xn ∈ An] for all

mTTs ` a1 ∈ A1[y1 ∈ B1, ..., ym ∈ Bm], ...,

mTTs ` an ∈ An[a1/x1, ..., an−1/xn−1][y1 ∈ B1, ..., ym ∈ Bm],

if R � a1 ∈ A1[y1 ∈ B1, ..., ym ∈ Bm],...,

R � an ∈ An[a1/x1, ..., an−1/xn−1][y1 ∈ B1, ..., ym ∈ Bm],

then‘ID1 ` ∀y1...∀ym (y1 εJ (B1) ∧ ... ∧ ym εJ (Bm) →

I(c) [I(a1)/x1, ..., I(an)/xn] ∼I(C [a1/x1,...,an/xn]) I(c [a1/x1, ..., an/xn]).

3. (coding) If mTTs ` B set [x1 ∈ A1, ...,n ∈ An], then‘ID1 ` ∀x1...∀xn (x1 εJ (A1) ∧ ... ∧ xn εJ (An) → Set(I(B̂))∧

∀t (t εJ (B)↔ t ε I(B̂)) ∧ ∀t (¬t εJ (B)↔ t 6 ε I(B̂))∧

∀t∀s (t ∼I(B) s↔ t ≡I(B̂) s) ∧ ∀t∀s (¬t ∼I(B) s↔ t 6≡I(B̂) s)).

22 An extensional Kleene realizability

Let us show only some cases, as the techniques will be similar in the other cases. In particular
we will consider validity and substitution for the rule of introduction for Π-set and validity
for the rule of conversion for Π-sets. The technique is similar in the other cases.

1. Suppose that we derived in mTTs the judgement λy.c ∈ (Πy ∈ B)C [x ∈ A] by
introduction rule, after having derived c ∈ C [x ∈ A, y ∈ B] and (Πy ∈ B)C set [x ∈ A].
By inductive hypothesis on validity we can suppose that R � c ∈ C [x ∈ A, y ∈ B]. This
means that in ‘ID1

∀x∀x′∀y∀y′ (x ∼I(A) x
′ ∧ y ∼I(B) y

′ → I(c) ∼I(C) I(c) [x′/x, y′/y])

which is equivalent to

∀x∀x′ (x ∼I(A) x
′ → ∀y∀y′ (y ∼I(B) y

′ → {Λx.Λy.I(c)}(x, y) ∼I(C) {Λx.Λy.I(c)}(x′, y′))

Using this fact together with the fact that ‘ID1 ` ∀x∀x′ (x ∼I(A) x′ → I(B) .=
I(B)[x′/x]) (by inductive hypothesis on validity as the judgement B set [x ∈ A] is derived
with a shorter derivation), we obtain that‘ID1 ` ∀x∀x′ (x ∼I(A) x

′ → I(λy.c) ∼I((Πy∈B)C) I(λy.c) [x′/x]).

2. If the judgement Ap(λy.b, a) = b[a/x] ∈ B[a/x] is derived in mTTs by conversion after
having derived b ∈ B [x ∈ A], a ∈ A, b[a/x] ∈ B[a/x] and Ap(λy.b, a) ∈ B[a/x], in order
to show that it is validated by R, we can suppose by inductive hypothesis on validity
that R � b ∈ B [x ∈ A] and R � a ∈ A.
By inductive hypothesis on substitution applied to b ∈ B [x ∈ A] with respect to a ∈ A
we obtain that ‘ID1 ` I(b) [I(a)/x] ∼I(B [a/x]) I(b [a/x]). But by the definition of the
interpretation of Ap(λy.b, a) from this we obtain that‘ID1 ` I(Ap(λy.b, a)) ∼I(B [a/x]) I(b [a/x])

which exactly means that R � Ap(λy.b, a) = b [a/x] ∈ B [a/x].

For rules about props, the definitions of I(props) and I(τ(p)) were given in such a way
that validity and substitution can be checked easily, sometimes (e. g. in the case of quantifiersÿ�(∃x ∈ A) p and ÿ�(∀x ∈ A) p) using the inductive hypothesis (coding), which guarantees that if
you start from A which is proven to be a set in mTTs and you perform the coding in the
syntax Â, then Â is a well defined code for a set and it is exactly the internal version of I(A).

J

Consequences of the validity theorem
We discuss here about the validity in our realizability model for mTT of some principles,
namely Extensionality Equality of Functions, Axiom of Choice and Formal Church Thesis.

1. Extensionality Equality of Functions can be formulated as a proposition in mTT
as follows:

(extFun) (∀f ∈ (Πx ∈ A)B) (∀g ∈ (Πx ∈ A)B)
((∀x ∈ A) Id(B,Ap(f, x),Ap(g, x))→ Id((Πx ∈ A)B, f, g))

Since the judgements f = g ∈ (Πx ∈ A)B and Ap(f, x) = Ap(g, x) ∈ B [x ∈ A] have the
same interpretation, extFun can be realized by the term Λf.Λg.Λr.0, i. e. our model
realises extFun.

M.E. Maietti and S. Maschio 23

2. The Axiom of Choice ACA,B is represented in mTT by the following proposition:

(ACA,B) (∀x ∈ A) (∃y ∈ B) ρ(x, y)→ (∃f ∈ (Πx ∈ A)B) (∀x ∈ A) ρ(x,Ap(f, x))

Unfortunately a realizer r for (∀x ∈ A) (∃y ∈ B) ρ(x, y) cannot be turned into a recursive
function from J (A) to J (B) respecting equivalence relations ∼I(A) and ∼I(B), as the
interpretation of propositions is proof-irrelevant and we can have different elements a and
a′ of J (A) which are equivalent in I(A) for which π1({r}(a)) and π1({r}(a′)) are not
equivalent in I(B). This problem can be avoided if A is a numerical set and in particular in
the case of the set N . In this case the natural number Λr.〈Λn.π1({r}(n)),Λn.π2({r}(n))〉
is a realizer for the axiom of choice ACN,B . So R ACN,B for every B.
Moreover also the axiom of unique choice AC! given by

(AC!) (∀x ∈ A) (∃!y ∈ B) ρ(x, y)→ (∃f ∈ (Πx ∈ A)B) (∀x ∈ A) ρ(x,Ap(f, x))

is validated by the model R.8 In fact if ρ(x, y) is a proposition in context [x ∈ A, y ∈ B],
then in particular‘ID1 ` ∀x∀x′∀y∀t (x ∼I(A) x

′ ∧ y εJ (B) ∧ t ρ(x, y)→ t ρ(x′, y)).
This implies that we can easily choose a realizer for the axiom of unique choice.

3. If ϕ is a formula of first-order arithmetic HA, then we can define a proposition ϕ in mTT,
according to the following conditions:

⊥ is ⊥ ϕ ∧ ϕ′ is ϕ ∧ ϕ′ ∃xϕ is (∃x ∈ N)ϕ
t = s is Id(N, t, s) ϕ ∨ ϕ′ is ϕ ∨ ϕ′ ∀xϕ is (∀x ∈ N)ϕ

ϕ→ ϕ′ is ϕ→ ϕ′

where t and s are the translations of terms of HA in mTT (in particular primitive
recursive functions of HA are translated via ElN , succ and 0 are translated in the obvious
corresponding ones and variables are interpreted as themselves9). The language of HA
can also be naturally interpreted in ‘ID1 by using the fact that each primitive recursive
function can be encoded by a numeral. If t is a term of HA we will still write t for its
translation in ‘ID1. The following lemma is an immediate consequence of the definition
of our realizability interpretation where k denotes Kleene realizability in HA (see [20]):

I Lemma 8. If t is a term of HA and ϕ is a formula of HA, then
a. ‘ID1 ` I(t) = t

b. ‘ID1 ` n k ϕ↔ n ϕ.

The formal Church Thesis CT can be expressed in mTT as the following proposition

(CT) (∀x ∈ N) (∃y ∈ N) ρ(x, y)→ (∃e ∈ N) (∀x ∈ N) (∃u ∈ N) (T (e, x, u) ∧ ρ(x, U(u))

where T and U are the Kleene predicate and the primitive recursive function representing
Kleene application in HA. Note that the validity of CT can be obtained by glueing
ACN,N together with the following restricted form of Church Thesis for type-theoretic
functions:

(CTλ) (∀f ∈ (Πx ∈ N)N) (∃e ∈ N) (∀x ∈ N) (∃u ∈ N) (T (e, x, u)∧ Id(N,Ap(f, x), U(u)))

8 (∃!x ∈ A)P (x) is defined as (∃x ∈ A)P (x) ∧ (∀x ∈ A)(∀x′ ∈ A)(P (x) ∧ P (x′)→ Id(A, x, x′))
9 Here we suppose that variables of HA coincides with variables of the untyped syntax of mTTs.

24 An extensional Kleene realizability

We know by general results on Kleene realizability that there exists a numeral r for which

HA ` ∃uT (f, x, u)→ ({r}(f, x) ∃uT (f, x, u)).

Using this remark, the fact that {f}(x) ↓ is equivalent to ∃uT (f, x, u) in ‘ID1, the proof
irrelevance and lemma 8 we can show that CTλ can be realized by

Λf.〈f,Λx.〈{p1}({r}(f, x), 〈{p2}({r}(f, x), 0〉〉〉.

In fact every function fromN toN is interpreted in the model as a code for a total recursive
function and we can send this code to itself in order to realize Church Thesis. Proof
irrelevance allows to ignore the problem that different codes can give rise to extensionally
equal functions, which is crucial to prove validity of CT.
We can conclude this section by stating the following consistency results:

I Theorem 9. mTT is consistent with CT.
I Corollary 10. emTT is consistent with CT.

Proof. According to the interpretation of emTT in mTT in [9], the interpretation of
CT turns now to be equivalent to CT itself. Therefore a model showing consistency of
mTT with CT can be extended to a model of emTT with CT. J

4 Conclusions

As explained in the introduction, the semantics built here is the best Kleene realizability
model we can construct for the extensional level emTT of the Minimalist Foundation, since
emTT validates Extensionality Equality of Functions and it is constructively incompatible
with the Axiom of Choice on generic sets, which is instead valid in Beeson’s model. In our
semantics instances of the axiom of choice are still valid only on numerical sets, which include
the interpretation of basic intensional types as the set of natural numbers.

On the contrary, for the intensional level mTT of the Minimalist Foundation we hope to
build a more intensional realizability semantics à la Kleene where we validate not only CT
but also the Axiom of Choice AC on generic types. Recalling from [9] that our mTT can
be naturally interpreted in Martin-Löf’s type theory with one universe, such an intensional
Kleene realizability for mTT could be obtained by modelling intensional Martin-Löf’s type
theory with one universe (with explicit substitutions in place of the usual substitution term
equality rules) together with CT. However, as far as we know, the consistency of intensional
Martin-Löf’s type theory with CT is still an open problem.

Acknowledgements. We acknowledge many useful fruitful discussions with Takako
Nemoto on realizability models for Martin-Löf’s type theory during her visits to our de-
partment. We also thank Laura Crosilla, Giovanni Sambin and Thomas Streicher for other
interesting fruitful discussions on topics of this paper. We are grateful to Ferruccio Guidi for
its constant help with typesetting.

References
1 G. Barthes, V. Capretta, and O. Pons. Setoids in type theory. J. Funct. Programming,

13(2):261–293, 2003. Special issue on "Logical frameworks and metalanguages".
2 M. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, Berlin, 1985.

M.E. Maietti and S. Maschio 25

3 E. Bishop. Foundations of Constructive Analysis. McGraw-Hill Book Co., 1967.
4 T. Coquand. Metamathematical investigation of a calculus of constructions. In P. Odifreddi,

editor, Logic in Computer Science, pages 91–122. Academic Press, 1990.
5 S. Feferman. Iterated inductive fixed-point theories: application to Hancock’s conjecture.

In Patras Logic Symposion, pages 171–196. North Holland, 1982.
6 M. Hofmann. Extensional Constructs in Intensional Type Theory. Distinguished Disserta-

tions. Springer, 1997.
7 J. M. E. Hyland. The effective topos. In The L.E.J. Brouwer Centenary Symposium

(Noordwijkerhout, 1981), volume 110 of Stud. Logic Foundations Math., pages 165–216.
North-Holland, Amsterdam-New York„ 1982.

8 J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts. Tripos theory. Bull. Austral. Math.
Soc., 88:205–232, 1980.

9 M. E. Maietti. A minimalist two-level foundation for constructive mathematics. Annals of
Pure and Applied Logic, 160(3):319–354, 2009.

10 M. E. Maietti and G. Rosolini. Elementary quotient completion. Theory and Applications
of Categories, 27(17):445–463, 2013.

11 M. E. Maietti and G. Rosolini. Quotient completion for the foundation of constructive
mathematics. Logica Universalis, 7(3):371–402, 2013.

12 M. E. Maietti and G. Rosolini. Unifying exact completions. Applied Categorical Structures,
DOI 10.1007/s10485-013-9360-5, 2013.

13 M. E. Maietti and G. Sambin. Toward a minimalist foundation for constructive mathemat-
ics. In L. Crosilla and P. Schuster, editor, From Sets and Types to Topology and Analysis:
Practicable Foundations for Constructive Mathematics, number 48 in Oxford Logic Guides,
pages 91–114. Oxford University Press, 2005.

14 M. E. Maietti and G. Sambin. Why topology in the Minimalist Foundation must be
pointfree. Logic and Logical Philosophy, 22(2):167–199, 2013.

15 P. Martin-Löf. Notes on Constructive Mathematics. Almqvist & Wiksell, 1970.
16 P. Martin-Löf. Intuitionistic Type Theory. Notes by G. Sambin of a series of lectures given

in Padua, June 1980. Bibliopolis, Naples, 1984.
17 B. Nordström, K. Petersson, and J. Smith. Programming in Martin Löf’s Type Theory.

Clarendon Press, Oxford, 1990.
18 P. Odifreddi. Classical recursion theory., volume 125 of Studies in Logic and the Founda-

tions of Mathematics. North-Holland Publishing Co., 1989.
19 E. Palmgren. Bishop’s set theory. Slides for lecture at the TYPES summer school, 2005.
20 A. S. Troelstra and D. van Dalen. Constructivism in mathematics, an introduction, vol. I.

In Studies in logic and the foundations of mathematics. North-Holland, 1988.

	Introduction
	The Minimalist Foundation
	The intensional level of the Minimalist Foundation
	The extensional level of the Minimalist Foundation
	Untyped syntax of mTTs

	The realizability interpretation for mTTs
	The system
	The definition of interpretation
	The validity theorem

	Conclusions

