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Abstract

We define the notion of subspace of an arithmetic universe by using

its internal dependent type theory.

1 Introduction

In the recent submitted paper with Steve Vickers [MV10] we defined the notion
of subspace of an arithmetic universe as a free categorical structure built by
means of the partial logic in [PV07].

Here we show how we can define subspaces of an arithmetic universe by using
its internal type theory in [Mai05].

In the following we use the abbreviation AU for “arithmetic universe” as
defined in [Mai10]. There we gave a general notion of the instance of arithmetic
universes built by André Joyal [Joy05] in the seventies. By an AU functor
between arithmetic universes we mean a functor preserving the AU structure
up to isomorphisms.

By a subspace of A we mean an AU with extra structure S, expressed in
terms of new arrows and commutativities, to be added to A and we call it A[S]t
(where t stands for a type-theoretic description of the free structure). We take
as its universal property the following one: we have an AU embedding functor
I : A → A[S]t and for any AU B, the category of AU functors AU(A[S]t,B)
is equivalent to the category of pairs (F, α) where F : A → B is an AU functor
and α interprets the structure in S with respect to F as in [Mai05].

To show the existence of such subspaces we first define the internal language
of an arithmetic universe A as the free arithmetic universe generated from A,
as defined in [Mai05], to which we add coherent isomorphisms making the free
AU-structure added to A isomorphic to the existing AU structure in A. We call
Tiso(A) the internal type theory of A with such coherent isomorphisms. This
internal type theory of A differs from that defined in [Mai05], and called T (A),
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because the first has coherent isomorphisms. This difference becomes clear when
we look at the embedding of A in the syntactic categories CT (A) and CTiso(A)

built out of T (A) and Tiso(A) respectively: while the category A embeds into
CT (A) via a functor preserving the AU structure strictly, it embeds in CTiso(A)

only via an AU functor.
Then we show that the category of AU functors from the AU-category A

to the AU B is in equivalence with that of translations from the internal type
theory with coherent isomorphisms of A to that of B.

Then we can define a subspace A[S]t of an arithmetic universe A with ex-
tra structure S, expressed in terms of new arrows and commutativities between
them, as the syntactic category of the extension of Tiso(A) with the extra struc-
ture. In this way we can prove the desired universal property that AU functors
from A in an AU B with the necessary structure to interpret the extra structure
S lift to AU functors from A[S]t in an uniquely up to iso way.

If we define subspaces with extra structure by using T (A) instead of Tiso(A)
we just get a subspace satisfying a lifting property only for functors preserving
the AU structure strictly.

2 Arithmetic universes

Arithmetic universes are very much the creation of André Joyal, in unpublished
work from the 1970s. The general notion was not clearly defined, and we shall
follow [Mai10] (which also discusses their background in some detail) in defining
them as list arithmetic pretoposes.

Definition 1 A pretopos is a category equipped with finite limits, stable finite
disjoint coproducts and stable effective quotients of equivalence relations. (For
more detailed discussion, see, e.g., [Joh02, A1.4.8].)

A finitely complete category has parameterized list objects (see [Mai10]; also
[Coc90]) if for any object A there is an object List(A) with maps rA0 : 1 → List(A)
and r

A
1 : List(A)×A → List(A) such that for every b : B → Y and g : Y ×A → Y

there is a unique rec(b, g) making the following diagrams commute

B
<id,rAo ·!B>

//

b
((QQQQQQQQQQQQQQQ B×List(A)

recl(b,g)

��

B×(List(A)×A)
id×rA1oo

(recl(b,g)×idA)·α

��
Y Y×A

g
oo

where α : B×(List(A)×A) → (B×List(A))×A is the associativity isomorphism.
An arithmetic universe (or AU) [Mai10] is a pretopos with parameterized list

objects. We assume that each arithmetic universe is equipped with a choice of its
structure. For example, given two objects A,B we can choose their product and
the pairing morphisms of two morphisms. Note that an AU has all coequalizers,
not just the quotients of equivalence relations as shown in [Mai10].
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This is because the list objects allow one to construct the transitive closure
of any relation.

A functor between AUs is an AU functor if it preserves the AU structure
(finite limits, finite colimits, list objects) non-strictly, i.e. up to isomorphism.
We write AU for the category of AUs and AU functors. (We shall sometimes
refer to a strict AU functor, preserving structure on the nose, as an AU homo-
morphism.)

2.1 Free structures via type theory

In order to adjoin structure freely to an AU we can use its internal type theory
devised in [Mai05].

We start by recalling the necessary notions from [Mai05].

Definition 2 (Tau-theory) We write Tau for the typed calculus that provides
the internal language of arithmetic universes in [Mai05, section 3].

We call a theory T of the typed calculus of arithmetic universes Tau, (in
short: a Tau-theory), a typed calculus extended with judgements of the form

B [Γ] B = C [Γ] c ∈ C [Γ] c = d ∈ C [Γ]

i.e. new types, new elements of types, and new equalities between them.

Definition 3 (syntactic category) For a given Tau-theory T , let CT be the
syntactic category built out of T as in [Mai05, section 5.2].

Definition 4 (internal theory of an AU as an AU) Given an arithmetic
universe A, let T (A) be the Tau-theory that is the internal language of A. It is
defined by the method exemplified with pretoposes in [Mai05, section 5.4].

Let us call EmT : A → T (A) the embedding of an object in A as a proper type
and of a morphism in A as a proper term in its internal type theory. Then, let
us simply call Em : A → CT (A) the embedding of an object X and a morphism f
to their copy in the syntactic category CT (A) defined on page 1119 of [Mai05].
Finally, let us call V : CT (A) → A the functor establishing an equivalence with

Em (this called ǫ−1
A in [Mai98]).

Definition 5 (theory defining the free AU) Given an AU A, let Tcat(A)
be the free Tau-theory generated from A as a category, i.e. the extension of
the typed calculus Tau with the axioms arising from A considered as a category
according to definition 5.30 of [Mai05].

Its syntactic category CTcat(A) is the free AU generated from A as a category,
as shown in [Mai05, section 5.5].

Definition 6 Given an AU A, let Y : A → CTcat(A) be the functor embedding
of theorem 5.31 in [Mai05], sending an object X and a morphism f to their
copy in CTcat(A). For easiness we keep the same notation here.

Then, let TrA : Tcat(A) −→ T (A) be the interpretation functor defined as
follows: it sends proper types and terms arising respectively from objects and
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morphisms of A to the corresponding ones in T (A) and types and terms con-
structors of Tau to their copy in T (A) according to the interpretation exemplified
for pretopoi in section 5 of [Mai05].

Then, the functor C(TrA) : CTcat(A) → CT (A) sends each closed type and term
in CTcat(A) to their translation via TrA in T (A).

Now we intend to define the internal type theory of an AU A as the extension
of Tcat(A) with coherent isomorphisms connecting the free AU-structure with
the chosen AU-structure in A. We will call such an internal type theory Tiso(A).

Categorically this means that we require the existence of a natural isomor-
phism between the identity functor Id : CTcat(A) → CTcat(A) and the functor

(Y · V ) · C(TrA) : CTcat(A) → CT (A) → A → CTcat(A)

Given the importance of this functor we give it a new name:

Definition 7 (A-reflection) Let the functor

RA : CTcat(A) → CTcat(A)

be defined as RA ≡ (Y · V ) · C(TrA) and called the A-reflector functor.

Note also that the A-reflector functor restricted to A is essentially the iden-
tity:

Lemma 8 For any given AU A the functor Y : A → CTcat(A) is naturally
isomorphic to RA · Y, that is the restriction of the A-reflector functor on A.

Proof. This follows from the fact that proper types and terms via TrA are
interpreted in objects and terms isomorphic to the interpreted ones. Indeed,
for a given object X in A then ( (Y · V ) · C(TrA) )( Y(X) ) is V(XEm), which is
only isomorphic to Y(X) ≡ X (indeed CT (A) is only equivalent to A and not
isomorphic to it!).

In order to define Tiso(A) in an explicit way we need to define the natural
isomorphism as a family of isomorphisms indexed on the objects of CTcat(A).
Since such objects are closed types in Tcat(A) that are defined inductively out
of the whole collection of types in Tcat(A), we thought of describing the desired
natural isomorphism as a consequence of an isomorphism between suitable in-
terpretations of Tcat(A) in CTcat(A). This means that we will defined a family
of suitable isomorphisms indexed on the whole types of Tcat(A). These isomor-
phisms will be called coherent isomorphisms.

Before proceeding we review some key aspects of how to interpret a de-
pendent typed calculus, like Tau, into a category C as defined in [Mai05]. In
particular we review how types, terms with their equalities are interpreted to-
gether with the interpretation of substitution and weakening in types, in order
to fix the notation of morphisms that will be involved in the notion of morphism
between interpretations.

First of all the interpretation of a typed calculus in a category A according
to [Mai05] is actually given in the category Pgr(A) defined as follows:
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Definition 9 Given a category A with terminal object 1, the objects of the
category Pgr(A) are finite sequences b1, b2, ..., bn of morphisms of A

1 B1
b1

oo B2
b2

oo Bn
bn

oo

and a morphism from b1, b2, ..., bn to c1, c2, ..., cm is a morphism d of A such

that cn · d = bn in A Bn
d //

bn

##HH
HH

H
Cn

bn{{vv
vv

v

1 B1
!B1

oo Bn−1
bn−1

oo

provided that n = m and

bi = ci for i = 1, ..., n − 1. Equality, composition and identity is that induced
from A.

Now, given an arithmetic universe A, the interpretation of a dependent type
B [x ∈ C1, .., xn ∈ Cn] is given by an object in of Pgr(A)

BΣ

BI
zzuuu

1 C1Σ

CI
1

oo CnΣ

CI
n

oo

The interpretation of a term judgement b ∈ B [Γ] is a section in A of the last
morphism BI of the sequence interpreting the dependent type B under the
context

CnΣ
bI //

id

$$HH
HH

H
BΣ

BI{{wwww

1 C1Σ

CI
1

oo CnΣ

CI
n

oo

The equality between types under context is interpreted as equality of the ob-
jects interpreting them in Pgr(A). The equality between typed terms under
context is interpreted as equality between the sections interpreting them in
Pgr(A).

Now we pass to show how substitution of terms in types and weakening of
assumptions in types are interpreted in Pgr(A).

The notion of interpretation requires to be able to interpret substitution and
weakening as follows. Given a dependent type B(x1, x2) [x1 ∈ C1, x2 ∈ C2] and
a term c2 ∈ C2 [x1 ∈ C1] interpreted as

BΣ

BI||yy
yy

yy

1 CΣ1

CI
1

oo CΣ2

CI
2

oo

CΣ1

cI2 //

id

##FFFFFF
C2Σ

CI
2

{{xxxxxx

1 C1Σ

CI
1

oo

we interpret B(x1, x2)[x2/c2] ≡ B(x1, c2) [x1 ∈ C1] as

B[x2/c2]Σ

B[x2/c2]
Iyysssssss

1 C1Σ

CI
1

oo
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where the last morphism B[x2/c2]
I is the first projection of the following sub-

stitution diagram:

B[x/c2]Σ

qIB[x/c2]
//

B[x2/c2]
I

��

BΣ

BI

��
C1Σ

cI2

// C2Σ

Moreover, the type B [x1 ∈ C1, y ∈ D] obtained by weakening the dependent
type B [x1 ∈ C1] with the type D [x1 ∈ C1] interpreted as

BΣ

BI||yy
yy

yy

1 C1Σ

CI
1

oo

DΣ

DI||yy
yy

yy

1 C1Σ

CI
1

oo

is interpreted as

w(B,D)Σ

w(B,D)I

{{vv
vv

vv
vv

vv
v

1 C1Σ

CI
1

oo DΣ

DI

oo

where the last morphism w(B,D)I is the first projection of the following weak-
ening diagram:

w(B,D)IΣ

qIw(B,D)
//

w(B,D)I

��

BΣ

BI

��
DΣ

DI

// C1Σ

where if the substitution or weakening is performed in the middle of the context
we still use the same notation as follows.
Recall that Γn

j+1 ≡ xj+1 ∈ Cj+1, ..., xn ∈ Cn for a given context Γn denoting
with Γo the empty context, then the type judgement

B[xj/cj] [Γj−1,Γ
n′

j+1]

obtained by substitution with cj ∈ CJ [Γj−1] where Γ
n′

j+1 ≡ x′
j+1 ∈ Cj+1[xj/cj], ..., x

′
n ∈

Cn[xj/cj] is interpreted as a morphism of Pgr(A)

B[xj/cj ]Σ

B[xj/cj]
Iwwoooooooo

1 C1Σ

CI
1

oo Cn[xj/cj]Σ
Cn[xj/cj]

I

oo
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where, if Γj+1−>n is not empty, the last morphism is the first projection of the
substitution diagram:

B[xj/cj]Σ

qB[xj/cj ]
I

//

B[xj/cj ]
I

��

BΣ

BI

��
Cn[xj/cj ]Σ

qCn [xj/cj ]
I

// CnΣ

Moreover the type judgement B [Γj , y ∈ D,Γn
j+1] obtained by weakening with

a variable in the middle of the context is interpreted as

w(B,D)Σ

w(B,D)Iwwpppppppp

1 C1Σ

CI
1

oo w(Cn,D)Σ
w(Cn,D)I

oo

If Γn
j+1 is not empty, then its last morphism is the first projection of the following

weakening diagram:

w(B,D)Σ
qw(B,D)

I

//

w(B,D)I

��

BΣ

BI

��
w(Cn,D)Σ

qw(Cn,D)
I

// CnΣ

Then we give the following definition of generic interpretation:

Definition 10 A generic interpretation of a typed calculus T is one that val-
idates all judgements of the typed calculus T according to the above notion of
judgement interpretations including substitution and weakening.

Note that to interpret substitution of terms in types correctly we need a func-
torial choice of the above substitution diagrams in A.

If we require the substitution and weakening diagrams to be pullbacks in A,
as done in [Mai05], then we need to provide a functorial choice of pullbacks in
A.

In order to build an interpretation of the type calculus Tau in an arithmetic
universe with an arbitrary fixed choice of its structure (and hence with a choice
of pullbacks that is not necessarily functorial), one possibility is to define it via
a preinterpretation of types and terms into fibred functors and natural transfor-
mations as described in [Mai05]. Here we refer to this interpretation defined via
fibred functors as a canonical interpretation of the typed calculus Tau. We do
not recall the definition of such an interpretation here and we refer the reader to
[Mai05]. We just remind that this canonical interpretation is crucial to describe
the internal type theory of an arithmetic universe.
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Here we will mention two interpretations of the typed calculus Tcat(A) in
CTcat(A) that are not defined via fibred functors (hence they are not canonical)
and are only generic ones. These are those interpretations whose action on
the syntactic category CTcat(A) gives rises respectively to the identity functor
and the A-reflector. This implies that to meet our purpose of building a natural
isomorphism between the identity functor and the A-reflector is enough to build
an isomorphism between the corresponding interpretations.

We now pass to describe the interpretation corresponding to the identity
functor on CTcat(A):

Definition 11 (The (−)H interpretation) Let us call (−)H the interpreta-
tion of Tcat(A) into the category Pgr(CTcat(A)) via indexed sums as defined on
page 1138 in [Mai05] with the warning of interpreting the closed type X as

X → ⊤ (and not as Σz∈⊤X
π1 // ⊤ ). For example a type B(x) [x ∈ C] is

interpreted as

Σz∈CB(z)
π1 // C

!C // ⊤

and a term b(x) ∈ B(x) [x ∈ C] is interpreted as a section < id, b(x) > of the
interpretation π1 of its type, namely π1· < id, b(x) >= id in CTcat(A).

In essence (−)H interprets types and terms in themselves as indexed sum types
and sections. Hence it corresponds on CTcat(A) to the identity functor.

Then, the interpretation of Tcat(A) in Pgr(CTcat(A)) corresponding to the A-
reflector functor is obtained by turning the translation TrA : Tcat(A) −→ T (A),
used to built the reflector, into an interpretation IntA : Tcat(A) 7−→ Pgr(A) by
composing TrA with the semantic denotation of T (A)-types and terms. Then,
by using the embedding functor Y : A → CTcat(A) we can think of IntA in
Pgr(CTcat(A)) by keeping the same name

IntA : Tcat(A) 7−→ Pgr(CTcat(A))

Note that this interpretation induces the A-reflector functor on CTcat(A).
Now our task is to build an isomorphism between the interpretations (−)H

and IntA. In order to do so we need to first define the notion of morphism
between interpretations. To this purpose we can not work in Pgr(CTcat(A)) but

we pass to consider the category of arrow lists C
→fin
Tcat(A) defined in [Mai05] as

follows:

Definition 12 (Category of arrow lists) Given a category A, we define the
category A→fin as follows: its objects are sequences

C0 C1c1
oo C2c2

oo Cncn
oo

of composable A-morphisms and a morphism from c1 , c2 , ..., cn to b1 , b2 , ..., bn
is a sequence φ0 , φ1 , ..., φn of A-morphisms such that all the following squares
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commute in A

Cn

φn //

cn
��

Bn

bn��
Cn−1

cn−1
��

φn−1
// Bn−1

bn−1
��

C2

c2
��

φ2 // B2

b2��
C1

c1
��

φ1
// B1

b1��
C0

φ0 // B0

Two morphisms are equal if their n-th components are equal for each n in the
list. Composition of morphisms is a morphism whose n-th component is the
composition of the n-th components of the given morphisms, and the identity is
the morphism whose components are all identities.

Observe that Pgr(A) is a subcategory of A→fin with the same objects and
where morphisms are all identities except for the last component.

Then we define the notion of interpretation morphism, and the associated
one of interpretation isomorphism, between interpretations of a generic Tau-
theory T into a generic arithmetic universe B, or better in Pgr(B), by relating
them in B→fin as follows.

Definition 13 Given a Tau-theory T and an arithmetic universe B and two
interpretation Int1 : T 7−→ Pgr(B) and Int2 : T 7−→ Pgr(B) of T , we say that
there is an morphism of interpretation from Int1 to Int2

σ(−) : Int1 −→ Int2

if for each type judgement B [Γ] of T there exists an morphism in B→fin

σB [Γ] : (B [Γ] )Int1 → (B [Γ] )Int2

Moreover, supposed to represent

(B [Γ] )Int1 ≡ BΣ
Int1

BInt1
// CnΣ

Int1
CInt1

n // C1Σ
Int1

C
Int1
1 // 1Int1

(B [Γ] )Int2 ≡ BΣ
Int2

BInt2
// CnΣ

Int2
CInt2

n // C1Σ
Int2

C
Int2
1 // 1Int2
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we represent σB [Γ] in B→fin as follows:

BΣ
Int1

σB //

BInt1

��

BΣ
Int2

BInt2

��

CnΣ
Int1

CInt1
n

��

σCn // CnΣ
Int2

CInt2
n

��

C2Σ
Int1

C2
Int1

��

σC2 // C2Σ
Int2

C
Int2
2

��

C1Σ
Int1

σC1 //

C
Int1
1

��

C1Σ
Int2

C
Int2
1

��

1Int1

σC1 // 1Int2

Then we require that each component σB satisfy the following conditions:

- naturality condition the last component of σB [Γ] commutes with the
interpretation of its terms: for every term judgement b ∈ B [Γ] of T

σB · bInt1 = bInt2 · σCn

in B, supposed Γ ≡ x1 ∈ C1, . . . , xn ∈ Cn

- weakening condition the last component of σB [Γ] commutes with the
interpretation of weakening: for every judgement D type [Γj ] in T with
Γj sublist of Γ

σB · qInt1w(B,D) = qInt2w(B,D) · σw(B,D)

where w(B,D) is the type B weakened on D and qInt1w(B,D) is the second

projection of the weakening diagram of the last morphism interpreting B
according to Int1 along the context weakened with D.

- substitution condition the last component of σB [Γ] commutes with
the interpretation of substitution: for every term judgement cj ∈ Cj [Γj−1]
in T with Γj−1 sublist of Γ

σB · qInt1B[x/cj]
= qInt2B[x/cj]

· σB[xj/cj]

where qInt1B[x/cj]
is the second projection of the substitution diagram of the

last morphism interpreting B according to Int1 along the morphism ex-
pressing the substitution with cj.

The interpretation morphism is an interpretation isomorphism if each

σB [Γ] : (B [Γ] )Int1 → (B [Γ] )Int2
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is an isomorphism in B→fin , i.e. it has an inverse σ−1
B [Γ] in B→fin i.e. such

that
σB [Γ] · σ

−1
B [Γ] = id σB [Γ]−1 · σB [Γ] = id

Now, we are ready to give the definition of Tiso(A) as the extension of Tcat(A)
with a natural isomorphism between the interpretations (−)H and (−)A via
coherent isomorphisms:

Definition 14 (Tiso(A)=Tcat(A)+ coherent isos) Given an AU A, let us
consider the above interpretations (−)H and (−)A of Tcat(A) in Pgr(CTcat(A)).

Then we define Tiso(A) as the Tau-theory extending Tcat(A) with new terms
and equalities formalizing the existence of an isomorphism of interpretation

σ− : (−)H −→ (−)A

in Pgr(CTiso(A)).
Such an isomorphism of interpretation is given by a family of coherent iso-

morphisms
σB [Γ] : (B [Γ])HΣ −→ (B [Γ])AΣ

indexed on any type under context B [Γ] of Tcat(A) satisfying all the naturality,
weakening and substitution conditions of an isomorphism of interpretation as
in definition 13 with respect to types and terms in Tcat(A). Now we proceed to
define such coherent isomorphisms by induction on types and terms of Tcat(A).

In order to define a coherent isomorphism σB [Γ] indexed on a type B [Γ]
interpreted by a limit (as the terminal type, the equality type), we actually
define its inverse σ−1

B [Γ] as the induced morphism from the universal property

of the limit. Instead we define a coherent isomorphism σB [Γ] indexed on a type
B [Γ] interpreted by a colimit (as the false type, the sum type, the quotient
type) or by an initial algebra (the list type) directly as the induced morphism
from the universal property of the colimit (or of the initial algebra).

Hence, the coherent isomorphism σ⊤ indexed on the terminal type is defined
as the inverse of σ−1

⊤
: ⊤A

Σ → ⊤, where ⊤A
Σ is a terminal object in A, (that is

the domain interpretation of the terminal type). In turn σ−1
⊤

is defined as the
unique morphism in CTcat(A) to the terminal object ⊤ of CTcat(A).

The coherent isomorphism indexed on ⊤ [Γ] weakened on a context is defined
in a way as to satisfy the weakening condition.

The coherent isomorphism indexed on any proper type C coming from A

σC : CH
Σ → CA

Σ

is the isomorphism coming from the natural isomorphism of V · Em : A →

CT (A) → A with the identity (recall that V and Em gives an equivalence be-
tween A and CT (A)), since CH

Σ ≡ C while CA
Σ ≡ V · Em(C). Note that this

isomorphism is in A.
In the next to simplify the notation, given a context Γ ≡ x1 ∈ C1, . . . , xn ∈

Cn], we simply indicate the component σCn of the last context assumption with
σΓ as the context consisted of one single assumption.
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We define the coherent isomorphism indexed on the Indexed Sum type

σΣx∈D B(x)[Γ] : (Σx∈D B(x))HΣ → (Σx∈D B(x))AΣ

as the inverse of σ−1
Σx∈D B(x)[Γ] defined in turn as follows. Observe that the last

morphism interpreting Σx∈D B(x) [Γ] according to (−)A is (Σx∈D B(x) [Γ])A ≡

DA · BA. Moreover observe that the last morphism interpreting Σx∈D B(x)
according to (−)H is isomorphic to BH ·DH in CTcat(A)/Γ

H
Σ . Hence we define

σ−1
Σx∈D B(x)[Γ] ≡ ν · σ−1

B(x)[Γ,x∈D] where ν : BH · DH → (Σx∈D B(x) )H is the

isomorphism between the two object in CTcat(A)/Γ
H
Σ (that is defined as < π1 ·

π1, < π2 ·π1, π2 ·π2 > by using the projections π1, π2 of the Indexed Sum type).
We define the isomorphism indexed on the Equality type

σEq(C,c,d)[Γ] : Eq(C, c, d)
H

Σ → Eq(C, c, d)AΣ

as follows. Recall that Eq(C, c, d)A ≡ eq(cA, dA) is the equalizer of cA and dA

in A, as well as Eq(C, c, d)H is an equalizer of cH and dH in CTcat(A). Hence

we define σ−1
Eq(C,c,d)[Γ] as the unique morphism toward the equalizer Eq(C, c, d)H

induced by σ−1
Γ · eq(cA, dA). This is well defined since by hypothesis and natu-

rality of the coherent isomorphisms we have (recall that equality of morphisms
in A is preserved in CTcat(A))

cH · (σ−1
Γ · eq(cA, dA) ) = σ−1

C [Γ] · ( c
A · eq(cA, dA) ) =

= σ−1
C [Γ] · ( d

A · eq(cA, dA) ) ) = dH · (σ−1
Γ · eq(cA, dA) )

We define the coherent isomorphism indexed on the empty set ⊥

σ⊥ : ⊥ → ⊥A

where ⊥A is the name of the initial object in A, as the unique morphism in
CTcat(A) from ⊥ to ⊥A.

Moreover, we define the coherent isomorphism indexed on the empty set
weakened on a context in a way as to satisfy the weakening condition.

The isomorphisms for the quotient type, disjoint sums and lists are defined
analogously.

Note that the described isomorphism of interpretation is indeed uniquely
determined from the isomorphisms indexed on proper types (because of the
naturality, weakening, substitution conditions).

Definition 15 Let Yiso : A → CTiso(A) be the functor defined as the embedding
of an object X and a morphism f to their copy as they were in CTcat(A).

Observe that the embedding functor Yiso preserves the AU structure up to
isomorphisms:

Lemma 16 The functor Yiso : A → CTiso(A) is an AU functor.

12



Proof. This follows thanks to the presence of coherent isomorphisms.
We can prove that the synctactic category associated to Tiso(A) is equivalent

to A. To this purpose we define a translation of Tiso(A) in T (A):

Definition 17 Let St : Tiso(A) → T (A) be the functor sending any type and
term arising respectively from objects and morphisms of A to the correspond-
ing one in T (A) and sending types and terms constructors of Tau to their copy
in T (A). Finally coherent isomorphisms get interpreted as parts of the natu-
ral isomorphism between V · Em : A → CT (A) → A and the identity. Indeed,
(B [Γ])A = V · Em( (B [Γ])H )

Let C(St) : CTiso(A) → CT (A) be the syntactic functor induced by St.

Lemma 18 The functor Yiso : A → CTiso(A) gives rise to an equivalence of
category with the functor Viso ≡ V · C(St) : CTiso(A) → CT (A) → A.

Proof. Clearly ( V · C(St) ) · Yiso is naturally isomorphic to the identity. Instead
we prove that Yiso · ( V · C(St) ) is isomorphic to the identity thanks to coherent
isomorphisms when the functor is applied to Tau-constructors.

This means that we can speak of Tiso(A) as the internal theory of A with
coherent isomorphisms.

Now our purpose is to prove that given two arithmetic universes A and B,
the AU functors from A to B correspond to translations between their inter-
nal theories with coherent isomorphisms, i.e. to translations from Tiso(A) to
Tiso(B). To this purpose we first lift an AU functor to a translation between
the corresponding free theories generated from the arithmetic universes:

Definition 19 Given the arithmetic universes A and B with an AU functor
F : A → B, we can define a translation between the free Tau-theories generated
from them

(−)F : Tcat(A) → Tcat(B)

as follows: (−)F translates types and terms arising from A via F , i.e. each
proper type arising from an object C of A is translated into F (C) and each
proper term arising from a morphism c is translated into F (c); moreover Tau-
constructors are interpreted as the corresponding ones in Tcat(B).

Lemma 20 Given an AU functor F : A → B, the translation (−)F : Tcat(A) →
Tcat(B) induced between the corresponding free theories satisfies the following:
for any judgement B [Γ] then

( (B [Γ] )H )F ≡ (B [Γ] )F )H

Proof. It follows from the fact that (−)F is a translation and hence it preserves
indexed sums strictly.

Lemma 21 Given an AU functor F : A → B, the translation (−)F : Tcat(A) →
Tcat(B) induced between the corresponding free theories allows to define the fol-
lowing interpretations of Tcat(A) in Pgr(B)

(−)F
B
: Tcat(A) −→ Pgr(B) (−)A

F
: Tcat(A) −→ Pgr(B)

13



(by precomposing (−)F with (−)B and postcomposing it with (−)A) between
which there exists an isomorphism of interpretation

τ(−) : (−)F
B
−→ (−)A

F

Proof. We define the required isomorphism of interpretation by using the
coherent isomorphisms of F needed to preserve the AU structure.

For example the isomorphism indexed on the terminal type τ⊤ : ⊤B
Σ →

F (⊤A)Σ is the part of the coherent isomorphism of F preserving the terminal
object of A represented by ⊤A from the terminal object of B given by ⊤B

Σ.
Moreover, for any proper type C coming from A we define

τC : F (C)BΣ → F (CA
Σ)

as the composition of the following isomorphisms F (C)BΣ ≃ F (C) ≃ F (CA
Σ)

all derived from the natural isomorphism of V · Em with the identity both for A
and B: indeed CA

Σ ≡ V ·Em(C) is isomorphic to C in A, hence in CTcat(A) which
gives an isomorphism F (C) ≃ F (CA

Σ), as well as F (C)BΣ ≡ V · Em(F (C)) is
isomorphic to F (C) for the analogous reason.

The coherent isomorphism indexed on the Indexed Sum type

τΣx∈D B(x)[Γ] : (Σx∈D B(x))F
B

Σ → (Σx∈D B(x))A
F

Σ

is defined as follows. Observe that the last morphism interpreting (Σx∈D B(x))F

according to (−)B is (Σx∈D B(x))F
B

≡ DFB
· BFB

. Moreover for the same

reason (Σx∈D B(x) )A ≡ DA · BA and hence (Σx∈D B(x) )A
F

≡ F (DA) ·
F (BA). Therefore we define τΣx∈D B(x) [Γ] ≡ τB(x) [Γ,x∈D].

The coherent isomorphism indexed on the Equality type

τEq(C,c,d)[Γ] : Eq(C, c, d)
F B

Σ → Eq(C, c, d)A
F

Σ

is defined as the inverse of τ−1
Eq(C,c,d)[Γ] defined in turn as follows. Recall that

Eq(C, c, d)A ≡ eq(cA, dA) is the equalizer of cA and dA in A. Then, by coherent
isomorphisms of F preserving the AU structure we know that F (Eq(C, c, d)A)

is an equalizer of F (cA) and F (dA) in B. Moreover, also Eq(C, c, d)F
B

≡

Eq(CF , cF , dF )
B

is an equalizer of cF
B

and dF
B

in B. Therefore we define

τ−1
Eq(C,c,d)[Γ] as the unique morphism toward the equalizer Eq(CF , cF , dF )

B
in-

duced by τ−1
Γ · F (eq(cA, dA)). This is well defined with an argument analogous

to that in definition 14.
The isomorphisms on the other types are defined analogously.
Now recall from page 1143 of [Mai05] that we can view a theory as a cat-

egory and a translation as a functor. Hence, given AU’s A and B, we can
think of the collection of translations from Tiso(A) to Tiso(B) as a category
Th(Tiso(A), Tiso(B)) with translations as objects and natural transformations
as morphisms. Hence we state the following correspondence between AU func-
tors and translations between internal theories with coherent isomorphisms:

14



Theorem 22 For any AU’s A and B, there is an equivalence between the cat-
egory AU(A,B) of AU functors and natural transformations and the category
Th(Tiso(A), Tiso(B)) of translations and natural transformations.

Proof. Given an AU functor F : A → B we define the translation T (F ) :
Tiso(A) → Tiso(B) as follows: T (F ) interprets types and terms arising from A

via F , i.e. each proper type arising from an object C of A is translated into
the specific type of Tiso(B) arising from F (C), and each specific term arising
from a morphism c of A is translated into the term arising from F (c); moreover
Tau-constructors are interpreted as the corresponding ones in Tiso(B); lastly the
interpretation of a coherent isomorphism σF

B [Γ] is given as the composition of

a suitable coherent isomorphism of Tiso(B) with τB [Γ] in lemma 21: more in
detail

σF
B [Γ] : (B [Γ] )H

F

Σ −→ (B [Γ] )A
F

Σ

gets interpreted as
σF
B [Γ] ≡ τB [Γ] · σB [Γ]F

where B [Γ]F is the translation in Tcat(B) of the judgement B [Γ]. Note that

the domain of σB [Γ]F can be taken to be (B [Γ] )H
F

Σ thanks to lemma 20.

The translation T (F ) is uniquely determined by F up to a natural isomor-
phism because the interpretation of coherent isomorphisms, given that they
commute with terms, substitution and weakening, is uniquely determined by
interpretation of proper types and terms given by F .

Conversely any translation L : Tiso(A) → Tiso(B) gives rise to an AU functor
C(L) : CTiso(A) → CTiso(B) defined on objects and morphisms in CTiso(A) as their
translations in Tiso(B). Finally Viso · ( C(L) ·Yiso ) : A −→ CTiso(A) → CTiso(B) →

B gives an AU functor as desired.
The given correspondence establishes an equivalence of categories.
From this we can deduce the following:

Corollary 23 Given the AU’s A and B, the category of interpretations of
Tiso(A) into B as in section 5 of [Mai05] with interpretation morphisms is in
equivalence with the category of AU functors from A to B.

Proof. Giving an interpretation J as in section 5 of [Mai05] means to give a
translation TrJ from Tiso(A) to T (B) (because types and terms of T (B) are
defined together with their interpretation in B). Hence, from [Mai05] we know
that TrJ provides an AU homomorphism between the corresponding syntactic
categories C(TrJ ) : CTiso(A) → CT(B). This composed with the suitable parts of
the equivalence of the syntactic categories, respectively with A and B, gives an
AU functor

( V · ( C(L) ) · Yiso : A −→ B

Conversely, given an AU functor F , by theorem 22 we get a translation
T (F ) : Tiso(A) −→ Tiso(B) which composed with the translation St in defi-
nition 17 gives a translation St · T (F ) : Tiso(A) −→ T (B). This translation
corresponds to an interpretation of Tiso(A) in B because types and terms of
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T (B) are defined with their interpretation in B (i.e. the translation of types and
terms of Tiso(A) in T (B) comes by definition with the interpretation of them in
B).

Definition 24 Given an AU A, let Tiso(A)[S] be the Tau-theory extending the
typed calculus Tau with Tiso(A) and with some extra AU axioms S of the form

c ∈ C [x ∈ B] c = d ∈ C [x ∈ B]

i.e. we add extra morphisms and equalities based on A. Then we write A[S]t
for the syntactic category CTiso(A)[S].

We then call I : A → A[S]t the functor embedding an object into its type
naming it in A[S]t and a morphism into the term naming it in A[S]t.

Theorem 25 Let A and S be as in the above definition. Then A[S]t is uni-
versal with respect to being equipped with an AU functor I : A → A[S]t and an
interpretation of the extra structure in S according to the notion of interpre-
tation of a morphism in section 5.31 of [Mai05]: for any AU B, the category
AU(A[S]t,B) is equivalent to the category of pairs (F, α) where F : A → B is
an functor and α interprets the structure in S with respect to F .

Proof. Given an AU functor F : A → B we lift it to an interpretation LF

of Tiso(A) in B by corollary 23 and we extend it to interpret Tiso(A)[S] by
interpreting the new added structure as assigned.

Then the interpretation LF seen as a translation from Tiso(A)[S] to T (B)
gives rise to a functor C(LF ) : CTiso(A)[S] → CT (B) and one from CTiso(A)[S] to B

defined as F̃ ≡ V · C(LF ) : CTiso(A)[S] → CT (B) → B.
Any other functor extending F can be proved to be naturally isomorphic

to F̃ by induction on the type in T (A)[S]t as done in theorem 5.31 of [Mai05]
(note that also the interpretation of coherent isomorphisms is determined by F
and the interpretation of S).

Now considering that the universal property defining our subspace A[S]t is
the same as that in [MV10] we conclude that the two notions are equivalent:

Corollary 26 Let A and S be as in definition 24. Then A[S]t is equivalent the
notion of subspace A[S] in [MV10].

Remark 27 From [MV10], we recall that examples of subspaces of an AU A

are the following: the subspace A[c : 1 → U ], called open, with the addition of a
global element n : 1 → U for an object U in A, is equivalent to the slice category
A/U ; the subspace A[c : φ → ⊥], called closed, with the addition of an element
from φ, subobject of the terminal object in A, to the interpretation of falsum in
A, is equivalent to a suitable category of sheaves.

2.2 Classifying category

Here we prove that the syntactic category CT of a Tau-theory T classifies suitable
generic interpretations of T in an arithmetic universe B.
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Definition 28 A standard interpretation J of a Tau-theory T in an arithmetic
universe B is a generic interpretation where the substitution and weakening
diagrams are pullbacks and the induced functor on the syntactic category

C(J ) : CT −→ B

is an AU functor. We recall that C(J ) is defined as follows: on closed types
C as dom(J (C)) and on terms f(x) ∈ B [x ∈ C] as q(J (B) , J (C) ) · J ( b ∈

B [x ∈ C] ).

Definition 29 (standard interpretation functor) Given an arithmetic uni-
verse A and a Tau-theory T , there exists a standard interpretation functor from
the category of arithmetic universes and AU functors to the category of small
categories Cat:

IntT : AU −→ Cat

assigning to an arithmetic universe B the category of standard interpretations
with interpretation morphisms Int(T,B), and to an AU functor F : A → B the
functor

IntT (F ) : Int(T,A) −→ Int(T,B)

assigning to a standard interpretation J the interpretation JF obtained as fol-
lows: if J interprets a type B [Γ] as b1, b2, ..., bn with b1 : C → 1, then JF

interprets the same type as !F (C), F (b2), ..., F (bn); and if J interprets a term
b ∈ B [Γ] as the section bJ , then JF interprets the same term as F (bJ ). The
pullback and weakening diagrams are the value under F of those induced by J .
This is a standard interpretation because F is an AU functor.

We can show that the syntactic category of a theory represents the interpretation
functor IntT : AU −→ Cat:

Theorem 30 Given a Tau-theory T , its interpretation functor IntT : AU −→

Cat is natural isomorphic to the covariant functor AU( CT , − ), and hence for
every AU A the category of standard interpretations of T in A is isomorphic to
that of AU functors and natural transformations AU( CT , A ).

Proof. By definition a standard interpretation J of T in A induces an AU
functor C(J ) : CT −→ A. Conversely given an AU functor F : CT −→ A

we define the interpretation IF of T in A as IntT (F )((−)H) since the (−)H

intepretation is indeed standard in CT .
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