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Abstract

This paper aims to provide an intrinsic characterization of the notion of generalized
existential completion of a conjunctive doctrine P for a class Λ of morphisms of the base
category of P . The cornerstone of this result consists of an algebraic description of the
logical concept of existential free formulas closely connected to the validity of some choice
principles.

The link between our characterization and choice principles is emphasized by the fact
that an existential doctrine P is the generalized existential completion of itself for all the
projections of its base if and only if P is equipped with Hilbert’s epsilon operators.

Our characterization provides a useful tool to recognize a wide variety of examples
of doctrines arising as generalized existential completions. These include the subobjects
doctrine and the weak subobjects doctrine of a category with finite limits as well all
realizability triposes and among localic triposes only the supercoherent ones.
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1. Introduction

The introduction of the notion of hyperdoctrine by Lawvere in [18, 19] marked the
beginning of the field of categorical logic aiming to provide an algebraic presentation
of both the notions of logical theory and model. Since then, several kinds of free con-
structions involving hyperdoctrines (here simply called doctrines) have been employed in20

various areas of mathematics and computer science.
We recall, for example, the well-known notion of tripos-to-topos construction of J.M.E.

Hyland, P.T. Johnstone, A.M. Pitts in [13, 29] or that of exact and regular completions
of lex or regular categories introduced in [3, 4] and viewed as instances of suitable com-
pletions of suitable doctrines in [23, 22, 24].25

In this work, we consider the construction of the generalized existential completion
of a conjunctive doctrine P (Definition 2.1) relative to a suitable class Λ of morphisms
of the base category of P . Such a notion was originally introduced in [34]. The word
generalized refers to the fact that, as customary in categorical logic, existential quantifiers
are formulated for arbitrary terms rather than just for variables.30

From a logical perspective, a conjunctive doctrine represents a model of the con-
junctive logic over arbitrary sorts, and the generalized existential completion is the free
construction of a model for conjunctive logic with existential quantifications formulated
for arbitrary terms (in our case only those chosen Λ), namely a Λ-existential doctrine
(Definition 3.4). Intuitively, the morphisms of the class Λ represent generalized projec-35

tions.
Our main contribution is to provide a logical characterization of this construction

(Theorem 4.16) through a categorical presentation of the notion of existential-free for-
mulas (Definition 4.2).

This latter notion can be equivalently presented as the validity of certain choice prin-40

ciples (depending on the class Λ) called existence property in [39, Def. 5.4.1] (Proposi-
tion 4.4).

Employing this categorification of existential-free elements, we will show that a Λ-
existential doctrine P is an instance of generalized existential completion (relative to Λ)
if and only if it has enough existential-free objects (Definition 4.10), which are closed45

under binary conjunction and the top element, in which case P is (isomorphic to) the
free completion of the conjunctive subdoctrine on such objects (Theorem 4.16), which is
called existential cover (Definition 4.14).

Our characterization recalls Carboni’s characterization of the construction of the ex-
act completion of a lex category [3, Lem. 2.1] if we replace the notion of “lex category”50

with that of a conjunctive doctrine, the notion of “exact completion” with that of gen-
eralized existential completion relative to Λ, and the notion of “projective” with that of
“existential-free formula”.
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As a byproduct of our analysis, we show that an existential doctrine is a generalized
existential completion of itself relative to all the projections of its base if and only if it55

is equipped with Hilbert’s epsilon operators, as defined in [20] (Theorem 5.1).
Our characterization allows us to recognize several examples of doctrines arising as

generalized existential completions, including the following ones: every subobjects doc-
trine of a lex category, every M-subobjects doctrine relative to a M-category [5, 31]
(Theorem 7.11), every weak subobjects doctrine of a lex category (Theorem 7.3), ev-60

ery realizability tripos [13] (Theorem 7.24) and, among localic triposes, exactly those
associated with a supercoherent locale in the sense of [1] (Theorem 7.32).

In particular, both the subobjects doctrine SubC and the weak subobjects doctrine ΨC
of a category C with finite limits are generalized existential completions of the constant
true doctrine, the first along the class of all the monomorphisms of C while the latter65

along all the morphisms of C.
We conclude by underlying that a preliminary version of our characterization of gen-

eralized existential completion was presented in [35] in 2020, while a similar characteri-
zation, for the class of generalized existential completions relative to Λ as the whole class
of base morphisms, was independently presented in [7, Thm 6.3] in terms of ∃-prime70

elements.
Furthermore, our characterization has already been fruitfully employed in recent

works [36, 37, 38] to give a categorical description of the logical principles involved in
Gödel’s dialectica interpretation [8], by deepening the analysis in [10].

In future work, we intend to apply the results presented here to broaden the study of75

regular and exact completions of generalized existential completions initiated in [26].

2. Preliminary notions of doctrines

The notion of hyperdoctrine was introduced by F.W. Lawvere in a series of seminal
papers [18, 19]. We recall from loc. cit. some definitions which will be useful in the
following. The reader can find more details about the theory of elementary and existential80

doctrine also in [23, 22, 24, 20, 6].
In the following we adopt the notation fg to mean the composition of a morphism

f : Y // Z with another g : X // Y within a category.
We indicate with Set the category of sets and functions which are formalizable within

the classical axiomatic set theory ZFC.85

We introduce the following basic notion of “conjunctive doctrine” as a generalization
of that of “primary doctrine” in [23].

Definition 2.1. A conjunctive doctrine is a functor P : Cop // InfSL from the
opposite of the category C to the category of inf-semilattices.

Definition 2.2. A conjunctive doctrine P : Cop // InfSL is a primary doctrine if90

the category C has finite products.

We add the definition of fibred subdoctrine for conjunctive subdoctrines of con-
junctive doctrines on the same base category:

Definition 2.3. A conjunctive doctrine P ′ : Cop // InfSL is said a fibred subdoc-

trine of a conjunctive doctrine P : Cop // InfSL if each fibre of P ′(A) is a full sub-95

inf-semilattice of P (A) for every object A.
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Given a conjunctive doctrine P : Cop // InfSL, we will refer to an inf-semilattice
P (A) calling it a fibre.

Definition 2.4. A primary doctrine P : Cop // InfSL is elementary if for every A
in C there exists an object δA in P (A×A), called fibred equality, such that100

1. the assignment
∃〈idA,idA〉(α) := Ppr1

(α) ∧ δA

for an element α of P (A) determines a left adjoint toP〈idA,idA〉 : P (A×A) // PA;

2. for every morphism e of the form 〈pr1,pr2,pr2〉 : X ×A // X ×A×A in C, the

assignment
∃e(α) := P〈pr1,pr2〉(α) ∧ P〈pr2,pr2〉(δA)

for α in P (X×A) determines a left adjoint to Pe : P (X ×A×A) // P (X ×A).

Definition 2.5. A primary doctrine P : Cop // InfSL is pure existential if, for

every object A1 and A2 in C, for any product projection pri : A1 ×A2
// Ai, i = 1, 2,

the functor
Ppri : P (Ai) // P (A1 ×A2)

has a left adjoint ∃pri , and these satisfy:

(BCC) Beck-Chevalley condition: for any pullback diagram

X ′
pr′ //

f ′

��

A′

f

��
X

pr
// A

with pr and pr′ projections, for any β in P (X) the canonical arrow

∃pr′Pf ′(β) ≤ Pf∃pr(β)

is an isomorphism;

(FR) Frobenius reciprocity: for any projection pr : X // A, for any object α in

P (A) and β in P (X), the canonical arrow

∃pr(Ppr(α) ∧ β) ≤ α ∧ ∃pr(β)

in P (A) is an isomorphism.105

Remark 2.6. Pure existential doctrines are simply called existential in previous works
of both authors including [34, 23, 24]. In this paper we call them “pure existential” to
emphasize that they are particular instances of generalized existential doctrines.
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Remark 2.7. For a logical formulation of the Beck-Chevalley and Frobenius reciprocity
conditions for existential doctrines see respectively example 2.12 (a) of [23] and the section110

on quantification in [28]. For a more familiar characterization of elementary doctrines
see [6, Prop. 2.5].

Moreover, notice that left adjoints required in Definitions 2.4 and 2.5 are not arrows
in the category InfSL of inf-semilattices in general.

Example 2.8. The following examples are discussed in [18, 13].115

1. Let C be a category with finite limits. The functor

SubC : Cop // InfSL

assigns to an object A in C the poset SubC(A) of subobjects of A in C and, for

an arrow B
f // A the morphism SubC(f) : SubC(A) // SubC(B) is given by

pulling a subobject back along f . The fibred equalities are the diagonal arrows.
This is an elementary doctrine and it is also pure existential if and only if the
category C is regular. See [11].120

2. Consider a category D with finite products and weak pullbacks: the doctrine is
given by the functor of weak subobjects (or variations)

ΨD : Dop // InfSL

where ΨD(A) is the poset reflection of the slice category D/A, whose objects are

indicated with [f ] for any arrow B
f // A in D, and for an arrow B

f // A ,

the homomorphism ΨD([f ]) : ΨD(A) // ΨD(B) is given by the equivalence class

of a weak pullback of an arrow X
g // A with f . This doctrine is pure existential

and elementary, and the left adjoints are given by the post-composition. See [23].125

3. Let T be a theory in a first order language L. We define a primary doctrine

LT: Cop
L

// InfSL

where CL is the category of lists of variables and term substitutions:

� objects of CL are finite lists of variables ~x := (x1, . . . , xn), and we include the
empty list ();

� a morphisms from (x1, . . . , xn) into (y1, . . . , ym) is a substitution [t1/y1, . . . , tm/ym]
where the terms ti are built in L on the variable x1, . . . , xn;130

� the composition of two morphisms [~t/~y] : ~x // ~y and [~s/~z] : ~y // ~z is

given by the substitution

[s1[~t/~y]/zk, . . . , sk[~t/~y]/zk] : ~x // ~z.

The functor LT: Cop
L

// InfSL sends a list (x1, . . . , xn) to the partial order

LT(x1, . . . , xn) of equivalence classes [φ] of well formed formulas φ in the context
5



(x1, . . . , xn) where [ψ] ≤ [φ] for φ, ψ ∈ LT(x1, . . . , xn) if ψ `T φ and two formulas
are equivalent if they are equiprovable in the theory. Given a morphism of CL

[t1/y1, . . . , tm/ym] : (x1, . . . , xn) // (y1, . . . , ym)

the functor LT[~t/~y] acts as the substitution LT[~t/~y](ψ(y1, . . . , ym)) = ψ[~t/~y].

The doctrine LT: Cop
L

// InfSL is elementary exactly when L has an equality

predicates and it is pure existential exactly when L has existential quantifiers. For
more details we refer to [23], and for the case of a many sorted first order theory
we refer to [28].135

4. Let A be a locale, i.e. A is a poset with finite meets and arbitrary joins, satisfying
the infinite distributive law x ∧ (

∨
i yi) =

∨
i(x ∧ yi). The localic doctrine is given

by the functor:

A(−) : Setop // InfSL

assigning I 7→ AI . The partial order (and hence the propositional connectives) is

provided by the pointwise partial order on functions f : I // A. This doctrine is
elementary and pure existential, where the existential quantifier along a given func-
tion f : I // J maps a function φ ∈ AI to ∃f (φ) given by j 7→

∨
{i∈I|f(i)=j} φ(i).

The category of primary doctrines PD is a 2-category, where:140

� a 1-cell is a pair (F, b)

Cop

P

((
F op

��

InfSL

Dop

R

66b

��

such thatF : C // D is a functor preserving finite products and b : P // R ◦ F op

is a natural transformation.

� a 2-cell from (F, b) to (G, c) is a natural transformation θ : F // G such that
for every A in C and every α in P (A), we have

bA(α) ≤ RθA(cA(α)).

We denote by ExD the 2-full subcategory of PD whose elements are pure existen-
tial doctrines, and whose 1-cells are those 1-cells of PD which preserve the existential
structure.145

We conclude this section by recalling some choice principles from [12, 24, 20, 25]. To
this purpose, we recall the notion of functional and entire element of an elementary and
existential doctrine.
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Definition 2.9. Given an elementary and pure existential doctrine P : Cop // InfSL,
an element α ∈ P (A×B) is called entire from A to B if

>A ≤ ∃prA(α).

Moreover it is called functional if

P〈pr1,pr2〉(α) ∧ P〈pr1,pr3〉(α) ≤ P〈pr2,pr3〉(δB)

in P (A× B × B). Notice that for every relation α ∈ P (A× B) and β ∈ P (B × C), the
relational composition of α and β is given by the relation

∃〈pr1,pr3〉(P〈pr1,pr2〉(α) ∧ P〈pr2,pr3〉(β)

in P (A×B), where pri are the projections from A×B × C.

Definition 2.10. Let P : Cop // InfSL be an elementary and pure existential doc-
trine. We say that P satisfies the Rule of Unique Choice (RUC) if for every entire

functional relation φ in P (A×B) there exists an arrow f : A // B such that

>A ≤ P〈idA,f〉(φ)

Example 2.11. The subobjects doctrine SubC : Cop // InfSL presented in Example 2.8150

satisfies RUC as observed in [20].

Now we recall the notion of Extended Rule of Choice and its particular instance called
Rule of Choice introduced and analyzed in [20, 25].

Definition 2.12. An elementary and pure existential doctrine P : Cop // InfSL sat-
isfies the Extended Rule of Choice (ERC) if for every φ ∈ P (B) and for every

g : B // A such that

>A ≤ ∃g(φ)

there exists an arrow f : A // B in C such that gf = idA and

>A ≤ Pf (φ).

Definition 2.13. For a pure existential doctrine P : Cop // InfSL, we say that P
satisfies the Rule of Choice (RC) if it satisfies the Extended Rule of Choice only for
projections, namely for every φ ∈ P (A×B) such that

>A ≤ ∃pr1
(φ)

there exists an arrow f : A // B in C such that

>A ≤ P〈idA,f〉(φ).

Example 2.14. Recall from [20] that the doctrine of weak subobjects

ΨD : Dop // InfSL

presented in Example 2.8 (2) satisfies the Extended Rule of Choice.
7



We recall from [20] the notion of existential doctrine with Hilbert’s ε-operators:155

Definition 2.15. Let P : Cop // InfSL be a pure existential doctrine. An object B of
C is equipped with Hilbert’s ε-operator if, for any object A in C and any α in P (A×B)

there exists an arrow εα : A // B such that

∃pr1
(α) = P〈idA,εα〉(α)

holds in P (A), where pr1 : A×B // A is the first projection.

Definition 2.16. We say that a pure existential doctrineP : Cop // InfSL is equipped
with Hilbert’s ε-operators if every object in C is equipped with ε-operator.

We recall from [20, Ex. 5.14] the following example of doctrine equipped with Hilbert’s
ε-operators.160

Example 2.17. Let Set∗ be the category of non-empty sets and let ξ be an ordinal with
greatest element, and H := (ξ,≥) be the frame given by the set ξ equipped with the
reverse order. Following Example 2.8(4), we consider then the doctrine

H(−) : Setop
∗

// InfSL

that is elementary and pure existential. In particular, we recall that for every α ∈ HA×B ,
the left adjoint ∃prA is defined as

∃prA(α)(a) =
∨
b∈B

α(a, b)

and the equality predicate δ(i, j) ∈ HA×A is defined as the top element if i = j, and

the bottom otherwise. Moreover, the doctrineH(−) : Setop
∗

// InfSL is equipped with

ε-operators. In particular for every element α ∈ HA×B , and for every a ∈ A one can
consider the (non empty) set

Iα(a) = {b ∈ B | α(a, b) =
∨
c∈B

α(a, c)}.

Then, by the axiom of choice, there exists a function εα : A // B such that εα(a) ∈
Iα(a). Therefore we have that

α(a, εα(a)) =
∨
c∈B

α(a, c) = ∃prA(α)(a)

and this prove that H(−) is equipped with Hilbert’s ε-operators.

We conclude this section recalling from [18, 22, 23] the notion of doctrine with (full)
comprehensions. This notion provides an abstract algebraic counterpart of the set-
theoretic “comprehension axiom”, we refer to [14, Sec. 4.6] for a complete introduction
to this notion in the fibrational context.165
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Definition 2.18. Let P : Cop // InfSL be a conjunctive doctrine and α be an object

of P (A). A comprehension of α is an arrow {|α|} : X // A such that P{|α|}(α) =

>X and, for every f : Z // A such that Pf (α) = >Z , there exists a unique map

g : Z // X such that f = {|α|} ◦ g.

Intuitively, the domain of the comprehension morphism of the predicate α represents170

the set {x ∈ A | α(x) } containing the elements of the object A satisfying α. Then, one
says that P has comprehensions if every α has a comprehension, and that P has full
comprehensions if, moreover, α ≤ β in P (A) whenever {|α|} factors through {|β|}.

Note that each morphism can be the full comprehension of a unique object and the
fibre order of a conjunctive doctrine with full comprehensions is equivalent to the usual175

subobject order between comprehensions as one can easily check:

Remark 2.19. Notice that when P : Cop // InfSL is a conjunctive doctrine with full
comprehensions, by applying in both directions the condition of comprehensions being
full, we have that for all objects α1, α2 of P (A):

� if {|α1|} = {|α2|} then α1 = α2.180

� α1 ≤ α2 if and only if there exists a morphism t such that {|α1|} = {|α2|}t.

Remark 2.20. For every f : B // A in C the mediating arrow between the comprehen-

sions {|α|} : Aα // A and {|Pf (α)|} : BPf (α)
// B produces a pullback

BPf (α)
f ′ //

{|Pf (α)|}

��

Aα

{|α|}

��
B

f
// A

Thus comprehensions are stable under pullbacks. Moreover it is straightforward to verify

that if {|α|} : X // A is a comprehension of α, then {|α|} is monic.

Notation: given an element α ∈ P (A), we will denote by Aα the domain of the
comprehension {|α|}.185

We show here a general version of a useful lemma regarding comprehensions (see [21,
Prop. 4.5] ):

Lemma 2.21. Let P : Cop // InfSL be a conjunctive doctrine with full comprehen-
sions, and suppose that P has left adjoints along comprehensions, satisfying BCC, i.e.
for every pullback

BPf (α)
f ′ //

{|Pf (α)|}

��

Aα

{|α|}

��
B

f
// A

9



we have Pf∃{|α|} = ∃{|Pf (α)|}Pf ′ . Then we have

α = ∃{|α|}(>Aα)

for every element α in P (A).

Proof. Let α be an element of P (A), and let us consider the comprehension {|α|} : Aα // A.

First, it is direct to see that ∃{|α|}(>Aα) ≤ α since ∃{|α|} is left adjoint to P{|α|} and190

P{|α|}(>A) = >Aα . Notice that since comprehensions are monomorphisms, and pullbacks
along comprehensions always exist by Remark 2.20, we have that P{|α|}∃{|α|} = id by BCC.
In particular we have P{|α|}(∃{|α|}(>Aα)) = >Aα . So, by fullness, α ≤ ∃{|α|}(>Aα), and then
we can conclude that α = ∃{|α|}(>Aα).

Corollary 2.22. Let P : Cop // InfSL be a conjunctive doctrine with full comprehen-195

sions, and suppose that P has left adjoints along comprehensions, satisfying BCC. Then
{|α ∧ β|} = {|α|}{|P{|α|}(β)|}.

Now we recall a class of doctrines whose fibred equality turns out to be equivalent
to the morphism equality of their base morphisms (see [20, Prop. 2.2] and the original
notion called “comprehensive equalizers” in [23]).200

Definition 2.23. An elementary doctrine P : Cop // InfSL has comprehensive di-
agonals if the arrow ∆A is the comprehension of the element δA ∈ P (A× A) for every
objects A.

Recall from [20] that:

Definition 2.24. An elementary doctrine is called m-variational if it has full compre-205

hensions and comprehensive diagonals.

We summarize some useful properties and results about pure existential m-variational
doctrines.

Lemma 2.25. Let P : Cop // InfSL be a pure existential m-variational doctrine.
Then210

1. an arrow f : A // B is monic if and only if Pf×f (δB) = δA;

2. an element φ ∈ P (A×B) is functional, i.e. it satisfies

P〈pr1,pr2〉(φ) ∧ P〈pr1,pr3〉(φ) ≤ P〈pr2,pr3〉(δB)

in P (A×B×B) if and only if prA{|φ|} is monic, where prA : A×B // A is the

first projection since P has comprehensive diagonals.

Proof. (1 ) If f is monic then Pf×f (δB) = δA follows by [23, Cor. 4.8], while the other
direction follows from [20, Rem. 2.14].215

(2 ) It is straightforward to check this point by employing the internal language of a
doctrine and the previous point (1). For a complete algebraic proof we refer to [26, Lem.
2.22].

220
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3. Generalized existential completion

We recall here from [34] how to complete a conjunctive doctrine to a generalized
existential doctrine with respect to a class Λ of morphisms of C closed under composition,
pullbacks and containing the identities.

Definition 3.1. A class of morphisms Λ of a category C is called a left class of mor-225

phisms if it satisfies the following conditions:

1. given an arrow fh of C, if f ∈ Λ and h ∈ Λ, then we have fh ∈ Λ;

2. pullbacks of arrows in Λ exist for every arrow of C and for every f ∈ Λ and g of C,
for every pullback square

D

g∗f

��

f∗g // A

f∈Λ

��
C

g
// B

we have that g∗f ∈ Λ;

3. every isomorphism is in Λ.

Example 3.2. For any category with finite products the class of product projections is230

an example of a left class of morphisms.

Actually, the class Λ represents generalized projections with respect to which we
complete a conjunctive doctrine to a generalized existential one.

Definition 3.3. A left class doctrine is a pair (P,Λ), where P : Cop // InfSL is a
conjunctive doctrine and Λ is a left class of morphisms.235

Now, we generalize the notion of “existential doctrine” to a doctrine closed under left
adjoints to functors Pf for any morphism f in the left class Λ:

Definition 3.4. A left class doctrine (P,Λ) is called a generalized existential doc-

trine relative to a left class of morphisms Λ if, for any arrow f : A // B of Λ, the
functor

Pf : P (B) // P (A)

has a left adjoint ∃f , and these satisfy:

(BCC) Beck-Chevalley condition: for any pullback

X ′

f ′

��

g′ // A′

f

��
X

g
// A

with g ∈ Λ (hence also g′ ∈ Λ), for any β ∈ P (X) the following equality holds

∃g′Pf ′(β) = Pf∃g(β).
11



(FR) Frobenius reciprocity: for every morphism f : X // A of Λ, for every element

α ∈ P (A) and β ∈ P (X), the following equality holds

∃f (Pf (α) ∧ β) = α ∧ ∃f (β).

In order to simplify the notation, sometimes we will simply say that P is a Λ-
existential doctrine to indicate a left class doctrine (P,Λ) that is a generalized ex-240

istential doctrine.
The notion of pure existential doctrine presented in Definition 2.5 is a particular case

of generalized existential doctrine in the sense of Definition 3.4 when we consider the
class of all the projections of the base category.

Moreover, we adopt the following specific name for Λ-existential doctrines when Λ is245

the class of all the base morphisms:

Definition 3.5. Let C be a finite limit category. A full existential doctrine is a
generalized existential doctrine P : Cop // InfSL relative to the class of all the base
morphisms.

Now, we define the 2-category CDlc as follows:250

� objects are left class doctrines (P,Λ);

� 1-cells are pairs (F, b) : (P,Λ) // (R,Λ′) where F : C // D is a functor such

that for every f ∈ Λ, we have F (f) ∈ Λ′, F preserves pullbacks along morphisms

of Λ and b : P // R ◦ F op is a natural transformation.

� a 2-cell from (F, b) to (G, c) is a natural transformation θ : F // G such that
for every A in C and every α in P (A), we have

bA(α) ≤ RθA(cA(α)).

Similarly, we denote by ExCDlc the 2-full subcategory of CDlc whose objects are Λ-
existential doctrine (P,Λ), and a 1-cell of ExCDlc is a 1-cell (F, b) of CDlc such that the
natural transformation b commutes with left adjoints of the left classes, i.e. given (P,Λ)

and (R,Λ′), for every f : A // B arrow of Λ, we have that the diagram

P (A)
∃f //

bA

��

P (B)

bB

��
RF (A)

∃F (f)

// RF (B)

commutes, namely bB∃f = ∃F (f)bA. As in the case of the ordinary existential doctrines,255

the 2-cell remains the same.
Given this setting, we recall from [34] the construction of the generalized exis-

tential completion of a left class doctrine (P,Λ) consisting of a Λ-existential doctrine

ExΛ(P ) : Cop // InfSL freely generated from P relative to Λ. Such a free construction

provides a left 2-adjoint to the forgetful functor U : ExCDlc
// CDlc.260
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Definition 3.6 (Generalized existential completion). For every object A of C con-
sider the following preorder:

� the objects are pairs ( B
g∈Λ // A, α ∈ PB);

� ( B
h∈Λ // A, α ∈ PB) ≤ ( D

f∈Λ // A, γ ∈ PD) if there exists w : B // D such
that

B
w //

h

��

D

f

��
A

commutes and α ≤ Pw(γ).

It is easy to see that the previous data give a preorder. We denote by ExΛ(P )(A) the
partial order obtained by identifying two objects when

( B
h∈Λ // A, α ∈ PB) R ( D

f∈Λ // A, γ ∈ PD)

in the usual way. With abuse of notation we denote the equivalence class of an element265

in the same way.

Given a morphism f : A // B in C, let ExΛ(P )f ( C
g∈Λ // B , β ∈ PC) be the

object

( D
f∗g // A, Pg∗f (β) ∈ PD)

where

D

f∗g

��

g∗f // C

g

��
A

f
// B

is a pullback because g ∈ Λ.

The assignment ExΛ(P ) : Cop // InfSL is called the generalized existential

completion of P with respect to Λ.

Theorem 3.7. For every left class doctrine (P,Λ) the doctrine (ExΛ(P ),Λ) given by the270

assignment ExΛ(P ) : Cop // InfSLis a Λ-existential doctrine.

Proof. See [34, Thm 4.3].

Again, we fix the notation for the specific cases in which the left class of morphisms of
the base category C is the class of all the projections of C or the class of all its morphisms:275
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Definition 3.8. Let P : Cop // InfSL be a conjunctive doctrine on a finite limit (lex)
category C. A full existential completion of P , denoted with the symbol fEx(P ),
is the generalized existential completion of P with respect to the class of all the base
morphisms.

Definition 3.9. Let P : Cop // InfSL be a conjunctive doctrine on a category C with280

finite products. A pure existential completion, denoted with the symbol pEx(P ), is
the generalized existential completion of P with respect to the class of all the product
projections in its base category.

Observe that we can define a canonical injection of left class doctrines

(idC , ηP ) : (P,Λ) // (ExΛ(P ),Λ) (1)

where (ηP )A : P (A) // ExΛ(P )(A) acts sending

α 7→ ( A
idA // A,α ∈ P (A)).

Similarly, if P is Λ-existential, we can define the 1-cell of Λ-existential doctrines

(idC , εP ) : (ExΛ(P ),Λ) // (P,Λ)

which preserves the left-adjoints along morphisms of Λ, where (εP )A : P ex(A) // P (A)

acts sending

( B
f∈Λ // A, β ∈ P (B)) 7→ ∃f (α).

It is direct to check that, if (P,Λ) is Λ-existential, then εP ηP = idP and that
idExΛ(P ) ≤ ηP εP .285

Remark 3.10. Observe that every element ( B
f // A, β) of ExΛ(P )(A) is equal to

∃Λ
f ηB(β) because ∃Λ

f acts as the post-composition. See [34, Prop. 4.2].

Notice that the universal properties of existential completion shown in [34], can be
generalized for the arbitrary case of the generalized existential completion.

In particular, the proof of [34, Thm. 4.14] can be adapted to this more general set-290

ting, just observing that in the proof the fact that the class Λ is the class of projections
is not concretely used. The proof depends only on the properties of closure under pull-
backs, composition and identities of the class of projections, and hence it can be directly
generalized as follows.

Theorem 3.11. The forgetful 2-functor U : ExCDlc
// CDlc has a left 2-adjoint295

2-functor E : CDlc
// ExCDlc, acting on the objects as (P,Λ) 7→ (ExΛ(P ),Λ).

We conclude this section recalling from [34, Ex. 5.9] the following example of pure
existential completion.
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Example 3.12 (The regular fragment of Intuitionistic Logic). Let L=,∃ be the (>,∧,=,∃)-
fragment of first-order Intuitionistic logic (also called regular in[16]), i.e. the fragment
with top element, conjunction, equality and existential quantifiers. Then the elementary
pure existential doctrine

LT=,∃ : Cop
L=,∃

// InfSL

is the pure existential completion of the syntactic elementary doctrine

LT= : Cop
L=

// InfSL

associated with the Horn fragment L=, i.e. the (>,∧,=)-fragment of first-order Intu-
itionistic logic. This result is a consequence of the fact that extending the language L=300

with existential quantifications is a free operation, so by the known equivalence between
doctrines and logic, the elementary pure existential doctrine pEx(LTL=) must coincide
with the syntactic doctrine LT=,∃, since both completions are free.

4. A characterization of generalized existential completions

The main purpose of this section is to present a characterization of the generalized305

existential completion in logical terms, namely Theorem 4.16.
To achieve this goal, we introduce the notion of Λ-existential-free objects of a Λ-

existential doctrine P to denote objects which are free from the left adjoints ∃f along
Λ. This notion provides an algebraic counterpart of the logical concept of existential-free
formula.310

To this purpose we first define:

Definition 4.1. Let P : Cop // InfSL be an Λ-existential doctrine. An object β of
the fibre P (B) is said to be a Λ-existential splitting if for every morphism in Λ

C
g∈Λ // B

and for every element γ of the fibre P (C), whenever β = ∃g(γ) holds then there exists

an arrow h : B // C such that
β = Ph(γ)

and gh = id.

Notice that nothing guarantees that Λ-existential splitting objects as defined in Def-
inition 4.1 are closed under reindexing along a morphism. Therefore, we introduce a
stronger notion:315

Definition 4.2. Let P : Cop // InfSL be a Λ-existential doctrine. An object α of the
fibre P (A) is said to be Λ-existential-free if for every morphism

B
f // A

Pf (α) is a Λ-existential splitting.
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Now, Λ-existential-free objects are closed under reindexing along any morphism:

Proposition 4.3. Let P : Cop // InfSL be a Λ-existential doctrine. Let α be an
element of the fibre P (A). Then the following conditions are equivalent:

1. α is Λ-existential-free;320

2. for every morphism g : B // A of Λ, Pg(α) is Λ-existential-free.

Proof. (1 )⇒ (2 ) For any morphism g : B // A of Λ, by definition of α as Λ-existential-

free, we deduce that Pg(α) is Λ-existential splitting and that for any other morphism

h : C // B also Ph(Pg(α)) = Pgh(α) is Λ-existential splitting, namely Pg(α) is Λ-
existential-free.325

(2 )⇒ (1 ) Take for g the identity.

The following proposition presents a useful equivalent characterization of Λ-existential
splitting elements in terms of a form of Existence Property [39].

Proposition 4.4. Let P : Cop // InfSL be a Λ-existential doctrine, let β be an ele-330

ment of the fibre P (B). Then the following conditions are equivalent:

1. β is Λ-existential splitting;

2. for every morphism g : C // B of Λ and for every element γ of the fibre P (C),

whenever β ≤ ∃g(γ) holds then there exists an arrow h : B // C such that β ≤
Ph(γ) and gh = id.335

Proof. (1 )⇒ (2 ) Suppose that β ≤ ∃g(γ), with g ∈ Λ. In particular, we have that
β = ∃g(γ)∧ β and, applying FR, we have β = ∃g(γ ∧Pg(β)). Employing the assumption

that β is Λ-existential splitting, and we have that there exists and arrow h : B // C
such that β = Ph(γ ∧ Pg(β)) and gh = id. Therefore,

β = Ph(γ ∧ Pg(β)) = Ph(γ) ∧ Pgh(β) = Ph(γ) ∧ β

and then we can conclude that β ≤ Ph(γ).

(2 )⇒ (1 ) If β = ∃g(γ) then, in particular, we have that β ≤ ∃g(γ) and it follows by our

assumption that there exists an arrow h : B // C such that β ≤ Ph(γ) and gh = id.
Moreover, from ∃g(γ) ≤ β, then γ ≤ Pg(β) and finally Ph(γ) ≤ Ph(Pg(β)) = β because340

fh = id. Hence, we conclude that β = Ph(γ).

Remark 4.5. The notion of Λ-existential-free object provides an algebraic version of
the syntactic notion of existential-free formula because if a Λ-existential-free object β
is equal to the existential quantification of an object γ along an arrow g in Λ, then β is
equal to a reindexing of γ.345

Here we fix some notation for the specific cases in which the left class of morphisms of
the base category is the class of product projections or of all the morphisms. In particular:
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� when Λ is the class of product projections we will speak of pure-existential
splitting and pure-existential-free.

� when Λ is the class of all the morphisms of the base category we will speak of350

full-existential splitting and full-existential-free.

In order to provide a more precise logical intuition of the categorical notion of existential-
free elements introduced in Definition 4.2, we anticipate this example which will follow
from the main Theorem of this section (Theorem 4.16):

Example 4.6 (Regular fragment of Intuitionistic Logic). The pure-existential-free objects
of the pure existential doctrine

LT=,∃ : Cop
L=,∃

// InfSL

introduced in Example 3.12 are exactly the formulae which are free from the existential355

quantifier as a consequence of our main Theorem 4.16.

Now we are going to observe how the notion of Λ-existential-free object is related to
well known choice principles. To this purpose we first introduce a generalization of the
notion of Rule of Choice by relativizing the existence of a witness to the arrows of the
class Λ.360

Definition 4.7. For a Λ-existential doctrine P : Cop // InfSL, we say that P satisfies
the Generalized Rule of Choice with respect to the left class Λ of morphisms, for
short Λ-RC rule, if whenever

>A ≤ ∃g(β)

where g : B // A is an arrow of Λ, then there exists an arrow f : A // B such that

>A ≤ Pf (β)

and gf = id.

Remark 4.8. Observe that a Λ-existential doctrine P : Cop // InfSL has Λ-RC if and
only if for every object A of C, the top element >A ∈ P (A) is Λ-existential splitting.
Indeed, if every top element is Λ-existential splitting then then every top element is Λ-
existential-free because the reindexing along any morphism, which is an inf-semilattice365

morphism by definition, preserves the top element.

Definition 4.9. Given a Λ-existential doctrine P : Cop // InfSL, we also say that an
element α of the fibre P (A) is Λ-covered by an element β ∈ P (B) if β is a Λ-existential-

free object and there exists an arrow f : B // A of Λ such that α = ∃f (β).

Definition 4.10. We say that a Λ-existential doctrine P has enough-Λ-existential-
free objects if for every object A of C, any element α ∈ P (A) is Λ-covered by some
element β ∈ P (B) for some object B of C, namely β is a Λ-existential-free element and

α = ∃g(β).

for an arrow g : B // A in Λ.370
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Lemma 4.11. If a Λ-existential doctrine P : Cop // InfSL has enough-Λ-existential-
free elements, then every Λ-existential splitting element is Λ-existential-free.

Proof. Let us consider an element α of P that is Λ-existential splitting. Since P has
enough-Λ-existential-free elements, we have that α = ∃g(β) with g ∈ Λ and β Λ-
existential-free. Moreover, by definition of Λ-existential splitting, there exists an arrow375

h such that α = Ph(β). Since β is Λ-existential-free, we conclude that Ph(β), which is
α, is also Λ-existential-free by proposition 4.3.

Following the notation introduced before, we fix the notation for the specific cases in
which the left class of morphisms of the base category is the class of product projections
or of all the morphisms. In particular:380

� when Λ is the class of product projections we will speak of enough-pure-existential-
free objects;

� when Λ is the class of all the morphisms of the base category we will speak of
enough-full-existential-free objects.

Now, we present some technical lemmas which will be useful to prove the main result of385

this section, namely Theorem 4.16 where we characterize doctrines arising as generalized
existential completions.

Lemma 4.12. Let P : Cop // InfSL be a Λ-existential doctrine, and let us consider

a Λ-existential-free element α ∈ P (B). If ∃f (α) ≤ ∃g(β) where f : B // A and

g : C // A are arrows of the base category C and β ∈ P (C), then there exists an390

arrow m : B // D where D is the vertex of the pullback of f along g such that

� (f∗g)m = id;

� α ≤ P(g∗f)m(β).

And hence also f = g(g∗f)m.

Proof. If ∃f (α) ≤ ∃g(β), then α ≤ Pf∃g(β), and applying BCC, we have α ≤ ∃f∗gPg∗f (β),
where

D
f∗g //

g∗f

��

B

f

��
C

g
// A

is a pullback. Thus, since α is Λ-existential-free we can apply Proposition 4.4, and395

conclude that there exists a morphism m : B // D such that α ≤ P(g∗f)m(β) and
(f∗g)m = id. In particular f = g(g∗f)m.

Recall that for every left class doctrine (P,Λ) we have a canonical morphism of

(id, η) : P // ExΛ(P ) of left class doctrine relative to Λ as defined in (1).

18



Lemma 4.13. Let (P,Λ) be a left class doctrine. If every element of the form ηA(α) for400

any object α of P (A) with A object of C is Λ-existential splitting in ExΛ(P ) then every
element of the form ηA(α) is a Λ-existential-free object.

Proof. It follows by the naturality of ηA.

In the following definition we introduce in the context of Λ-existential doctrines a
notion reminiscent of that of projective cover introduced in [4, Def. 2].405

Definition 4.14. Let P : Cop // InfSL be a Λ-existential doctrine equipped with a

fibred conjunctive subdoctrine P ′ : Cop // InfSL . We say that P is an Λ-existential
cover of P if for any object A, every element α′ of P ′(A) is Λ-existential-free for P and
every element α of P (A) is Λ-covered by an element of P ′.

Following the notation introduced in the previous definitions, when Λ is the class of410

product projections we will speak of pure-existential cover and when Λ is the class of
all the morphisms of the base category we will speak of full-existential cover.

The existential cover doctrines of a doctrine P are unique as shown in the following:

Proposition 4.15. Let P : Cop // InfSL be a Λ-existential doctrine equipped with

a fibred subdoctrine P ′ : Cop // InfSL. If P ′ is a Λ-existential cover of P then the415

elements of P ′ are exactly those elements of P which are Λ-existential-free. Hence if Q
is another Λ-existential cover of P then Q = P ′.

Proof. Let α ∈ P (A) be a Λ-existential-free object. We have to prove that α ∈ P ′(A).
Since every element of P is covered by an element of P ′, we have that α = ∃f (β) where

β is Λ-existential-free, β ∈ P ′(B) and f : B // A is in Λ. Therefore, we can conclude420

there exists an arrow h : A // B such that α = Ph(β), and hence that α is an element
of the fibre P ′(A) since β and its reindexings are in P ′.

Now we are ready to prove the main result of this section.

Theorem 4.16. Let P : Cop // InfSL be a Λ-existential doctrine relative to a left-
class Γ. Then the following are equivalent:425

1. P is isomorphic to the generalized existential completion ExΛ(P ′) of a left class
doctrine (P ′,Λ);

2. P has a (unique) Λ-existential cover in the sense of Definition 4.14.

3. P satisfies the following points:

(a) P satisfies Λ-RC, i.e. each top element >A of the fibre P (A) is a Λ-existential-430

free object.

(b) for every Λ-existential-free object α and β of P (A), then α∧β is a Λ-existential-
free object.

(c) P has enough-Λ-existential-free objects.
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Proof. (1 ) ⇒ (2 ) Suppose that P is a generalized existential completion ExΛ(P ′). We
claim that the fibred subdoctrine P ′′ of P whole elements of the fibres are exactly the
images of η (in particular P ′ ∼= P ′′) is a Λ-existential cover of P . We first show that every

element of the form ηA(α) is a Λ-existential splitting of P . Thus, let β := ( C
f // B , β)

be an object of the fibre ExΛ(P ′)(B), and suppose that

ηA(α) ≤ ∃Λ
g (β) (2)

where g : B // A. Recall that, by definition of the doctrine ExΛ(P ′), the inequality (2)

means that there exists an arrow h : A // C such that the following diagram commutes

A
h //

idA

��

C

gf

��
A

and
α ≤ P ′h(β) (3)

We claim that
ηA(α) ≤ ExΛ(P ′)fh(β). (4)

Thus, let us consider the pullback

D
f∗(fh) //

(fh)∗f

��

C

f

��
A

fh
// B.

Moreover,we have by definition of generalized existential completion

ExΛ(P ′)fh(β) = ( D
(fh)∗f // A,P ′f∗(fh)(β)).

Thus, by the universal property of pullbacks, there exists an arrow w : A // D such435

that the following diagram commutes
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A

idA
(•)

##

w

��

h

(••)

��
D

f∗(fh) //

(fh)∗f

��

C

f

��
A

fh
// B.

Hence, combining (3) with the triangle (••) we have that

α ≤ P ′h(β) = P ′w(P ′f∗(fh)(β)).

From this and the diagram (•) the claim (4) follows. By Proposition 4.4, this ends
the proof that an element of the form ηA(α) is Λ-existential splitting. By Lemma 4.13
all such elements are also Λ-existential-free objects. Furthermore, observe that every

element ( B
f // A, β) of ExΛ(P ′)(A) is equal to ∃Λ

f ηB(β) because ∃Λ
f acts as the post-440

composition. Finally, by Remark 3.10, we have that every element of P is Λ-covered by
an element of P ′′. This ends the proof that P ′′ is an existential cover of P and it is
unique by Proposition 4.15.

(2 )⇒ (3 ) Let P ′ be a Λ-existential cover of P . Conditions (a), (b) and (c) follow by defi-445

nition of Λ-existential cover (Definition 4.14) and from the fact that, by Proposition 4.15,
the elements of P ′ are exactly those elements of P which are Λ-existential-free for P .

(3 )⇒ (1 ) Let (P,Λ) be a Λ-existential doctrine satisfying (a), (b) and (c). Then, we can
define the conjunctive doctrine

P ′ : Cop // InfSL

as the functor which sends an object A to the poset P ′(A) whose elements are the Λ-
existential-free objects of P (A) with the order induced from that of P (A), and such that450

P ′f = Pf for every arrow f of C. Notice that this functor is a conjunctive doctrine because
Λ-existential-free objects are stable under re-indexing by definition, and they are closed
under the top element and binary conjunctions by the assumptions (a) and (b). Therefore,
by the universal property of the generalized existential completion, there exists a 1-cell
of ExCDlc455
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Cop

ExΛ(P ′)

((
idop

��

InfSL

Cop

P

66%

��

where the map %A : ExΛ(P ′)(A) // P (A) sends

( B
f // A,α) 7→ ∃f (α).

In particular, % is a morphism of inf-semilattices and it is natural with respect to
left adjoints along the class Λ. Moreover, notice that for every object A, we have

that %A : ExΛ(P ′)(A) // P (A) is surjective on the objects since P has enough-Λ-

existential-free objects, i.e. every object α of P (A) is of the form ∃g(β) for some

g : B // A and β ∈ P (B). Now we want to show that % reflects the order, and
hence that it is an isomorphism. Suppose that

∃f (α) ≤ ∃g(β) (5)

where f : B // A and g : C // A are arrows of C, and α ∈ P (B) and β ∈ P (C) are
Λ-existential-free objets. Then we have to prove that

( B
f // A,α) ≤ ( C

g // A, β).

By (5) we have that α ≤ Pf∃g(β). Now we can consider the pullback in C

D
g∗f //

f∗g

��

C

g

��
B

f
// A

and, after applying BCC, we obtain

α ≤ ∃f∗gPg∗f (β).

Therefore, since α is a Λ-existential-free object, we can apply Proposition 4.4 and con-
clude that there exists an arrow h : B // D such that

B
h //

idB

��

D

(f)∗g

��
B
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and
α ≤ PhPg∗f (β)

From this, it follows that the diagram

B

f

��

(g∗f)h // C

g

��
A

commutes because g(g∗f)h = f(f∗g)h = f , and α ≤ P(g∗f)h(β). Thus, we have proved

that ( B
f // A,α) ≤ ( C

g // A, β). Therefore, we can conclude that (id, %) is an

invertible 1-cell of ExCDlc, and then ExΛ(P ′) ∼= P .

460

A preliminary version of our characterization of generalized existential completion,
namely Theorem 4.16, was presented in [35] in 2020, while a similar result, for the
specific case in which the class Λ is the whole class of base morphisms, was independently
presented in [7, Thm 6.3] in terms of ∃-prime elements.

Corollary 4.17. If Λ is the class of all product projections of a primary doctrine465

P : Cop // InfSL, then the pure existential completion pEx(P ) satisfies the Rule of
Choice of 2.13.

Corollary 4.18. If Λ is the class of all the base morphisms of a given left class doc-
trine P : Cop // InfSL, then the full existential completion fEx(P ) satisfies the Ex-
tended Rule of Choice in 2.12.470

Example 4.19 (Regular fragment of Intuitionistic Logic). From the fact that the elemen-
tary and pure existential doctrine

LT=,∃ : Cop
L=,∃

// InfSL

introduced in Example 3.12 coincides with the pure existential completion of the syntactic
elementary doctrine

LT= : Cop
L=

// InfSL

from Theorem 4.16 we can conclude that the syntactic concept of existential-free for-
mulas coincides with our algebraic one in Definition 4.2 as anticipated in Example 4.6.
Furthermore, the fact that the doctrine has enough-pure-existential-free objects gives an
alternative proof that every formula of the (>,∧,=,∃)-fragment of first-order Intuition-
istic logic can be presented in a prenex normal form. Moreover, the logic satisfies the475

choice principle RC by Corollary 4.17.
Finally, by Proposition 4.4, we have that for every syntactical existential-free formula

[a : A] | α(a) if
[a : A] | α(a) ` ∃b : B β(a, b)
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then there exists a term [a : A] | t(a) : B such that

[a : A] | α(a) ` β(a, t(a)).

Observe that full existential completions come equipped with comprehensive diagonals
defined in 2.4:

Corollary 4.20. Let P : Cop // InfSL be a full existential completion. Then P has
comprehensive diagonals.480

Proof. By [20, Prop. 2.21] showing that P has comprehensive diagonals is equivalent to

showing that for any arrows f, g : A // B we have that f = g if and only if >A ≤
P〈f,g〉(δB). Hence, suppose that >A ≤ P〈f,g〉(δB), i.e. that ∃〈f,g〉(>A) ≤ δB = ∃∆B

(>B).
By Theorem 4.16 we have that every top element is full-existential-free, so we can apply
Lemma 4.12 and conclude that there exists an arrow m such that 〈f, g〉 = ∆Bm, and485

this means that f = g. The converse follows directly from the fact that ∃∆B
a P∆B

since
if g = f then >A = Pf (>B) ≤ Pf (P∆B

∃∆B
(>B)) = P〈f,f〉(δB) = P〈f,g〉(δB). Therefore

we can conclude that P has comprehensive diagonals.

5. Doctrines with Hilbert’s ε-operators as idempotent pure existential com-
pletion algebras490

In [34] it is shown that the assignment P 7→ pEx(P ) of a primary doctrine to its pure
existential completion extends to a lax-idempotent 2-monads

Tex : PD // PD

on the 2-category of primary doctrines, and that the 2-category Tex-Alg of algebras is
isomorphic to the 2-category ExD of pure existential doctrines. This means that in
the case Λ is the class of product projections, the pure existential doctrines are exactly
the Tex-algebras, also called pure existential completion algebras. In particular, the
specialization of Theorem 4.16 provides a characterization of the free algebras of the495

monad Tex.
Here we focus our attention to the idempotent Tex-algebras, namely those pure ex-

istential doctrines P such that P ∼= pEx(P ), and we show that they coincide with the
pure existential doctrines equipped with Hilbert’s epsilon operators (see [20] for relevant
applications of such doctrines to tripos-to-topos constructions). This fact emphasizes500

the relationship between choice principles and our algebraic characterization of pure ex-
istential completions.

Theorem 5.1. Let P : Cop // InfSL be a pure existential doctrine. Then P is iso-
morphic to pEx(P ) if and only if P is equipped with Hilbert’s ε-operators.

Proof. We need to show that P is isomorphic to pEx(P ) if and only if for every A and

B of C and every α ∈ P (A×B) there exists arrow f : A // B such that

∃pr1
(α) ≤ P〈idA,f〉(α) (6)
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where pr1 : A×B // A is the first projection. Recall that by [34] we have the following

adjunction
Cop

id

��

P

((
a InfSL

Cop

pEx(P )

66ηP

��

εP

AA

with
idP = εP ηP and idP ex ≤ ηP εP .

In particular the doctrine P is isomorphic to pEx(P ) if an only if ηP εP ≤ idP ex . By

definition of ηP and εP , we have that for every object ( A×B
pr1 // A,α ∈ P (A×B)) ∈

pEx(P )(A), the element ηP εP ( A×B
pr1 // A,α ∈ P (A×B)) ∈ pEx(P )(A) is given by

ηP εP ( A×B
pr1 // A,α ∈ P (A×B)) = ( A

idA // A, ∃pr1
(α) ∈ PA)

Then, by definition of the preorder in the doctrine pEx(P ), the inequality ηP εP ≤ idP ex505

holds if and only if for every object A of C and every ( A×B
pr1 // A,α ∈ P (A ×

B)) ∈ pEx(P )(A), there exists an arrow f : A // B such that ∃pr1
(α) ≤ P〈idA,f〉(α).

Therefore, we can conclude that P is isomorphic to pEx(P ) if and only if P is equipped
with Hilbert’s ε-operators.

Example 5.2. The well-known hyperdoctrine of subsets P: Setop // InfSL over the510

usual category Set of sets formalizable in Zermelo-Fraenkel set theory with the Axiom of
Choice is a notable example of doctrine equipped with Hilbert’s ε-operators, and hence
of a Tex-idempotent algebra as shown in Theorem 5.1.

A second example of a Tex-idempotent algebra is provided by the hyperdoctrine
presented in Example 2.17.515

6. Elementary pure existential completions must inherit their elementary
structure

In [34] it was shown that the pure existential completion preserves the elementary
structure. Here we show that elementary pure existential completions must inherit their
elementary structure from their generating conjunctive doctrine, but this does not apply520

to generic generalized existential completions. Furthermore, any generalized existential
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completion relative to a class Λ containing product projections which inherits its ele-
mentary structure from its generating conjunctive doctrine must be a pure existential
completion.

Theorem 6.1. Let P ′ : Cop // InfSL a primary doctrine and P = pEx(P ′) its pure525

existential completion. The following conditions are equivalent

1. P ′ is elementary

2. pEx(P ′) is elementary.

Proof. For (1 )⇒ (2 ) see [34, Prop. 6.1].
530

(2 ) ⇒ (1 ) First of all recall from Definition 2.4 that left adjoints along the functors
P∆×id are of the form

∃∆×id(α) = P〈pr1,pr2〉(α) ∧ P〈pr2,pr2〉(δA)

Since P ′ is the fibred subdoctrine of pure-existential-free objects of P , in order to show
that P ′ is elementary it is enough to show that the equality predicates δA are pure-
existential-free objects so that ∃∆×id restricts to P ′.

By Theorem 4.16, we have that P has enough-pure-existential-free elements hence,
by Lemma 4.11, it is enough to show that δA is a pure-existential-splitting object to
conclude that δA is pure-existential-free. Therefore, let us suppose that δA = ∃∆A

(>A) ≤
∃prA×A(β). Then by the equality adjunction

>A ≤ P∆A
∃prA×A(β). (7)

Hence, by BCC, we have that

>A ≤ ∃prAP∆A×idB (β). (8)

By Theorem 4.16 P satisfies the Rule of Choice, hence there exists an arrow f : A // B
such that >A ≤ P〈idA,f〉P∆A×idB (β). Now since (∆A × idB)〈idA, f〉 = (∆A × f)∆A we
obtain >A ≤ P∆A

P∆A×f (β) and by the equality adjunction we conclude

δA = ∃∆A
(>) ≤ P∆A×f (β). (9)

By Proposition 4.4, this ends the proof that δA is pure-existential-splitting object. Then,
by Lemma 4.11, we can conclude that δA is a pure-existential-free object.535

Generalized existential completions with an elementary structure inherited by their
generating doctrine are essentially pure existential completions:

Proposition 6.2. Let P : Cop // InfSL be an elementary existential doctrine and Λ
is a left class of morphisms in C containing the projections. If P ′ is a Λ-existential cover540

of P such that every fibred equality δA ∈ P (A×A) is contained in P ′(A×A), then P ′ is
a pure-existential cover of P . Therefore P ∼= pEx(P ′) ∼= ExΛ(P ′).
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Proof. Clearly every element of P ′ is pure-existential-free in P since Λ contains the
product projections. Hence, to meet our purpose it is enough to show that every element
α ∈ P (A) is of the form α = ∃prA(γ) with γ element of P ′. Now, since P ′ is a Λ-

existential cover of P , for every α ∈ P (A) there exists an arrow g : B // A and an

element β ∈ P ′(B) such that α = ∃g(β). Moreover, since P is elementary and existential
we have that

α = ∃g(β) = ∃prA(PprB (β) ∧ P〈prA,g prB〉(δA))

which actually gives the claimed representation because, employing the assumption that
every δB is an element of P ′(B × B) and the fact that P ′ is a fibred subdoctrine of P ,
we can conclude that PprB (β) ∧ P〈pr1,g pr2〉(δB) is an element of P ′.545

Remark 6.3. Theorem 6.1 does not hold for all generalized existential completions. This
can be expected since the process of freely adding left adjoints destroys previously existing
ones.

In fact, there exist elementary generalized existential completions which do not inherit550

their elementary structure from their generating elementary conjunctive doctrine, namely
their existential cover. We will present concrete examples of this case in the following
section, in Remark 7.5.

Remark 6.4 (Elementary and pure existential doctrines which are not full existential doc-

trines). Recall from [29, 20], that any elementary existential doctrine P : Cop // InfSL
has left adjoint of every re-indexing functor Pg given by the assignment

∃g(α) = ∃pr1
(Ppr2

(α) ∧ P〈pr1,g pr2〉(δA)).

There are some particular cases in which every ∃g satisfies BCC and FR, for example
when P has full comprehensions and comprehensive diagonals (see [20, Lem. 5.8].).555

However, as observed in [29, Rem. 4.6], these left adjoints do not necessarily satisfy
BCC and FR in general. In particular, notice that we can employ the pure existential
completion to construct examples of existential and elementary doctrines (with finite
limit base) that do not satisfy BCC or FR along all the morphisms, i.e. that are not full

existential. In fact, let us consider an elementary doctrine P : Cop // InfSL with a560

finite limit base, and let us consider its pure existential completion pEx(P ). Employing
the universal properties of pure and full existential completions (and the fact that the
pure existential completion preserves the elementary structure by Theorem 6.1), we have
that pEx(P ) satisfies BCC and FR along all the morphisms of the base, namely it is a
full existential doctrine, if and only if pEx(P ) ∼= fEx(P ).565

Now, observe that the embedding of pEx(P ) into fEx(P ), which holds by construc-

tions, is an equivalence if and only if every element ( B
f // A,α) ∈ fEx(P )(A) is

equivalent to an element of the form ( A× C
prA // A, β) ∈ pEx(P )(A). By definition

of the order of fEx(P )(A) this holds when there exist two arrows g1 : B // A× C
and g2 : A× C // B such that fg2 = prA and prA g1 = f with α ≤ Pg1

(β) and570

β ≤ Pg2
(α). In particular, fg2 = prA implies that f is epi. Therefore, each pure exis-

tential completion of an elementary doctrine on a finite limit category, where not all f
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are epi, like for example Set, does not generally satisfy both BCC and FR along every
morphism.

7. Examples of generalized existential completions575

In this section we provide relevant examples of generalized existential completions.

7.1. Λ-Weak subobjects doctrines

Definition 7.1 (Λ-weak subobjects doctrine). Let C be a category and let Λ be a
left class of morphisms of C. We define the Λ-weak subobjects doctrine, or the doctrine
of Λ-weak subobjects, as the functor

ΨΛ : Cop // InfSL

assigning to every object A of C the poset

ΨΛ(A) := { B
[f ] // A | f ∈ Λ}

with the usual order given by the factorization, i.e. the partial order induced by the
usual preorder on morphisms given by f ≤ g if there exists an arrow h such that f = gh.
The re-indexing functors ΨΛ(f) act by pulling back the elements of the fibres.580

One can directly check that ΨΛ is a Λ-existential doctrine, since the left adjoints are
given by the post-composition of arrows of Λ. Moreover, ΨΛ is clearly an example of a
fibred subdoctrine of the doctrine ΨC of weak subobjects presented in Example 2.8(2).

Definition 7.2. Given a category C, we call the trivial doctrine on C the functor

Υ: Cop // InfSL

assigning the poset with only one element to every object A of C denoted as Υ(A) = {>}.

By definition of generalized existential completion, we immediately obtain the follow-585

ing theorem.

Theorem 7.3. The Λ-existential doctrine ΨΛ : Cop // InfSL is isomorphic to the

generalized existential completion of the trivial doctrine Υ: Cop // InfSL.

Proof. Observe that the top elements cover the weak subobjects doctrine, i.e. for every

object A and for every element [f ] : B // A in the fibre ΨD(A) we have [f ] = ∃f (>B),590

since the left adjoints ∃f are given by the post-composition and the top element >B is
the identity morphism [idB ].

Example 7.4. Observe that the weak subobjects doctrine defined in Example 2.14 is a
Λ-weak subobjects doctrine where Λ is the class of all the morphisms of a finite limit
base category C. Hence from Theorem 7.3 the weak subobjects doctrine is isomorphic595

to the full existential completion of the trivial doctrine Υ: Cop // InfSL and then,
applying Corollary 4.18, we obtain a proof alternative to that in [20] that the doctrine
ΨC of weak subobjects satisfies the Extended Rule of Choice in 2.12.
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Remark 7.5. Notice that Λ-weak subobjects doctrines provide an example of generalized
existential completions that do not preserve the elementary structure of the base. In600

fact, a doctrine ΨΛ : Cop // InfSL is elementary if Λ contains the diagonal arrow and,

by Theorem 7.3, ΨΛ is generated from the trivial primary doctrine Υ: Cop // InfSL
which is elementary, too. However, the elementary structure of Υ is not in general
preserved by the generalized existential completion, like for example when C is Set and
Λ is the class of all morphisms of Set.605

7.2. Examples of generalized existential completions with full comprehensions

In this section we show that relevant examples of generalized existential doctrines are
given by doctrines with full comprehensions closed under compositions.

Definition 7.6. Given a conjunctive doctrine

P : Cop // InfSL

with full comprehensions, we say that P has composable comprehensions if its com-
prehensions are closed under compositions, namely if for all objects α in P (A) and β in610

P (B) with {|α|} : B // A then we have {|α|}{|β|} = {|γ|} : C // A for γ in P (C).

Note that γ is unique by Remark 2.19.
Our aim now is to show that a doctrine P : Cop // InfSL with full composable

comprehensions is an instance of the generalized existential completion construction with
respect to the class Λcomp of comprehensions.615

To this purpose, we first show that such a P has left adjoints along comprehensions:

Proposition 7.7. Let P : Cop // InfSL be a conjunctive doctrine with full compre-
hensions. Then the following conditions are equivalent:

1. P has composable comprehensions.

2. P has left adjoints along the comprehensions satisfying BCC.620

Proof. (1 )⇒ (2 ) If comprehensions compose it is direct to check that then there exists
a left adjoint along {|α|} defined as

∃{|α|}(β) := γ

where γ is the unique element of P (A) such that {|α|}{|β|} = {|γ|}. This satisfies BCC after
recalling from Remark 2.20 that the pullbacks of a comprehensions along any map exists
in C (see [26] for further details).

(2 ) ⇒ (1 ) Suppose that the doctrine P has left adjoints along comprehensions, and625

consider two comprehensions {|β|} : C // B and {|α|} : B // A. We claim that the

comprehension {|∃{|α|}(β)|} : D // A is the composition {|α|}{|β|}.
First of all observe that >C ≤ P{|α|}{|β|}∃{|α|}(β) follows from the unit of the adjunction

β ≤ P{|α|}∃{|α|}(β) by full comprehension and hence and by Remark 2.19 there exists a

unique g : C // D such that {|∃{|α|}|}g = {|α|}{|β|}. Now we are going to prove that g is
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invertible. Observe that by Lemma 2.21, we have α = ∃{|α|}(>B) from which ∃{|α|}(β) ≤
∃{|α|}(>B) ≤ α and hence by Remark 2.19 there exists a unique h : D // B such that
the following diagram commutes

D

{|∃{|α|}(β)|}

��

h // B

{|α|}
~~

A.

Now, observe that P{|α|}∃{|α|}(β) = β holds by BCC and the fact that {|α|} is monic and
hence we conclude

>D ≤ P{|∃{|α|}(β)|}(∃{|α|}(β) ) = Ph(P{|α|}(∃{|α|}(β)) ≤ Phβ

which by comprehension yields the existence of a unique l : D // C such that

C
{|β|} // B

{|α|} // A

D

h

OO

l

__

{|∃{|α|}(β)|}

??

(10)

commutes. It is immediate to observe that l is an inverse of g by the fact that compre-
hensions are monic.

630

Corollary 7.8. Let P : Cop // InfSL be a conjunctive doctrine with full composable
comprehensions. Then every left adjoint ∃{|α|} satisfies FR.

Proof. We have to prove that ∃{|α|}(P{|α|}(β) ∧ γ) = β ∧ ∃{|α|}(γ). Let use define σ :=
∃{|α|}(P{|α|}(β) ∧ γ) and σ′ := β ∧ ∃{|α|}(γ). To show the result it is enough to prove that
{|σ|} = {|σ′|} since comprehensions are full. By Proposition 7.7 we have that {|σ|} :=
{|α|}{|P{|α|}(β) ∧ γ|} and hence, applying Corollary 2.22, we have

{|σ|} = {|α|}{|γ|}{|P{|α|}{|γ|}(β)|} = {|∃{|α|}(γ)|}{|P{|∃{|α|}(γ)|}(β)|} = {|σ′|}

Example 7.9. Recall that aM-category is a pair (C,M) where C is a category andM is a
stable system of monics, i.e. M is a collection of monics which includes all isomorphisms
and is closed under composition and pullbacks. Observe that a stable system of monics is
essentially what was called a dominion in [32], an admissible system of subobjects in [30],
a notion of partial maps in [31] and a domain structure in [27]. Given an M-category
(C,M) one can define the doctrine of M-subobjects

SubM : Cop // InfSL
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where SubM(X) if the inf-semilattice of M-subobjects of M, and the action of SubM
on a morphism f : X // Y of C is given by pulling back theM-subobjects of Y along635

f . It is direct to prove that given an M-category (C,M), the doctrine of M-subobjects

SubM : Cop // InfSL has full composable comprehensions and hence by prop. 7.7 it
has left adjoints along comprehensions.

Proposition 7.10. Let P : Cop // InfSL be a conjunctive doctrine with full compos-
able comprehensions, and let Λcomp be the class of the comprehensions. Then:640

1. Λcomp is a left class of morphisms of C;

2. for every α ∈ P (A), α = ∃{|α|}(>Aα);

3. an element α ∈ P (A) is a Λcomp-existential-free object if and only if it is the top
element. In particular the doctrine P satisfies the Λcomp-RC rule.

Proof. (1 ) The class of comprehensions contains identities, and comprehensions are sta-645

ble under pullbacks by Remark 2.20 while they compose by assumption.

(2 ) The second point follows from Proposition 7.7 and Lemma 2.21.

(3 ) First we show that every top element is Λcomp-existential-free. If >A ≤ ∃{|α|}(β), then
we have that {|>A|} = idA factors on {|∃{|α|}(β)|}, which is equal to the arrow {|α|}{|β|} by
Proposition 7.7. Then there exists an arrow h such that the following diagram commutes

A

idA

��

h // C

{|β|}~~
Aα

{|α|}}}
A.

Now we define f := {|β|}h. Thus, we have that {|α|}f = idA and

Pf (β) = PhP{|β|}(β) = >A.

Now we prove the converse. By point 2. we have that α = ∃{|α|}(>Aα), and then if650

α is a Λcomp-existential-free object, α ≤ ∃{|α|}(>Aα) implies that there exists an arrow

f : A // A{|α|} such that α ≤ Pf (>Aα) = >A and {|α|}f = idA. Since idA = {|>A|} by

fullness of comprehensions we conclude >A ≤ α and hence >A = α.

By employing Proposition 7.10 we derive the following theorem:

Theorem 7.11. Every conjunctive doctrine P : Cop // InfSL with full and compos-
able comprehensions is an instance of the generalized existential completion of the trivial
conjunctive doctrine

Υ: Cop // InfSL
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where for every object A the poset Υ(A) contains only the top element, with respect to the655

class Λcomp of comprehensions. Therefore, it is isomorphic to the doctrine SubΛcomp : Cop // InfSL

where SubΛcomp
(A) is the class of comprehensions of A.

Proof. It follows by point (2) of Theorem 4.16 and Proposition 7.10. In particular, we
have an isomorphism given by the 1-cell

Cop

P

((
idop
C

��

InfSL

Cop

SubΛcomp

66{|−|}

��

where {| − |}A : P (A) // SubΛcomp
(A) sends α to {|α|}.

Moreover, one can directly check that the previous result, together with Example 7.9,
extends to an isomorphism of 2-categories.660

Theorem 7.12. We have an isomorphism of 2-categories

M-Cat ∼= CEc

where M-Cat is the 2-category of M-categories and CEc is the 2-category of doctrines
with full composable comprehensions.

Remark 7.13. Recall from [20, Prop. 2.19] that pure existential m-variational doctrines
have left adjoints along all the morphisms of the base and these satisfy BCC. Hence, by
Proposition 7.7, every existential m-variational doctrine has composable comprehensions.665

Moreover, by Corollary 7.8, we have that left adjoints along comprehensions satisfy FR.

Therefore, observe that existential m-variational doctrines are also a generalized ex-
istential completions thanks to Proposition 7.10 and Theorem 7.11:

Corollary 7.14. Every existential m-variational doctrine P is an instance of the gen-
eralized existential completion construction of the conjunctive doctrine

Υ: Cop // InfSL

with respect to the class of comprehensions of P .

Remark 7.15. Recall that in the case of pure existential m-variational doctrines, the670

equivalence of Theorem 7.12 restricts to an equivalence between the 2-category of exis-
tential m-variational doctrines and the 2-category of proper stable factorization systems
[17]. We refer to [25, 24] and [11] for a proof of this equivalence.

In the case of the subobjects doctrine, we have that the class of comprehensions is
exactly that of all the monomorphims, and hence we conclude:675
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Corollary 7.16. The subobjects doctrine SubC : Cop // InfSL of a category C with
finite limits is isomorphic to the generalized existential completion of the trivial doctrine
Υ: Cop // InfSL, with respect to the class of all the monomorphisms.

By employing some results of this section, in particular Proposition 7.10, we provide
the following characterization of existential m-variational doctrines satisfying the Rule680

of Unique Choice 2.10:

Proposition 7.17. Let P : Cop // InfSL be a primary doctrine. Then the following
are equivalent:

1. P is existential, m-variational, and it satisfies the Rule of Unique Choice RUC;

2. C is regular and P = SubC;685

3. P is theM-existential completion of the trivial doctrine Υ: Cop // InfSL, where
M is a class of morphisms of C such that

(a) there exists a class E of morphisms of C such that (E ,M) is a proper, stable,
factorization system on C;

(b) for every projection prA : A×B // A of C, if prA f is a monomorphism690

and f ∈M then prA f ∈M.

Proof. (1 )⇒ (2 ) It follows from [20, Prop. 5.3] and [14, Thm. 4.4.4 and Thm. 4.9.4].

(2 ) ⇒ (3 ) It follows from Corollary 7.16 and Remark 7.15 by taking M the class of all
monomorphisms.695

(3 )⇒ (1 ) Under these assumptions, in particular by (a), we have that P is an existential
m-variational doctrine by Remark 7.15 and the arrows ofM are exactly the comprehen-
sions of P . Now, let us consider a functional, entire relation ρ ∈ P (A×B). First, notice
that ρ functional implies prA{|ρ|} monic by Lemma 2.25. Hence, by our assumption (b),
prA{|ρ|} is a comprehension. Moreover, we have that

>A ≤ ∃prA(ρ) = ∃prA{|ρ|}(>) (11)

because ρ is entire and ρ = ∃{|ρ|}(>) by Lemma 2.21. Therefore we can apply (3) of
Proposition 7.10, because prA{|ρ|} is a comprehension. Hence, there exists an arrow

f : A // (A×B)ρ, where (A×B)ρ denotes the domain of {|ρ|}, such that

>A ≤ Pf (>)

and prA{|ρ|}f = idA, namely {|ρ|}f = 〈idA,prB{|ρ|}f〉. In particular, we have that

>A ≤ Pf (>) = P{|ρ|}f (ρ) = P〈id,prB{|ρ|}f〉(ρ).

Therefore, P satisfies the RUC.
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7.3. The realizability hyperdoctrine

In this section we are going to prove that all the realizability triposes [13, 29, 41]
are full generalized existential completions as shown independently in [7] and presented700

in the talk by the second author [35] in 2020. A different presentation of realizability
triposes via free constructions (essentially acting on the representing object of a given
representable indexed preorder) can be found in [9].

We start by recalling some related fundamental notions. A partial combinatory
algebra (pca) is specified by a set A together with a partial binary operation (−) · (−) :
A× A⇀ A for which there exist elements k, s ∈ A satisfying for all a, a′, a′′ ∈ A that

k · a ↓ and (k · a) · a′ ≡ a

and
s · a ↓ , (s · a) · a′ ↓ , and ((s · a) · a′) · a′′ ≡ (a · a′′) · (a′ · a′′)

where e ↓ means ”e is defined” and e ≡ e′ means ”e is defined if and only e′ is, and in
that case they are equal”. For more details we refer to [41].705

Given a pca A, we can consider the realizability hyperdoctrine

P : Setop // InfSL

over Set introduced in [13], see also [29]. For each set X, the partial ordered set (P(X),≤)
is defined as follows: let P(A)X denote the set of functions from X to the powerset P(A)
of A. Let ≤ be the binary relation on this set defined as: α ≤ β if there exists an
element c ∈ A such that for all x ∈ X and all a ∈ α(x) we have that c · a is defined and
c ·a ∈ β(x). By standard properties of pcas this relation is reflexive and transitive, i.e. it710

is a preorder. Then P(X) is defined as the quotient of P(A)X by the equivalence relation
∼ generated by ≤. The partial order on the equivalence classes [α] is that induced by ≤.

Given a function f : X // Y of Set, the functor Pf : P(Y ) // P(X) sends an

element [α] ∈ P(Y ) to the element [α ◦ f ] ∈ P(X) given by the composition of the

two functions. With these assignments P : Setop // InfSL is a hyperdoctrine, see [29,715

Example 2.3] or [41].
Here, we just recall the conjunctive, elementary and existential structure of the hy-

perdoctrine P by employing the operations p, p1 and p2, called pairing and projections
operators respectively, defined in [41] by using the elements k and s. In each fibre P(X)
we have:720

� >X := [λx ∈ X.A];

� [α] ∧ [β] := [λx ∈ X.{(p · a) · b | a ∈ α(x) and b ∈ β(x)}]

� δX := [λ(x1, x2) ∈ X ×X.A if x1 = x2, ∅ otherwise];

� for every projection prX : X × Y // X, the functor ∃prX sends an element [γ] ∈
P(X × Y ) to the following element of the fibre P(X):

∃prX ([γ]) = [λx ∈ X.
⋃
y∈Y

γ(x, y)].
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If also follows that P has left adjoints along arbitrary functions, defined as in Remark 6.4,
which satisfy BCC and FR, i.e. P is a full existential doctrine (see [33, Lem. 5.2] or725

[41]).
Now we show that the realizability hyperdoctrine is an instance of full existential

completion. Thus, we fix the class ΛSet to be the class of all functions of Set.
Hence, we need to understand what are the full-existential-free objects of the realiz-

ability hyperdoctrine.730

Definition 7.18. Let A be a pca, and let P : Setop // InfSL be the realizability

tripos associated with the pca A. An element [γ] : X // P(A) of the fibre P(X) is

said to be a singleton predicate if there exists a singleton function α : X // P(A),

i.e. α(x) = {a} for some a in A, such that γ ∼ α.

We claim that the singleton predicates are exactly the full-existential-free objects735

provided that we assume the axiom of choice in our meta-theory as we do.

Lemma 7.19. Every singleton predicate is a full-existential-free object.

Proof. Assume that [γ] : X // P(A) is a singleton predicate, i.e. γ assigns to every

element x of X a singleton γ(x) = {a} for some a in A. In order to show that this is a
full-existential-free object is enough to show that it is a full-existential splitting since the
action of Pf preserves singletons, i.e. for every function m : Z // X of Set, we have
that Pm([γ]) = [γ ◦m] is again a singleton predicates. To this purpose, observe that if

[γ] ≤ ∃g([β]) for some [β] ∈ P(Y ) and g : Y // X, then there exists an element b ∈ A
such that for every x ∈ X and every a ∈ γ(x) then b · a ∈ ∃gβ(x). By Remark 6.4 we
have

∃g(β) = ∃prX (PprY (β) ∧ Pg×idX (δX))

and since γ(x) is a singleton {a} for every x ∈ X, we have that b · a ∈
⋃
y∈Y (PprY (β) ∧

Pg×idX (δX))(y, x). Hence we have that b · a = (p · c1) · c2 for some c1 ∈ β(ya), c2 ∈ A,
and for some ya ∈ Y such that g(ya) = x . By the axiom of choice, we can define740

a function f : X // Y such that f(x) = ya. In particular, we have that λz.p1(bz)

realizes γ ≤ Pf (β), and we have that gf = id. This concludes the proof that singletons
predicates are full-existential splitting (by Proposition 4.4).

Corollary 7.20. For every set X, [>X ] ∈ P(X) is a full-existential-free object.

Proof. Let us consider an element c ∈ A and the singleton function ιc : X // P(A)745

given by the constant assignment x 7→ {c}. It is straightforward to check that >X ∼
ιc, i.e. that [>X ] is a singleton predicate, and then a full-existential-free object by
Lemma 7.19.

Notice that from Corollary 7.20 it follows that:

Corollary 7.21. The realizability hyperdoctrine P : Setop // InfSL satisfies the Ex-750

tended Rule of Choice in 2.12.
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Remark 7.22. Notice that singleton predicates are closed under binary meet since if [α]
and [β] are singletons of P(X), by definition, we have that

([α] ∧ [β]) = [λx ∈ X.{(p · a) · b | a ∈ α(x) and b ∈ β(x)}].

is again a singleton function.

Employing Corollary 7.20 and Remark 7.22, we can define following primary doctrine:

Definition 7.23. Let A be a pca, and let P : Setop // InfSL be the realizability

tripos associated with the pca A. We denote by Psing : Setop // InfSL the fibred sub-755

doctrine of P : Setop // InfSL whose elements of the fibre Psing(X) are only singleton
predicates of P(X).

Now we ready to show the main result of this section.

Theorem 7.24. The realizability hyperdoctrine P : Setop // InfSL is isomorphic to

the full existential completion of the primary doctrine Psing : Setop // InfSL of sin-760

gletons.

Proof. By Lemma 7.19 we have that every singleton predicate is a full-existential-free
element, by Corollary 7.20 we have that also every top element is a full-existential-
free element, and by Remark 7.22 we have that singleton predicates are closed under
binary meet. Moreover, one can directly check that the singleton predicates cover the765

realizability hyperdoctrine, i.e. for every [β] ∈ P(X) there exists a singleton predicate

[α] ∈ P(Y ) and a function g : Y // X such that [β] = ∃g([α]). In particular, we can

define Y := ]x∈X β(x) the disjoint union of the fibres of β and g : Y // X as its first

projection π1 sending (x, a) to x and α : Y // P(A) as the singleton predicate sending

(x, b) to {b}. Then, by Proposition 4.15 we have that singleton predicates are exactly the770

full-existential-free elements of P. Therefore the realizability hyperdoctrine satisfies all
the conditions of Theorem 4.16 (2) and then we can conclude that it is the full existential
completion of the primary doctrine Psing of singletons.

7.4. Localic doctrines

Let us consider a locale A, i.e. A is a poset with finite meets and arbitrary joins,
satisfying the infinite distributive law x∧ (

∨
i yi) =

∨
i(x∧ yi). Recall from [13, 29] that,

as we anticipated in Example 2.8(4), given a locale A we can define the canonical localic
doctrine of A:

A(−) : Setop // InfSL

by assign I 7→ AI , and the partial order is provided by the pointwise partial order on775

functions f : I // A. Propositional connectives are defined pointwise. The existential

quantifier along a given function f : I // J maps a function φ ∈ AI to ∃f (φ) given by

j 7→
∨
{i∈I|f(i)=j} φ(i) and these are called existential since they satisfy the FR and BCC

conditions.
Now we are going to consider localic doctrines [13, 29] whose locale is supercoherent780

as defined in [1]. For the reader’s convenience we just recall a few related basic notions
from [1].
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Definition 7.25. An element c of a locale A is said to be supercompact if whenever
c ≤

∨
k∈K bk, there exists k ∈ K such that c ≤ bk.

Remark 7.26. As a consequence of Definition 7.25, notice that a supercompact element785

of a non-trivial locale must be different from the bottom of the locale (since the bottom
is the join on the empty set).

Definition 7.27. A locale A is called supercoherent if:

� each element d ∈ A is a join d =
∨
I ci of supercompact elements ci;

� supercompact elements are closed under finite meets.790

Remark 7.28. Recall that the category of locales is defined as the opposite of the category
of frames and hence the notion of locale coincides with that of frame (see for example
[15]). In particular, the category of supercoherent frames, denoted by SCohFrm in [1],
is a coreflexive subcategory of the category of frames . This result together with the
general notion of supercoherent frame was introduced in [1].795

Following the notation introduced in [1], let M be the category of meet-semilattices,
and let Frm be the category of frames. Recall from [15] that we can define a functor

D : M // Frm

sending a meet-semilattice M to the down-set lattice D(M), i.e. the lattice of all the
X ⊆ M such that a ∈ X implies that for all b ≤ a we have b ∈ X and the order is
provided by the set-theoretical inclusion. This functor is left adjoint to the inclusion
functor, see [1, Lem. 1] or [15, Thm. 1.2]. In particular, we have a natural injection

η : M // D(M) sending a 7→↓ (a). It is direct to see that sets of the form ↓ (a) are800

supercompact elements in D(M).

Remark 7.29. Recall from [1, Rem. 3] that the functor D : M // Frm induces an
equivalence M ≡ SCohFrm. Essentially this means that supercoherent frames are the
frame completion of inf-semilattices.

Definition 7.30. Let A be an arbitrary locale, and let A(−) : Setop // InfSL be the805

localic doctrine. We call supercompact predicate an element φ ∈ AJ such that φ(j)
is a supercompact element for every j ∈ J .

Lemma 7.31. Every supercompact predicate of the localic doctrineA(−) : Setop // InfSL
is a full-existential-free element.

Proof. Let φ ∈ AJ be a supercompact predicate. If we have

φ ≤ ∃f (ψ)

for some f : I // J and ψ ∈ AI , then in particular

φ(j) ≤
∨

{i∈I|f(i)=j}

ψ(i)
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and, since φ(j) is supercompact, there exists i
j ∈ {i ∈ I|f(i) = j} such that φ(j) ≤ ψ(i

j
).810

Hence, we can define a function g : J // I sending j 7→ i
j
. Hence, by definition, we

have that fg = id and φ ≤ A(−)
g (ψ), and then we can apply Proposition 4.4 and conclude

that φ is full-existential-splitting. Moreover it is direct to see that supercompact predicate
are stable under re-indexing, and hence supercompact predicates are full-existential-free.

815

Theorem 7.32. Let A be a locale.

1. If A is a supercoherent locale then the localic doctrine A(−) : Setop // InfSL is

isomorphic to the full existential completion of the primary doctrineN (−) : Setop // InfSL
of supercompact predicates of A.

2. If the localic doctrine A(−) : Setop // InfSL is a full existential completion then820

its locale A is supercoherent.

Proof. (1 ) Let A be a supercoherent locale. By Lemma 7.31 supercompact predicates
are full-existential-free. Moreover since A is supercoherent, the supercompact predicates
are closed under finite meets, and since every element of a ∈ A is a join of supercom-
pact elements, then every element of every fibre of A(−) is covered by a supercompact825

predicates. In particular, if we consider an element φ : I // A, we have that for every

i ∈ I, φ(i) =
∨
j∈Ji c

i
j with cij supercompact elements. So, we can define the disjoint sum

J = ⊕i∈IJi and a supercompact predicate ψ : J // A given by ψ(i, j) = cij . Then it

is direct to see that φ = ∃f (ψ) where f : J // I is the function mapping f(i, j) = i.
Hence, by Proposition 4.15 we have that supercompact elements are exactly the full-830

existential-free elements of A(−) and by Theorem 4.16 we can conclude that A(−) is the

full existential completion of the primary doctrine N (−) : Setop // InfSL such that
N (I) is the inf-semilattice whose objects are the supercompact predicates of AI .

(2 ) Suppose that the localic doctrine A(−) : Setop // InfSL is a full existential com-835

pletion of a doctrine P : Setop // InfSL, i.e. A(−) ∼= fEx(P ). We first show that P is
a doctrine of supercompact predicates of A after recalling by Theorem 4.15 that fibres
of P are made of all the full-existential-free objects of A(−).

Now suppose that φ is a full-existential-free object. Let j̃ any index in J and suppose
that φ(j̃) ≤

∨
i∈I bi. Then we can define an element ψ : J × I // A such that ψ(j̃, i) =840

bi and ψ(j, i) = > for every j 6= j̃. Hence it follows that φ(j) ≤
∨
i∈I ψ(j, i) for each

j in J which means φ ≤ ∃prI (ψ). Then, since φ is a full-existential-free object, by

Proposition 4.4 there exists a function g : J // I such φ ≤ A(−)
〈idJ ,g〉(ψ), and then, in

particular φ(j̃) ≤ ψ(j̃, g(j̃)) = bg(j̃). Hence every element φ(j) is supercompact. Finally,
every element a ∈ A is the join of supercompact elements because we can define the845

function α : {∗} // A as ∗ 7→ a, and since the doctrine has enough-full-existential-

free elements, we have α = ∃fφ for a full-existential-free object φ, i.e. a is the join of
supercompact elements.
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8. Future work

A preliminary version of the characterization of generalized existential completion850

presented here has already been fruitfully employed in recent works [36, 37, 38] to give
a categorical version to the Gödel Dialectica interpretation [8] in terms of quantifier-
completions.

In the future, we intend to broaden the study of regular and exact completions of
generalized existential completions initiated in [26] by including dialectica triposes in [2]855

and modified realizability triposes [9, 40].
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