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Abstract

We present and study the category of formal topologies and some of
its variants. Two main results are proven. The first is that, for any
inductively generated formal cover, there exists a formal topology whose
cover extends in the minimal way the given one. This result is obtained by
enhancing the method for the inductive generation of the cover relation by
adding a coinductive generation of the positivity predicate. Categorically,
this result can be rephrased by saying that inductively generated formal
topologies are coreflective into inductively generated formal covers.

The second result is that unary formal covers are exponentiable in the
category of inductively generated formal covers and hence, thanks to the
coreflection, unary formal topologies are exponentiable in the category of
inductively generated formal topologies.

From a localic point of view the exponentiability of unary formal
topologies means that algebraic dcpos are exponentiable in the category
of open locales. But, the coreflection theorem states that open locales
are coreflective in locales and hence, as a consequence of well-known im-
predicative results on exponentiable locales, it allows to prove that locally
compact open locales are exponentiable in the category of open locales.
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1 Introduction

Formal topology is nowadays recognized as one of the main approaches to the
development of constructive topology, where by constructive we mean both intu-
itionistic and predicative. Many results of classical and impredicative topology
have been already studied, and found their place in a predicative framework,
by using formal topology (see [Sam03] for an updated overview on formal to-
pology). Formal topology is noticeable also from a structural point of view.
Indeed, the category FTop of formal topologies and continuous relations is a
predicative presentation of the category OpLoc of open locales (see [JT84]) and
the category FTop~ of formal covers, namely, formal topologies without the
positivity predicate, is a predicative presentation of the category Loc of locales
(see [Joh82]).

In this paper, we begin to study a full sub-category of FTop, that is, the
category FTop; of inductively generated formal topologies (see [CSSV03]). We
consider such a category instead of FTop because it is predicatively known to
be cartesian while FTop is not, even if these categories are equivalent from an
impredicative point of view.

A main result of the paper is a proof that FTop; coreflects into the category
FTop;~ of inductively generated formal covers, that is, the inclusion functor of
FTop; into FTop;” has a right adjoint. To obtain this result, we show how to
enhance the method for the inductive generation of a cover relation presented



in [CSSVO03] by adding a new method for a co-inductive generation of a positiv-
ity predicate; in this way we are able to construct, for any inductively generated
cover <, the formal topology whose cover extends < in the minimal way. Such
a new method is directly inspired by Martin-Lof’s idea of defining a binary
positivity predicate in the framework of basic topologies by using coinduction
(see [Sam03, Val04]). It can be easily justified by using Tarski fix-point theo-
rem, but, after the work in [Coq96, Pal02], it can be fully justified also from a
predicative point of view.

Then, we give a direct proof that unary formal covers are exponentiable in
the category FTop;~. Hence, as a corollary of the coreflection theorem above,
we obtain that unary formal topologies are exponentiable within FTop;.

The question of characterizing exponentiable topologies has a long history
in the development of topology. It is well known that the category Top of
topological spaces and continuous functions is not cartesian closed. In fact,
the topological spaces that can be exponentiated in Top are only those whose
frames of open sets are continuous, corresponding to locally compact locales (for
an overview on the topic see [EH02]). This result was reproduced by Hyland in
the context of the intuitionistic but impredicative theory of locales by showing
that in Loc only the locally compact locales can be exponentiated [Hyl81]. Later,
his proof of exponentiability was adapted to the language of formal topology,
but still working within an impredicative setting (see [Sig95]). More recently,
Vickers reproduced most of Hyland’s results by using geometric reasoning (see
[Vic01]).

We think that a main contribution in proving exponentiability of unary
topologies is a detailed analysis of the conditions characterizing continuous re-
lations between a unary formal topology and an inductively generated one. In
fact, after such an analysis, the axioms defining the cover of the exponent to-
pology emerge naturally.

All the proofs in the paper are developed within Martin-Lof predicative
type theory. However, both our main results have a precise meaning also in an
impredicative setting. Indeed the coreflection theorem states that open locales
are coreflective in locales and the exponentiability theorem states that algebraic
dcpos are exponentiable in OpLoc. Moreover, an immediate consequence of our
coreflection theorem and the result by Hyland above, is that any open locally
compact local is exponentiable in the category of open locales.

2 Formal topologies and their morphisms

In this section the basic definitions of formal topology will be quickly recalled.
The reader interested in having more details on formal topology and a deeper
analysis of the foundational motivations for the formal development of topology
within Martin-Lo6f’s constructive type theory [NPS90, Mar84] is invited to look,
for instance, at the updated overview in [Sam03].



2.1 Concrete topological spaces and formal topologies

We start by recalling how to describe predicatively a topological space. Let X be
a set. Then (X,Q(X)) is a topological space if Q(X) is a subset of P(X) which
contains ) and X and is closed under finite intersection and under arbitrary
union. The quantification implicitly used in this last condition is of the third
order, since it says that, for all F C Q(X), UF € Q(X). We can “go down”
one step by thinking of 2(X) as a family of subsets indexed by a set A through
a map ext : A — P(X). Indeed, we can now quantify on A rather than on
Q(X). But, we have to say that, for all U € P(A) there exists ¢ € A such that
Useext(a) = ext(c), which is still impredicative!. We can “go down” another
step by defining opens to be of the form Ext(U) = U,.pext(a) for an arbitrary
subset U of A. In this way ) is open, because Ext() = @), and closure under
union is automatic, because obviously U;crExt(U;) = Ext(U;erU;). So, all we
have to do is to require that Ext(A) is the whole X and closure under finite
intersections, that is,

(x) (Va,be A)(Vz € X) (zeext(a) Next(h) —
(Jc € A) (zeext(c) & ext(c) C ext(a) Next(h)))

It is not difficult to realize that this amounts to the standard definition saying
that {ext(a) C X | a € A} is a base (see for instance [Eng77]). We can make
(%) a bit shorter by introducing the abbreviation

alb={ce A|ext(c) Cext(a) & ext(c) C ext(b)}

so that it becomes (Va,b € A) ext(a) Next(b) C Ext(a | b). Now, note that
cea | b implies that ext(c) C ext(a) Next(b), so that Ext(a | b) = Ueeqipext(c) C
ext(a) Next(b). Thus we arrived at the definition of concrete topological space.

Definition 2.1 (Concrete topological space) A concrete topological space
is a triple X = (X, A, ext) where X and A are sets and ext is a map from A to
P(X) satisfying:

(B1) X =Ext(4)
(B2) (Ya,be A) ext(a) Next(b) = Ext(a | b)

The notion of formal topology arises by describing, as well as possible, the
structure induced by a concrete topological space (X, A, ext) on the set A, and
then by taking the result as an axiomatic definition. The reason for such a
move is that the definition of concrete topological space is too restrictive given

LAll the set-theoretical notions that we use conform to the subset theory for Martin-Lof’s
type theory as presented in [SV97]. In particular, we use the symbol € for the membership
relation between an element and a set or a collection and & for the membership relation
between an element and a subset, which is never a set but a propositional function, so that
aeU holds if and only if U(a) holds.



that in the most interesting cases of topological space we do not have, from a
constructive point of view, a set of points to start with?.

Since the elements in A are names for the basic opens of the topology on X,
and any open set is the union of basic opens, we can specify an open set O by
using the subset Up of all the (names of the) basic opens which are used to form
it, that is, O = Ext(Up). However, it is possible that two different subsets of
A have the same extension. Thus, we don’t have a bijective correspondence be-
tween concrete opens and subsets of A and we need to introduce an equivalence
relation if we want to obtain it. What we need is a relation which identifies the
subsets U and V when Ext(U) = Ext(V'). The following lemma gives the correct
hint.

Lemma 2.2 Let U and V be subsets of A. Then Ext(U) = Ext(V) if and only
if, for all a € A, ext(a) C Ext(U) +> ext(a) C Ext(V).

Thus, in order to define the equivalence relation among subsets of A that
we are looking for, we need to introduce a new proposition a <1 U between an
element a and a subset U of A whose intended meaning is that ext(a) C Ext(U).

Now, we can simply state that a formal open is the “fullest” among the
subsets which have the same extension, that is, for any subset U, we choose

JU)={a€A|la<x U}
In fact, it is possible to prove that <1(U) =4 U by using the following valid
conditions on <:

acU a1U UV

reflexivit transitivit,
( vity) al1U ( vity) aldV

where U <1 V is a shorthand for a derivation of u <@ V' under the assumption
that ueU.

Thus, we found a relation, that is, <1, and two conditions over it, that is,
reflexivity and transitivity, which allow to deal with concrete open subsets by
using only the subsets of A. But these conditions are not sufficient to describe
completely the concrete situation; for instance there is no condition which de-
scribes formally the conditions (B;) and (Bs).

While there is no easy way to formulate (B;) within the formal side since this
condition connects too deeply the concrete and the formal sides, to formulate
(B2) we can use the fact that

Ext(U) N Ext(V) C Ext(U | V)

where U | V = {a € A| ((Juel) ext(a) C ext(u)) & ((FveV) ext(a) C ext(v))}.
Now, let us suppose ext(a) C Ext(U) and ext(a) C Ext(V'), then we immediately

2Here we commit ourselves to Martin-L&f’s constructive set theory; hence we distinguish
between sets, which are inductively generated, and collections.



obtain ext(a) C Ext(U) N Ext(V) and hence ext(a) C Ext(U | V). Its formal

counterpart is
a<l1U a1V

(Y-right) a<ULV

where U |V ={ce A| (FueU) c < {u} & (FveV) c <1 {v}}.
Thus, we arrived at the definition of formal cover.

Definition 2.3 (Formal cover) A formal cover is a structure A = (A, <)
where A is a set and < is an infinitary relation, called cover relation, between
elements and subsets of A satisfying reflexivity, transitivity and |-right.

However, to express constructively the fact that a basic open subset is in-
habited it is convenient to introduce also a second primitive predicate Pos(—)
on the elements of A. Its intended meaning is that, for any a € A, Pos(a) holds
if and only if there exists z € X such that zeext(a). We require the following
conditions on this predicate.

Pos(a) a<1U (positivity) Pos(a) = a < U
(FuelU) Pos(u) POSILIVILY a<U

(monotonicity)

While the meaning of monotonicity is obvious and the proof of its validity
in any concrete topological space is immediate, positivity may require some
explanation. It states two things in one condition: first, that a not-inhabited
basic open is covered by any subset, second that proof by cases on the positivity
of a are valid when the conclusion is a < U (see [SVV96]). The proof of validity
of positivity is straightforward and it uses only intuitionistic logic.

We thus arrived at the main definition.

Definition 2.4 (Formal topology) A formal topology is a structure A =
(A, <, Pos) where (A, <) is a formal cover and Pos is a predicate over A, called
positivity predicate, satisfying monotonicity and positivity.

It is useful to recall the following equivalent formulations of the positivity
condition that we will often use in the next sections (see [Sam87]). To state
them, given any predicate Pos(—) over elements of A and any subset U of A,
we write UT to mean the subset {z € A | zeU & Pos(z)}.

Proposition 2.5 Let A be a set, < be a relation between elements and subsets of
A which satisfies reflexivity and transitivity and Pos be a predicate on elements
of A. Then, the following conditions are equivalent:

[t

. (positivity) for any a € A and U C A, Pos(a) — a < U yields a < U;
2. (axiom positivity) for any a € A, a < {a}™;
3. (cover positivity) for anya € A and U C A, a < U yields a << U™T.

The first consequence of the previous proposition is the following theorem
which shows that the cover relation uniquely determines the positivity predicate.



Theorem 2.6 Let — < — be a cover relation over a set A and Posi(—) and
Posa(—) be two positivity predicates with respect to such a cover. Then Pos;(—)
and Poss(—) are equivalent, namely, for any a € A, Posi(a) if and only if
Poss(a).

Proof. By the positivity aziom, for every a € A, a < a™2, where a™2 is a
shorthand for the subset {z € A | = a & Posy(z)}. Now, let us assume
Posi(a); then, by monotonicity, there exists xea™ such that Pos;(x) holds.
But zeat? means that both z = a and Posy(z) hold and hence Posy(a) follows.
Thus, by discharging the assumption Pos;(a), we proved that Pos;(a) yields
Poss(a). In a completely analogous way we can prove the other implication.

2.2 Formal points

When working in formal topology one is in general interested in those proper-
ties of a concrete topological space (X, A, ext) which make no reference to the
elements of X. Thus, one can dispense with the collection X and it is possible
to work by using the set A only. But this does not mean that points are out of
reach. In fact, a point € X can be identified with the filter of the basic opens
that, in the concrete case, contain z itself. So, we can associate to any = € X,
the following subset of A

ay = {a € A| zeext(a)}

However, from a topological point of view, we can “see” only those points
which can be distinguished by using the open sets and hence we are led to
identify a concrete point x with the subset a.

If we want to move to the formal side, we have to find those properties which
characterize such subsets and are expressible in our language. Here we point
out the following ones:

(point inhabitance) (Ja € A) aca,

aco, beay
(ega | b) ceay
aca,  ext(a) C Ext(U)

(Fuel) ueay,
acay,

(Fz € X) zeext(a)

(point convergence)

(point splitness)

(point positivity)

In fact, point inhabitance is an obvious corollary of the condition Bj, point
convergence is an immediate consequence of the condition B,y, and point splitness
and point positivity follows by logic. Thus, we are led to the following definition.

Definition 2.7 (Formal point) Let (A, <,Pos) be a formal topology. Then
an inhabited subset o of A is a formal point if, for any a,b € A and any U C A,
it satisfies the following conditions:

aca  bea aca a<1U

(point convergence) Geza 11) cca (point splitness) Guel) uea



As observed by Peter Aczel, we can avoid to require the condition of point
positivity, namely, that Pos(a) is a consequence of aca, since it can be proved by
using point splitness. In fact, we know that a < a™ and hence if, for some point
a, aca then point splitness shows that there exists an element = in at such that
zea. Then x = a and Pos(z) hold and hence Pos(a) follows. So, no condition on
the positivity predicate is necessary in the definition of formal point and hence
the same definition can be used for formal covers as well.

In the following we call Pt(A4) the collection of formal points of the formal
topology A. We can give Pt(.A) the structure of a topological space if we mimic
the situation of a concrete topological space even if Pt(A4) is a collection and
not a set. So, let us set, for any a € A,

ext™(a) = {a € Pt(A) | aca}

and use the set-indexed family (ext™®(a)),c4 as a base for a topology on Pt(A).

2.3 Continuous relations

In this section we report and explain the conditions defining continuous rela-
tions between formal topologies. The notion of continuous relation essentially
goes back to the notion of frame morphism in [Joh82]. The conditions on the
continuous relations that we present here and the explanations motivating them
are the result of joint work by S.Valentini and P.Virgili [Vir90] in collaboration
with G.Sambin and, later, with S.Gebellato.

A map from the topological space X = (X, (X)) to the topological space
Y = (Y,QY)) is a function ¢ : X — Y such that, for any basic open B of
Y, the subset ¢ 1(B) = {z € X | ¢(x) € B} is an open set of X. If we write
this condition for the concrete topological spaces (X, A,ext;) and (Y, B, exts) we
obtain that the condition for a function ¢ : X — Y to be continuous becomes

(Vb€ B)(3U C A) ¢~ (exta (b)) = Exty (V)

There is only one possible constructive meaning for this sentence, that is, there

exists a map F: B P(A) such that, for any b € B, Extl(f (b)) is equal to

¢~ (exty(b)). Since Ext;({a € A | ext;(a) C ¢~ (extz(b))}) is always contained

in ¢! (exty (b)), the continuity requirement rests in the fact that ¢! (exty(b)) is

contained in Ext;({a € A | ext;(a) C ¢~ (ext2(b))}). Hence, the best possible
—

definition is to state that F (b) is the subset of all the basic opens a € A such
that ext;(a) is contained in ¢~!(exts(b)), that is, the image through ¢ of any
point in the basic open ext;(a) is in the basic open exts(b). Thus, the formal
counterpart of a continuous function ¢ from X to Y is a relation F' between
elements of A and elements of B such that a F' b holds if and only if ae F (d).
So, to find a completely formal characterization of the notion of continuous
function between topological spaces we have to express the condition above
with no reference to the elements of X and Y.



In solving this problem we will use also an equivalent formulation of continu-
ity, namely, that a function ¢ from the concrete topological spaces (X, A, ext;)
to (Y, B, exts) is continuous if and only if

(Vb€ B)(Vx € X) ¢(z)eexty(b) —
(Ja € A) zeexty(a) & (Vz € X) zeexti(a) — ¢(z)eexta (b)

that can by simplified in
(Vb € B)(Vz € X) ¢(x)eexta(b) = (Ja € A) zeexti(a) & aF'b

provided that — F' — is the relation associated to ¢ that we want to characterize.

Now we look for suitable conditions, that do not rely on the presence of the
set of concrete points in order to be formulated, and express that the relation
F' is the formal counterpart of a continuous function. To achieve this result
we will proceed as follows. First, we will define a function ¢ from Pt(A) to
Pt(B) associated with the relation F'. Then, we will look for the conditions on
F which are both expressible in the language of formal topologies and allow to
prove that ¢r is a continuous function from Pt(A) to Pt(B). And finally, we
will check the validity of such conditions in every concrete topological space.

So, let us suppose that F' is a relation between two formal topologies. Then
we want to define a continuous map ¢p from Pt(A) to Pt(B) such that a F' b
holds if and only if, for any formal point a € Pt(A), if a € ext[*(a) then
dr(a) € exthi(b).

An immediate consequence of this requirement is that if aF'b and aea then
dr(a) € extht(b). Now, aca means that a € extT(a) and ¢r(a) € exth(d)

means that be¢p(a). Hence, provided that we write 1? (a) to mean the subset
{b € B | aFb}, we have that

U F (@) € ¢r(@)

On the other hand, continuity of ¢r means that
(Vb € B)(Va € Pt(A)) ¢r(a)eextht(h) = (Ja € A) acext’ (a) & aFb

and hence if bedr(a) then there exists aea such that aFb, that is,
or(@) C|J F ()
Thus, we are forced to the following definition
or(a) = U F (a)
aca

Note that this definition guarantees that, if ¢ is a function from Pt(A) to
Pt(B), then it is continuous. Hence, we only have to look for the conditions



which make ¢p be a function between formal points, that is, the image ¢r(a)
of a formal point a of A is a formal point of B.

To begin with, we have to prove that ¢ () is inhabited, namely, that there
exists b € B such that, for some aca, a F'b holds. Now, we know that the point
« is inhabited and hence in order to obtain the result it is sufficient to require

(function totality) A <14 F~ (B)

where, for any subset V of B, F~(V) = {¢c € A | (veV) c¢Fuv}. Indeed,
suppose aca. Then A <14 F~(B) yields a <4 F~(B) and hence, by point
splitness, there exists ce '~ (B) such that cea. Thus, there exists b € B such
that ¢ F'b and cea. Now, we have to check that function totality is valid for any
concrete topological space. So, let us assume that (X, A, ext;) and (Y, B, exts)
are two concrete topological spaces, ¢ is a continuous map from X to Y and
F is a relation between A and B such that a F'b if and only in, for all z € X,
xeexty (a) yields ¢(x)eexts(b). Then, we have to show that, for all a € A and
all z € X, if zeexty(a) then there exists u € A such that both zeext; (u) and
ueF~(B), that is, there exists t € B such that u F't. Now, by the condition
(B1), weexti(a) yields that there exists some element ¢ € B such that ¢(z)et
and hence, by continuity of ¢, there exists u € A such that both xeext; (u) and
u F't hold.

The second condition that we have to verify is that, supposing bedr(a) and
degpr(a), there exists keb | d such that kegpr(a). To obtain this result it is
sufficient to require the following two conditions:

a<yc cFb
aFb

aFb aFd

a <14 F=(bld)

In fact bedr () and dedr(a) yield that there are aear and cea such that aF'b
and cFd, and hence by point convergence there is also eca | ¢, namely, e <4 a
and e <4 ¢, such that eea. So, by using function weak-saturation, we obtain
both e F'b and e F'd, which, by function convergence, yield e <4 F~(b | d).
Then, by point splitness, (3heF~ (b | d)) hea, that is, there exists keb | d such
that kedp (). Also in this case it is necessary to check that the two required
conditions are valid. In fact, it is easy to check that the following generalization
of function weak-saturation

(function weak-saturation)

(function convergence)

a<iq W (YweW) wFb
aFb

is an immediate consequence, by intuitionistic logic, of the condition linking F’
and ¢p. Thus, let us prove the validity of function convergence. Suppose € X
and zeexty (a), then aFb yields ¢(x)eexta(b) and aF'd yields ¢(z)eexta(d); then,
by the condition (Bz), there exists keb | d such that ¢(x)cextz(k). Finally,
continuity of ¢ yields that there exists h € A such that xeext; (h) and hFk, that
is, he F~(b | d).

(function saturation)

10



The third condition for ¢r(«) being a formal point is that, if begr(a) and
b <ip V, then there exists veV such that vedr (). The necessary condition is

aFb bapV

function continuit,
( Y e da F—(V)

Indeed, bedrp(a) yields that there is aca such that aFb and hence function
continuity, together with point splitness, yields that there exists ceF'~ (V') that
is also an element of a, namely, there is veV such that c¢Fv and cea, that
is, vedr(a). The proof of validity of this condition is immediate. Indeed,
suppose that both aFb and b < V hold. Then, for all x € X, zeext;(a) yields
¢(x)eexta(b) and, for all y € YV, yeexta(b) yields that there exists veV such that
yeexta(v). Thus, for any zeext;(a), there is veV such that ¢(z)eexty(v) and
hence, by continuity of ¢, there is ¢ € A such that zeext;(¢) and cFv.

So, we have finished to look for the conditions that make ¢r a well-defined
function from Pt(A) to Pt(B). Hence, we can give the following definition of
continuous relation between formal topologies.

Definition 2.8 (Continuous relation) Suppose that A = (A, <4,Pos4) and
B = (B, <, Posp) are two formal topologies. Then a continuous relation from A
to B is a binary proposition a F'b, for a € A and b € B, which satisfies function
totality, function convergence, function saturation and function continuity.

Note that no condition in the definition of continuous relation involves the
positivity predicate; hence, the same definition can be used for formal covers
as well. As a consequence, all the following lemmas on basic properties of a
continuous relation are valid both for formal topologies and formal covers.

It is worth observing that the definition of continuous relation above is ob-
tained from the definition of frame morphism expressed in terms of relation in
[Sam8T] by taking the opposite relation and adapting the conditions of function
totality and function convergence to our setting.

The following lemma is an immediate consequence of the definition.

Lemma 2.9 Let A and B be formal topologies (covers) and F be a continuous
relation between them. Then,

e (cover anti-image) if V <ig W then F— (V) <4 F~(W);
o (weak-continuity) if a F'b and b <z d then a F d.

We want to prove now that formal topologies (covers) form a category with
respect to continuous relations. The main problem is to define a suitable op-
eration of composition between continuous relations. The first and naive idea
is defining composition of continuous relations as relation composition but un-
fortunately relation composition of two continuous relations is not continuous
because in general it does not satisfy function saturation. Indeed, one can prove
only the following lemma.

11



Lemma 2.10 Let A, B and C be formal topologies (covers) and let F be a
continuous relation from A to B and G be a continuous relation from B to C.
Then, GoF, namely relation composition of F' and G, satisfies function totality,
function convergence and function continuity.

The following proposition can be used to fix the problem of the missing
condition.

Proposition 2.11 Let A and B be two formal topologies (covers) and suppose
that F is a relation which satisfies all of the conditions for a continuous relation
except for function saturation which is replaced by function weak-saturation.
Then

aFb=a<4{ce A|cFb}

s the minimal continuous relation which extends F'.

Proof. First note that, for any W C B, F~ (W) C (F9)~(W). Now, it is
easy to check that all of the conditions for F'< being a continuous relation hold
and that it is the smallest continuous relation containing F. It can be useful

to observe that function weak-saturation is necessary to prove the validity of
function convergence.

Corollary 2.12 Let A, B and C be formal topologies (covers) and F be a con-
tinuous relation from A to B and G be a continuous relation from B to C. Then
the relation G x F' defined by setting, for any a € A and c € C,

aGxF cifand only if a (Go F)< ¢
is a continuous relation from A to C.

Proof. After lemma 2.10 and proposition 2.11, one has only to prove that
relation composition satisfies function weak-saturation which follows easily.

The next lemmas will be useful in the following.

Lemma 2.13 Let A, B be formal topologies (covers) and F' be a continuous
relation from A to B. Then
Fi=F

Lemma 2.14 Let A, B and C be formal topologies (covers), F be a relation
between A and B which satisfies function continuity and G be a relation between

B and C. Then
(Go FHNY=(GoF)Y and (G o F)Y = (Go F)<

Proof. The proof only requires to expand the definitions. Let us only observe
that function continuity of F is necessary to prove that (G o F)<I C (Go F)<.

We can now prove the main theorem of this section.
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Theorem 2.15 Formal topologies (covers) and continuous relations form a cat-
egory FTop (FTop™ ) where the operation of composition between continuous re-
lations is — * — and the cover relation is its unit.

Proof. We only need to show that the operation — % — between continuous
relations is associative which is an immediate corollary of the previous lemma.

It is now trivial to realize that the cover relation is a continuous relation
and we can use the previous corollary 2.12 to shorten the proof that the cover
relation is the identity with respect to the operation — % —.

The category FTop of formal topologies is impredicatively equivalent to the
category OpLoc of open locales [JT84] (for a recent proof see [Neg02]) while the
category FTop™ of formal covers is impredicatively equivalent to the category
Loc of locales as defined in [Joh82] (for a proof see [BS01]).

2.3.1 Continuous relations and the positivity predicate

In the definition of continuous relation the positivity predicate is not involved.
However, there are specific properties that depend on its presence.

Lemma 2.16 Let F be a continuous relation from the formal topology A to B.
Then, for any a € A and b € B, F satisfies the following condition

Pos 4(a) aFb

function monotonicit
(function monotonicity) Poss ()

Proof. Let us suppose aFb. Then, the positivity aziom b <g bT yields, by
function continuity, that a <4 F~(b"). Hence, by monotonicity of the cover
relation, Pos(a) yields that there exists some element ceF'~(b) such that
Pos4(c) holds. Therefore, there exists yeb™ such that cFy. But yeb™ yields
that y = b and Posg(y) hold and thus Posg(b) follows.

The condition of function monotonicity above was firstly part of the original
definition of continuous relation in [Vir90] as a consequence of its presence in
the definition of frame morphisms between formal topology in [Sam87], but it
was later recognized to be derivable in [Neg02].

Another important consequence of the conditions defining a continuous rela-
tion is that two relations are equal if they are equal on positive elements. Before
proving this fact, let us observe that the following lemma holds.

Lemma 2.17 Let F be a continuous relation from the formal topology A to B.
Then, for any a € A and b € B, Pos4(a) — a F'b if and only if (Yrea™) x Fb.

Now, the following lemma is immediate.

Lemma 2.18 Let F be a continuous relation from the formal topology A to B.
Then, for any a € A and b € B, F satisfies the following condition
. - Pos4(a) — aFb
funct tivit —_——
(function positivity) oFD
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Proof. After the previous lemma we know that Pos4(a) — aF'b yields that, for
all zea™, Fb. Hence a <14 a* yields aFb by function saturation.

The condition of function positivity was introduced to force the faithfulness of
the functor Pt(—) when working with Information Bases (see [SVV96]). In that
context function saturation cannot be used and hence function positivity is part
of the definition of continuous relation together with function weak-saturation.

At the end of this section, let us recall that in the literature there are also
alternative presentations of the category of formal topologies where a continuous
relation is defined by requiring all of the conditions in definition 2.8 except for
function saturation (see for instance [GS02]). In this case one is forced to state
that two continuous relations F' and G are equal if F< and G< are equal. We
prefer the approach presented here because we think that being able to use an
equality between continuous relations not depending on the cover relation is
more natural and allows a simpler technical treatment which becomes crucial
in dealing with exponentiability.

2.3.2 Continuous relations and formal points

In this section we show that there is a bijective correspondence between the
collection of the global elements of a formal topology (cover) A and the collection
Pt(A) of the formal points of A. First of all, let us recall how to define a terminal
object T in FTop.

Lemma 2.19 Let T = (T, <1, Posr) be the formal topology such that T = {T}
is a one element set, the cover relation is defined by setting, for any a € {T}
and any subset U of {T},

a<r U =acU

and the positivity predicate is defined by setting, for any a € {T},
Posr(a) = True

Then, T is a terminal object in FTop, that is, for any formal topology A, the
total relation !4 defined by setting, for any a € A, a4 T, is the only continuous
relation from A to T.

It is trivial to see that (T, <r), where the set T and the cover relation <ir
are defined as above, is a terminal object, that we will continue to call 7, in the
category FTop™.

We can now state the following theorem.

Theorem 2.20 Let A be a formal topology (cover). Then there is a bijective
correspondence between the collection Pt(A) of the formal points of A and the
continuous relations from T to A.

14



Proof. Let us suppose that « is a formal point of the formal topology (cover)
A. Then the continuous relation from 7 to A associated with « is defined by
setting, for any v € {T} and any a € A,

uF,a = aca

On the other hand, given any continuous relation F' from 7 to A, we can
define a formal point ar of A by setting, for any a € A,

acap = TFa

It is now completely trivial to see that the two constructions are one the
inverse of the other.

3 From topologies to covers and back

In this section we study the relations between the categories FTop of formal
topologies and the category FTop™ of formal covers.

3.1 From formal topologies to formal covers

It is obvious that formal covers and formal topologies are closely connected
structures. Indeed, any formal topology is a formal cover and any continuous
relation between formal topologies is a continuous relation between formal covers
as well. Thus, an obvious way to move from a formal topology to a formal cover
is a forgetful functor Z from the category FTop to the category FTop~ which
just forgets the positivity predicate. It is worth noting that 7 is an embedding,
that is, it is full and faithful.

The way back from FTop~ to FTop is not as easy: indeed we do not have a
general solution and we know what to do only for inductively generated formal
covers and inductively generated formal topologies that we recall in the next
section.

3.2 Inductively generated formal topologies

One of the main tools in formal topology is the inductive generation of the cover
since this allows to develop proofs by induction. The problem of generating
inductively formal covers has been dealt with and solved in [CSSV03].

An inductive definition of a cover starts from some axioms, which at the
moment we assume to be given by means of any relation R(a,U), for a € A and
U C A. We thus want to generate the least cover </g such that R(a,U) yields
a<rU.

The first naive idea for an inductive generation of a cover relation is to
use the conditions appearing in the definition of formal cover like rules. But
such conditions, though written in the shape of rules, must be understood as
requirements of validity, that is, if the premises hold then also the conclusion
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must hold. As they stand, they are by no means acceptable rules to generate
inductively a cover relation. For instance, the operation U | V on subsets,
which occurs in the conclusion of |-right, is not even well defined unless we
already have a complete knowledge of the cover.

Another problem is that admitting transitivity as acceptable rule for an
inductive definition is equivalent to a fix-point principle, which does not have
a predicative justification (see [CSSV03] for a detailed discussion of this topic).
Thus we cannot accept all the possible infinitary propositions R(a,U) and we
have to impose some constraints.

We will solve the problem of generating the minimal formal topology which
satisfies some given axioms in three steps. First we will show how to generate
an infinitary relation which satisfies only reflexivity and transitivity, then we
will extend this result in order to generate a cover relation and finally we will
generate a formal topology.

As regard to the first step, the solution proposed in [CSSV03] for the im-
predicativity problem due to the transitivity condition is generating an infinitary
relation satisfying reflezivity and transitivity only when the condition R(a,U)
can be expressed by using an aziom-set, that is, a family I(a) of sets for a € A
and a family C(a,i) of subsets of A for a € A and i € I(a), whose intended
meaning is to state that, for all i € I(a), a is covered by C(a,i). Indeed,
in this case an infinitary relation satisfying such an axiom-set, reflezivity and
transitivity can be inductively generated by using the following rules:

aeU ., 1€ I(a) C(a,i) QU
Py (infinity) Py

(reflexivity)

After solving the problem of generating the minimal infinitary relation sat-
isfying a given axiom-set, reflexivity and transitivity one can strengthen the
previous rules to new ones which allow to generate a cover relation, that is, an
infinitary relation which satisfies reflezivity, transitivity and also |-right. In fact,
in order to satisfy |-right, a possibility is to add a pre-order in the definition of
formal cover expressing what, in the concrete case, is the inclusion between two
basic open subsets.

Definition 3.1 (<-formal cover) A <-formal cover is a structure (A, <, <)
where A is a set, < is a pre-order relation between elements of A, that is, < is
reflezive and transitive, and < is a relation between elements and subsets of A
which satisfies reflexivity, transitivity and the following two conditions

a<b baU aU a<xV
<left) —— <-righ _—
(<-left) aqU (<-right) a<Ul<V
where U < V={ce€ A| (FuelU) ¢ <u & (FveV) ¢ < v}.
It is straightforward to verify that <-left and <-right are valid in any concrete

topological space under the intended interpretation. And only a bit more work
is required to prove that any <-formal cover is a formal cover.
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The proof that any formal cover is equivalent to a suitable <-formal cover
is even more trivial. Indeed, it is sufficient to define an order relation between
elements of A by setting a < b if and only if a < {b} and it is obvious that all
of the required conditions are satisfied.

Thus, in order to be able to generate inductively a formal cover we need only
to be able to generate inductively a <-formal cover. So, let us suppose that we
have a set A, an order relation < between elements of A and a given axiom-set
I(-) and C(—, —) and that we want to generate a <-formal cover over A. To
this aim we can use the method proposed in [CSSV03] and generate by induction
a cover relation which respects the given axiom-set, reflexivity, transitivity, <-
left and <-right by using reflexivity, <-left and infinity as inductive rules. The
only constraint for its applicability is the validity of the following localization
condition which guarantees that <-right holds.

Definition 3.2 (Localization condition) Let A be any set, < be a pre-order
relation on A and I(—) and C(—,—) be an aziom-set for a cover relation over
A. Then such an aziom-set is localized if, for any a < ¢ and any i € I(c), there
exists j € I(a) such that C(a,j) C {a} < C(c,19).

However, if we want to obtain a formal topology also a positivity predicate
has to be provided. To this aim, let us say that a predicate Pos(—) satisfies
<-monotonicity if, for any a,b € A,

Pos(a) a<b

Pos(b)
holds and that it satisfies axiom monotonicity if, for all the axioms in the axiom-
set I(—) and C(—, —) and for any a € A,

(<-monotonicity)

Pos(a) i€ I(a)
(FyeC(a,i)) Pos(y)

(axiom monotonicity)

holds.

Now, given any axiom-set I(—), C(—, —), it is possible to define a predicate
Pos(—) which satisfies both <-monotonicity and aziom monotonicity by sim-
ply considering these two conditions as co-inductive rules (see the appendix).
Hence, given any axiom-set, we will use such a predicate Pos(—) as a positivity
predicate.

Finally, given any axiom-set I(—) and C(—,—) and any predicate enjoying
<-monotonicity and aziom monotonicity, after lemma 2.5, we can always force
the validity of the positivity condition by adding a single axiom schema stating
that, for any a € A, a is covered by the set at, namely, we can define a new
axiom-set I'(—) and C'(—, —) by setting, for any a € A,

+ T
1oy — P B’ if i =%
[{a) = I{a) U {x} C'la,i) = { C(a,i) otherwise
Note that if aziom monotonicity holds for I(—) and C'(—, —) then it continues

to hold also for I'(—) and C'(—, —) since Pos(a) clearly yields that there exists
an element cea™ such that Pos(c) holds.
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We are finally ready to use the method in [CSSV03] to generate a <-formal
topology, namely, a <-formal cover with a positivity predicate which enjoys
monotonicity and positivity.

Theorem 3.3 Let A be a set and I(—) and C(—,—) be a localized aziom-set
for a cover over A. Then a <-formal topology on A can be defined by using
reflexivity, <-left and infinity as inductive rules on the aziom-set I'(—=) and

C'(—,—) defined as above.

Proof. In order to apply the method in [CSSV03], it is necessary to show that
the axiom-set I'(—) and C'(—, —) is localized. So, suppose that a < ¢ and that
we are considering the positivity aziom for c. Then, we have to show that there
exists an index j € I'(a) such that C(a,j) C {a} l< ¢T. The correct choice for
j is now the index for a™ since we can prove that a™ C {a} |< ¢*. Indeed, let
us assume that eca™. Then, both e = a and Pos(e) follow and hence we first
obtain Pos(a) by logic and then Pos(c) by <-monotonicity. So ¢t = {c} and
hence both e < a and e < ¢ hold since e = a, that is, ee{a} | < c¢*.

Moreover, given any predicate which satisfies <-monotonicity and azxiom
monotonicity it is immediate to prove by induction on the length of the proof
of a < U that, if Pos(a) and a < U hold, then there exists an element ueU such
that Pos(u) holds, namely, that monotonicity holds.

Finally, the positivity condition clearly holds for such a cover relation and
such a predicate since it is built in the axioms from which the cover relation is
generated.

Note that this theorem is a corollary of a more general result in [Val04] which
shows how to generate by co-induction a binary positivity predicate with proper
axioms.

In the end, let us introduce the following definition.

Definition 3.4 (Inductively generated formal topology) A formal cover
A = (A, <4) is inductively generated if and only if there exist a pre-order < and
a localized aziom-set I1(—) and C(—,—) such that <4 coincides with the cover
inductively generated using reflexivity, <-left and infinity as inductive rules.

A formal topology A = (A, <4, Posa) is inductively generated if and only if
the formal cover Z(A) = (A, <.4) is inductively generated.

3.2.1 Points and maps of inductively generated formal topologies

If we restrict our attention to inductively generated <-formal covers or induc-
tively generated <-formal topologies we can simplify many of the definitions
given in the previous sections. To begin with, the definition of formal point can
be simplified as follows.

Definition 3.5 (Formal point) Let A be an inductively generated <-formal
topology (cover) with axiom-set I1(—),C(—,—). Then, an inhabited subset o of
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A is a formal point if, for any a,b € A and any U C A, it satisfies the following
conditions:

aca  bea

int <

(point <-convergence) (Jeza l<, b) cea

<ab

(point left-closure) Tt
bea

aca i € I(a)

(point inductive splitness) @eClad) yea

Indeed, after observing that in the case of an inductively generated <-formal
topology (cover), a J<, b<4alband alb<4alc<, b itis clear that the
conditions in the definition above are consequences of the ones in definition 2.7.
On the other hand, it is possible to prove that a subset a which satisfies the
conditions stated here satisfies also point splitness, namely, aca and a <14 U
yield (JuelU) wea, by developing a proof by induction on the length of the
derivation of a <14 U.

The general conditions on a continuous relation that we presented in section
2.3 can be simplified when we are dealing with morphisms between inductively
generated formal topologies (covers).

Lemma 3.6 Let A and B be an inductively generated formal topologies (covers)
and suppose that I(—),C(—, =) and J(=), D(—, —) are the axiom-sets for A and
B respectively. Then, a relation F between A and B is continuous if and only
if it satisfies the following conditions:

(function totality) A <4 F~(B)
F F
(function <-convergence) al’d — al'd
a<4 F(bl<y d)
. . a<aqc cFb
funct <-saturat —_—
(function <-saturation) “Fb
(function axiom-saturation) i€l(a) (veeClai))zFb
aFb
o aFb b<gd
function <-cont t —_—
(function <-continuity) Fd
aFb jelJb)

(function axiom-continuity) T aa -0, 7))
Proof. Function <-saturation and function axiom-saturation are obvious con-
sequences of reflexivity, <-left and function saturation. On the other hand, let
us suppose that a <4 W and (VzeW') xF'b; then one can prove aF'b by induction
on the length of the derivation of a <4 W.

Moreover, it is obvious that function axiom-continuity is an instance of func-
tion continuity and function <-continuity is an immediate consequences of re-
flexivity, <-left, function continuity and function saturation. On the other hand,
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let us suppose aF'b and b <ig V. Then, function continuity can be derived from
the conditions stated here by reasoning by induction on the length of the deriva-
tion of b <1 V.

Finally, recall that for any inductively generated formal topology (cover) B,
if Vi,Vo C B then Vi | Vo < V1 l<yz Vo and Vi <, Vo < Vi | Vo. Thus
both Fi(Vl N ‘/2) <A Fi(‘/l ‘I’SB Vg) and Fi(Vl ‘LSB ‘/2) <A Fi(‘/l d Vg)
follows by lemma 2.9 which uses only function continuity. Hence the equivalence
between function convergence and function <-convergence follows immediately
by transitivity.

As a consequence of this lemma we get a slightly modified version of lemma
2.11 that we will use in the following.

Lemma 3.7 Let A and B be two inductively generated formal topologies (cov-
ers) and suppose that F' is a relation which satisfies all of the conditions for a
continuous relation except for function saturation which is replaced by function
<-saturation. Then

aFb=a<4{ce A|cFb}

is the minimal continuous relation which extends F'.

Proof. The proof goes on exactly as the one for lemma 2.11 except that here
function <-saturation can be used to prove function <-convergence where there
function weak-saturation was used to prove function convergence.

Finally, let us name the sub-categories of FTop and FTop~ whose objects
are inductively generated formal topologies and inductively generated formal
covers.

Definition 3.8 We call FTop; (FTopi™) the full subcategory of FTop (FTop™)
whose objects are inductively generated formal topologies (covers).

Note that from the impredicative point of view FTop; is equivalent to FTop
and FTop; ™ is equivalent to FTop™; indeed, in this case, every formal topology
(cover) A is inductively generated by the axiom-set obtained by considering the
whole cover relation as an axiom-set indexed on P(A). By contrast, from a
predicative point of view, FTop; and FTop are not equivalent because there are
formal topologies which can not be generated by induction (see the last section

of [CSSV03]).

3.3 From formal covers to formal topologies

We are now ready to go back from FTop;™ to FTop;, that is, to recover a suitable
formal topology from a given inductively generated formal cover. Indeed, we
can prove the following theorem.

Theorem 3.9 Let A be an inductively generated formal cover. Then there
exists a formal topology 6(A) such that
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1. (Identity on formal topologies) if A is already an inductively generated

formal topology then
0(A) = A

2. (Universal property) for any formal cover B of FTop;~, 8(B) is the finest
formal topology which approzimates B, namely, the cover relation <g(s)
of (B) is a continuous relation from 0(B) to B and for any inductively
generated formal topology A and any continuous relation F from A to B

there exists a unique continuous relation F from A to 6(B) such that the
following diagram in FTop;~ commutes:

Jo(B)

0(B)———= B

N

The rest of this section is devoted to the proof of this theorem.

After section 3.2, the definition of §(.A) on the inductively generated formal
cover A is almost immediate. Indeed, let us suppose that I(—) and C(—, —) is
the axiom-set for .A. Then, §(A) is the formal topology that we obtain according
to theorem 3.3.

Lemma 3.10 Let A be an inductively generated formal cover. Then, for every
a€AandU CA, ifa<4U then a <ga) U.

Proof. The result follows immediately by induction on the length of the gen-
eration of a <14 U. Indeed, any rule for <14 can be applied as well in order to
generate <lp(4) and all of the axioms for <14 are also axioms for <lg(4)-

Lemma 3.10 proves the key step to show that the formal topology 6(A)
embeds into the formal cover A. An immediate corollary of this fact is the
following lemma which is part of the proof of point (2) of theorem 3.9.

Lemma 3.11 Let B be any inductively generated formal cover. Then the cover
relation <g(p) of the formal topology 6(B) is a continuous relation from 6(B) to
B.

Now, we show how to define a continuous relation 8(F) from 6(A) to 8(B)
for any continuous relation F' from the inductively generated formal cover A4
to the inductively generated formal cover B. Let us first prove the following
lemma.

Lemma 3.12 Let F be a continuous relation from the inductively gemerated
formal cover A to the inductively generated formal cover B. Then F is a rela-
tion from 6(A) to 8(B) which satisfies function totality, function convergence,
function continuity and function <-saturation.
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Proof. Let us check that the various conditions hold. Note that, thanks to
lemma 3.6, it is sufficient to prove function <-convergence, function <-continuity
and function axiom-continuity instead that function convergence and function
continuity.

1. (function totality) Immediate consequence of function totality for F.

2. (function <-convergence) Let us suppose that a F'b and a F'd hold. Then
a <4 F~(bl<y d) follows by function <-convergence for F' and hence we
obtain a <g(4) F~ (b <, d) by lemma 3.10.

3. (function <-continuity) Let us suppose that a F'b and b <g d. Then a F'd
follows by function <-continuity for F.

4. (function axiom-continuity) Let us suppose that a F'b holds and j € J(b) is
an index for an axiom for the inductively generated formal topology 0(B).
Then we have to show that a <lp4y F~(C(b,j)). We argue according to
the shape of the axiom for <1p(s) that we are considering.

e Let j be an index for an axiom for the cover <ig. Then, a F b yields
immediately that a <4 F~(C(b, j)) by function axiom-continuity for
F and hence a <g(4) F~(C(b,5)) follows by lemma 3.10.

o Let C(b,j) be b" ={y € B |y =b & Posyp)(b)}. Then we have to
show that
a <p(A) Ff(b+)
In order to obtain this result it is sufficient to show that

Posg(a)(a) aFb
POSg(B) (b)

holds. Indeed, suppose that function monotonicity holds and assume
that also Posp(4)(a) holds. Then a F'b yields Posys)(b) and hence
beb™ holds. Thus, (Jyeb™)a Fy holds and hence acF~(b™) follows.
Then a <g4) F~(bT) follows by reflezivity for <g(4) and hence we
can discharge the assumption Posy(4)(a) by positivity.

(function monotonicity)

So, let us prove that function monotonicity holds. We argue by co-
induction. Indeed, let us set

Q(y) = (Fz € A) Posg(4)(7) & 2 Fy

Then Posy(4)(a) and a F'b yield Q(b) and hence in order to conclude
Posy(3)(b) by co-induction it is sufficient to show that Q(—) satisfies
<-monotonicity and axiom-monotonicity for the axioms of the cover
<B.

— (<-monotonicity) Suppose that Q(y) and y < z hold. Then there
exists © € A such that Posy4)(z) and x F'y hold; hence x F'z
follows by function <-continuity for F'.
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— (axiom monotonicity) Suppose that @(y) holds and that j € J(y)
is an index for an axiom for the cover relation <ig. Then there
exists z € A such that Posy4)(z) and x F'y hold. Since we
are considering an axiom for the cover relation <ip, we know
that if z F'y holds then & <14 F~(C(y,j)) follows by function
aziom-continuity of F. Hence, x <lg(4) ¥~ (C(y,j)) follows by
lemma 3.10 and thus Posg(4)(z) yields by monotonicity that
there exists z'e '~ (C'(y,j)) such that Posg(4)(z'). Then there
exists veC/(y, j) such that 2’ F v, that is, (JveC(y, j)) @(v) holds.

5. (function <-saturation) Suppose that a < ¢ and ¢ F'b. Then a F b imme-
diately follows by function <-saturation for F'.

After this result, it is clear that the correct definition for 6(F) is
O(F) = Fle

Indeed, lemma 3.7 states that F'¢¢4) is a continuous relation from 6(.A) to 6(B).

Let us now prove point (1) of theorem 3.9, namely, the fact that 0 is the
identity on formal topologies.

Lemma 3.13 For any inductively generated formal topology A, 6(A) = A.

Proof. Let us suppose that I(—) and C(—,—) is the axiom-set for A. In
order to obtain the result it is sufficient to prove that the positivity predicate
Posy (.4, generated by co-induction according to section 3.2, coincides with Pos 4.
Now, note that, for every a € A, a <4 {x € A | v = a & Posa(z)} and
hence a <ga) {z € A |z = a & Posy(z)} follows by lemma 3.10. Hence, by
monotonicity for <lp(4), Posg(4)(a) yields that there exists x € A such that both
x = a and Pos4(z) hold; thus Pos 4(a) follows by logic, that is, we proved that
Posy(4)(a) yields Pos4(a).

Due to maximality of Posy(4)(—), to prove the other implication it is suf-
ficient to show that Pos(—) satisfies all of the conditions in the co-inductive
generation of Posg(4)(—); and these conditions are valid because Pos(—) is
clearly monotone on the axioms of the axiom-set I(—) and C(—, —) and it triv-
ially enjoys <-momnotonicity.

A wuseful consequence of this lemma is that §(F) = F whenever F is a
continuous relation whose domain is a formal topology.

Lemma 3.14 Let A be an inductively generated formal topology, B be an in-
ductively generated formal cover and F be a continuous relation from A to B.
Then §(F) = F.

Proof. Note that FF C F<et4) = §(F) is trivial and hence we have only to prove
the other inclusion. So, suppose that a §(F') b. Then a <ig4) {c € A | c Fb} and
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hence a <4 {c € A | ¢Fb} since §(A) = A being A an inductively generated
formal topology. Therefore, a F'b follows by function saturation for F'.

Now, let us prove point (2) of theorem 3.9 expressing the fact that for any
inductively generated formal cover B of FTop; ™, the cover of the formal topology
6(B) is the one that best approximates the cover of B. To prove this result let
us first prove the following lemma.

Lemma 3.15 Let A be an inductively generated formal topology, B be an in-
ductively generated formal cover and F' be a continuous relation from A to 6(B).
Then <g(py *F' = F, that is, the following diagram

<o(B)

(B ——> B

N r
A
commutes.

Proof. Suppose a € A and b € B. Then

a gy * F'o iff a<a{ce€ A|c <gp)o Fb}
iff a<a{ceA|(ByeB)cFy&y <ym b}
by weak-continuity of F iff a <14 {c€A|cFb}
by fun. saturation of F iff aFb

Now, we are ready to prove the following proposition.

Proposition 3.16 For any inductively generated formal topology A, any in-
ductively generated formal cover B and any continuous relation F from A to

B there exists a unique continuous relation F from A to 6(B) such that the
following diagram in FTop;~ commutes

9(3)%49(5) B

N /Zu‘
Fooa

Proof. To prove such a universal property let us set
}; = F

Then F is well defined since it is a continuous relation from A to 6(B). Indeed,
we already know that, for any continuous relation F from A to B, 6(F) is a
continuous relation from 6(A) to #(B) and hence, by lemma 3.14, §(F) = F
since, by lemma 3.13, #(A) = A. Now, by lemma 3.15, <gp) * F = F is
immediate. In order to prove uniqueness, let us suppose that G is a continuous
relation from A to 6(B) such that <lyp) * G = F. Then we obtain immediately
F = @ since <y(p) * G = G holds by lemma 3.15.
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3.3.1 The formal points of §(A)

An interesting consequence of the previous results is the fact that the formal
points of an inductively generated formal cover A coincide with the formal points
of the formal topology #(.A), namely, the addiction of a positivity predicate has
no effect on the spatial side.

Even if a direct proof is possible, the quickest way to show this result is
to use the fact that for any formal cover (with or without positivity predicate)
there is a correspondence between the continuous relations from the terminal
formal topology T to A and the formal points of A (see section 2.3.2).

Proposition 3.17 For any inductively generated formal cover A, the collection
of formal points of 0(A) is equal to that one of A, that is, Pt(8(A)) = Pt(A).

Proof. It is obvious that any formal point of #(.A) is also a formal point of A.
So, let us prove that every formal point of A is also a formal point of (.A). Let
us suppose that « is a formal point of .A. Then, by lemma 2.20, which holds also
for FTop;~ since FTop;™ is a full subcategory of FTop™, there is a continuous
relation Fy, from 7 to A associated with a. Thus, 8(F,) is a continuous relation
from 6(T) to 6(A). Observe now that, by lemma 3.13, (7)) coincide with T,
since 7 is a formal topology, and hence, by lemma 3.14, 8(F,) coincides with
F,. Thus, the formal point agr,) of #(A) coincides with the formal point a.

3.3.2 Categorical content of previous results: the coreflection

In this section we express in categorical terms the second point in the statement
of theorem 3.9. In fact, it states the existence of a coreflection of inductively gen-
erated formal covers into inductively generated formal topologies. Let us recall
that a coreflection is an adjunction such that the left adjoint is the embedding
functor of a subcategory into a category.

Theorem 3.18 (Coreflection) The embedding functor T : FTop; — FTop;i~
has a right adjoint defined as 8(A) on an inductively generated formal cover A
and as O(F) on a continuous relation F between formal covers.

Proof. For any inductively generated formal cover B of FTop;~, we define the
counit component

eg:I(8(B)) - B
by setting eg = <lg()- Then, proving the statement above is equivalent to
proving the following universal property: for any inductively generated formal
topology A of FTop; and any continuous relation F' from Z(A) to B in FTop;~

there exists a unique continuous relation F from A to 6(B) in FTop; such that
the following diagram commutes



After recalling that the functor Z is the identity on the objects and morphisms
it is clear that this result is implied by proposition 3.16.

Of course, a similar coreflection works for the corresponding categories in
locale theory.

Corollary 3.19 (Local Coreflection) The embedding functor
7 : OpLoc — Loc
has a right adjoint.

Proof. The coreflection is obtained by composing the functor 6 from FTop;™ to
FTop; with the functors used to prove the impredicative equivalences between
OpLoc and FTop; and between Loc and FTop; .

4 Structural analysis of FTop;” and FTop;

In this section we will prove that unary formal covers and unary formal topolo-
gies are exponentiable in FTop;™ and FTop; respectively. To obtain such a result,
we first recall the definition of categorical product in FTop;~ and FTop;, then
we introduce unary formal covers and unary formal topologies and finally we
show how to build exponential objects.

4.1 Categorical product of formal topologies

In this section we recall some basic definitions about the categorical product of
two inductively generated formal topologies (covers). First of all, it is immediate
to see that the terminal formal topology 7 that we introduced in section 2.3.2
is inductively generated.

Lemma 4.1 Let T be the terminal formal topology defined in lemma 2.19. Then
T can be generated inductively by using the empty set of axioms and the total
order relation.

Now, let us recall that at present it is still open the question whether FTop is
cartesian. Indeed, we are able to define the binary product of formal topologies
only by means of an inductive definition and thus only FTop; and FTop;™ are
known to be cartesian (see [CSSV03]). Since no proof of this result appeared in
[CSSVO03] we show here some details of the proof.

Definition 4.2 Let A and B be two inductively generated formal topologies
whose aziom-sets are respectively Ia(—), Ca(—,—) and Ig(—=), Cp(—,—). Then
we call binary product of A and B the formal topology Ax B over the set Ax B,
with order relation

(a1,b1) <axp (az,b2) = (a1 <4 a2) & (b1 <p ba)
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and positivity predicate
Posaxi((a,b)) = Pos4(a) & Posg(b),

whose cover relation is inductively generated from the axiom-set

I((a,b)) = Ia(a)+Ip(D)
[ Calayin) x (b} ifi = inl(ia)
Clla.b),i) = {{éch(b,i,,) if i = ine(iy)

One should note that in the previous definition we did not add the positivity
axiom. In fact, we will prove that it is not necessary. Let us state first the
following useful lemma.

Lemma 4.3 Let A and B be inductively generated formal topologies, a be an
element of A, b be an element of B, U be a subset of A and V' be a subset of B.
Then the following conditions are valid:

a<1q U ) bV ()a<IAU b<pV
(a,b) <axp U x {b} (a,b) <axp {a} xV (a,0) <axp U xV

As an immediate corollary of this lemma, the product of two inductively
generated formal topologies defined above is a formal topology.

(1)

Corollary 4.4 Let A and B be inductively generated formal topologies. Then
A x B is a formal topology.

Proof. First of all note that it is immediate to check that the positivity predi-
cate enjoys both <- monotonicity and axiom monotonicity and hence it is mono-
tone with respect to the inductively generated cover.

Moreover, by using the previous lemma it is not difficult to show that the
positivity condition is satisfied for the product topology as a consequence of its
validity in the component topologies.

The pairing and the projection maps are now defined.

Lemma 4.5 Let A, B and C be inductively generated formal topologies and
suppose that F' is a continuous relation from C to A and G is a continuous
relation from C to B. Then the following relations

(pairing) ¢ (F,QG) (a,b) cFa&cGb

(first proj.)  (a,b) II; ¢ (a,;0) <axp {(z,y) € AX B |z <4c}
(second proj.) (a,b) Ils d (a,b) <uxp {(z,y) € Ax B |y <pd}

are continuous and the following equations hold

(first projecting equation) I, * (F,G) =
(second projecting equation) Ils % (F,G) =
(surjective pairing) (I1; * H, 115 * H)

|
T QN

for any continuous relation H from C to A x B.
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Proof. The proof that pairing and the projections are continuous relation is
straightforward and hence we prove here only that the required equations hold.

Let us first notice that, for any ¢ € C, a € A and b € B and for any
continuous relation H from C to A x B,

(1) cll1ixHa = c<cH {(z,y) € AXxB|xz<4a})
(2) cllaxHb = c<c H ({(z,y) € Ax B|y<pb})

We can now proceed with the proof of validity of the equations.

e (first projecting equation) We have to prove that II; x (F, G) = F, namely,
for any ¢ € C and a € A, ¢ Iy * (F,G) a if and only if ¢ F a. The right to
left implication can be proved as follows. Suppose that ¢ F'a holds. Then
¢ ¢ F~(a) and hence ¢ <¢ F~(a) < G~ (B) since ¢ <¢ G~ (B) holds by
function totality. Observe now that

F~(a) l< G7(B) <¢ (II; * (F,G))™ (a)

Indeed, if 2eF~(a) < G~ (B) then zFa and xGb, for some b € B,
and hence z(F,G)(a,b) and (a,b)II; a, that is, z <¢ (II; * (F,G))™ (a).
Therefore, ¢ <¢ (II; * (F,G)) (a) and hence cII; * (F,G)a follows by
function saturation.

Now, let us prove the other implication. Suppose that ¢ II; * (F,G) a.
Then, the observation (1) above shows that

¢ <e (F,GY ({(z,y) € Ax B |z <y a})

and hence we obtain cFa by function saturation since ¢ <¢ F~({a}) fol-
lows by reflexivity and transitivity because, by function weak-continuity,

(F,G)"({(z,y) |z <a a}) C F~({a}).
e (second projecting equation) Completely analogous to the previous point.

o (surjective pairing) We have to prove that for any continuous relation H
from C to A x B, (Il; « H,II, x H) = H. Now, it is immediate to check
that if cH(a,b) then ¢ (ITy x H, Il x H) (a,b).

To prove the other implication let us assume that ¢ (II; x H, Iy x H) (a, b)
holds. Then both ¢II; * H a and ¢ Il * H b follows and hence we obtain
both ¢ <¢ H™ ({(z,y) | <4 a}) and ¢ <¢ H™ ({(z,y) | y <5 b}). Thus

¢c<c H({(z,y) | 2 Qua}) b< H™({(2,9) | y <5 b})

follows by <-right. Now we can conclude ¢ H (a,b) by function saturation
since ¢ <¢ H~({(a, b)}) follows by transitivity because

H™({(z,9) |z qua}) < H ({(z,9) | y <5 0}) <c H™ ({(a,0)})

Thus, we proved the main theorem of this section.
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Proposition 4.6 FTop; and FTop;~ are cartesian.

Proof. We already provided all the necessary definitions and proofs in FTop;
and it is immediate to check that the positivity predicate of A x B was never
used.

The next lemma and its corollary will be useful in the following.

Lemma 4.7 Let A and B be inductively generated formal topologies (covers)
and suppose that (a,b) € Ax B, ¢c € A and d € B. Then, if (a,b)Il; ¢ and
(a,b) Iz d then (a,b) <axsp (c,d).

Proof. Since (a,b)II; ¢ and (a, b) II5 d then
(a,b) <axp {(z,y) EAX B |z <4c}
(a,b) <axp {(z,y) €e Ax B |y <pd}
Therefore, by |-right,
(a,b) <ux {(z,y) e AxB|xqac}l<{(z,y) € Ax B |y <pd}
and hence (a,b) <axs (¢, d) follows since
{(z,y) e AxB |z <ac}l<{(zx,y) € Ax B|y<pd} <axs (¢, d)

Indeed, if (w1, w2)e{(z,y) € AX B |z <4 c} < {(z,y) € Ax B |y <pd} then
wy <14 ¢ and we <p d and hence we get (w1, ws) <axp (¢,d) by lemma 4.3.

We can now provide an equivalent formulation of the definition of the pro-
jection maps.

Corollary 4.8 Let A and B be inductively generated formal topologies (covers)
and suppose that (a,b) € Ax B, c € A and d € B. Then, (a,b)I1; ¢ if and only
if (a,b) <axp (¢,b) and (a,b) sy d if and only if (a,b) <axsp (a,d).

Proof. We show the proof of the implication from right to left only for IT; since
the one for II, is completely similar. Note that (¢, b)e{(z,y) € AX B |z <4 ¢}
and hence (a,b) <axp {(z,y) € Ax B | z <4 c} follows from (a, b) <axz (c,b).

To prove the other implication we can use the previous lemma 4.7 since
(a,b)II1 a and (a, b) II b clearly hold.

4.2 Unary formal covers and unary formal topologies

Let us recall the definition of unary formal topology and unary formal cover.

Definition 4.9 (Unary formal topology) A formal topology (A, <14,PosA)
is called unary if, for anya € A and U C A,

a <4 U if and only if Pos4(a) — (FbeU) a <4 {b}
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It is trivial to see that unary formal topologies form a full sub-category of
FTop that we will call unFTop.

The definition of unary formal topology needs to be slightly modified when
we want to move to formal covers.

Definition 4.10 (Unary formal cover) A formal cover (A, <4) is called un-
ary if, for anya € A and U C A,

a <4 U if and only if (FbeU) a <4 {b}

It is trivial to turn a unary formal cover into a unary formal topology by
simply considering the always true positivity predicate. On the other hand, it is
well possible that the formal topology A = (A, <, Pos) is unary while the formal
cover Z(.A), obtained by forgetting the positivity predicate, is not a unary formal
cover; for instance, consider that any non-positive element of A is covered by
the empty set. However, we can solve this lack of uniformity. Let us first recall
the following theorem from [Cur04].

Theorem 4.11 Let A = (A, <,Pos) be a formal topology. Then®
APos = (POSA, <]Pos7 POSPOS)
where, for any (a,m,) € Posq and U C Posy,

{a,m,) <P U
Pos™* ((a, m,))

a<{u€A|{u,m)eU}
True

is a formal topology isomorphic to A.

Proof. Let us first prove that A" is a formal topology. To check the validity
of reflexivity and transitivity is straightforward while the proof of the validity
of |-right requires to use the positivity condition for <. Moreover monotonicity
and positivity for <7°° are trivially valid.

Finally, to check that the formal topologies A and A% are isomorphic one
has just to check that the continuous relations R; from A to AP° defined by
setting, for any a € A and (¢, w.) € Pos4,

a Ri{e,me) =a<ec
and Ry from AP° to A defined by setting, for any (a,m,) € Pos and ¢ € A,
(a,ma) Rec=a<c

are one the inverse of the other (to prove this result the positivity condition is
required again).

3Recall that, provided A is a set and B is a property over elements of A, by $(A, B) we
mean the set whose elements are pairs (a,b) whose first element a is an element of A and
whose second element is a proof that a enjoys the property B. In this work we often use the
notation B4 to mean the set (A, B).
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So, given a unary formal topology A we can first restrict ourselves to the
formal topology .AP°, which is isomorphic to .4 and still unary, and then consider
Z(AP°%) which is a unary formal cover.

Unary topologies are distinguishable among formal topologies because the
collection of their formal points forms an algebraic dcpo and any algebraic dcpo
is (isomorphic to) the collection of the formal points of a suitable unary formal
topology, at least from an impredicative point of view (see [Sig90], [SVV96] or
[Sam00]). In fact, it is easy to check that unary topologies form a full subcate-
gory of the category UnFtop which is impredicatively equivalent to the category
Alg of algebraic dcpos and Scott-continuous functions [AJ94].

Let us recall now the following theorem in [CSSV03].

Theorem 4.12 Let A be a unary formal topology. Then A is inductively gen-
erated.

While it is obvious that this result trivially holds from an impredicative point
of view, it is interesting to note that a predicative proof requires the use of the
axiom of choice which is an immediate consequence of the definition of X-type
in Martin-Lof’s Type theory [Mar84].

Theorem 4.12 concerns unary formal topologies, but it is trivial to see that
completely similar result can be proved for unary formal covers. In the rest of
this section we will present our results for FTop;™ since in the following we will
need to use them for such a category. However, it is not difficult to check that
all what we do can be re-done within FTop;; the only difference is that one has
to adapt the various proofs to the presence of the positivity predicate.

We present now a lemma that characterizes the topological product of formal
covers in the case one of them is unary.

Lemma 4.13 Consider the topological product of an inductively generated for-
mal cover C = (C,<¢,<¢) and a unary formal cover A = (A, <a,<4) and
suppose that c € C, a € A and W C C x A. Then, if (c,a) <cxa W then there
exists a subset Wi of C such that ¢ <¢ Wy and, for every wieW there exists
wy € A such that a <4 we and (w1, w2)eW.

Proof. The statement is proved by a straightforward induction on the length
of the derivation of (¢,a) <i¢cx.4 W. Let us only note that if (¢,a) <¢xa W has
been obtained by infinity from Cc (e, j) X {a} <¢x.a W then the required subset

Wi is Uyecq(e,;) Wy where Wy is the subset obtained by inductive hypothesis.

The following is a useful corollary of the previous lemma.

Corollary 4.14 Consider the topological product of an inductively generated
formal cover C = (C, <¢, ¢) and a unary formal cover A = (A, <a,<4) and
suppose that c¢,c1 € C, a € A. Then if (c,a) Iy ¢; then ¢ <¢ c1.
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Proof. Let us suppose that (¢,a)Il; ¢;. Then, by corollary 4.8, we get that
(c,a) <c¢xa (c1,a) and hence, by the previous lemma, there exists a subset W,
of C such that ¢ <¢ Wy and, for any w;eWy, there exists wy € A such that
a <4 we and (wr,ws)e{(c1,a)}. But then, for any wieWi, wi = ¢; and so
wy ¢ ¢1- Hence ¢ <¢ Wi yields ¢ <¢ ¢1 by transitivity.

The definition of continuous relation between formal covers can be substan-
tially simplified if we restrict our attention to the case of continuous relations
between a unary formal cover and a generic one. This simplification is the key

for the possibility to define the exponential of a unary cover over an inductively
generated one (see section 4.3.1).

Proposition 4.15 Let A = (A, <4) be a unary formal cover and B = (B, <Ig)

be an inductively generated formal cover whose aziom-set is J(—), D(—,—).

Then a binary proposition a F' b between A and B is continuous if and only if it
satisfies the following conditions:

(unary function totality) (Mae A)(F3be B) aFb

aFb aFd
(Jyeb l<y d) aFy
a<ac cFb
aFb
aFb b<pd
aFd
aFb jeJb)
@y=D(, ) aFy

(unary function convergence)

(function weak-saturation)

(unary <-continuity)

(unary axiom continuity)

Proof. We show that the conditions here are equivalent to the standard ones
when working with unary formal covers. Indeed, we already observed that
function weak-saturation is a consequence of function saturation.

Now, function totality is obviously a consequence of unary function totality
and, on the other hand, if a <4 F~(B) and A is a unary formal cover then
there exists ¢ € A such that a <4 ¢ and ceF'~(B), that is, there exists b € B
such that @ <4 ¢ and ¢ F'b and hence a F' b follows by function weak-saturation.

Moreover, the validity of unary function convergence is a consequence of
function <-convergence and function weak-saturation while the validity of unary
function continuity is a consequence of function continuity and function weak-
saturation. On the other hand, function saturation can be proved as follows:
suppose that a <14 W; then, there exists weWW such that a <4 w, since A
is a unary formal topology, and so (YweW) wFb yields wFb and hence aF'b
follows by function weak-saturation. In the same way, function convergence and
function continuity follow respectively by wunary function convergence and by
unary function continuity.

Finally, it is obvious that unary aziom continuity and unary <-continuity
are immediate consequences of function continuity, reflexivity and <-left. Vice-
versa, we can prove the validity of an instance of function continuity whose
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premises are a F'b and b <z V' by using the conditions above and reasoning by
induction on the length of the derivation of b <1 V.

4.3 The construction of the exponential object

We are now ready to prove exponentiability of unary formal covers in FTop;™
and exponentiability of unary formal topologies in FTop;. The proof goes on as
follows: we first show that unary formal covers are exponentiable over induc-
tively generated formal covers and then we use the coreflection of FTop;™ into
FTop; to move such a result to formal topologies.

4.3.1 The exponential formal cover

In this section, given a unary formal cover A and an inductively generated
one B, we show how to build an inductively generated formal cover, that we
indicate by A — B, whose formal points are (in bijective correspondence with)
the continuous relations from A to B.

The basic neighbourhoods of A — B are lists whose elements are pairs in
the cartesian product A x B of A and B. The intended meaning of a list
I € List(A x B) is to give a partial information on a continuous relation F' from
A to B. To indicate that the list [ approximates the continuous relation F we
introduce the following definition

FlIFl=(Y(a,b)el) aFb

where the proposition xel is defined by induction on the construction of [ by
setting xenil = False and ze(a,bd) - 1 = (x = (a,b)) V zel.

Since we want to obtain an inductively generated formal cover, in order to
apply the method in section 3.2, we have to introduce also a pre-order relation
among lists. The obvious choice is to set

I <m=V(a,b) € Ax B) (a,b)em — (a,b)el

stating that the list [ is more precise, that is, it approximates fewer continuous
relations, than the list m. This order relation is a refinement of the reverse sub-
list relation, which states that m is a sub-list of [, because it does not consider
the order among the elements in a list and their repetitions.

According to the explanation in section 3.2 we have now to specify an axiom-
set from which the cover relation will be generated by induction.

Now, the inspiring idea for the axiom-set is to look for those axioms which
will force a point of the exponential formal topology to be a continuous relation.
Thus, each axiom has to explain how an information [ on a continuous relation
can be made more precise and still be part of a continuous relation. So, we add
a new axiom schema in correspondence with each of the conditions defining a
continuous relation. Meanwhile, we need to justify such axioms. According to
the intended meaning of the cover relation in section 2.1, given an axiom stating
that [ is covered by U, such a justification amounts to show that ext(l) C Ext(U),
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that is, every formal point containing [ also contains a basic neighbourhood of
U. Recalling that formal points are expected to be continuous relations, this
means that we have to prove that, for any continuous relation F, if F'IF [ then
there exists meU such that F I m.

So, we have now a clear plan for finding our axiom-set. In order to keep
the exposition clear, we are not going to formalize the axiom-set completely by
specifying a set I(—) of indexes for every list I and a family C(—, —) of subsets
defining all of the subsets which cover [ by axiom. In fact, we are just going to
write down which subsets have to appear in the family C'(—, —). We hope that
it will be clear how such a formalization can be actually performed.

The first axiom schema that we require is the formalization of unary function
totality, namely, for every a € A there exists b € B such that a FF'b. It is
expressed by stating that, for any [ € List(A x B) and any element a € A, there
is an index k € I(l) such that

(unary totality axiom) C(I,k) = {(a,b)-1l|be€ B}

Now, if F' is any continuous relation which contains [, that is, such that (x,y)el
yields z F'y, then it also contains (a,b) - I for some b € B because of unary
function totality.

The second axiom schema is a formalization of unary function convergence.
This condition states that if a /b and a F'd hold then there exists yeb l<, d
such that a F'y. The corresponding axiom states that, provided that (a,b)el and
(a,d)el, there is an index k € I(l) such that

(unary convergence axiom) C(l,k) = {(a,y) 1| yebl<, d}

Now, if F' is a continuous relation which contains [ and (a,b)el and (a,d)el
then we get a F'b and a F d; hence by unary function convergence there exists
yeb l<, d such that a F'y; so F' contains (a,y) - I.

The third required condition is function weak-saturation, that is, if a <4 ¢
and ¢ F'b then a F'b. The corresponding axiom states that, provided that (¢, b)el
and a <4 ¢, there is an index k € I(l) such that

(weak-saturation axiom) C(I,k) = {(a,d) -1}

Now, suppose that (c,b)el and a <14 ¢ and that F' is any continuous relation
containing . Then ¢ F'b holds and hence a <4 c yields a F'b by function weak-
saturation; so F' contains (a,b) - 1.

We have to consider now wnary aziom continuity and unary <-continuity.
The first condition states that if a F'b and j € J(b), where J(b) is the axiom-
indexing set for B, then there exists yeC'(b, j) such that a F'y. The corresponding
axiom states that, provided that (a,b)el and j € J(b), there is an index k € I(I)
such that

(unary continuity axiom) C(I,k) = {(a,y) -1 | yeC(b,j)}

34



Now, if F' is any continuous relation which contains ! then (a,b)el yields a F'b
and hence j € J(b) yields that there exists yeC(b,j) such that a F'y; so F
contains (a,y) - I.

Finally unary <-continuity states that a F'b and b <p d yield a Fd. The
corresponding axiom states that, provided (a,b)el and b <g d, there is an index
k € I(l) such that

(<-continuity axiom) C(l,k) = {(a,d) -1}

Now, if F' is any continuous relation which contains [, then from (a, b)el we get
a F'b and hence we conclude a F'd by unary <-continuity since b <g d. So F
contains (a,d) - I.

It is not too difficult to show that the axioms above form an axiom-set.
However, it is interesting to note that to obtain this result it is necessary that
the formal topology B is inductively generated; indeed, the continuity axiom for
a general topology would have required that, provided that (a,b)el and b <15 V,
there is an index in I(I) for any subset {(a,v) -1 | veV}. But, in general, this
cannot be possible since it would be necessary to quantify over the collection of
all the subsets of B.

Thus, we have completed the definition of the axiom-set for the formal cover
A — B and it is not too difficult to verify that such an axiom-set satisfies the
localization condition of section 3.2. So we can finally generate by induction the
formal cover A — B.

The following lemma is an immediate consequence of the definition of expo-
nential topology.

Lemma 4.16 Letl € List(A x B), (¢,b)el, a <4 c and b <g d. Then
l <asn (a,b) - nil and I Q-5 (¢,d) - nil

Let us recall now the operation of appending two lists that we will use in
the next lemmas. Given two lists m; and ms in List(4A x B) we will write
my - mo to mean the result of appending the list m; to the list msy and, given
two subsets Uy, U C List(A x B), we will write U; - Us to mean the subset
U1 . U2 = {m1 - Mo | m15U1 & mgsUg}.

Lemma 4.17 Let! € List(Ax B) and Uy,Us C List(Ax B). Then the following

condition holds:
l 4B Ul l <4-B U2

I <94 U - Us

(--right)

Lemma 4.18 Let F' be a continuous relation from C to A — B. Then the
following condition holds, for any ¢ € C and any 1,15 € List(A x B),

CFll CFl2
CFll'l2
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Even if the axioms for the exponential cover A — B that we introduced
use directly the particular axiom-set used to generate the formal cover B, the
next lemma shows that the resulting cover does not depend on this particular
axiom-set but on the cover of 5.

Lemma 4.19 Let A be a unary formal cover and B be an inductively generated
one. Then, for any list 1 € List(A X B) and any V C B, if (a,b)el and b <1V
then | <ap {(a,y) - 1| yeV'}.

4.3.2 Bijection between formal points and continuous relations

We can prove now that there is a bijective correspondence between the contin-
uous relations from a unary formal cover A to an inductively generated one B
and the formal points of the formal cover A — B. It is clear that this result
is an immediate consequence of the bijective correspondence between the col-
lection of the formal points of the formal cover A and the morphisms from the
terminal formal cover T to A, and the fact that, for any unary formal cover A
and any inductively generated formal cover B, the formal cover A — B is the
exponential of 4 and B that we will prove in the next section. However, we
decided to insert here a direct proof since we think that it is more straight and
perspicuous to understand how the axioms for the exponential have been found.

Theorem 4.20 Let A be a unary formal cover and B be an inductively gen-
erated formal cover. Then there exists a bijective correspondence between the
collection of the formal points of A — B and the collection of the continuous
relations from A to B.

Proof. The bijective correspondence is defined as follows. To any formal point
® € Pt(A — B) we associate

aFgb=a <4 {ce€ A] (¢,b)-niled}

that can be proved to be a continuous relation, and to any continuous relation
F from A to B we associate
ledp iff F'IF1

which can be proved to be a formal point of A — B.
It is easy to show that the two constructions are one the inverse of the other.

4.3.3 Application and abstraction

In this section we show that the formal cover defined in the previous sections
is the exponential of a unary formal cover over an inductively generated formal
cover. From a categorical point of view this means that, for any unary formal
cover A, the functor — x A : FTop;~ = FTop;~ has a right adjoint A —
— : FTop;” = FTop; . Equivalently, this amounts to define, for any unary
formal cover A and any inductively generated formal cover B, a relation Ap from
(A — B) x A to B, called application, such that for any continuous relation F
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from C x A to B there exists a continuous relation A(F') from C to A — B, called
abstraction of F, such that, for any continuous relation G from C to A — B, the
following equations are satisfied

Ap * (A(F) = 11y, II,) F
A(Ap (G 1L, 1)) = @G

We propose the following definitions for the application and the abstraction:

(lba)Apb = I <asp (ab)-nil
cAF)1 = (Y(a,b)el) (c,a) Fb

for any | € List(Ax B),a€ A,be Band ce C,
The next lemma states that Ap is a continuous relation.

Lemma 4.21 Let A be a unary formal cover and B be an inductively generated
one. Then Ap is a continuous relation from (A — B) x A to B.

Proof. All of the required conditions have to be checked. We will show here
only the non trivial cases.

e (function totality) Let a € A and [ € List(A x B). We have to prove
that (I,a) <uspyxa Ap (B). Now I <a-p {(a,b)-1| b € B}, by
unary totality awiom, and hence we conclude (I,a) <(a—pyxa Ap~ (B)
by transitivity since {(a,b) -1 | b € B} <a-p {(a,b)-nil | b € B} and
{(a,b) -nil | b € B} x {a} C Ap™(B).

e (function convergence) Suppose (l,a) Ap b and (I,a) Ap d. Then, we
have to show that (I,a) <l(4—B)x4 AP~ (b 1<, d). The assumptions yield
I <455 (a,b) - nil and I <45 (a,d) - nil. Hence, I <45 (a,b) - (a,d) - nil
follows by lemma 4.17. Now (a, b) - (a,d) nil <a-p {(a,y) nil | yeb l<, d}
holds by unary convergence axiom and so (I,a) <(a-B)xa AP~ (b l<y d)
follows by transitivity since {(a,y) - nil | yeb l<, d} x {a} CAp~ (b l<; d).

¢ (function axiom-continuity) Suppose that (I,a) Ap b and j € J(b) hold in
order to show that (I,a) <(a—n)xa Ap~ (C(b,5)). Then,l <45 (a,b)-nil.
But (a,b) - nil <a-p {(a,y) - (a,b) - nil | yeC(b,j)} by unary continuity
aziom. Now, by =<-left, (a,y) - (a,b) - nil <45 (a,y) - nil holds for any
yeC(b,j) and hence (a,b) - nil <a-p5 {(a,y) - nil | yeC(b,j)} follows by
transitivity. So, we obtain | 4.5 {(a,y) - nil | yeC(b,5)} by transi-
tivity and hence (I,a) <a-n)xa {((a,y) - nil,a) | yeC(b,j)} follows by
lemma 4.3. Thus (I,a) <asp)xa Ap~ (C(b, 7)) follows by transitivity
since {((a,y) - nil,a) | yeC(b, j)} is a subset of Ap~ (C(b, j)).

e (function axiom-saturation) We have to show that if £ € J((I,a)) is an
index for an axiom of the product topology and, for any yeC((l,a),k),
y Ap b holds then also (I,a) Ap b holds. We will argue according to the
shape of the considered axiom.
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— Axioms whose shape is (I,a) <u-p)xa C(l,7) x {a}. We have to
show that if (VyeC(l,j)) (y,a) Ap b then (I,a) Ap b. Now, the as-
sumption means that, for all yeC(l,j), y <a—p (a,b) - nil. Then, by
transitivity, we obtain | <4_p (a,b) - nil, since | <45 C(l,7), and
hence (I,a) Ap b.

— Axioms whose shape is (I,a) <(4-B)xa {I} X C(a,j). Since A is a
unary formal cover, a <14 C(a, j) yields that there exists an element
ceC(a, j) such that a <14 ¢. Now, by hypothesis (I, ¢) Ap b holds and
hence, by definition, I <45 (¢,b) - nil. But, by lemma 4.16, a <14 ¢
yields (¢, b) - nil <a—p (a,b) - nil; hence | <45 (a,d) - nil follows by
transitivity and so (I,a) Ap b.

Now we have to prove that the abstraction A(F) of a continuous relation F'
is a continuous relation.

Lemma 4.22 Let A be a unary formal cover and C and B be inductively gen-
erated formal covers. Suppose that F' is any continuous relation from C x A to
B. Then A(F) is a continuous relation from C to A — B.

Proof. It is necessary to check that all of the required conditions are satisfied.
We will prove here only some of them.

o (function totality) Let ¢ € C. Then, ¢ <i¢ A(F)~(List(Ax B)) is immediate
since ¢ A(F') nil holds by intuitionistic logic.

o (continuity axiom) We have to check that if ¢ A(F') | and j € J(I) then
¢ <dc A(F)~(C(l,j)) holds. The proof depends on the particular shape of
the axiom indexed by j. We will show here only few of them.

— (unary convergence axiom) We have to show that, provided that
(a,b)el and (a,d)el, then ¢ <¢ A(F)~({(a,y) -1 | yeb <, d}) follows,
that is, ¢ <¢ {w € C'| (Jyeb <, d) w A(F) (a,y) -1}. Now, cA(F)1
yields (¢,a) F b and (c, a) F d; hence (c,a) <¢cxa F~ (b l<y d) follows
by function convergence. Thus, by lemma 4.13, we can find a subset
Wy of C such that ¢ <¢ Wi and for any w;eW; there exists an
element wy € A such that a <4 wy and (wi,w2)eF~ (b l<; d),
that is, (Jyeb J<, d) (w1,w2)Fy. Then it is easy to see that W, is
a subset of {w € C | (Jyeb l<; d) (w,a)Fy}; indeed, (wy,ws)Fy
yields (w1, a)Fy by function weak-saturation, since a <14 ws yields
(w1,a) <exa (wr,ws). Therefore, we know both that ¢ <t¢ Wi and
that Wy C {w € C | (3yeb I<, d) (w,a)Fy}. Hence, by reflexivity
and transitivity, we get ¢ <¢ {w € C'| (Jyeb <, d) (w,a)Fy}. Then,
by |-right, we obtain ¢ <¢ {c} | {w € C' | (Jyeb I<; d) (w,a)Fy}.
We will prove now that {c} | {w € C | (Jyeb l<, d) (w,a) Fy}isa
subset of {w € C | (Jyeb l<; d)wA(F)(a,y) -1}. Indeed, suppose
that z is an element of C such that x <¢ ¢ and z <¢ w for some
w € C such that (w,a) F y for some yeb | d.
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Then (z,a) F'y follows by function weak-saturation since z <l¢ w
yields (z,a) <cxa (w,a) by lemma 4.3. Moreover, for any (s,t)el,
(¢, s) F't holds, since by hypothesis ¢ A(F')I. Hence, (z,s) F't follows
by function weak-saturation since z <¢ ¢ yields (z,s) <cxa (¢, s) by
lemma 4.3. Thus, we proved that z A(F') (a,y) - I, that is, we proved
that ze{w € C' | (Jyeb I<, d) w A(F) (a,y) - 1}.

Now, we can finally conclude. Indeed, by transitivity, we get

c<e {w e C| (yeb l<, d)wA(F) (a,y) -1}

that is, ¢ <¢ A(F)™({(a,y) - 1| yeb l<s d}).
— (unary continuity axiom) Completely analogous to the previous one.
To finish the proof that the formal cover A — B is the exponential of 4

over B we have to show that the adjunction equations hold with respect to
application and abstraction.

Proposition 4.23 Let A be a unary formal cover and C and B be inductively
generated formal covers. Then

1. for every continuous relation F from C x A to B,

Ap x (A(F) xI;,II,) = F

2. for every continuous relation G from C to A — B,

A(Apx (G x1I;,110)) = G

Proof. We prove the two implications of the considered equations one after the
other.

e (1. Right to left) We have to prove that, for any ¢ € C, a € A and
b € B, if (¢c,a) Fbthen (c,a) Ap x (A(F) «II;,1I5) b. Now, (c,a) F'b yields
¢ A(F) (a,b) - nil and hence (c,a) (A(F) * II1,II5) ((a,b) - nil,a) follows.
Then, we conclude (¢,a) Ap x (A(F) x II;,T5) b since ((a,b) - nil,a) Ap b
obviously holds.

o (1. Left to right) We have to prove that (c,a) Ap* (A(F) 111, I15) b yields
(c,a) F'b. Now, (¢,a) Ap * (A(F) % II;,II5) b means that

(C,a) <cx A {(wl,wg) eCxA ‘ (’U}l,wg) Ap o <A(F) *Hl,H2>b}

But A is a unary formal cover and hence, by lemma 4.13, there exists a
subset W of C such that ¢ <¢ W and for any w1eW there exists wy € A
such that a <4 w2 and (wy,ws) Ap o (A(F) = 1T, II,) b.

Now, let us suppose that w; is an element of W and w- is the corresponding
element in A. Then, there exist two elements I(,, .,) € List(4 x B) and
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Q(wy,ws) € A such that both (wi,wy) (A(F) x IIy, TIz) (l(whw2 A(wy ws))
and (!(w, ws)» A(w; ,we)) AP b. So, it follows both (wyi,w2) A(F) * Iy {4y, w,)
and (wy, w2) 12 @y, wy) AN Ly, wy) DA-B (A (w; ws), b) + Nil.

Hence, (wl,wg) <cxA {(tl,tg) eCxA | (tl,tg) A(F) oll; ! w1,w2)}' Con-
sider now that (t1,t2) A(F) o IIy [(y, ,) means that there exists an ele-
ment u; € C such that (t;,22) Iy uy and w1 A(F) [y, w,)- But, by corol-
lary 4.14, (t1,t2) II; u; yields t; <i¢ u; and hence, by weak-saturation, from
1 A(F) iy o) We get t1 A(F) Ly, a)- S0, we finally obtain by transitiv-
ity that (wl,wQ) <cxA {(thtg) eCxA | t1 A(F) l(wlwa)}.

Observe now that (w1, wa) Iy a(w, ,w,) yields (w1, w2) <lexa (W1, Gw, ws))
by corollary 4.8 and hence, by combining the latter with the previous
result, we get

(w1, wa) <dexa {(t1,t2) € C X A |t A(F) Liw, w) } 4< {(W1; 0wy w0)) }

by l<-right. So, by using again lemma 4.13, we get that there exists a
subset Vi, w.,) of C' such that w1 <l¢ Vi, w,) and, for all v1eViy, w,), there
exists v € A such that ws <14 vy and (vy,v2) is en element of the subset
{(t1,t2) € C x A | t1 A(F) lw, w0)} < {(w1, (0, ,w,))}, that is, there
exists (t1,t2) € C x A such that t; A(F) l(y,,w,) and (v1,v2) <cxa (t1,t2)
and (v1,v2) <cxa (W1, Q(w, w.))-

Suppose now that v; is an element of V(,,, ,) and vz is the correspond-
ing element in A. Then, (v1,v2) <cxa (t1,t2) yields v; <¢ t; and
hence t1 A(F) l(w, wy) yields vi A(F) iy, w,) by <-saturation. Moreover
(v1,v2) <exa (wl,a(wl’wZ)) yields vo <4 Q(wy,we); SO V2 <A G(wyws)
and hence a <4 w2 and wy <4 v yield a <4 Gy, ,wy) by transitiv-
ity. Thus, by lemma 4.16, (@(w, w.),b) * nil <asp (a,b) - nil and so
l(w17w2) <A-B (a(wl,wz),b) - nil yields l(wl,wz) <A—B (a,b) - nil. Hence
v1 A(F) (a,b) - nil follows from vy A(F) (4, ,w,) by weak-continuity.

Thus, we have that w1 <i¢ V{w, w.) and, we proved that for any v1eViw, w.),
v1 A(F) (a,b) - nil. Hence we get wy A(F) (a,b) - nil by saturation.

So we can finally conclude, again by saturation, that ¢ A(F') (a,b) - nil, that
is, (¢,a) F'b, since we have that ¢ <¢ W and we proved that, for any
wieW, wy A(F) (a,b) - nil.

(2. Right to left) We have to prove that, for any ¢ € C and for any
l € List(A x B), if ¢ G I holds then also ¢ A(Ap* (G xII;,II5)) I holds, that
is, for any (a, b)el, (c,a) Ap * (G = II;,II5) b. So, suppose (a,b)el. Then,
we get ¢ G {(a,b) - nil} by weak-continuity of G since | < 4,5 {(a,b) - nil}
follows by <-left from [ < {(a,b) - nil}. Now, (c,a) II; ¢ and (c,a) II, a
clearly hold and hence we get (c,a) (G *II;,II5) ((a,b) - nil,a). Finally, we
obtain (c,a) Ap * (G = II;, II,) b since ((a, b) - nil, a) Ap b obviously holds.

(2. Left to right) We have to prove that, for every ¢ € C and every
l € List(A x B), ¢ A(Ap x (G % II;,1I5)) [ yields ¢ G I. So, suppose
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that ¢ A(Ap * (G * II;,II,)) [ holds. Then, for every (a,b)el, we have
(c,a) Ap * (G = I1;,II5) b and hence

(c,a) <cxa {(z,y) € C x A| (z,y) Ap o (G = I1;,1I5) b}

follows by definition. At this point a proof completely analogous to the
one for point (1. Left to right) can be developed in order to obtain that
¢G (a,b) - nil holds for every (a,b)el and hence by successive applications
of lemma 4.18 we conclude that ¢ G .

So, we are arrived at the main theorem of this section.
Theorem 4.24 Unary formal covers are exponentiable in FTop;™ .

Let us remark that the proof of this theorem is valid also intuitionistically
since no use of the axiom of choice is required in an impredicative approach.
So, theorem 4.24 constitutes a partial but completely predicative version of the
results in [Hyl81, Sig95]. Indeed, in these papers it is shown that if M is a locally
compact locale and £ is any locale then the local M — L is generated from
axioms on a proposition which represents the collection of frame morphisms
f* such that a is way-below f*(b). Now, when M is a locale representing an
algebraic dcpo, such a proposition corresponds exactly to our ext’((a,b) - nil)
since the latter represents the collection of all the continuous relations R such
that a R b.

4.3.4 Exponentiability in FTop;

After the proof that formal topologies coreflect in FTop; ™, it is easy to turn the
previous theorem 4.24 into a similar result within FTop;.

First of all, note that a full coreflection implies that the embedding functor
“creates” colimits from FTop;  into its subcategory FTop;, that is, if a co-limit
for a diagram in FTop; exists in FTop;™ then it exists also in FTop; (see ex.7 on
page 90 of [ML71]).

Moreover, it is also possible to show that even exponentiability is inherited
in FTop; from FTop;” because of the additional properties that the coreflection
of FTop;™ into FTop; enjoys.

Proposition 4.25 The functor Z : FTop; — FTop;™ preserves finite products.
Proof. We have to prove that, for any formal topologies A and B,
I(A x B) ~I(A) x I(B)

holds and that 7 preserves projections. The result follows because we showed
that the cartesian product in FTop;~ of two formal topologies inherits a posi-
tivity predicate.

Now we are ready to prove the inheritance of exponentiability from FTop;™
into FTop; as a corollary of the following categorical proposition.
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Proposition 4.26 Let 7 : S — C be the embedding functor of the subcategory
S of C and 0 be a right adjoint of Z. Then, if

1. C and S are cartesian,
2. T preserves binary products,
3. the composition of 8 with T is naturally isomorphic to the identity

then, any object A of S such that Z(A) is exponentiable in C is also exponentiable
in S.

Proof. Let A, B and C be objects of S and consider the following natural
isomorphisms

S(CxAB) ~ S(CxA6Z(B)) by fact (3)
~ C(Z(C x A),I(B)) by coreflection
~ C(Z(C) x T(A4),7(B)) by fact (2)
~ C(Z(C),Z(B)*) by exponentiability in C
~ S(C,0(Z(B)XA)) by coreflection

Since the isomorphisms above yield an isomorphism between S(C x A, B) and
S(C,8(Z(B)TA)), natural in C, then we conclude that (—) x A has a right
adjoint (—)? : S — S whose object part maps an object B of S to 6(Z(B)*(4))
(see corollary 2. on page 83 of [ML71]).

Now, we apply this proposition to the coreflection of formal topologies into
formal covers.

Corollary 4.27 Given any inductively generated formal topology A, if it is
exponentiable in FTop;™ then it is exponentiable also in FTop;. Thus, if A is a

unary formal topology then AP, which is isomorphic to A, is exponentiable in
FTOpi.

Proof. Thanks to theorem 3.18, lemmas 3.13 and 3.14 and prop. 4.25 the
statement is an immediate corollary of prop. 4.26.

Moreover, if we apply prop. 4.26 to the category of locales we deduce the
following exponentiability result.

Corollary 4.28 Open locally compact locales are exponentiable in the category
of open locales.

Proof. First note that the coreflection in prop. 3.19 enjoys the conditions 2)
and 3) of prop. 4.26 because it is obtained from the coreflection in prop. 3.18
via categorical equivalences. Hence, the result follows from prop. 4.26 since
in [Hyl81] it is proved that locally compact locales are exponentiable in the
category of locales.
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5 Concluding remarks

We add here some observations that can be useful for a more complete under-
standing of the topic of the paper and which are immediate consequences of our
work.

5.1 Why our result is limited to unary formal covers

We showed that all the conditions on a continuous relation F' from a unary
formal cover A4 to an inductively generated one B have in general one of the
following shapes, for a,a’ € A, b,b’ € B and V C B:

aRb P(a,b,a'b) aRb Qa,b, V)
a RV (JyeV)a Ry

Moreover, in section 4.3.1 we showed how to obtain an axiom out of each kind
of condition. In fact, for any [ € List(A x B), an axiom like

I<(a,b)-1
corresponds to a condition whose shape is

aRb P(a,bd,b)
a RV

if (a,b)el and P(a,b,a’,b') hold, and, for any [ € List(A x B), an axiom like
L <{(a,y)-1]|yeV}
corresponds to a condition whose shape is

aRb Qa,b,V)
(JyeV) a Ry

if (a,b)el and Q(a,b,V) hold.

Thus, we can define the exponential formal cover of an inductively generated
formal cover over another one provided that we can express the general condi-
tions on a continuous relation by using one of the shapes above. At present,
we have obtained this result only in the case of having a unary formal cover as
exponent.

5.2 Unary topologies are not closed under exponentiation

It is known that algebraic dcpos lack function spaces, that is, the category Alg is
not cartesian closed [AJ94]. Our work suggests where the problem rests. Indeed,
it is clear that all of the axioms of the exponential topology between unary
topologies satisfy the unary condition except for the axiom on unary convergence
because we can not limit it to a single element. This is to be contrasted with
what happens in the case of the category of unary formal topologies equipped
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with a monoid operation on the elements of the base which expresses intersection
of open subsets (see [MV03]). Indeed, this category turns out to be equivalent to
the category of Scott Domains [SVV96] and it can be proved to be predicatively
cartesian closed (see [Val03]).
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A On the definition of the positivity predicate

It is not difficult to realize that we can formalize the problem of defining the
positivity predicate by expressing it as the problem of finding the maximal
subset K of a set .S satisfying the following conditions

zeK  A(z,y) zeK yeB(z)
yeK (FveC(z,y)) veK

for some propositions A(z,y), B(z) and C(z,y).

Now, it is easy to see that one can use Tarski fixed point theorem in order to
solve such a problem in an impredicative way. Indeed, the map 7 : P(S) — P(S)
defined by setting

(X)) = {zeS|(Vyes) Alz,y) - yeX}
N{x €S| (VyeB(x))(FveC(z,y)) veX}

is clearly monotone and hence it admits a maximal fixed point which obviously
satisfies the required conditions.

On the other hand, a completely predicative definition of the positivity pred-
icate requires more attention. Here, we will adapt the approach proposed in
[Coq96, Pal02] to our presentation of formal topologies.

Let A be a set and I(a), for a € A, and C(a,i), for a € A and i € I(a), be
an axiom-set for an inductively generated formal topology over A. In order to
simplify the notation, let us suppose that the axiom-set contains, for any a € A,
an index i, for an axiom of the form C(a,i,) = {b} for any b € A such that
a < b holds. It is clear that given any axiom-set we can extend it to a new
axiom-set such that this condition is satisfied. In this way in the definition of
the positivity predicate, we can dispense with the condition of <-monotonicity
and we have to consider only axiom monotonicity. So, to define a positivity
predicate means to define the biggest subset Pos of A such that if zePos and
i € I(z) then there exists yeC(z,i) such that yePos. Then, let us consider a
map 7 : P(A) — P(A) defined by setting

T(X)={z € S| (Vi€ I(x))(IyeC(z,i)) yeX}

This definition is completely predicative; indeed, for any subset X of A,
7(X) is just the definition of another subset of A. It is trivial to realise that any
subset X of A such that X C 7(X) satisfies axiom monotonicity, but it is not a
positivity predicate since we need the biggest subset of A that satisfies such a
condition.

On the other hand, it is straightforward to check that the map 7 is monotone,
since X has only a positive occurrence, and hence, for any family (Xy)rek
of subsets of A such that X C 7(Xj), we have Upcp Xx € T(Upex Xk)-
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Thus, from an impredicative point of view, the easiest way to define a positivity
predicate is just to consider the union of all the subsets Y of A such that
Y C 7(Y) holds®.

In order to transform the impredicative definition above into a predicative
one we need to avoid making the union over all of the subsets Y of A such that
Y C 7(Y) and limit such a union over a limited family of subsets of A.

Observe now that, since the axiom-set we are dealing with is fixed, there is
some universe U* such that A, I(—) and C(—,—) “live” within it, that is, A
and I(—) are elements of U* and the family of subsets C'(—, —) of A is defined
by using only propositions which are elements of U*.

The idea is then to limit ourselves to consider the union over all the subsets
X of A which “live” within U* and satisfy the condition that X C 7(X). It can
be useful to observe that also this family of subsets is not empty since () surely
“lives” in U*.

Then the problem rests in showing that the union of all such subsets is still
the biggest subset Z of A such that Z C 7(Z).

Theorem A.1 Let Y be a subset of A such that Y C 7(Y) and suppose that
yeY . Then, there exists a subset X of A which “lives” in U* such that X C 7(X)
and ye X.

Proof. Let us first consider what ¥ C 7(Y") means. We can simply rewrite this
statement as follows

(Vy € A) (yeY) — (Vi € I(y)) (3w € A) (weC(y,1)) & (weY)
which, by an application of the so called aziom of choice, is equivalent to
() (Vy € 4) (yeY) = (3fy € I(y) = A)(Vi € I(y)) (fy(D)eC(y, 1)) & (f,(i)eY)

Consider now the following inductive definition of a sequence of subsets of A:

{y}
X, U{f.(i) € A| zeX, and i € I(2)}

Xo
Xn+1

In order to check that this sequence is well defined we have to show that, for
any natural number n, X,, C Y. Indeed, in this way we can prove that the
function f, that we use in the inductive step is effectively known. The proof
is by induction. The result is obviously true for n equal to 0 since yeY holds
by hypothesis. Assume now that X,, C Y and consider any element weX, ;.
Then weX,, and hence weY by inductive hypothesis, or w = f,(7) for some
zeXy and i € I(z). So, by inductive hypothesis, zeY" and hence f,(i)eY by (x).
In order to conclude, let us set

X* = U X,

n€ENat

41t can be useful to note that such a family of subsets is not empty since ® C 7(f) holds
trivially.
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Then X* is trivially a subset of A which contains the element y since yeXj.

Moreover X* C 7(X*) holds. Indeed, let us suppose that we X* and suppose
that 4 € I(w). Then we have to show that there exists an element zeC'(w,1)
such that ze X*. Now, we X ™ means that there is a natural number n such that
weX,. Hence weY and thus f,(i)eC(w,1), but, by definition, f,(i)eX,+1 and
hence f,,(i)e X*.

To conclude we have only to show that X* “lives” in U* and this amounts
to showing that all of the subsets X,, “live” in U*. This is obviously true for
X since Xg = (z: A) © =4 y. So, let us assume that X,, “lives” in U* in order
to show that X, does. Now, the formal definition of X,,; is

Xoy1=(@:A) zeX, V (Fz€ A) zeX,, & (Fi € I(2)) z =4 f.(0)

which is completely within U* when X,, “lives” in U*.?

51t can be useful to recall that the proposition £ =4 f.(4) belongs to U* whenever the set
A belongs to U™ even if the definition of the function f, requires a higher level universe.
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