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Abstract

We extend the notion of exact completion on a category with weak
finite limits to Lawvere’s elementary doctrines. We show how any such
doctrine admits an elementary quotient completion, which is the universal
solution to adding certain quotients. We note that the elementary quo-
tient completion can be obtained as the composite of two other universal
constructions: one adds effective quotients, the other forces extensionality
of morphisms. We also prove that each construction preserves comprehen-
sion.
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1 Introduction

Constructions for completing a category by quotients have been widely stud-
ied in category theory. The main instance is the so-called exact completion,
see [Carboni and Celia Magno, 1982, Carboni and Vitale, 1998], which is the
universal construction of an exact category over a category with finite limits;
it formally adds quotients of (pseudo-)equivalence relations. In general, the
category-theoretic analysis of the properties of quotients provides a very robust,
mathematically structured theory which can be applied in various situations:
the contents of the present paper offers precisely this with respect to the study
of foundational theories for constructive mathematics.

Indeed, the use of quotients is pervasive in interactive theorem proving where
proofs are performed in appropriate systems of formalized mathematics in a
computer-assisted way. Indeed some kind of quotient completion is compulsory
when mathematics is formalized within an intensional type theory, such as the
Calculus of (Co)Inductive Constructions [Coquand, 1990, Coquand and Paulin-
Mohring, 1990] or Martin-Löf’s type theory [Nordström et al., 1990]. In such
a context, an abstract, finitary construction of quotient completion provides a
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formal framework where to combine the usual practice of (extensional) math-
ematics, with the need of formalizing it in an intensional theory with strong
decidable properties (such as decidable type-checking) on which to perform the
extraction of algorithmic contents from proofs.

To make explicit the use of quotient completion in the formalization of con-
structive mathematics, the paper [Maietti, 2009] included such notion as part
of the very definition of constructive foundation which refines that originally
given in [Maietti and Sambin, 2005] in terms of a two-level theory. According
to [Maietti, 2009], a constructive foundation must be equipped with an inten-
sional level, which can be represented by a suitable starting category C, and an
extensional level that can be seen as (a fragment of) the internal language of
a suitable quotient completion of C. As investigated in [Maietti and Rosolini,
2013a], some examples of quotient completion performed on intensional theor-
ies, such as the intensional level of the minimalist foundation in [Maietti, 2009],
or the Calculus of Constructions, do not fall under the known constructions of
exact completion given that the corresponding type theoretic categories closed
under quotients are not exact.

In [Maietti and Rosolini, 2013a] we studied the abstract category-theoretical
structure behind such quotient completions. To this purpose we introduced the
notion of equivalence relation and quotient relative to a suitable fibered poset
and produced a universal construction adding effective quotients—hence the
name elementary quotient completion—to elementary doctrines.

In the present paper we isolate the basic components of the universal con-
structions in [Maietti and Rosolini, 2013a]. After recalling the basic notions
required in the sequel, we show how to add effective quotients universally to an
elementary doctrine in the sense of [Lawvere, 1970], a fibered inf-semilattice on
a category with finite products, endowed with equality. Separately, we describe
how to force extensional equality of morphisms to (the base of) an elementary
doctrine. Then we prove that the two constructions can be combined to give the
elementary quotient completion. Finally we check that the exact completion of
a category with products and weak equalizers is an instance of the elementary
quotient completion while the regular completion of a category is an instance
of a rather different construction.

2 Doctrines

We analyse quotients within the general theory of fibrations, in particular,
the basic fibrational concept that we shall employ is that of a doctrine. It
was introduced, in a series of seminal papers, by F.W. Lawvere to synthet-
ize the structural properties of logical systems, see [Lawvere, 1969a, Lawvere,
1969b, Lawvere, 1970], see also [Lawvere and Rosebrugh, 2003] for a unified
survey. Lawvere’s crucial intuition was to consider logical languages and the-
ories as fibrations to study their 2-categorical properties, e.g. connectives and
quantifiers are determined by structural adjunctions. That approach proved ex-
tremely fruitful, see [Makkai and Reyes, 1977, Carboni, 1982, Lambek and Scott,
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1986, Jacobs, 1999, Taylor, 1999, van Oosten, 2008] and references therein.
Taking advantage of the category-theoretical presentation of logic by fibra-

tions, we first introduce a general notion of elementary doctrine which we
found appropriate to study the notion of quotient of an equivalence relation,
see [Maietti and Rosolini, 2013a, Maietti and Rosolini, 2013b].

Denote by InfSL the category of inf-semilattice, i.e. posets with finite infima,
and functions between them which preserves finite infima.

2.1 Definition. Let C be a category with binary products. An elementary
doctrine (on C) is an indexed inf-semilattice P : Cop −→ InfSL such that, for
every object A in C, there is an object δA in P (A×A) such that

(i) the assignment

E

〈idA,idA〉(α) := Ppr1(α) ∧A×A δA
for α in P (A) determines a left adjoint to P〈idA,idA〉:P (A×A)→ P (A)—
here and below we write Pf for the value of the indexing functor P on a
morphism f ;

(ii) for every morphism e of the form 〈pr1,pr2,pr2〉:X × A → X × A × A in
C, the assignment

E

e(α) := P〈pr1,pr2〉(α) ∧X×A×A P〈pr2,pr3〉(δA)

for α in P (X × A) determines a left adjoint to Pe:P (X × A × A) →
P (X ×A).

2.2 Remark. (a) Condition (i) determines δA uniquely for every object A in
C.
(b) Since 〈pr2,pr1〉 ◦ 〈idA, idA〉 = 〈idA, idA〉, from (a) it follows that

E

〈idA,idA〉(α) = Ppr2(α) ∧A×A δA

for every α in P (A).
(c) In case C has a terminal object, conditions (ii) entails condition (i).
(d) One has that >A ≤A P〈idA,idA〉(δA) and δA ≤A×A Pf×f (δB) when f :A→ B.

2.3 Remark. For α1 in P (X1 × Y1) and α2 in P (X2 × Y2), it is useful to
introduce a notation like α1 � α2 for the object

P〈pr1,pr3〉(α1) ∧ P〈pr2,pr4〉(α2)

in P (X1 × X2 × Y1 × Y2) where pri, i = 1, 2, 3, 4, are the projections from
X1×X2×Y1×Y2 to each of the four factors—like we did above, we shall often
drop the index in an infimum on in an inequality when it is clear in which fiber
it is. Then condition 2.1(ii) is equivalent to the requirement that, for every pair
of objects A and B in C, one has δA×B = δA � δB . We refer the reader to
[Jacobs, 1999, Maietti and Rosolini, 2013a] for further details.
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2.4 Examples. (a) The standard example of an indexed poset is the fibration
of subobjects. Consider a category C with products and pullbacks. The functor
S: Cop −→ InfSL assigns to any object A in C the poset S(A) of subobjects of
A in C. For a morphism f :B → A, the assignment that maps a subobject in
S(A) to that represented by the left-hand morphism in any pullback along f of
its produces a functor Sf :S(A)→ S(B) that preserves products.

The elementary structure is provided by the diagonal morphisms.
(b) (For logicians) The Lindenbaum-Tarski algebras of well-formed formulas of a
theory T with equality in the first order language L provide another instance
of elementary doctrine, in fact we believe it shows how elementary doctrines
provide the appropriate abstract mathematical structure for that construction.
The domain category is the category V of lists of variables and term substitu-
tions:

object of V are lists of distinct variables ~x = (x1, . . . , xn);

morphisms are lists of substitutions1 for variables [~t/~y]: ~x → ~y where each
term tj in ~t is built in L on the variables x1, . . . , xn;

composition ~x
[~t/~y] //~y

[~s/~z] //~z is given by simultaneous substitutions

~x
[s1[~t/~y]/z1,...,sk[~t/~y]/zk] // ~z .

The product of two objects ~x and ~y is given by a(ny) list ~w of as many distinct
variables as the sum of the number of variables in ~x and of that in ~y. Projections
are given by substitution of the variables in ~x with the first in ~w and of the
variables in ~y with the last in ~w.

The elementary doctrine LT :Vop −→ InfSL on V is given as follows: for a
list of distinct variables ~x, the inf-semilattice LT (~x) has

objects equivalence classes of well-formed formulas of L with no more free
variables than x1,. . . ,xn with respect to provable reciprocal consequence
W a`T W ′ in T ;

morphisms [W ]→ [V ] are the provable consequences W `T V in T for some
pair of representatives (hence for any pair);

composition is given by the cut rule in the logical calculus;

identities [W ]→ [W ] are given by the logical rules W `T W .

For a list of distinct variables ~x, the psoet LT (~x) has finite infima: the top ele-
ment is ~x = ~x and the infimum of a pair of formulas is obtained by conjunction.
(c) Consider a category S with binary products and weak pullbacks. Another
example of elementary doctrine which appears prima facie very similar to pre-
vious example (a) is given by the functor of weak subobjects Ψ:Sop −→ InfSL

1We shall employ a vector notation for lists of terms in the language as well as for simul-
taneous substitutions such as [~t/~y] in place of [t1/y1, . . . , tm/ym].
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which evaluates as the poset reflection of each comma category S/A at each
object A of S, introduced in [Grandis, 2000].

The apparently minor difference between the present example and example
(a) depends though on the possibility of factoring an arbitrary morphism as a
retraction followed by a monomorphism: for instance this can be achieved in the
category Set of sets and functions thanks to the Axiom of Choice, see loc.cit.

It is possible to express precisely how the examples are related once we
consider the 2-category ED of elementary doctrines:

the 1-morphisms are pairs (F, b) where F : C → D is a functor and b:P
.→

R ◦ F op
is a natural transformation as in the diagram

Cop

P

))
F

op

��

InfSL

Dop R

55b ·
��

where the functor F preserves products and, for every object A in C, the
functor bA:P (A)→ R(F (A)) preserves all the structure. More explicitly,
for every object A in C, the function bA preserves finite infima and

bA×A(δA) = R〈F (pr1),F (pr2)〉(δF (A)); (1)

the 2-morphisms are natural transformations θ:F
.→ G such that

Cop

P

++
F

op

��

G
op





InfSL

Dop R

33b ·
��
· c
��

.

θ
op
oo ≤

so that, for every A in C and every α in P (A), one has bA(α) ≤F (A)

RθA(cA(α)).

2.5 Examples. (a) Given a theory T with equality in a first order language
L (say with a single sort), a 1-morphism (F, b):LT → S from the elementary
doctrine LT :Vop −→ InfSL as in 2.4(b) into S:Setop −→ InfSL, the elementary
doctrine in 2.4(a) with C = Set , determines a model M of T where the set un-
derlying the interpretation is F (x). In fact, there is an equivalence between the
category ED(LT, S) and the category of models of T and L -homomorphisms.
(b) Given a category C with products and pullbacks, one can consider the two
indexed posets: that of subobjects S: Cop −→ InfSL, and the other Ψ: Cop −→
InfSL, obtained by the poset reflection of each comma category C/A, for A in C.
The inclusions of the poset S(A) of subobjects over A into the poset reflection
of C/A extend to a 1-morphism from S to Ψ which is an equivalence exactly
when every morphism in C can be factored as a retraction followed by a monic.
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3 Quotients in an elementary doctrine

The structure of elementary doctrine is suitable to describe the notions of an
equivalence relation and of a quotient for such a relation.

3.1 Definition. Given an elementary doctrine P : Cop −→ InfSL, an object A
in C and an object ρ in P (A×A), we say that ρ is a P -equivalence relation
on A if it satisfies

reflexivity : δA ≤ ρ;

symmetry : ρ ≤ P〈pr2,pr1〉(ρ), for pr1,pr2:A × A → A the first and second
projection, respectively;

transitivity : P〈pr1,pr2〉(ρ)∧P〈pr2,pr3〉(ρ) ≤ P〈pr1,pr3〉(ρ), for pr1,pr2,pr3:A×A×
A→ A the projections to the first, second and third factor, respectively.

In elementary doctrines as those presented in 2.4, P -equivalence relations
concide with the usual notion for those of the form (a) or (b); more interestingly,
in cases like (c) a Ψ-equivalence relation is a pseudo-equivalence relation in S
in the sense of [Carboni and Celia Magno, 1982].

For P : Cop −→ InfSL an elementary doctrine, the object δA is a P -equivalence
relation on A. And for a morphism f :A → B in C, the functor Pf×f :P (B ×
B) → P (A × A) takes a P -equivalence relation σ on B to a P -equivalence
relation on A. Hence, the P -kernel equivalence of f :A → B, the object
Pf×f (δB) of PA×A is a P -equivalence relation on A. In such a case, one speaks
of Pf×f (δB) as an effective P -equivalence relation.

3.2 Remark. A 1-morphism (F, b):P → R in ED takes a P -equivalence relation
on A to an R-equivalence relation on FA.

3.3 Remark. The notion of P -equivalence relation can be stated in any indexed
inf-semilattice P : Cop −→ InfSL replacing the condition of reflexivity by

>A ≤ P〈idA,idA〉ρ.

We refer the interested reader to [Pasquali, 2013].

3.4 Definition. Let P : Cop −→ InfSL be an elementary doctrine. Let ρ be a
P -equivalence relation on A. A P -quotient of ρ (or simply a quotient when
the doctrine is clear from the context) is a morphism q:A → C in C such that
ρ ≤ Pq×q(δC) and, for every morphism g:A→ Z such that ρ ≤ Pg×g(δZ), there
is a unique morphism h:C → Z such that g = h ◦ q.

We say that such a P -quotient is stable if, in every pullback

A′

f ′

��

q′ // C ′

f

��
A

q
// C

in C, the morphism q′:A′ → C ′ is a P -quotient.
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Note that the inequality ρ ≤ Pq×q(δC) in 3.4 becomes an equality exactly
when ρ is effective.

3.5 Remark. We should pause briefly to point out that the previous require-
ment of stability differs slightly from the usual one, see [Janelidze and Tholen,
1994, Janelidze et al., 2004, Joyal and Moerdijk, 1995, Hyland et al., 1990],
where existence of any pullback of a quotient would be enforced in order to
declare it stable. But we must recall that the main intention of the present
paper is to adopt the point of view of category theory to analyse foundational
theories. All examples in that area suggest to look at indexed categories—as
their syntactic presentation yields directly that structure and the induced fibra-
tion of points has a cleavage—, and very rarely the base category of indices has
pullbacks. Also, the universal solution will appear only if one states stability as
in 3.4.

In the elementary doctrine S: Cop −→ InfSL obtained from a category C with
products and pullbacks as in 2.4(a), a quotient of the S-equivalence relation
[r:R // //A×A ] is precisely a coequalizer of the pair of

R
pr1◦r //
pr2◦r

// A

In particular, all S-equivalence relations have stable, effective quotients if and
only if the category C is exact.

Similarly, in the elementary doctrine Ψ:Sop −→ InfSL obtained from a
category C with binary products and weak pullbacks as in 2.4(c), a quotient of
the Ψ-equivalence relation [r:R //A×A ] is precisely a coequalizer of the pair
of

R
pr1◦r //
pr2◦r

// A

In particular, all Ψ-equivalence relations have quotients which are stable if and
only if the category C is exact.

The abstract theory that captures the essential action of a quotient is that
of descent. We recall some basic concepts from that in our particular case
of interest of an elementary doctrine P : Cop −→ InfSL, see [Janelidze et al.,
2004, Janelidze and Tholen, 1994, Janelidze and Tholen, 1997] for an excellent
survey on descent theory.

For a P -equivalence relation ρ on an object A in C, the poset of descent data
Desρ is the sub-poset of P (A) on those α such that

Ppr1(α) ∧A×A ρ ≤ Ppr2(α),

where pr1,pr2:A×A→ A are the projections. It is easy to see that Desρ ⊆ P (A)
is closed under infima.

It follows immediately from 2.2(b) that, for any object A in C, one has that

DesδA = P (A).
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For f :A → B in C, write φ for the P -kernel equivalence Pf×f (δB). The
functor Pf :P (B) → P (A) maps P (B) into Desφ—it is the usual compar-
ison functor. The morphism f is descent if the (obviously faithful) functor
Pf :P (B) → Desφ is also full. The morphism f is effective descent if the
functor Pf :P (B)→ Desφ is an equivalence.

Consider the 2-full 2-subcategory QED of ED whose objects are elementary
doctrines P : Cop −→ InfSL in which every P -equivalence relation has a stable
P -quotient that is a descent morphism.

The 1-morphisms are those pairs (F, b) in ED

Cop

P

))
F

��

InfSL

Dop R

55b ·
��

such that F preserves quotients in the sense that, if q:A→ C is a quotient
of a P -equivalence relation ρ on A, then Fq:FA → FC is a quotient of
the R-equivalence relation R〈F (pr1),F (pr2)〉(bA×A(ρ)) on FA.

4 Completing with quotients as a universal con-
struction

It is a simple construction that produces an elementary doctrine with quotients.
We shall present it below and prove that it satisfies a suitable universal property.

Let P : Cop −→ InfSL denote an elementary doctrine for the rest of the
section. Consider the category RP of “equivalence relations of P”:

an object of RP is a pair (A, ρ) such that ρ is a P -equivalence relation on A;

a morphism f : (A, ρ)→ (B, σ) is a morphism f :A→ B in C such that ρ ≤A×A
Pf×f (σ) in P (A×A).

Composition is given by that of C, and identities are the identities of C.
The indexed poset (P )q :RP

op −→ InfSL on RP will be given by categories
of descent data: on an object (A, ρ) it is defined as

(P )q(A, ρ) := Desρ

and the following lemma is instrumental to give the assignment on morphisms
using the action of P on morphisms.

4.1 Lemma. With the notation used above, let (A, ρ) and (B, σ) be objects in
RP , and let β be in Desσ. If f : (A, ρ) → (B, σ) is a morphism in RP , then
Pf (β) is in Desρ.
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Proof. Let pr1,pr2:A × A → A and pr′1,pr′2:B × B → B be the product pro-
jections. Since β is in Desσ, it is

Ppr′1
(β) ∧ σ ≤B×B Ppr′2

(β).

Hence
Pf×f (Ppr1(β)) ∧ Pf×f (σ) ≤A×A Pf×f (Ppr2(β))

as Pf×f preserves the structure. Since ρ ≤A×A Pf×f (σ), we have

Ppr1(Pf (β)) ∧ ρ ≤A×A Ppr2(Pf (β)).

4.2 Lemma. With the notation used above, the functor (P )q :RP
op −→ InfSL

is an elementary doctrine.

Proof. For (A, ρ) and (B, σ) in RP let pr1,pr3:A × B × A × B → A and
pr2,pr4:A × B × A × B → B be the four projections. As an infimum of two
P -equivalence relations on A×B, the P -equivalence relation

ρ� σ := P〈pr1,pr3〉(ρ) ∧A×B×A×B P〈pr2,pr4〉(σ)

provides an object (A × B, ρ � σ) in RP which, together with the morphisms
determined by the two projections from A×B, is a product of (A, ρ) and (B, σ)
in RP .
For an object (A, ρ) in RP , one sees that ρ ∈ P (A × A) is in Desρ�ρ using
symmetry and transitivity. We check that the assignment ((

E

)q)〈idA,idA〉(α) :=
Ppr1(α)∧A×Aρ, for α inDesρ, gives the left adjoint ((

E

)q)〈idA,idA〉 for ((P )q)〈idA,idA〉
and leave the proof of 2.1(ii) to the reader.
Consider β inDesρ�ρ such that α ≤(A,ρ) ((P )q)〈idA,idA〉(β), i.e. α ≤A P〈idA,idA〉(β).
Therefore

E

〈idA,idA〉(α) ≤A×A β, which is the same as Ppr1(α) ∧ δA ≤A×A β by
2.1(i). It follows that

Ppr′1
(α) ∧ P〈pr′1,pr′2〉(δA) ∧ P〈pr′2,pr′3〉(ρ) ≤A×A×A P〈pr′1,pr′2〉(β) ∧ P〈pr′2,pr′3〉(ρ)

≤A×A×A P〈pr′1,pr′3〉(β)

for pr′i:A×A×A→ A, i = 1, 2, 3, the projections. Reindexing the inequality
along the morphism 〈pr1,pr2,pr2〉:A×A→ A×A×A, one obtains that Ppr1(α)∧
ρ ≤A×A β, i.e.

((

E

)q)〈idA,idA〉(α) ≤(A×A,ρ�ρ) β.

The reverse implication that α ≤ ((P )q)〈idA,idA〉(β) when ((

E

)q)〈idA,idA〉(α) ≤ β
follows immediately by reflexivity of ρ.

There is an obvious 1-morphism (J, j):P → (P )q in ED, where J : Cop −→
RP sends an object A in C to (A, δA) and a morphism f :A→ B to f : (A, δA)→
(B, δB) since δA ≤A×A Pf×f (δB), and jA:P (A) → (P )q(A, δA) is the identity
since

(P )q(A, δA) = DesδA = P (A).
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It is immediate to see that J is full and faithful and that (J, j) is a change of
base.

4.3 Remark. Note that an object of the form (A, δA) in RP is projective with
respect to quotients of (P )q -equivalence relation, and that every object in RP
is a quotient of a (P )q -equivalence relation on such a projective.

4.4 Lemma. With the notation used above, (P )q :RP
op −→ InfSL has des-

cent quotients of (P )q-equivalence relations. Moreover, quotients are stable and
effective descent, and P -equivalence relations are effective.

Proof. Since the sub-poset Desρ ⊆ P (A) is closed under finite infima, a (P )q -
equivalence relation τ on (A, ρ) is also a P -equivalence relation on A. It is easy
to see that idA: (A, ρ)→ (A, τ) is a descent quotient since ρ ≤A×A τ—actually,
effectively so. It follows immediately that τ is the P -kernel equivalence of the
quotient idA: (A, ρ)→ (A, τ). To see that it is also stable, suppose

(B, υ)
f ′
//

g

��

(A, ρ)

idA

��
(C, σ)

f // (A, τ)

is a pullback in RP . So in the commutative diagram

(C, σ ∧ Pf×f (ρ))

idC
&&

f

((
(B, υ)

f ′
//

g

��

(A, ρ)

idA

��
(C, σ)

f // (A, τ)

there is a fill-in morphism h: (C, σ ∧ Pf×f (ρ)) → (B, υ). It is now easy to see
that g: (B, υ)→ (C, σ) is a quotient.

We can now prove that there is a left biadjoint to the forgetful 2-functor
U :QED→ ED.

4.5 Theorem. For every elementary doctrine P : Cop −→ InfSL, pre-composition
with the 1-morphism

Cop
P

))
J

��

InfSL

RP
op (P )q

55j ·
��
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in ED induces an essential equivalence of categories

− ◦ (J, j):QED((P )q , Z) ≡ ED(P,Z) (2)

for every Z in QED.

Proof. Suppose Z is a doctrine in QED. As to full faithfulness of the functor
in (2), consider two pairs (F, b) and (G, c) of 1-morphisms from (P )q to Z. By
4.3, the natural transformation θ:F

.→ G in a 2-morphism from (F, b) to (G, c)
in QED is completely determined by its action on objects in the image of J
and (P )q -equivalence relations on these. And, since a quotient q:U → V of an
Z-equivalence relation r on U is descent, Z(V ) is a full sub-poset of Z(U). Thus
essential surjectivity of the functor in (2) follows from 4.3.

Recall that, for an elementary doctrine P : Cop −→ InfSL, and for an object
α in some P (A), a comprehension of α is a morphism {|α|}:X → A in C such
that P{|α|}(α) = >X and, for every f :Z → A such that Pf (α) = >Z there is a
unique morphism g:Z → X such that f = {|α|} ◦ g. Hence a comprehension is
necessarily monic.

One says that P has comprehensions if every α has a comprehension, and
that P has full comprehensions if, moreover, α ≤ β in P (A) whenever {|α|}
factors through {|β|}.

4.6 Lemma. Let P : Cop −→ InfSL be an elementary doctrine. If P has com-
prehensions, then (P )q has comprehensions. Moreover, given a comprehension
{|α|}:X → A of α in P (A), the morphism J({|α|}): JX → JA is a comprehension
of jA(α) if and only if δX = P{|α|}×{|α|}(δA).

Proof. Suppose (A, ρ) is in RP and α in (P )q(A, ρ) = Desρ ⊆ P (A). Let
{|α|}:X → A be a comprehension in C of α as an object of P (A) and con-
sider the object (X,P{|α|}×{|α|}(ρ)) in RP . Clearly {|α|} determines a morphism
(X,P{|α|}×{|α|}(ρ)) → (A, ρ) in RP ; we intend to show that that morphism is
a comprehension of α as an object in (P )q(A, ρ). The following is a trivial
computation in DesP{|α|}×{|α|}(ρ) ⊆ P (X):

>X = P{|α|}(α) = (P )q{|α|}(α).

Suppose now that f : (Z, σ) → (A, ρ) is such that >Z = (P )qf
(α). Since {|α|}

is a comprehension in C, there is a unique morphism g:Z → X such that
f = {|α|} ◦ g. To conclude, it is enough to show that g determines a morphism
(Z, σ)→ (X,P{|α|}×{|α|}(ρ)) in RP , but

σ ≤Z×Z Pf×f (ρ) = Pg×g(P{|α|}×{|α|}(ρ)).

As for the second part of the statement, let α be in P (A) and let {|α|}:X → A be
a comprehension of α in C. Suppose, first, that δX = P{|α|}×{|α|}(δA), and consider
a morphism f : (Z, σ) → (A, δA) such that ((P )q)f (α) = >Z . By definition of
(P )q , there is a unique morphism g:Z → X such f = {|α|} ◦ g in C. Thus

σ ≤Z×Z Pf×f (δA) = Pg×gP{|α|}×{|α|}(δA) = Pg×g(δX).
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Conversely, suppose {|α|}: (X, δX) → (A, δA) in RP is a (necessarily monic)
comprehension of α in (P )q . Consider {|α|}: (X,P{|α|}×{|α|}(δA))→ (A, δA). Since
((P )q){|α|}(α) = P{|α|}(α) = >X , the morphism must factor through {|α|}: (X, δX)→
(A, δA), necessarily with the identity morphism. Hence the conclusion fol-
lows.

4.7 Remark. When P has full comprehensions and every diagonal morphism
〈idA, idA〉:A→ A× A is a comprehension, the condition δX = P{|α|}×{|α|}(δA) is
ensured for all A and α.

Observe that the fibration of vertical morphisms on the category GrP of
points [Jacobs, 1999] universally adds comprehensions to a given fibration pro-
ducing an indexed poset in case the given fibration is such. In our case of
interest, for a doctrine P : Cop −→ InfSL, the indexed poset consists of the base
category GrP where

an object is a pair (A,α) where A is in C and α is in P (A);

a morphism f : (A,α)→ (B, β) is a morphism f :A → B in C such that α ≤
Pf (β).

The category GrP has products and there is a natural embedding I: C → GrP
which maps A to (A,>A). The indexed functor extends to (P )c :GrP

op −→
InfSL along I by setting (P )c(A,α) := {γ ∈ P (A) | γ ≤ α}. Moreover, the
comprehensions in (P )c are full. As an immediate corollary, we have the follow-
ing.

4.8 Theorem. There is a left biadjoint to the forgetful 2-functor from the full
2-category of QED on elementary doctrines with comprehensions and stable
descent quotients into the 2-category ED of elementary doctrines.

Proof. The left biadjoint sends an elementary doctrine P : Cop −→ InfSL to the

elementary doctrine ((P )c)q :R(P )c

op −→ InfSL.

5 Extensional equality

In [Maietti and Rosolini, 2013a], “extensional” models of constructive theories,
presented as doctrines P : Cop −→ InfSL, were obtained by forcing the equality
of morphisms f, g:A→ B in the base category C to correspond to the “provable”
equality >A = P〈f,g〉(δB) in the fibre P (A). We recall from [Jacobs, 1999] the
basic property that supports a stronger notion of equality for the case of an
elementary doctrine.

5.1 Proposition. Let P : Cop −→ InfSL be an elementary doctrine and let A
be an object in C. The diagonal 〈idA, idA〉:A → A × A is a comprehension if
and only if it is the comprehension of δA.
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5.2 Definition. Given an elementary doctrine P : Cop −→ InfSL we say that
it has comprehensive diagonals if every diagonal morphism 〈idA, idA〉:A→
A×A is a comprehension.

5.3 Remark. In case C has equalizers, one finds that P has comprehensive
diagonals in the sense of [Maietti and Rosolini, 2013a].

Let P : Cop −→ InfSL be an elementary doctrine for the rest of the section.
Consider the category XP , the “extensional collapse” of P :

the objects of XP are the objects of C;

a morphism [f ] :A→ B is an equivalence class of morphisms f :A → B in C
such that δA ≤A×A Pf×f (δB) in P (A×A) with respect to the equivalence
which relates f and f ′ when δA ≤A×A Pf×f ′(δB).

Composition is given by that of C on representatives, and identities are repres-
ented by identities of C.

5.4 Lemma. The quotient functor C −→ XP preserves finite products.

Proof. Given a product diagram A A×B
pr1oo pr2 //B in C, the diagram

A A×B
[pr1]oo [pr2] // B

in XP is clearly a weak product. To check that it is strong, suppose that
f, g:X → A × B are such that δX ≤X×X P(pr1f)×(pr1g)

(δA) and δX ≤X×X
P(pr2f)×(pr2g)

(δB). Recall from 2.3 that

δA×B = δA � δB = P〈pr1,pr3〉(δA) ∧ P〈pr2,pr4〉(δB)

where pri, i = 1, 2, 3, 4, are the projections from A×B ×A×B. So

Pf×g(δA×B) = P(pr1f)×(pr1g)
(δA) ∧ P(pr2f)×(pr2g)

(δB).

Hence the hypothesis on f and g ensures that δX ≤X×X Pf×g(δA×B) which
yields the conclusion.

The indexed inf-semilattice (P )x :XP
op −→ InfSL on XP will be given es-

sentially by P itself; the following lemma is instrumental to give the assignment
on morphisms using the action of P on morphisms.

5.5 Lemma. With the notation used above, let f, g:A→ B be morphisms in C
and β an object in P (B). If δA ≤A×A Pf×g(δB), then Pf (β) = Pg(β).

Proof. Suppose that δA ≤A×A Pf×g(δB). Write pr1,pr2:A×A→ A for the two
projections and, similarly, pr′1,pr′2:B × B → B. By 2.2(b) one has Ppr′1

(β) ∧
δB ≤B×B Ppr′2

(β). Thus

Pf×g(Ppr′1
(β)) ∧ Pf×g(δB) ≤A×A Pf×g(Ppr′2

(β)).
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From the hypothesis it follows that

Pf◦pr1(β) ∧ δA ≤A×A Pg◦pr2(β).

Taking P〈idA,idA〉 of both sides,

Pf (β) = Pf (β)∧>A = P〈idA,idA〉(Pf◦pr1(β))∧P〈idA,idA〉(δA) ≤ P〈idA,idA〉(Pg◦pr2(β)) = Pg(β).

The other direction follows by symmetry.

In other words, the elementary doctrine P : Cop −→ InfSL factors through the

quotient functor K: Cop −→ XP . That induces a 1-morphism (K, k):P → (P )x

in ED, where kA is the identity for A in C.
Consider the full 2-subcategory CED of ED whose objects are elementary

doctrines P : Cop −→ InfSL with comprehensive diagonals.
The following result is now obvious.

5.6 Lemma. With the notation used above, (P )x :XP
op −→ InfSL is an ele-

mentary doctrine with comprehensive diagonals.

Also the following is easy.

5.7 Theorem. For every elementary doctrine P : Cop −→ InfSL, pre-composition
with the 1-morphism

Cop
P

))
K

��

InfSL

XP
op (P )x

55k ·
��

in ED induces an essential equivalence of categories

− ◦ (K, k):CED((P )x , Z) ≡ ED(P,Z) (3)

for every Z in CED.

We can now mention the explicit connection between the two universal con-
structions we have considered. For that it is useful to prove the following two
lemmas.

Note that for any elementary doctrine Q: Cop −→ InfSL with effective quo-
tients, the doctrine (Q)x has only a weak form of quotients. But when Q = (P )q

of an elementary doctrine P , then we can prove:

5.8 Lemma. Let P : Cop −→ InfSL be an elementary doctrine. The morphism
(K, k): (P )q → ((P )q)x preserves quotients and therefore ((P )q)x has effective
descent quotients of ((P )q)x-equivalence relations.

Proof. It is easy to check that K preserves quotients of (P )q -equivalence re-
lations. Since the k-components of (K, k):P → (P )x are identity functions,
a ((P )q)x -equivalence relation τ on A is also a (P )q -equivalence relation in
P (A×A).
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Moreover, note that for any elementary doctrine Q: Cop −→ InfSL with
comprehensions, the doctrine (Q)x has only weak comprehensions. But when
Q = (P )c of an elementary doctrine P , then we can prove:

5.9 Lemma. Let P : Cop −→ InfSL be an elementary doctrine, then ((P )c)x has
full comprehensions and comprehensive diagonals.

The results of this section, together with 4.5, produce an extension of the
quotient completion of [Maietti and Rosolini, 2013a].

5.10 Theorem. There is a left biadjoint to the forgetful 2-functor from the full
2-category of QED on elementary doctrines with comprehensions, stable descent
quotients and comprehensive diagonals into the 2-category ED of elementary
doctrines.

Proof. The left biadjoint sends an elementary doctrine P : Cop −→ InfSL to the

elementary quotient completion ((((P )c)x)q)x :X(((P )c )x)q

op −→ InfSL.

5.11 Corollary. For P : Cop −→ InfSL an elementary doctrine, the element-

ary quotient completion P :QP
op −→ InfSL in [Maietti and Rosolini, 2013a]

coincides with the doctrine ((P )q)x :X(P )q

op −→ InfSL.

5.12 Remark. Because of the logical setup in [Maietti and Rosolini, 2013a],
only a particular case of 5.10 was proved, namely the left biadjoint was restricted
to the full sub-2-category of ED of elementary doctrines with full comprehen-
sions and comprehensive diagonals, see 5.3. On those doctrines P : Cop −→
InfSL, the action of the left biadjoint was simply ((P )q)x :X(P )q

op −→ InfSL.

6 Comparing some universal contructions

The elementary quotient completion resembles very closely that of exact com-
pletion. In fact, one has the following results.

6.1 Theorem. Given a category S with finite products and weak pullbacks,
let Ψ:Sop −→ InfSL be the elementary doctrine of weak subobjects. Then the

doctrine ((Ψ)q)x :X(Ψ)q

op −→ InfSL, is equivalent to the doctrine S:Sex
op −→

InfSL of subobjects on the exact completion Sex of S.

Proof. It follows from 4.3 and the characterization of the embedding of S into
Sex in [Carboni and Vitale, 1998].

Though an elementary quotient completion with full comprehension is reg-
ular, see [Maietti and Rosolini, 2013a], the regular completion is an instance
of a completion of a doctrine which is radically different from the elementary
quotient completion in 5.10.
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6.2 Remark. For an elementary dotrine P : Cop −→ InfSL, a weak compre-
hension of α is a morphism {|α|}:X → A in C such that >X ≤ P{|α|}(α) and,
for every morphism g:Y → A such that >Y ≤ Pg(α) there is a (not necessarily
unique) h:Y → X such that g = {|α|} ◦ h, see [Maietti and Rosolini, 2013a].

For an elementary doctrine P : Cop −→ InfSL with weak comprehensions, it
is possible to add (strong) comprehensions to its extensional collapse as formal
retracts of weak comprehensions: consider the category DP determined by the
following data

objects of DP are triples (A,α, c) such that A is an object in C, α is an object
in P (A), and c:X → A is a weak comprehension α;

a morphism [f ] : (A,α, c) → (B, β, d) is an equivalence class of morphisms
f :X → Y in C such that Pc×c(δA) ≤ Pf×f (Pd×d(δB)) with respect to the
relation f ∼ f ′ determined by Pc×c(δA) ≤ Pf×f ′(Pd×d(δB));

composition of [f ] : (A,α, c)→ (B, β, d) and [g] : (B, β, d)→ (C, γ, e) is [g ◦ f ].

There is a full functorK: C → DP defined on objectsA asK(A) := (A,>A, idA)—
it factors through XP . It preserves products and there is an extension (P )r :DP

op −→
InfSL of P :C

op −→ InfSL defined on objects as (P )r(A,α, c) := Des(Pc×c(δA)).

The doctrine (P )r :DP
op −→ InfSL is elementary with comprehensions and K

preserves all existing comprehensions.
Given a category S with finite products and weak pullbacks, let Ψ:Sop −→

InfSL be the elementary doctrine of weak subobjects. Then the doctrine (Ψ)r :DΨ
op −→

InfSL is equivalent to the doctrine S:Sreg
op −→ InfSL of subobjects on the reg-

ular completion Sreg of S.
The proof is similar to that of 6.1 since, in the regular completion Sreg of

S, every object is covered by a regular projective and a subobject of a regular
projective, see [Carboni and Vitale, 1998].

Since the construction given in 6.1 factors through that in 6.2 via the exact
completion of a regular category, see [Freyd and Scedrov, 1991], and the exact
completion of a weakly finitely complete category may appear very similar to
the category X((P )q)x

, it is appropriate to mention an example of an elementary

quotient completion which is not exact.
For that, consider the indexed poset on the monoid of partial recursive func-

tions F :N op −→ InfSL whose value on the single object of N is the powerset
of the natural numbers and, for any ϕ partial recursive function, Fϕ := ϕ−1,
the inverse image of a subset along the partial function. It is clearly an ele-
mentary doctrine, and the doctrine ((F )c)x :X(F )c

op −→ InfSL is equivalent

to the subobject doctrine S:PRop −→ InfSL on the category PR of subsets of
natural numbers and (restrictions of) partial recursive functions between them,
see [Carboni, 1995] for properties of that category, in particular its exact com-
pletion (as a weakly finitely complete category) is the category D of discrete
objects of the effective topos.
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Now, if one considers the elementary doctrine ((S)q)x :X(S)q

op −→ InfSL,

the category X(S)q
is equivalent to the category PER of partial equivalence

relations on the natural numbers, and the indexed poset ((S)q)x is equivalent
to that of subobjects on that category. The category PER is not exact because
there are equivalence relations which are not kernel equivalences. In fact, the
exact completion PERex/reg of PER as a regular category is the category D of
discrete objects.

Similar examples can be produced using topological categories such as those
in the papers [Birkedal et al., 1998, Carboni and Rosolini, 2000]. Other examples
of elementary quotient completions that are not exact are given in the paper
[Maietti and Rosolini, 2013a]: one is applied to the doctrine of the Calculus of
Constructions [Coquand, 1990, Streicher, 1992] and the other to the doctrine of
the intensional level of the minimalist foundation in [Maietti, 2009].
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Programming in Martin Löf ’s Type Theory. Clarendon Press, Oxford.

[Pasquali, 2013] Pasquali, F. (2013). A co-free construction for elementary doc-
trines. To appear in Appl. Categ. Structures.

[Streicher, 1992] Streicher, T. (1992). Independence of the induction principle
and the axiom of choice in the pure calculus of constructions. Theoret. Com-
put. Sci., 103(2):395–408.

[Taylor, 1999] Taylor, P. (1999). Practical Foundations of Mathematics. Cam-
bridge University Press.

[van Oosten, 2008] van Oosten, J. (2008). Realizability: An Introduction to its
Categorical Side, volume 152. North Holland Publishing Company.

19


