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Abstract

The Minimalist Foundation, for short MF, was conceived by the first author
with G. Sambin in 2005, and fully formalized in 2009, as a common core
among the most relevant constructive and classical foundations for mathe-
matics. To better accomplish its minimality, MF was designed as a two-level
type theory, with an intensional level mTT, an extensional one emTT, and
an interpretation of the latter into the first.

Here, we first show that the two levels of MF are indeed equiconsis-
tent by interpreting mTT into emTT. Then, we show that the classical
extension emTTc is equiconsistent with emTT by suitably extending the
Gödel-Gentzen double-negation translation of classical logic in the intuition-
istic one. As a consequence, MF turns out to be compatible with classical
predicative mathematics à la Weyl, contrary to the most relevant foundations
for constructive mathematics.

Finally, we show that the chain of equiconsistency results for MF can
be straightforwardly extended to its impredicative version to deduce that
Coquand-Huet’s Calculus of Constructions equipped with basic inductive
types is equiconsistent with its extensional and classical versions too.
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1. Introduction

This paper is a contribution to the field of foundations of mathematics,
and in particular to the meta-mathematical properties of the Minimalist
Foundation and of the Calculus of Constructions with basic inductive types.

It is well known that for constructive mathematics there is a wide variety
of foundations, formulated not only in axiomatic set theory, such as Aczel’s
Constructive Zermelo-Fraenkel set theory CZF [1]; but also in type the-
ory, such as Coquand-Paulin’s Calculus of Inductive Constructions CIC [7],
Martin-Löf’s type theory MLTT [22], and the more recent Homotopy Type
Theory HoTT [25]; and in category theory, such as the internal language of
categorical universes like topoi [10, 11].

The Minimalist Foundation, for shortMF, was first conceived in [20], and
then fully formalized in [12], to serve as a common core compatible with the
most relevant constructive and classical foundations, including the mentioned
ones. To meet its raison d’être, MF has been designed as a two-level foun-
dation, consisting of an extensional level emTT, understood as the actual
theory in which constructive mathematics is formalized and developed, and
an intensional level mTT, which acts as a functional programming language
enjoying a realizability interpretation à la Kleene [13, 9].

Both levels of MF are formulated as dependent type theories à la Martin-
Löf enriched with a primitive notion of proposition and related form of com-
prehension. A remarkable difference is that emTT is equipped with the ex-
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tensional constructions of [21] enriched with quotients and power collections
of sets, while mTT is equipped with the intensional types of [22] enriched
with the collection of predicates on a set. An interpretation of emTT in
mTT was given in [12] using a quotient model of setoids, whose peculiar
properties concerning analogous models on Martin-Löf’s type theory had
been analysed categorically in [17, 16, 18] in terms of completions of Law-
vere doctrines.

Our aim here is to show that MF is equiconsistent with its classical
counterpart. This is not true for CZF, MLTT, or HoTT since they become
impredicative when the Law of Excluded Middle is added to their intended
underlying logic.

To meet our purpose, we first show that mTT and emTT are equiconsis-
tent, namely that we can invert the structure of MF by interpreting mTT
within emTT. This goal is achieved using in particular the technique of
canonical isomorphisms, already employed to interpret emTT within mTT
in [12] and emTT within HoTT in [4]. Then, to simplify our goal we
refer to the classical counterpart of MF by just considering the extension
emTTc of the extensional level emTT with the Law of Excluded Middle.
The equiconsistency of the two levels of MF justifies this choice.

The next step of our work is to show that emTTc is equiconsistent with
emTT. To do so, we adapt the Gödel-Gentzen double-negation translation
of classical logic in the intuitionistic one (see for example [31]) to interpret
emTTc within emTT, exploiting in particular the fact that the type con-
structors of emTT preserve the ¬¬-stability of their propositional equalities.
The proof indeed requires more care than for systems of many-sorted logic,
such as Heyting arithmetic with finite types in [31], because of the interaction
in emTT between propositions and collections.

As a consequence of the equiconsistency of emTT with emTTc, we show
that real numbers à la Dedekind do not form a set neither in emTT, nor in
emTTc. Therefore, emTTc can be taken as a foundation of classical pred-
icative mathematics in the spirit of Weyl in [32], and of course MF through
emTT becomes compatible with it. Another benefit of our equiconsistency
results is that, to establish the exact proof-theoretic strength of MF, which
is still an open problem, we are no longer bound to refer to mTT but we
can interchangeably use also emTT or emTTc.

Finally, by exploiting the fact that the intensional level mTT is a pred-
icative version of Coquand-Huet’s Calculus of Constructions [6], we show
that the chain of equiconsistency results for MF can be straightforwardly
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adapted to an impredicative version of MF whose intensional level is the
Calculus of Constructions equipped with inductive types from the first-order
fragment of MLTT, which we call CCML, thus extending the result in [28]
on the equiconsistency of the logical base of the calculus with its classical
version without relying on normalization properties of CCML.

A related relevant goal would be to investigate how to extend the equicon-
sistency results presented here to extensions of the Minimalist Foundation,
and its impredicative version based on CCML, with the inductive and coin-
ductive definitions investigated in [14, 15, 3]. While the equiconsistency proof
of mTT with emTT can be transferred smoothly to these extensions, this
does not apply to the Gödel-Gentzen double-negation translation and this
goal is left to future work.

2. Brief recap of the Minimalist Foundation

In this section, we recall the fundamental facts about the Minimalist
Foundation, together with some useful conventions to work with it.

The name Minimalist Foundation, abbreviated as MF, refers to the two-
level system introduced in [12] following the requirements in [20], consisting
of an extensional level emTT for extensional minimal Type Theory, an in-
tensional level mTT for minimal Type Theory, and an interpretation of the
first in the latter. Both emTT and mTT are formulated as dependent type
theories with four kinds of types: small propositions, propositions, sets, and
collections (denoted respectively props, prop, set and col). Sets are particular
collections, just as small propositions are particular propositions. Moreover,
we identify a proposition (respectively, a small proposition) with the collec-
tion (respectively, the set) of its proofs. Eventually, we have the following
square of inclusions between kinds.

props set

prop col

This fourfold distinction allows one to differentiate, on the one hand, be-
tween logical and mathematical entities. On the other, between inductively
generated domains and open-ended domains (corresponding to the usual dis-
tinction between sets and classes in set theory – or the one between small and
large types in Martin-Löf’s type theory with a universe), thus guaranteeing
the predicativity of the theory.
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In both levels, propositions are those of predicate logic with equality;
a proposition is small if all its quantifiers and propositional equalities are
over sets. The base sets include the empty set N0, the singleton set N1,
the set constructors are the dependent sum Σ, the dependent product Π,
the disjoint sum +, the list constructor List. What differentiates the set
constructors of the two levels is the presence, only at the extensional level
emTT, of a constructor A/R to quotient a set A by a small equivalence
relation R depending on the product A × A. Regarding collections, while
mTT is equipped with a universe of small propositions Props and function
spaces A → Props from a set A towards Props, collections of emTT include
a classifier P(1) of small propositions up to equiprovability, which is often
called the power collection of the singleton, and power collections P(A) for
each set A, defined as the function space P(A) :≡ A→ P(1). It is important
to notice that, contrary to its definition à la Russell in [12], the universe
Props of small propositions of mTT is presented here à la Tarsky through
the following rules.

F-Props
Props col

I-Props
φ props
φ̂ ∈ Props

E-Props
c ∈ Props
T(c) props

C-Props
φ props

T(φ̂) = φ props
η-Props

c ∈ Props

T̂(c) = c ∈ Props

Eq-Props
φ = ψ props

φ̂ = ψ̂ ∈ Props
Eq-E-Props

c = d ∈ Props
T(c) = T(d) props

Finally, in both levels collections are closed under dependent sums Σ.
The intensionality of mTT means that propositions are proof-relevant,

the propositional equality is intensional à la Leibniz, and the only computa-
tion rules are β-equalities. Conversely, the extensionality of emTT means
that the propositional equality reflects judgemental equality, all η-equalities
are valid, and propositions are proof-irrelevant; in particular, in emTT there
is a canonical proof-term true for propositions, and sometimes we render the
judgement true ∈ φ [Γ] as φ true [Γ] to enhance its readability.

The two levels of MF are related by an interpretation of emTT into
mTT in [12] using a quotient model, analyzed categorically in [17, 16], to-
gether with canonical isomorphisms as in [8] but without any use of choice
principles in the meta-theory. This interpretation shows that the link be-
tween the two levels of MF fulfils Sambin’s forget-restore principle in [27],
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saying that that computational information present only implicitly in the
derivations of the extensional level can be restored as terms of the inten-
sional level, from which, in turn, programs can be extracted as shown by the
realizability model in [9].

The same process described above can be performed for the two-level
extension of MF with inductive and coinductive topological definitions in
[14, 15], which amount to include all inductive and coinductive predicate
definitions as shown in [19, 26].

Furthermore, the two-level structure of MF can be extended to its im-
predicative version described in Section 6, by exploiting the fact that mTT
is indeed a predicative version of Coquand-Huet’s Calculus of Constructions
in [6, 5].

2.1. Notation

In dependent types theory, where the definitions of language and deriv-
ability are intertwined, the expressions of the calculus have to be introduced
first with a so-called pre-syntax (see [30]); the pre-syntaxes of both levels con-
sist of four kinds of entities: pre-contexts, pre-types, pre-propositions, and
pre-terms; we assume that the pre-syntax is fully annotated, in the sense
that each (pre-)term has all the information needed to infer the (pre-)type
it belongs to, although for readability, we will leave a lot of that implicit in
the following.

We use the entailment symbol T ⊢ J to express that the theory T de-
rives the judgement J . Moreover, when doing calculations or writing infer-
ence rules, we will often follow the usual conventions of omitting the piece
of context common to all the judgements involved; furthermore, the place-
holder type in a judgement of the form A type [Γ] stands for one of the four
kinds props, prop, set or col, always with the same choice if it has multiple
occurrences in the same sentence or inference rule.

We will make use of the following common shorthands: the propositional
equality predicate Eq(A, a, b) of emTT will be often abbreviated as a =A b;
we will often write f(a) as a shorthand for Ap(f, a); we reserve the arrow
symbol → (resp. ×) as a shorthand for a non-dependent product (resp.
for non-dependent product sets), while we denote the implication connective
with the arrow symbol ⇒; the projections from a dependent sum are defined
as π1(z) :≡ ElΣ(z, (x, y).x) and π2(z) :≡ ElΣ(z, (x, y).y); negation, the true
constant, and logical equivalence are defined respectively as ¬φ :≡ φ ⇒ ⊥,
⊤ :≡ ¬⊥ and φ⇔ ψ :≡ φ⇒ ψ ∧ ψ ⇒ φ.
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In emTT, we define the decoding of a term U ∈ P(1) as the small
proposition Dc(U) :≡ Eq(P(1), U, [⊤]) props, observing that it satisfies the
following computation rule.

C-P(1)
φ props

Dc([φ]) ⇔ φ true

As usual in emTT, we let P(A) :≡ A → P(1) denote the power collection
of a set A, and a ε V :≡ Ap(V, a) denote the (propositional) relation of mem-
bership between terms a ∈ A and subsets V ∈ P(A); accordingly, we will
employ the common set-builder notation {x ∈ A |φ(x)} :≡ (λx ∈ A)[φ(x)]
for defining a subset by comprehension through a small predicate.

3. Equiconsistency of the two levels of MF

The presence of an intensional and an extensional level in the Minimalist
Foundation resembles very closely the two versions, intensional and exten-
sional, of Martin-Löf’s type theory. Indeed, both emTT and mTT are for-
mulated as dependent type theories extending versions of Martin-Löf’s type
theory enriched with a primitive notion of proposition; moreover, proposi-
tions are thought of as types to guarantee in particular their comprehension.
More precisely, emTT extends the first-order version in [21] with quotients
and power collections of sets, while mTT extends the first-order version in
[22] with the collection of predicates on a set.

While it is notoriously difficult to interpret the extensional version of
Martin-Löf’s type theory in [21] into its intensional one in [22], especially in
the presence of universes (see for example [8, 24]), in the other direction the
task is trivial. Indeed, the extensional version is a direct extension of the
intensional one obtained mainly by strengthening the elimination rule of the
identity type to make it reflect judgemental equality.

In the case of the Minimalist Foundation, an interpretation of the exten-
sional level into the intensional one was given in [12], in which the theory
emTT is interpreted in a quotient model of so-called setoids constructed over
the theory mTT. However, contrary to Martin-Löf’s type theory, mTT is
not an extension of emTT because of the discrepancy between the inten-
sional universe of small propositional in mTT and the power collection of
the singleton in emTT. The question of whether mTT can be interpreted
in emTT is therefore not trivial, and it is what we are going to answer
positively in this section.
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We first observe that, to fix the discrepancy described above it is suffi-
cient to add an axiom propext of propositional extensionality to emTT; in
this way an interpretation of mTT into emTT+ propext is easily achieved;
then, we can interpret emTT+ propext back into emTT by employing the
technique of canonical isomorphisms, already used in the interpretation of
emTT in mTT in [12], independently adopted for interpretations in other
type-theoretic systems in [8, 29], and later employed also in [4] to show the
compatibility of emTT with HoTT, given that propositional extensional-
ity is just an equivalent presentation in emTT of propositional univalence.
Moreover, such interpretation of emTT + propext into emTT will be ef-
fective, in the sense of [12] and [33], since its Validity Theorem 1 can be
constructively implemented as a translation of derivations of the source the-
ory into derivations of the target theory. Finally, as a byproduct we will also
conclude that emTT+ propext is conservative over emTT.

3.1. Interpreting mTT into emTT+ propext

Recall that the power collection P(1) of the singleton considers proposi-
tions up to equiprovability, while, in the intensional case, the universe Props
of small propositions does not; in particular, it is clear that P(1) cannot
interpret Props since the computation rule of the former on the left is weaker
than that of the latter on the right:

C-P(1)
φ props

Dc([φ]) ⇔ φ true
C-Props

φ props
T(φ̂) = φ props

To rectify this situation, we consider adding to emTT axioms for proposi-
tional extensionality.

propext
φ prop ψ prop φ⇔ ψ true

φ = ψ prop

propsext
φ props ψ props φ⇔ ψ true

φ = ψ props

Identifying equality and equiprovability for propositions clearly fixes the dis-
crepancy between the two collections P(1) and Props. The resulting theory
will be called emTT+ propext. As the next proposition shows, it can easily
interpret mTT.

Proposition 1. mTT is interpretable in emTT+ propext.
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Proof. Consider the translation that renames in the pre-syntax Id to Eq,
Props to P(1), −̂ to [−], T(−) to Dc(−), and all the proof-term constructors
El⊥, λ⇒, Ap⇒, ⟨−,∧ −⟩, π∧

1 , π
∧
2 , inl∨,inr∨, El∨, λ∀, Ap∀, ⟨−,∃−⟩, El∃, id, ElId

to the canonical proof-term true.
It is straightforward to check that the above translation is an interpre-

tation of mTT into emTT + propext. In particular, in emTT the rule
prop-mono collapses all the proof-terms to the canonical one true, while the
computation rule C-Props of the universe is satisfied thanks to the additional
axiom propext.

We now turn to the task of interpreting emTT+propext into emTT. The
key idea is to interpret a proposition of emTT+ propext as a proposition of
emTT up to equiprovability, that is as an equivalence class of logically equiv-
alent emTT-propositions. Since collections may depend on propositions,
crucially thanks to the prop-into-col rule and the quotient set constructor, we
will have to extend this rationale to all types of emTT by interpreting them
as types up to equivalent logical components.

3.2. Canonical isomorphisms

In this subsection, we define a notion of canonical isomorphism in emTT
that will be used to interpret emTT + propext. As already mentioned, the
idea of using canonical isomorphisms to interpret extensional equalities in
type theory was originally conceived in [12] between objects of a quotient
model, and, independently by Hofmann in [8], whilst with the additional help
of the Axiom of Choice in the meta-theory. The results in [8] were later made
effective in [23, 33] with the adoption of a heterogeneous equality. Finally,
canonical isomorphisms were used recently also in [4], and the treatment
given here closely resembles it both in definitions and proof techniques. Since
in this subsection our only object theory will be emTT, we assume that all
the judgements are meant to be judgements derivable in emTT.

Recall that a functional term from a collection A to another collection B
defined over the same context is a term t(x) ∈ B [x ∈ A] of type B defined
in the context extended by A. Functional terms are always considered up to
judgemental equality.

We say that a functional term t(x) ∈ B [x ∈ A] is an isomorphism if
there exists another functional term t−1(y) ∈ A [y ∈ B] from B to A such
that

(∀x ∈ A)t−1(t(x)) =A x ∧ (∀y ∈ B)t(t−1(y)) =B y
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and in that case, we say that the collections A and B are isomorphic.

Definition 1 (Canonical isomorphisms). We inductively define a family of
functional terms, called canonical isomorphisms, between collections depend-
ing on a context (which, as customary, in each of the following clauses will
be left implicit):

1. if φ and ψ are logically equivalent propositions (that is, if φ ⇔ ψ true
is derivable), then the unique functional term true ∈ ψ [x ∈ φ] is a
canonical isomorphism;

2. the identities of the base types N0, N1, and P(1) are canonical isomor-
phisms;

3. if τ(x) ∈ B [x ∈ A] is a canonical isomorphism between dependent
sets, then the functional term

(a1, . . . , an) ∈ List(A) 7→ (τ(a1), . . . , τ(an)) ∈ List(B)

extending τ(x) to lists element-wise is a canonical isomorphism; it can
be formally defined as

ElList(l, ϵ, (x, y, z).cons(z, τ(x))) ∈ List(B) [l ∈ List(A)]

4. if τ(x) ∈ A′ [x ∈ A] and σ(x) ∈ B′ [x ∈ B] are two canonical isomor-
phisms between dependent sets, then their coproduct

inl(a) ∈ A+B 7→ inl(τ(a)) ∈ A′ +B′

inr(b) ∈ A+B 7→ inr(σ(b)) ∈ A′ +B′

is a canonical isomorphism; it can be formally defined as

El+(z, (x).τ(x), (y).σ(y)) ∈ A′ +B′ [z ∈ A+B]

5. if B(x) col [x ∈ A] and B′(x) col [x ∈ A′] are two dependent collections,
and there are canonical isomorphisms

τ(x) ∈ A′ [x ∈ A] σ(x, y) ∈ B′(τ(x)) [x ∈ A, y ∈ B(x)]

then the functional term

⟨a, b⟩ ∈ (Σx ∈ A)B(x) 7→ ⟨τ(a), σ(a, b)⟩ ∈ (Σx ∈ A′)B′(x)

is a canonical isomorphism; it can be formally defined as

ElΣ(z, (x, y).⟨τ(x), σ(x, y)⟩) ∈ (Σx ∈ A′)B′(x) [z ∈ (Σx ∈ A)B(x)]
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6. if B(x) col [x ∈ A] and B′(x) col [x ∈ A′] are two dependent collec-
tions such that their dependent product is a collection, and there are
canonical isomorphisms

τ(x) ∈ A [x ∈ A′] σ(x, y) ∈ B′(x) [x ∈ A′, y ∈ B(τ(x))]

then the following is a canonical isomorphism

(λx ∈ A′)σ(x,Ap(f, τ(x))) ∈ (Πx ∈ A′)B′(x) [f ∈ (Πx ∈ A)B(x)]

7. if τ(x) ∈ B [x ∈ A] is a canonical isomorphism between sets, R(x, y)
is a small equivalence relation on A, and S(x, y) is a small equivalence
relation on B such that R(x, y) ⇔ S(τ(x), τ(y)) true [x, y ∈ A] holds,
then the functional term

[a] ∈ A/R 7→ [τ(a)] ∈ B/S

obtained by passing τ(x) to the quotient is a canonical isomorphism;
it can be formally defined as

ElQ(z, (x).[τ(x)]) ∈ B/S [z ∈ A/R]

We now derive some fundamental properties about canonical isomor-
phisms.

Recall that a telescopic substitutions γ from a context ∆ to a context
Γ ≡ x1 ∈ A1, . . . , xn ∈ An is a list of n terms

γ ≡ t1 ∈ A1 [∆] , · · · , tn ∈ An[t1/x1] · · · [tn−1/xn−1] [∆]

We write it as the derived judgement γ ∈ Γ [∆]. Moreover, if B type [Γ], we
write B[γ] type [∆] for the substituted type B[t1/x1] · · · [tn/xn], and analo-
gously for terms.

Lemma 1. If τ ∈ B [Γ, x ∈ A] is a canonical isomorphism and γ ∈ Γ [∆] is
a telescopic substitution, then also τ [γ, x] ∈ B[γ] [∆, x ∈ A[γ]] is a canonical
isomorphism.

Proof. By induction on the definition of canonical isomorphism.

Proposition 2. Canonical isomorphisms enjoy the following properties:

1. identities are canonical isomorphisms;
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2. canonical isomorphisms are indeed isomorphisms, and their inverses
are again canonical isomorphisms;

3. the composition of two (composable) canonical isomorphisms is a canon-
ical isomorphism;

4. there exists at most one canonical isomorphism between each pair of
collections.

Proof. The proof is analogous to the one performed forHoTT in Proposition
4.11 of [4].

Point 1 follows by induction on the construction of the collection, exploit-
ing the η-equalities of the corresponding constructors.

Point 2 follows by induction on the definition of canonical isomorphism; in
particular, thanks to the fact that⇔ is symmetric in the case of propositions.
We spell out the case of dependent products. By induction hypothesis, there
exist the two canonical inverses

τ−1(x) ∈ A′ [x ∈ A] σ−1(x, y) ∈ B(τ(x)) [x ∈ A′, y ∈ B′(x)]

if we substitute the second by the first we obtain

σ−1(τ−1(x), y) ∈ B(τ(τ−1(x))) = B(x) [x ∈ A, y ∈ B′(τ−1(x))]

which is again canonical thanks to Lemma 1, so that we can consider the
canonical isomorphism

(λx ∈ A)σ−1(τ−1(x), f(τ−1(x))) ∈ (Πx ∈ A)B(x) [f ∈ (Πx ∈ A′)B′(x)]

which can be easily checked to be the inverse.
For point 3, observe that two objects are related by a canonical isomor-

phism only if they have the same outermost constructor or if they are both
propositions; in the latter case, we rely on the transitivity of ⇔; in the former
case, we proceed by induction on the outermost constructor. We spell out
the case of the dependent product. Suppose to have the following canonical
isomorphisms

τ(x) ∈ A [x ∈ A′]

τ ′(x) ∈ A′ [x ∈ A′′]

σ(x, y) ∈ B′(x) [x ∈ A′, y ∈ B(τ(x))]

σ′(x, y) ∈ B′′(x) [x ∈ A′′, y ∈ B′(τ ′(x))]
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By Lemma 1 also the following substituted morphism is canonical

σ(τ ′(x), y) ∈ B′(τ ′(x)) [x ∈ A′′, y ∈ B(τ(τ ′(x)))]

By inductive hypothesis, the following isomorphisms obtained by composition
are canonical

τ(τ ′(x)) ∈ A [x ∈ A′′] σ′(x, σ(τ ′(x), y)) ∈ B′′(x) [x ∈ A′′, y ∈ B(τ(τ ′(x)))]

We must check that the composition of the two canonical isomorphisms

(λx ∈ A′)σ(x,Ap(f, τ(x))) ∈ (Πx ∈ A′)B′(x) [f ∈ (Πx ∈ A)B(x)]

(λx ∈ A′)σ′(x,Ap(f, τ ′(x))) ∈ (Πx ∈ A′′)B′′(x) [f ∈ (Πx ∈ A′)B′(x)]

is canonical, but their composition is equal to

(λx ∈ A′′)σ′(x,Ap((λx ∈ A′)σ(x,Ap(f, τ(x))), τ ′(x))) =

(λx ∈ A′′)σ′(x, σ(τ ′(x),Ap(f, τ(τ ′(x)))))

which is canonical by definition.
For point 4, recall that canonical isomorphisms are considered up to judge-

mental equalities; the statement is then trivial in the case of propositions;
in the other cases, it is proven by induction on the outermost constructor of
the two collections.

We can extend the notion of canonical isomorphisms to contexts of emTT.

Definition 2. We inductively define a family of telescopic substitutions be-
tween contexts, called again canonical isomorphisms :

• the empty telescopic substitution between empty contexts () ∈ () [()]
is a canonical isomorphism;

• if A col [Γ] and B col [∆] are two dependent collections, σ ∈ ∆ [Γ] is
a canonical isomorphism between contexts, and τ ∈ B[σ] [Γ, x ∈ A] is
a canonical isomorphism between collections, then the extension σ, τ ∈
(∆, x ∈ B) [Γ, x ∈ A] is a canonical isomorphism.

It is easy to check by induction that canonical isomorphisms between
contexts inherit the properties of Proposition 2.
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Definition 3. We say that two contexts Γ and ∆ are canonically isomorphic
if there exists a (necessarily unique) canonical isomorphism between them.

We say that two dependent types A type [Γ] and B type [∆] are canoni-
cally isomorphic if their contexts are canonically isomorphic, and there exists
a (necessarily unique) canonical isomorphism between A and B[σ], where
σ ∈ ∆ [Γ] is the canonical isomorphism between contexts.

Finally, we say that two telescopic substitutions γ ∈ Γ [Γ′] and δ ∈ ∆ [∆′]
are canonically isomorphic if both their domain and codomain are canon-
ically isomorphic and the compositions of telescopic substitutions depicted
pictorially in the following square are judgementally equal

Γ′ Γ

∆′ ∆

γ

σ′ σ

δ

where σ and σ′ are the canonical isomorphisms between contexts. As a special
case of the latter definition, we say that two dependent terms are canonically
isomorphic if they are so as telescopic substitutions; namely, two terms a ∈
A [Γ] and b ∈ B [∆] are canonically isomorphic if the dependent collections
they belong to are canonically isomorphic and the following equality holds

τ(a) = b[σ] ∈ B[σ] [Γ]

where σ ∈ ∆ [Γ] is the canonical isomorphism between contexts, and τ(x) ∈
B[σ] [Γ, x ∈ A] is the canonical isomorphism between collections.

Remark 1. We could have organised the definitions of canonical isomor-
phisms using the language of category theory. In particular, we could have
considered the syntactic category Ctx of contexts and telescopic substitu-
tions up to judgemental equality. In that case, the square depicted above in
the definition of canonically isomorphic contexts could have been interpreted
as a diagram of Ctx, and formally required to be commutative.

The first three points of Proposition 2 imply that being canonically iso-
morphic (for contexts, collections, telescopic substitutions and terms) is an
equivalence relation. Moreover, the following property of preservation under
substitution holds.
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Lemma 2. Let γ ∈ Γ [Γ′] and δ ∈ ∆ [∆′] be two canonically isomorphic
telescopic substitutions. If A type [Γ] and B type [∆] are canonically iso-
morphic types, then also A[γ] type [Γ′] and B[δ] type [∆′] are canonically
isomorphic types. Moreover, if a ∈ A [Γ] and b ∈ B [∆] are canonically iso-
morphic terms, then also a[γ] ∈ A[γ] [Γ′] and b[δ] ∈ B[δ] [∆′] are canonically
isomorphic terms.

Proof. It follows from Lemma 1 and Definition 3.

Finally, we notice that we can always correct a type (resp. a term) into
a canonically isomorphic one to match a given context (type) canonically
equivalent to the original one.

Lemma 3. Let A type [Γ], and ∆ ctx canonically isomorphic to Γ ctx, then
there exists Ã type [∆] canonically isomorphic to A type [Γ].

Analogously, if a ∈ A [Γ] is a term and B col [∆] is a collection canon-
ically isomorphic to A col [Γ], then there there exists a term ã ∈ B [∆]
canonically isomorphic to a ∈ A [Γ].

Proof. Consider Ã :≡ A[σ−1] type [∆] and ã :≡ τ(a)[σ−1] ∈ B [∆], where
σ ∈ ∆ [Γ] and τ ∈ B[σ] [Γ, x ∈ A] are some assumed existing canonical
isomorphisms. The same σ and τ witness that A type [Γ] and Ã type [∆]
are canonically isomorphic types, and that a ∈ A [Γ] and ã ∈ B [∆] are
canonically isomorphic terms

3.3. Interpreting emTT+ propext into emTT

With the machinery of canonical isomorphisms set up, we are ready to
interpret emTT + propext into emTT. The idea is to define an identity
interpretation up to canonical isomorphisms.

As customary in type theory, we first define a priori partial interpretation
functions on the pre-syntax of emTT + propext; the Validity Theorem 1
will ensure that such functions are total when restricted to the derivable
judgements of emTT + propext. More in detail, we define three partial
functions which send:

1. context judgements Γ ctx to an equivalence class [[ Γ ctx ]] of canonically
isomorphic emTT-contexts;

2. type judgements A type [Γ] to an equivalence class [[A type [Γ] ]] of
canonically isomorphic emTT-collections such that all its representa-
tives are defined in contexts belonging to [[ Γ ctx ]], and such that at
least one among them is of kind type;
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3. term judgements a ∈ A [Γ] to an equivalence class [[ a ∈ A [Γ] ]] of
canonically isomorphic emTT-terms such that all its representatives
are defined in contexts belonging to [[ Γ ctx ]].

In the following we use the upper corner notation ⌜− ⌝ to denote equiv-
alence classes.

Definition 4 (Interpretation). The three functions specified above are de-
fined by recursion on the pre-syntax of emTT+propext where, in each clause,
we interpret the constructor in case (be it of contexts, types or terms) with
the same constructor in the target theory emTT. We spell out the case of
contexts, variables, the canonical true term, and dependent product.

Contexts and variables.

• [[ () ctx ]] :≡ ⌜() ctx⌝

• [[ Γ, x ∈ A ctx ]] :≡ ⌜Γ′, x ∈ A′ ctx⌝

provided that [[A col [Γ] ]] ≡ ⌜A′ col [Γ′]⌝

• [[ x ∈ A [Γ, x ∈ A,∆] ]] :≡ ⌜x ∈ A′ [Γ′, x ∈ A′,∆′]⌝

provided that [[ Γ, x ∈ A,∆ ctx ]] ≡ ⌜Γ′, x ∈ A′,∆′ ctx⌝

True term.

• [[ true ∈ φ [Γ] ]] :≡ ⌜true ∈ φ′ [Γ′]⌝

provided that [[φ prop [Γ] ]] :≡ ⌜φ′ prop [Γ′]⌝

Dependent products.

• [[ (Πx ∈ A)B type [Γ] ]] :≡ ⌜(Πx ∈ A′)B′ type [Γ′]⌝

provided that [[B type [Γ, x ∈ A] ]] ≡ ⌜B′ type [Γ′, x ∈ A′]⌝

• [[ (λx ∈ A)b ∈ (Πx ∈ A)B [Γ] ]] :≡ ⌜(λx ∈ A′)b′ ∈ (Πx ∈ A′)B′ [Γ′]⌝

provided that [[ b ∈ B [Γ, x ∈ A] ]] ≡ ⌜b′ ∈ B′ [Γ′, x ∈ A′]⌝

• [[Ap(f, a) ∈ B[a/x] [Γ] ]] :≡ ⌜Ap(f ′, a′) ∈ B′[a′/x] [Γ′]⌝

provided that [[ f ∈ (Πx ∈ A)B [Γ] ]] ≡ ⌜f ′ ∈ (Πx ∈ A′)B′ [Γ′]⌝

and [[ a ∈ A [Γ] ]] ≡ ⌜a′ ∈ A′ [Γ′]⌝
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The interpretation of the other constructors is defined analogously.

To smoothly state the substitution lemma, we define in an analogous way
a fourth partial function sending judgements of the derived form γ ∈ Γ [∆] to
an equivalence class of emTT-canonically isomorphic telescopic substitutions
[[ γ ∈ Γ [∆] ]] defined in contexts belonging to [[∆ ctx ]]. We then have the
following.

Lemma 4 (Substitution). Assume [[ γ ∈ Γ [∆] ]] ≡ ⌜γ′ ∈ Γ′ [∆′]⌝ holds,
then:

1. [[A type [Γ] ]] ≡ ⌜A′ type [Γ′]⌝ implies [[A[γ] type [∆] ]] ≡ ⌜A′[γ′] type [∆′]⌝;
2. [[ a ∈ A [Γ] ]] ≡ ⌜a′ ∈ A′ [Γ′]⌝ implies

[[ a[γ] ∈ A[γ] [∆] ]] ≡ ⌜a′[γ′] ∈ A′[γ′] [∆′]⌝.

Proof. By induction on the expressions A and a.

Theorem 1 (Validity). 1. if emTT + propext ⊢ Γ ctx, then [[ Γ ]] is de-
fined;

2. if emTT+ propext ⊢ A type [Γ], then [[A type [Γ] ]] is defined;

3. if emTT+ propext ⊢ a ∈ A [Γ], then [[ a ∈ A [Γ] ]] is defined and all its
terms are defined in types belonging to [[A col [Γ] ]];

4. if emTT+propext ⊢ A = B type [Γ], then [[A type [Γ] ]] ≡ [[B type [Γ] ]];

5. if emTT+ propext ⊢ a = b ∈ A [Γ], then [[ a ∈ A [Γ] ]] ≡ [[ b ∈ A [Γ] ]].

Proof. By induction on the derivations of emTT + propext, using Proposi-
tion 2 and Lemmas 2, 3, and 4. We spell out the relevant cases of lambda
abstraction and propositional extensionality.

For the case of lambda abstraction, it is trivial to check that the emTT-
judgements used to interpret it are actually derivable, and that the side con-
dition on the contexts holds. We also then need to check that the definition
of the equivalence class does not depend on the choice of representatives. For
that, assume that b ∈ B [Γ, x ∈ A] and b′ ∈ B′ [Γ′, x ∈ A′] are two canonically
isomorphic terms. Thus, we know there are canonical isomorphisms

σ ∈ Γ′ [Γ]

τ(x) ∈ A′[σ] [Γ, x ∈ A]

ρ(x, y) ∈ B′[σ, τ ] [Γ, x ∈ A, y ∈ B]

such that
ρ(x, b) = b′[σ, τ ] ∈ B[σ, τ ] [Γ, x ∈ A] (1)
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By Proposition 2 and Lemma 1 also the following are canonical isomorphisms.

τ−1(x) ∈ A [Γ, x ∈ A′[σ]]

ρ(τ−1(x), y) ∈ B′[σ, x] [Γ, x ∈ A′[σ], y ∈ B(τ−1(x))]

Moreover, by applying the term ρ−1 to (1) also the followings hold.

b = ρ−1(x, b′[σ, τ ]) ∈ B [Γ, x ∈ A]

(λx ∈ A)b = (λx ∈ A)ρ−1(x, b′[σ, τ ]) ∈ (Πx ∈ A)B [Γ]

By definition of canonical isomorphism between dependent products, we
have that the term

ζ(f) :≡ (λx ∈ A′[σ])s(τ−1(x),Ap(f, τ−1(x)))

is a canonical isomorphisms between (Πx ∈ A)B and (Πx ∈ A′[σ])B′[σ, x] ≡
((Πx ∈ A′)B′)[σ]. Finally, we can check that

ζ((λx ∈ A)b) = ζ((λx ∈ A)ρ−1(x, b′[σ, τ ]))

= (λx ∈ A′[σ])ρ(τ−1(x), ρ−1(τ−1(x), b′[σ, τ ][τ−1/x]))

= (λx ∈ A′[σ])b′[σ, x]

≡ ((λx ∈ A′)b′)[σ] ∈ ((Πx ∈ A′)B′)[σ] [Γ]

Thus, we have concluded that (λx ∈ A)b ∈ (Πx ∈ A)B [Γ] and (λx ∈ A′)b′ ∈
(Πx ∈ A′)B′ [Γ′] are canonically isomorphic terms.

Propositional extensionality is validated as follows. By inductive hy-
pothesis on the first premise, we know that, for some φ′ prop [Γ′], we have
[[φ prop [Γ] ]] ≡ ⌜φ′ prop [Γ′]⌝; by inductive hypothesis on the second premise
corrected by Lemma 3, we know that [[ψ prop [Γ] ]] ≡ ⌜ψ′ prop [Γ′]⌝ for some
proposition ψ′ defined in the same context Γ′ of φ′. By definition of the
interpretation we then have [[φ ⇔ ψ prop [Γ] ]] ≡ ⌜φ′ ⇔ ψ′ prop [Γ′]⌝.
Finally, by inductive hypothesis on the third premise, we know that the in-
terpretation of [[ true ∈ φ ⇔ ψ prop [Γ] ]] is well defined; in particular, this
means that true ∈ φ′ ⇔ ψ′ is derivable in emTT, but this amounts to φ′

and ψ′ being canonically isomorphic, which in turn implies [[φ prop [Γ] ]] ≡
⌜φ′ prop [Γ′]⌝ ≡ ⌜ψ′ prop [Γ′]⌝ ≡ [[ψ prop [Γ] ]].

The interpretation enjoys the following property, which allows it to be
seen as a retraction of the identity interpretation of emTT into emTT +
propext.
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Proposition 3. 1. If emTT ⊢ Γ ctx, then [[ Γ ctx ]] ≡ ⌜Γ ctx⌝;
2. if emTT ⊢ A type [Γ], then [[A type [Γ] ]] ≡ ⌜A type [Γ]⌝;
3. if emTT ⊢ a ∈ A [Γ], then [[ a ∈ A [Γ] ]] ≡ ⌜a ∈ A [Γ]⌝.

Proof. Straightforward by induction on the derivations of emTT.

Corollary 1 (Conservativity). If emTT ⊢ φ prop [Γ] and emTT+propext ⊢
φ true [Γ], then emTT ⊢ φ true [Γ].

Proof. By point 2 of Proposition 3, [[φ prop [Γ] ]] ≡ ⌜φ prop [Γ]⌝; then, we
conclude by point 3 of Theorem 1.

Corollary 2 (Equiconsistency). The theories mTT and emTT are equicon-
sistent.

Proof. From [12], we know that the consistency of mTT implies that of
emTT. For the other direction, we know that mTT can be interpreted in
emTT+propext by Proposition 1; in turn, emTT+propext is equiconsistent
to its fragment emTT by Corollary 1.

4. Equiconsistency of MF with its classical version

In this section, we adapt the Gödel-Gentzen’s double-negation translation
of classical predicative logic into the intuitionistic one in [31] to interpret the
classical version emTTc of the extensional level emTT of MF into emTT
itself. More in details,

Definition 5. emTTc is the extension of emTT with the following rule
formalising the Law of Excluded Middle.

LEM
φ prop

φ ∨ ¬φ true
The underlying idea of the translation is straightforward: we want to

keep translating propositions of emTTc into stable propositions φ of emTT
(i.e. those equivalent to their double negation) while leaving unaltered set-
theoretical constructors that do not involve logic. Formally, a proposition
φ prop of emTT is said to be stable if the judgement ¬¬φ ⇒ φ true is
derivable. Accordingly, a collection A col is said to have stable equality if its
propositional equality Eq(A, x, y) prop [x, y ∈ A] is stable in emTT.

Since emTT is a dependent type system in which sorts can depend on
terms and propositions, the translation will be defined on all those entities,
and not just on formulas.
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Definition 6 (Translation of emTTc into emTT). We define by simul-
taneous recursion four endofunctions (−)N on pre-contexts, pre-types, pre-
propositions, and pre-terms, respectively.

Variables and contexts. The translation does not affect variables, and on
contexts it is defined in the obvious way.

xN :≡ x ()N :≡ () (Γ, x ∈ A)N :≡ ΓN , x ∈ AN

Logic. We translate the connectives as in the case of predicate logic,
but in the case of quantifiers the translation is recursively applied also to
the domain of quantification. Contrary to the case of predicate logic, we do
not double-negate the propositional equality, and we recursively applied the
translation also to its type and terms; in the validity theorem, the burden
of proving that it is stable is transferred to the translation of types. Finally,
the true term is mapped to itself.

⊥N :≡ ⊥
(φ ∧ ψ)N :≡ φN ∧ ψN

(φ⇒ ψ)N :≡ φN ⇒ ψN

(φ ∨ ψ)N :≡ ¬¬(φN ∨ ψN )

((∃x ∈ A)φ)N :≡ ¬¬(∃x ∈ AN )φN

((∀x ∈ A)φ)N :≡ (∀x ∈ AN )φN

Eq(A, a, b)N :≡ Eq(AN , aN , bN )

trueN :≡ true

Set constructors. Since we do not want to alter set-theoretic construc-
tions, we just recursively apply the translation to their sub-expressions. We
report here the cases of the empty set and dependent sums; the same (triv-
ial) pattern will apply also to the pre-syntax of singleton set, disjoint sums,
dependent products, lists and quotients.

N0
N :≡ N0

ElN0(c)
N :≡ ElN0(c

N )

((Σx ∈ A)B)N :≡ (Σx ∈ AN )BN

⟨a, b⟩N :≡ ⟨aN , bN ⟩
ElΣ(d, (x, y).m)N :≡ ElΣ(d

N , (x, y).mN )

Power collection of the singleton. We translate the power collection of the
singleton into its subcollection of stable propositions (up to equiprovability);
the translation of its introduction constructor just accounts for this change.

P(1)N :≡ (Σx ∈ P(1))(¬¬Dc(x) ⇒ Dc(x)) [φ]N :≡ ⟨[φN ], true⟩

This concludes the definition of the translation. We immediately notice
that it enjoys the following syntactical property, which we will tacitly exploit
in the rest of the discussion.
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Lemma 5 (Substitution). If e and t are two expressions of the pre-syntax,
and x is a variable, then (e[t/x])N ≡ eN [tN/x].

Proof. Straightforward, by induction on the pre-syntax.

The next two propositions will be vital to prove the validity theorem.
They characterise the equality of various type constructors of emTT and
collect a series of closure properties for collections with stable equality, re-
spectively.

Proposition 4. The following equivalences hold in emTT (where the free
variables in the left-hand side of each equivalence are implicitly assumed to
be in the obvious context):

1. x =N0 y ⇔ ⊥
2. x =N1 y ⇔ ⊤

3. l =List(A) l
′ ⇔


⊤ if l = l′ = ϵ

s =List(A) s
′ ∧ a =A a

′ if l = cons(s, a) and l′ = cons(s′, a′)

⊥ otherwise
where the proposition defined by cases on the right side can be formally
defined using the elimination of lists applied toward the collection P(1).1

4. z =A+B z′ ⇔


x =A x

′ if z = inl(x) and z′ = inl(x′)

y =B y′ if z = inr(y) and z′ = inr(y′)

⊥ otherwise
where the proposition defined by cases on the right side is formally
defined analogously as in the previous point;

5. ⟨a, b⟩ =(Σx∈A)B(x) ⟨a′, b′⟩ ⇔ (∃x ∈ a =A a
′) b =B(a) b

′

6. f =(Πx∈A)B(x) g ⇔ (∀x ∈ A) f(x) =B(x) g(x)

7. [a] =A/R [b] ⇔ R(a, b)

8. U =P(1) V ⇔ (Dc(U) ⇔ Dc(V ))

9. p =φ q ⇔ ⊤ if φ prop

Proof. Using the judgemental equality rules and the (possibly derived) η-
rules of the corresponding constructors. Additionally, in the cases of lists
and disjoint sums one uses induction principles together with the standard

1Namely as Dc(ElList(l,ElList(l
′, [⊤], [⊥]), (x, y, z).c)), where l, l′ ∈ List(A) and

c(x, y, z) :≡ ElList(l
′, [⊥], (x′, y′, z′).[Dc(z) ∧ y =A y′]).
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trick of eliminating toward the collection P(1) to prove the disjointedness of
their term constructors.

Remark 2. Since we are in an extensional type theory, the above proposition
works smoothly especially for the clause of the dependent sum. Notice in fact
that the proposition on the right-hand side of point 5 could not have been
written simply as the conjunction a =A a′ ∧ b =B(a) b

′, which is ill-formed
since the judgement b′ ∈ B(a) cannot be derived without having proved
a =A a

′ first.

Proposition 5. In emTT, propositions, the empty set, the singleton set,
and the collection (Σx ∈ P(1))(¬¬Dc(x) ⇒ Dc(x)) have stable equality;
moreover, having stable equality is preserved by taking lists, disjoint sums,
dependent sums, and dependent products; finally, a set quotiented by a stable
equivalence relation has stable equality.

Proof. All cases are proved using Proposition 4. We spell out only the most
interesting ones.

For the case of dependent sum, assume A col and B(x) col [x ∈ A] to be
two collections with stable equality. By Proposition 4, we must prove that
for terms a, a′ ∈ A, b ∈ B(a), and b′ ∈ B(a′) the proposition (∃x ∈ a =A

a′) b =B(a) b
′ is stable. By the elimination rule of the existential quantifier,

we can derive the followings.

(∃x ∈ a =A a
′) b =B(a) b

′ ⇒ a =A a
′

(∀y ∈ a =A a
′)( (∃x ∈ a =A a

′) b =B(a) b
′ ⇒ b =B(a) b

′ )

From these, we get

¬¬(∃x ∈ a =A a
′) b =B(a) b

′ ⇒ ¬¬a =A a
′ (2)

(∀y ∈ a =A a
′)( ¬¬(∃x ∈ a =A a

′) b =B(a) b
′ ⇒ ¬¬b =B(a) b

′ ) (3)

Assume ¬¬(∃x ∈ a =A a′) b =B(a) b
′; from (2) we deduce ¬¬a =A a′ and,

since A has stable equality, we conclude a =A a
′; knowing that a =A a

′ holds,
we can now apply the hypothesis to (3) and we deduce ¬¬b =B(a) b

′, which,
sinceB(a) has stable equality for any given a, implies b =B(a) b

′; finally, by the
introduction rule of the existential quantifier we have (∃x ∈ a =A a

′) b =B(a)

b′. Hence, we have shown that the proposition (∃x ∈ a =A a′) b =B(a) b
′ is

stable.
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For the collection (Σx ∈ P(1))(¬¬Dc(x) ⇒ Dc(x)) we have that, by the
rules for equality of dependent pairs and propositions in Proposition 4, its
propositional equality is equivalent to

π1(z) =P(1) π1(w) with z, w ∈ (Σx ∈ P(1))(¬¬Dc(x) ⇒ Dc(x))

which, again by the case of P(1) in Proposition 4, is in turn equivalent to

Dc(π1(z)) ⇔ Dc(π1(w))

Since the propositions Dc(π1(z)) and Dc(π1(w)) are stable (by π2(z) and
π2(w), respectively), and since conjunction and implication preserve stability,
we conclude that (Σx ∈ P(1))(¬¬Dc(x) ⇒ Dc(x)) has stable equality.

We are now ready to prove the validity of the interpretation.

Theorem 2 (Validity). The translation is an interpretation of emTTc into
emTT, in the sense that it preserves judgement derivability between the two
theories:

1. if emTTc ⊢ Γ ctx, then emTT ⊢ ΓN ctx
2. if emTTc ⊢ A type [Γ], then emTT ⊢ AN type [ΓN ]
3. if emTTc ⊢ a ∈ A [Γ], then emTT ⊢ aN ∈ AN [ΓN ]
4. if emTTc ⊢ A = B type [Γ], then emTT ⊢ AN = BN type [ΓN ]
5. if emTTc ⊢ a = b ∈ A [Γ], then emTT ⊢ aN = bN ∈ AN [ΓN ]

Moreover, the translation produces stable propositions and, in particular, col-
lections with stable equality:

6. if emTTc ⊢ φ prop [Γ], then

emTT ⊢ ¬¬φN ⇒ φN true [ΓN ]

7. if emTTc ⊢ A col [Γ], then

emTT ⊢ ¬¬Eq(AN , x, y) ⇒ Eq(AN , x, y) true [ΓN , x ∈ AN , y ∈ AN ]

Proof. All seven points are proved simultaneously by induction on judge-
ments derivation. Due to the trivial pattern of the translation on most of
the constructors, the majority of cases are trivially checked. For point 7,
it suffices to apply the inductive hypotheses using Proposition 5. The cases
involving the axiom of the excluded middle, the falsum constant, the disjunc-
tion and the existential quantifier are checked as in the case of translating
classical predicate logic into the intuitionistic one; in the case of propositional
equality, point 6 is checked using the inductive hypothesis on point 7.
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Corollary 3. The theories emTTc and emTT are equiconsistent.

Proof. By point 3 of Theorem 1, since the inconsistency judgement true ∈
⊥ [ ] is sent by the translation to itself.

Remark 3. Observe that the above proofs go well within the extensional
type theory. Interpreting emTTc directly into the intensional level mTT
would have been more complicated whilst possible with the use of canonical
isomorphisms.

Remark 4. Among theories that exploit dependent types, the double-negation
translation has been applied also to the Calculus of Constructions in [28],
and to logic-enriched type theories in [2]. The first result will be extended
in Section 6 by considering an extension of the base calculus with induc-
tive types. In contrast, the second calculus is closer to a multi-sorted logic,
where propositions are not types, and there is no comprehension of a type
with a proposition. Our result shows that the double-negation translation
goes through when logic is part of the type theory, mainly because of com-
prehensions, quotients, and equality reflection.

5. Compatibility of MF with classical predicativism à la Weyl

As an application of the equiconsistency between emTT and emTTc, in
this subsection we deduce that, accordingly to Weyl’s treatment of classical
predicative mathematics [32], neither Dedekind real numbers nor number-
theoretic functional relations form a set.

We start by observing that, although classical, in emTTc the type of
booleans Bool :≡ N1 + N1 is not a propositional classifier; this is because,
even in the presence of the excluded middle, we cannot eliminate from a
disjunction φ ∨ ¬φ towards the set N1 + N1. More generally, we have the
following result.

Proposition 6. In emTTc, and thus also in emTT, the power collection
of the singleton P(1) is not isomorphic to any set.

Proof. If P(1) were isomorphic to a set, then each collection of emTTc

would be, and in particular, P(N). Thus, we could interpret full second-
order arithmetic in emTTc; but this is a contradiction since, by Corollary
3, we know that the proof-theoretic strength of emTTc coincide with that
of emTT, which, in turn, is bounded by ÎD1 as shown in [9].
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In emTT, the collection of Dedekind real numbers can be defined from
the collection of subsets of rational numbers P(Q) through Dedekind (left)
cuts as

R :≡ (ΣA ∈ P(Q))((∃q ∈ Q)q εA

∧ (∃q ∈ Q)¬q εA
∧ (∀q εA)(∀r ∈ Q)(r < q ⇒ r εA)

∧ (∀q εA)(∃r εA)q < r)

analogously, the collection of number-theoretic functional relations can be
constructed from P(N× N) as

FunRel(N,N) :≡ (ΣR ∈ P(N× N))(∀x ∈ N)(∃!y ∈ N)R(⟨x, y⟩)

The following shows that both R and FunRel(N,N) are proper collections.

Theorem 3. In emTTc, and thus also in emTT, the collections R and
FunRel(N,N) are not isomorphic to any set.

Proof. If R were isomorphic to a set, then the set {0, 1}R obtained from R
by comprehension through the small proposition

(∀q ∈ Q)(q εA⇔ q < 0) ∨ (∀q ∈ Q)(q εA⇔ q < 1) with A ∈ P(Q)

would be isomorphic to a set too. In turn, it is easy to show that, classically,
P(1) is isomorphic to {0, 1}R; the isomorphism is obtained by specialising to
{0, 1}R the following operations between P(1) and P(Q).

[(∀q ∈ Q)(q εA⇔ q < 1)] ∈ P(1) [A ∈ P(Q)]

{q ∈ Q | (q < 0 ∧ ¬Dc(x)) ∨ (q < 1 ∧ Dc(x))} ∈ P(Q) [x ∈ P(1)]

We conclude by Proposition 6.
For FunRel(N,N) the proof is analogous, using the set obtained by compre-

hension from it through the small proposition R(⟨x, y⟩) ⇒ y =N 0 ∨ y =N 1,
with R ∈ P(N× N).

6. Equiconsistency of the Calculus of Constructions with its clas-
sical version

Recall that the intensional level mTT of MF can be seen as a predicative
version of the Calculus of Constructions in [6]. More precisely, consider the
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impredicative theory mTTimp obtained by extending the intensional level
mTT with the congruence rules for types and terms and with the follow-
ing resizing rules collapsing the predicative distinction between effective and
open-ended types.

col-into-set
A col

A set
prop-into-props

φ prop

φ props

Analogously, consider the impredicative theory emTTimp obtained by ex-
tending emTT with the same resizing rules above.

The theories mTTimp and emTTimp can be interpreted as an extended
version of the Calculus of Constructions with inductive types from MLTT,
and an extensional version of it with the quotient constructor, respectively.

In particular, thanks to the resizing rules, the universe of small proposi-
tion Props of mTT becomes an impredicative universe of (all) propositions.
For example, we can derive impredicative quantification as shown in the fol-
lowing derivation tree (where, for readability, we use Props presented à la
Russel).

φ(x) ∈ Props [x ∈ Props]
E-Props

φ(x) props [x ∈ Props] Props col
F-∀

(∀x ∈ Props)φ(x) prop
prop-into-props

(∀x ∈ Props)φ(x) props
I-Props

(∀x ∈ Props)φ(x) ∈ Props

Formally, we denote with CCML the Calculus of Constructions without
universes of types (apart from the impredicative universe of propositions)
defined in [6], extended with rules for the inductive type constructors N0,
N1, +, List, and Σ from the first-order fragment of MLTT (notice that
the resulting theory is a rather small fragment of the Calculus of Inductive
Constructions [7]).

Proposition 7. mTTimp coincides with CCML.

Proof. Since in mTTimp the distinction between sets and collections, as well
as propositions and small propositions, disappears we have that the uni-
verse of small proposition Props becomes the impredicative universe of (all)
propositions; set constructors are available for all types, as in CCML; and
the universal quantifier ∀ and the dependent function space Π are just two
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names for the only Π constructor of CCML. Then, the only calculations to
be made are those to check that the propositional constructors coincide with
their impredicative encoding made from the universal quantifier alone; in
particular, it works for identity since in mTT is defined à la Leibniz.

Remarkably, the addition of impredicativity to MF does not affect most
of the techniques used to investigate its meta-mathematical properties. In
particular, the quotient model, the equiconsistency of the two levels, and the
equiconsistency with the classical version all scale easily to the impredicative
case.

Proposition 8. The theory emTTimp is interpretable in the quotient model
constructed over mTTimp.

Proof. By using the same interpretation defined in [12]. The additional re-
sizing rules of emTTimp are easily validated. For example, consider the rule
col-into-set; to check its validity we need to know that, for each emTTimp-
collection A, the dependent extensional collection AI

= interpreting it is a
dependent extensional set, which, by definition, amounts to know that its
support AI is a set and its equivalence relation =AI is a small proposition;
but this is guaranteed precisely by the resizing rules of mTTimp.

Corollary 4. The theory emTTimp is interpretable in the quotient model
constructed over CCML.

Proof. Combining Propositions 7 and 8.

Proposition 9. emTTimp + propext is conservative over emTTimp, and
emTTc

imp + propext is conservative over emTTc
imp.

Proof. Since canonical isomorphisms has been defined inductively in the
meta-theory, and not internally as in [4], we can use the same interpreta-
tion described in Definition 4. In the second point of the Validity Theorem
1, the additional resizing rules of the source theories are validated thanks to
the same rules in the corresponding target theory; in the third point of the
same theorem, the additional axiom LEM is validated analogously, thanks to
the fact that the interpretation fixes the connectives: [[φ∨¬φ ]] ≡ ⌜φ∨¬φ⌝
whenever [[φ ]] ≡ ⌜φ⌝. By the same observations, Proposition 3 still holds
in the presence of resizing rules and of LEM. Then, we can conclude as in
Corollary 1.
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Proposition 10. The theories emTTc
imp and emTTimp are equiconsistent.

Proof. By using the double-negation interpretation already defined in 6 for
the predicative case; the additional resizing rules are trivially validated in
the second point of the Validity Theorem 2.

We then consider the classical version of CCML obtained by adding to
its calculus a constant lem formalising the Law of the Excluded Middle.

lem ∈ (∀x ∈ Prop)(x ∨ ¬x)

We call CCc
ML the resulting theory. Notice that, contrary to MF, where

we focused on the extensional level to define its classical version, here we
chose to add classical logic directly in the intensional level. We think this
choice is more in line with the existing literature on classical extensions of
the Calculus of (Inductive) Constructions.

Proposition 11. CCc
ML is interpretable in emTTc

imp + propext.

Proof. Thanks to Proposition 7, we can refer to the theory mTTimp ex-
tended with the constant lem above. Then, we extend the interpretation of
Proposition 1 by sending such new constant to the canonical proof-term of
the extensional level lem 7→ true. The additional rules assumed on top of
those of mTT, namely the congruence rules, the resizing rules, and the typ-
ing axiom of lem are validated by the interpretation simply because all their
translations are equivalent to rules already present in emTTc

imp.

Corollary 5. The theories CCML and CCc
ML are equiconsistent.

Proof. Following the chain of interpretations depicted below, successively
applying Proposition 11, Proposition 9, Proposition 10, and Corollary 4.

CCc
ML CCML

emTTc
imp + propext emTTc

imp emTTimp
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7. Conclusions

We have shown the equiconsistency of the Minimalist Foundation in [12],
for short MF, with its classical version. This is a peculiar property not
shared by most foundations for constructive and predicative mathematics,
such Martin-Löf’s type theory, Homotopy Type Theory o Aczel’s CZF.

In more detail, we have first proved that the levels mTT and emTT
of MF are mutually equiconsistent and then that emTT is equiconsistent
with its classical version emTTc. As a consequence, we have deduced that
Dedekind real numbers do not form a set neither in emTTc nor in both
levels of MF. Therefore, emTTc can be adopted as a foundation for classical
predicative mathematics à la Weyl, and hence MF becomes compatible with
classical predicativism contrary to most relevant foundations for constructive
mathematics.

Finally, we have extended these equiconsistency results to an impred-
icative version of MF whose intensional level, called CCML, coincides with
Coquand-Huet’s Calculus of Construction in [6] extended with basic induc-
tive type constructor of Martin-Löf’s type theory in [22]. Our contribution
extends the equiconsistency result for CC in [28] with a proof that does not
rely on normalization properties of CCML.

In the future we intend to exploit a major benefit of our chain of equicon-
sistent results, namely that to establish the proof-theoretic strength of MF,
which is still an open problem, we are no longer bound to refer to mTT
but we can interchangeably use emTT or emTTc. A further related goal
would be to extend the equiconsistency results presented here to extensions
of MF, and of its impredicative version, with inductive and coinductive def-
initions investigated in [14, 15, 3], given that it is not clear how to extend
the Gödel-Gentzen double-negation translation to these extensions.
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our stay at Hausdorff Research Institute for Mathematics for the trimester
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and Grigori Mints, editors, COLOG-88, pages 50–66, Berlin, Heidelberg,
1990. Springer Berlin Heidelberg.

[8] M. Hofmann. Conservativity of equality reflection over intensional type
theory. In International Workshop on Types for Proofs and Programs,
pages 153–164. Springer, 1995.

[9] H. Ishihara, M. E. Maietti, S. S. Maschio, and T. Streicher. Consistency
of the intensional level of the Minimalist Foundation with Church’s the-
sis and axiom of choice. Arch. Math. Logic, 57(7-8):873–888, 2018.

[10] J. Lambek and P. J. Scott. Introduction to higher order categorical logic.
Cambridge University Press, USA, 1986.

[11] M. E. Maietti. Modular correspondence between dependent type theo-
ries and categories including pretopoi and topoi. Math. Structures Com-
put. Sci., 15(6):1089–1149, 2005.

[12] M. E. Maietti. A minimalist two-level foundation for constructive math-
ematics. Ann. Pure Appl. Logic, 160(3):319–354, 2009.

[13] M. E. Maietti and S. Maschio. An extensional Kleene realizability se-
mantics for the Minimalist Foundation. In 20th International Conference

30



on Types for Proofs and Programs, volume 39 of LIPIcs. Leibniz Int.
Proc. Inform., pages 162–186. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2015.

[14] M. E. Maietti, S. Maschio, and M. Rathjen. A realizability semantics for
inductive formal topologies, Church’s thesis and axiom of choice. Log.
Methods Comput. Sci., 17(2):Paper No. 21, 21, 2021.

[15] M. E. Maietti, S. Maschio, and M. Rathjen. Inductive and coinductive
topological generation with Church’s thesis and the axiom of choice.
Log. Methods Comput. Sci., 18(4):Paper No. 5, 28, 2022.

[16] M. E. Maietti and G. Rosolini. Elementary quotient completion. Theory
and Applications of Categories, 27(17):445–463, 2013.

[17] M. E. Maietti and G. Rosolini. Quotient completion for the foundation
of constructive mathematics. Logica Universalis, 7(3):371–402, 2013.

[18] M. E. Maietti and G. Rosolini. Unifying exact completions. Appl. Categ.
Structures, 23(1):43–52, 2015.

[19] M. E. Maietti and P. Sabelli. A topological counterpart of well-founded
trees in dependent type theory. Electronic Notes in Theoretical Infor-
matics and Computer Science, Volume 3 - Proceedings of MFPS XXXIX
, November 2023.

[20] M. E. Maietti and G. Sambin. Toward a minimalist foundation for con-
structive mathematics. In From sets and types to topology and analysis,
volume 48 of Oxford Logic Guides, pages 91–114. Oxford Univ. Press,
Oxford, 2005.
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