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Abstract. We consider an extensional version, called qmTT, of the in-
tensional Minimal Type Theory mTT, introduced in a previous paper
with G. Sambin, enriched with proof-irrelevance of propositions and ef-
fective quotient sets. Then, by using the construction of total setoid a la
Bishop we build a model of qmTT over mTT.

The design of an extensional type theory with quotients and its inter-
pretation in mTT is a key technical step in order to build a two level
system to serve as a minimal foundation for constructive mathematics
as advocated in the mentioned paper about mTT.
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1 Introduction

In [MS05] we argued for the need of a minimal foundation for constructive math-
ematics. We wanted this theory to be minimal among relevant constructive foun-
dations such as the generic internal theory of a topos and Martin-Lo6f’s type the-
ory, besides the classical Zermelo-Fraenkel set theory. Then, being Martin-Lof’s
type theory predicative, our theory must be predicative, too.

The constructivity of our foundation is expressed by the fact that it satis-
fies the proofs-as-programs paradigm. In [MS05] we motivated that an essential
characteristic of a proofs-as-programs theory must be its consistency with the
axiom of choice and the formal Church thesis altogether. In other words, the
proofs-as-programs theory must be equipped with a realizability model where
the extraction of programs from proofs is internalized by validating the axiom
of choice and the formal Church thesis as internal theorems.

But, then, it turned out that this requirement is so strong to be incompatible
with another desirable feature that a foundation for mathematics should have,
namely with the capability of representing extensional concepts as those used in
everyday mathematics. In other terms, as reported in [MS05], we cannot have an
extensional theory that is also proofs-as-programs in our sense. Indeed, it is well-
known that extensionality of functions is inconsistent with the axiom of choice
and the formal Church thesis altogether. And, for an extensional constructive
theory even the consistency with the axiom of choice alone can be a problem.
Indeed, while the axiom of choice is an accepted principle in intensional type



theory, it is not generally validated in an extensional constructive one since it
may force the theory to be classical (see for example [Mai99], [MV99], [Car04],
[MLOG6]). This is simply because the choice function cannot be always guaranteed
to be extensional constructively.

The solution proposed in [MS05] to the problem of building an extensional
proofs-as-programs foundation consists in building a two level theory: one should
start with an intensional proofs-as-programs theory in the above sense and then
build an extensional level upon it according to the forget-restore principle in
[SV98]. This principle says that extensional concepts must be designed by ab-
stracting on the intension of their representations at the intensional level in such
a way that all the forgotten computational information of their representations
can be restored at will. An example of this is the design of the many-sorted
logic obtained from a type theory by using Martin-Lof’s ¢rue-judgements (see
[Mar84], [SV98]). In this way proofs at the extensional level are turned into
proofs at the intensional level that correspond to programs. We then decided to
name programs level the intensional one and proofs level the extensional one to
express that the link between the two levels is also part of the proofs-as-programs
transformation.

To serve as the intensional level of the minimal foundation advocated in
[MS05], we there introduced Minimal Type Theory (mTT). This is obtained by
extending the set constructors of intensional Martin-Lo6f’s type theory in [NPS90)
with a primitive notion of propositions. The main difference between our theory
and Martin-Lof’s one is that the axiom of choice and even the axiom of unique
choice are not valid theorems in mTT.

Here we assume the ertensional level to be given by a type theory, called
gmTT. This is obtained as follows. First, we take the extensional version of our
Minimal Type Theory, in the same way as the type theory in [Mar84] is the
extensional version of intensional Martin-Lo6f’s type theory in [NPS90]. Then we
collapse propositions into mono sets in the sense of [Mai05] and, finally, we add
effective quotient sets similarly to those in [Mai05].

In order to interpret our extensional type theory qmTT in mTT we build a
category Q(mTT) of total setoids, whose objects and morphisms coincide with
the notion of sets and functions given by E. Bishop [Bis67].

Q(mTT) turns out to be a categorical model of qmTT. Categorically speak-
ing, it turns out to be a lextensive list-arithmetic locally cartesian closed category
with stable effective quotients of equivalence relations obtained by comprehen-
sion from a propositional fibration (for all these categorical properties see, for
example, [Jac99,Mai05]).

Our total setoid model corresponds categorically to a different quotient com-
pletion from the same construction of total setoids performed over Martin-Lof’s
type theory [NPS90], here called MLTT, as studied in [Pal05]. In fact, the total
setoid model Q(MLTT) over MLTT coincides with the exact completion of the
weakly lex category [CV98,CC82] of the MLTT sets. Instead, Q(mTT) can be
seen as an instance of a more general completion of quotients starting from a
weakly cartesian category equipped with a suitable comprehensive fibration.



It is worth noting that in both models there are at least two ways of in-
terpreting propositions. One consists in interpreting propositions as sets. Then,
both in Q(mTT) and in Q(MLTT) the extensional version of Martin-L6f’s type
theory in [Mar84] is validated. Therefore, the axiom of choice where quantifiers
are interpreted as dependent product and indexed sum is also valid in both.
But then we know that the axiom of choice may be constructively incompatible
with well-behaved quotients, in particular effectiveness of quotients (see [Mai99]).
Therefore, it seems that our total setoid constructions cannot be considered as
a quotient completion of a propositions-as-sets theory.

The other way of interpreting propositions consists in interpreting them in
Q(MLTT) as all mono sets (as in [Mai05]), and in Q(mTT) as only some mono
sets like in qmTT. Then, both models support well-behaved quotients, i.e. effec-
tive quotients. In particular, the internal language of Q(MLTT) includes that of
locally cartesian closed pretopos in [Mai05]. But, by interpreting propositions as
mono sets, Q(MLTT) and even more Q(mTT) loose the general validity of the
propositional axiom of choice. In fact, following propositions as mono sets, the
interpretation of the axiom of choice in Q(MLTT) turns out to be equivalent
to what Martin-Lof calls the extensional aziom of choice in [MLO6], known to
fail constructively [MLO06,Car04]. Only the validity of the axiom of unique choice
survives in its generality in Q(MLTT).

The design of qmTT and its interpretation over mTT is a key technical step
in order to build the extensional level of the minimal constructive foundation ad-
vocated in [MSO05]. This extensional level does not exactly coincide with qmTT,
since qmTT is just obtained from mTT by abstracting on the intensional equal-
ity between elements of sets and propositions. Further abstractions, like that
from proof-terms of propositions or the addition of subsets, are also desirable
in order to get a many-sorted logic closer to set-theoretic languages used in ev-
eryday mathematics. However these can be obtained by associating to qmTT a
many sorted logic with true-judgements as in [Mar84,Mar85] and subsets as in
[SV98,Car03]. Another important point is that the extensional level advocated
in [MS05] should have predicates depending on more general types than sets, like
the collection of all subsets of a set (these are particularly needed in a predicative
theory to define some of common mathematical concepts, like, for example, the
definition of formal topology in [Sam03]).

Here we decided to concentrate on how to interpret quotients in mTT given
that various proposals of how to add quotients have been given in the literature
of type theory with the notion of setoid (see for example [Hof97] and [BCP03]
and references therein) and also in category theory with the notion of quotient
completions of a (weakly) lex category or of a regular one (see for example
[CC82,CV98,Car95,CR00]). The exact formulation of the extensional level of
the minimal constructive foundation based on mTT is left to future work with
G. Sambin.



2 The extensional system

Here we briefly introduce the extensional type theory qmTT that we will in-
terpret in a model built out of the intensional type theory mTT introduced in
[MS05]. We assume that mTT includes also a boolean universe (as mentioned in
[Car04] and whose rules are the same as those for Uy, of qmTT in the appendix)
to make the disjoint sum set really disjoint (see, for example, [Mai05] for its
definition).

gqmTT is obtained as follows: we first take the extensional version of mTT, in
the same way as Martin-Lof’s type theory in [Mar84] is the extensional version
of that in [NPS90]; then we collapse propositions into mono sets according to the
notion in [Mai05]; and finally we add effective quotient sets as in [Mai05]. The
precise rules to form sets and propositions of qmTT are given in the appendix.

The form of judgements to describe qmTT are those of mTT. Hence, for
building sets, in the style of Martin-Lof’s type theory [Mar84,NPS90], we have
four kinds of judgements:

Aset[Il A=B[] acA[l]l a=beAl[l

that is the set judgement, the equality between sets, the term judgement and the
(definitional) equality between terms of the same set, respectively. The contexts
I' of these judgements are formed as in [Mar84] and they are telescopic [dB91]
since sets are allowed to depend on variables ranging over other sets.

The set constructors of qmTT are those of mTT with the addition of effective
quotient sets (see [Mai05]).
Moreover, to build propositions, as in mTT, we have the following judgements:

Avprop [I') A=B|I]

In order to make propositions into mono sets, namely to make propositions into
sets inhabited with at most one proof according to the notion in [Mai05], we add
the rules

A prop [ A prop [I] peA[l qe Al
A set [I'] prop-inono p=q€A [I

prop-into-set

The requirement that propositions are mono sets is crucial in the presence of
quotient effectiveness which would otherwise become similar to a choice operator.
Indeed, if we identify propositions with sets simply, quotient effectiveness may
lead to classical logic (see [Mai99]) and hence it is no longer a constructive rule.
The propositions of qmTT are those of mTT but their proofs are all made equal.
Moreover, the intensional propositional equality is replaced by the extensional
one of [Mar84], which, besides being mono by definition, is equivalent to the
definitional equality of terms.

Our extensional theory is a variation of the internal type theory of a lextensive
list-arithmetic locally cartesian closed pretopos, as devised in [Mai05]. The main
difference is that we discharge the identification propositions as mono sets typical
of a pretopos by simply taking propositions as primitive mono sets, without
requiring that all mono sets are propositions. In this way we avoid the validity



of the axiom of unique choice, which would instead follow under the identification
of propositions with mono sets (see [Mai05]).

The mono condition for propositions makes their proof-terms irrelevant. The
proof-irrelevance of propositions is helpful to implement subsets as in [SV98]
without the restrictions pointed out in [Car03].

3 The setoid model

We define the following category of sets equipped with an equivalence relation,
sometimes called “total setoids” in the literature:

Definition 1. The category Q(mTT) is defined as follows:
ObQ(mMTT): the objects are pairs (A,=4) where A is a set in mTT, called
“support”, and

x=ayprop [z € Ay € A]
is an equivalence relation on the set A. This means that in mTT there exist
proof-terms witnessing reflexivity, symmetry and transitivity of the relation:

refl(x) ez =4z [z € A]
sym(z,y,2) Ey=ax [t €A yEA 2€x=41y]
trans(z,y, z,u,v) Ex =42 [tE€EA yEA 2z€A uET=4Yy, VEY =4 2|

MorQ(mTT): the morphisms from an object (A,=4) to (B,=pg) are terms
f(z) € B [x € A] preserving the corresponding equality, i.e. in mTT there exists
a proof-term

pri(z,y,2) € f(z) =B f(y) [z €A, y€A 2€x=ay]

Moreover, two morphisms f,g : (A,=4) — (B,=p) are equal if and only if in
mTT there exists a proof-term

pra(z) € f(x) =5 g(x) [z € A]

This category comes naturally equipped with an indexed category (or fibration)
satisfying comprehension (see [Jac99] for its definition):

Definition 2. The indexed category:
P, : Q(mTT)°" = Cat

is defined as follows. For each object (A,=4) in Q(mTT) then Py((A,=4)) is
the following category: ObP,((A,=4)) are the propositions ¢(z) prop [z € A]
depending on A and preserving the equality on A, namely there exists a proof-
term:

ps(z,y,d) € o(x) = ¢(y) [t € A,y A, dex=ay]"

and two propositions are equal if they are equiprovable in mTT.

! Indeed, from this, by using the symmetry of 2 =4 vy it follows that ¢(z) is equivalent
to ¢(y) if x =4 y holds.



Morphisms in MorP,((A,=4)) are given by a partial order, namely
Py((A,=a))(d(x), Y(z)) = ¢(z) < ()
iff there exists a proof-term pt(z) € ¢(z) — Y(z) [z € A]

Moreover, for every morphism f : (A,=4) — (B,=p) in Q(mTT) given by
f(x) € B [z € A] then Py(f) is the substitution functor, i.e. Po(f)(d(y)) =
é(f(z)) for any proposition ¢(y) prop [y € B] (recall that P, is contravariant).

Lemma 1. P, is an indexed category satisfying the universal property of com-
prehension.

Proof. To show the property of comprehension, we consider the Grothendieck
completion Gr(P,) of P, (see [Jac99] for its definition) and the functor T :
Q(mTT) — Gr(P,) defined as follows:

T((A,=4)) = ((A,=4a), tt) T(f) = (f ide)

where tt is the truth constant that can be represented by any tautology.
T satisfies the following universal property of comprehension (cfr. [Jac99]): for
every Gr(P,)-object ((A,=4a), P) there exists a Q(mTT)-object

Cm(((A7:A)7 P)) = (ZﬂceAP(m)7 :Cm)
for 21,22 € YyeaP(z), such that, for each

2)
C,=c)) — ((A,=a), P) there is a unique mor-
( 4), P))in Q(mTT) such that in Gr(Py)

Gr(P,)-morphism (f,p) : T((
phism [f,p] : (C,=c) — Cm(

(7717772) : T([f7p]) = (f7p)

where 1 = nf and 72 = 74 are the first and second projections of the indexed
sum XyeaP(z).

Definition 3 (P;-equivalence relations). Given an equivalence relation R €
Po((A,=4) x (A,=4)), namely a predicate R(z,y) prop [z € A,y € A] that pre-
serves =4 on both dependencies and s also an equivalence relation, then the
first component of the counit on ((A,=4) X (A,=4), R) is a monic equivalence
relation in Q(mTT), and it is called a Py-equivalence relation.

The category Q(mTT) enjoys all the categorical properties necessary to in-
terpret qmTT (for their definitions see, for example, [Mai05]).

Theorem 1. The category Q(mTT) is lextensive (i.e. with terminal object, bi-
nary products, equalizers and stable finite disjoint coproducts) list-arithmetic (i.e.
with parameterized lists) and locally cartesian closed (i.e. with also dependent
products) with stable effective quotients with respect to Pqy-equivalence relations.
Moreover, the indexed category Py validates first-order intuitionistic logic.



Remark 1. Note that to prove theorem 1 is crucial to have explicit proof-terms
witnessing that x =4 y in a Q(mTT)-object is an equivalence relation, that a
Q(mTT)-morphism preserves the corresponding equivalence relations and when
two Q(mTT)-morphisms are equal. In other words it seems that it would not
follow if we give the definition of setoid objects, morphisms and their equality
via true-judgements of the kind = =4 y true [z € A,y € A] as in the first setoid
model in [Hof97] 2.

The interpretation of gmTT in Q(mTT). After theorem 1, in order to in-
terpret qmTT in Q(mTT) we could adapt the interpretation in [Mai05] given by
fibred functors (we recall that this overcomes the problem, first solved in [Hof94],
of interpreting substitution correctly when following the informal interpretation
first given by Seely in [See83] and recalled in [Joh02]). But this interpretation re-
quires a choice of the structure and is not first order, since it requires to quantify
over fibred functors. Luckily, in our case we can give a predicative interpretation
in the setoid model similar to that in the completeness proof in [Mai05] (by using
coherent isomorphisms!). This is because the setoid model is indeed a syntactic
one!

The key point to get this interpretation is to note that the slice category of
arrows in (A, =4) is equivalent to the category of dependent setoids as defined
in [Bis67,Pal05].

Definition 4. Given an object (4,=4) of Q(mTT), abbreviated with A_, we
define a dependent setoid on the setoid (A,=4) written

B_(z) [z € A—]

as a dependent set B(z) set [z € A], called “dependent support”, together with
an equivalence relation

Y=p@ Y prop [z €A,y Bx),y € Bx).
Moreover, for any x1, 2 € A there must exist
Ozy.05(y) € B(z2) [11 €A, 32 € A, d € 11 =4 32, y € B(21)]

non depending on d € x; =4 x2 and preserving the equality on B(x1), namely
there exists a proof of

Oxq,x0 (y) =B(x2) Ox1,z2 (y,) prop [$1 S A7 T2 € A7 de€ri=a X2,
y € B(z1), y' € B(x1), w € y =p(y) ¥'].

Furthermore, o, is the identity, namely there exists a proof of

% Note that the mentioned setoid model is anyway very different from Q(mTT) since
the morphism equality is simply the definitional equality of the terms between the
setoid supports.



and the o, ;,’s are closed under composition, namely there exists a proof of

Ouz,w3(Ta1 22 (V) =B(z3) Oz1,23 (y) prop

[l’l €A xy€ A7 xr3 € A7 [VES B(l’l), di €Ex1 =4 x2,d2 E X2 =4 $3]4

Categorically speaking, the category having the elements of A with their equality
as objects and 0y, 5, as (the unique) morphism from 7 to x2 forms a groupoid,
because every oy, z, gives rise to an isomorphism between B(x) and B(xg).

Definition 5. Let us call Dep( (A, =4)) the category whose objects are depen-
dent setoids B_(x) [x € A_] on the setoid (4,=4), and whose morphisms

b(z) € B_(z) [z € A_]

are dependent terms b(z) € B(z) [z € A] preserving the equality on A, namely in
mTT there exists a proof of

Oxy,20 (D(@1)) =B(2y) b(x2) prop [z1 € A, z2 € A, d € z1 =4 x2).
Proposition 1. The category Q(mTT)/(A,=4) is equivalent to Dep((A,=4)).

This proposition suggests that the categorical interpretation in Q(mTT) given
in [Mai05] can be equivalently formulated by interpreting dependent sets into
dependent setoids as follows.

Sketch of the interpretation of gmTT into dependent setoids: A depen-
dent set B(z1,...xn) [21 € A1,...2n € A ] of qmTT is interpreted as a dependent
setoid
B_(x1,...20)" [z1€ A1l . 2, € AL
assuming to have generalized def. 4 to setoids with telescopic dependencies,
where B(z1,...z,)! [z1 € A1Y,. ..z, € A, is its dependent support.

In the following, we leave the reader to deduce himself the o’s of the var-
ious dependent setoids. Except for the extensional propositional equality, any
proposition is interpreted in the corresponding one of mTT with the warning
that its equality is trivial, namely if ¢ is a proposition then z =4 2’ = tt for
all 2,2’ € ¢'. Hence, for example,

(pv) =o' V' (VeenC(z)) = Ve C(z).

Instead the extensional propositional equality is interpreted in the equality of
the set to which it refers:

(Eq(B, b1, b))’ = b} =p1 b}

The emptyset, the singleton and the boolean universe are interpreted in them-
selves with the equality given by the propositional one: for example

(U =0, and z=y; 2 =1d(Us, 2,2") for z,2" € Uy.

Instead the other constructors are interpreted as follows:



Strong Indexed Sum set : (X2epC(x) = X,cpCl(z)

and z ~X.eBC(x)! 7 = 71'1(2:) =BI 71'1(2:/) A o-‘rr1(z),7'r1(z/)(7r2(z)) =cI(xy(z")) 7T2(Zl)
for z,2' € YuepC(x).
Disjoint Sum set : (B+C)Y =B'+?
b=pr b if z=inl(b) 2/ =inl(V') for b,b’ € B!
and z =gr o1 2 = { c=cr if z=inr(c) 2 =inr(d) for e, €C!
1 otherwise

for 2,2 € Bl + C'.
Dependent Product set: (Il;cpC(x) )I =

Ehenme[ﬂcj(w) Vxl,xQEBI T1 =pI T2 — Ozq,zq (h(xl)) =1 () h(xg)

and z =1, C@)] 2 = Vyepr m(2)(x) =gr(m m () (@) for z,2" € I, cpi C(z)'.

Quotient set: (A/R)’ = A’

and z =, 1 2 = R'(2,7') for 2,2’ € A",

List set : (List(C))! = List(CT)

and z =1, 0y 2 = erisery W(List(Ch), 71(l), 2) A Id(List(C"), 7a(l), 2)
for z,2' € List(C)" where R = X, cor £ cor @ =1 y and T = List(m;) is the lifting
on lists of the i-th projection for ¢ =1, 2.

To see that the interpretation of disjoint sum sets is well-defined, recall that in
mTT the sum is disjoint thanks to the presence of the boolean universe Us.

Remark 2. Internal logic of Q(mTT). We are not able to prove that Q(mTT)
has qmTT as its internal language. The reason is that the interpretation of
implication, of universal quantification and of dependent product set do not
seem to be preserved by the functor £ : Q(mTT) — C(qmTT) sending a setoid
into its quotient, where C(qmTT) is the syntactic category of qmTT defined as
in [Mai05] (note that we can naturally interpret mTT into qmTT by sending
all the constructors in the corresponding ones and, in particular, the intensional
propositional equality of mTT into the extensional one of qmTT).

However, observe that the coherent fragment cqmTT of qmTT, obtained
by cutting out implication, universal quantification and dependent product sets
from qmTT, is the internal language of the setoid model built over the corre-
sponding coherent fragment cmTT of mTT obtained by cutting out the corre-
sponding sets and propositions.

Remark 3. Connection with the exact completion of a weakly lex cat-
egory. The construction of total setoids on mTT corresponds categorically to
an instance of the following generalization of the exact completion construc-
tion [CV98,CC82] of a weakly lex category: we start from a weakly cartesian
category C endowed with a split comprehensive fibration P satisfying enough
logical laws to express the notion of equivalence relation; then we simulate the ex-
act completion of a weakly lex category by taking only those pseudo-equivalence
relations coming by comprehension from equivalence relations in the fibres of



P. If C is weakly lex and P is the codomain fibration (see [Jac99]) then our
construction is the exact completion of C.

Therefore, knowing the internal language of such categorical constructions
from [Mai05], we conclude that the total setoid construction coincides with the
exact completion construction as in [CV98,CC82] if we perform such a construc-
tion on an extension of mTT, called MLTT, equivalent to Martin-Lof’s type
theory in [NPS90]. In order to get the the first order fragment of Martin-Lof’s
type theory it is enough to strengthen the existential quantifier of mTT to enjoy
E-X and C-X of the Strong Indexed Sum set, after adding the rule that any
set A set is also a proposition A prop (recall that in mTT propositions are not
assumed to be proof-irrelevant!).

Then, the category Q(MLTT) of total setoids built on MLTT turns out to be
a list-arithmetic locally cartesian closed pretopos and it coincides with the exact
completion, as defined in [Car95,CV98|, of the weakly lex category C(MLTT),
where the category C(MLTT) is defined as follows: its objects are MLTT-sets
and its morphisms from A to B are terms b(z) € B [z € A] and two morphisms
bi(z) € B [z € A] and by(z) € B [xr € A] are equal if there exists a proof of
Id( B, bi(z), ba(x)) prop [z € A] in MLTT. The identity and composition are
defined as in the syntactic categories in [Mai05].

However, it is important to note that the total setoid model Q(MLTT) does
not seem to be closed under well-behaved quotients if we identify propositions
as sets as done in MLTT. The reason is that under this identification Q(MLTT),
but also Q(mTT), supports the axiom of choice where the quantifiers are re-
placed by II and X as a consequence that they validate the extensional version
of Martin-Lof’s type theory in [Mar84]. Then, effectiveness of quotients, being
generally incompatible with the axiom of choice (see [Mai99]), does not seem to
be validated.

To gain well-behaved quotients in Q(MLTT) one possibility is to reason by
identifying propositions as mono sets as in the logic of a pretopos (see [Mai05]).
Instead, in Q(mTT) we get them by identifying propositions with only those
mono sets arising from propositions in mTT as in the interpretation of qmTT.
In fact, even if Q(mTT) supports quotients of all mono equivalence relations,
these do not seem to enjoy effectiveness. Categorically speaking, this means
that Q(mTT) does not seem to be a pretopos even if it has quotients for all
monic equivalence relations because we are not able to prove that all monic
equivalence relations are in bijection with Pg-equivalence relations, for which
effective quotients exist (which explains why we introduced the concept of Pg-
equivalence relation!).

As expected from [Mai99], under the identification propositions as mono sets,
Q(MLTT) looses the validity of the axiom of choice. In fact it turns out that
the propositional axiom of choice is exactly interpreted in Q(MLTT) (and also in
Q(mTT)) as the extensional axiom of choice in [ML06,Car04] following the given
interpretation of qmTT in Q(mTT). Therefore, the arguments in [MLO06,Car04]
exactly show that the propositional axiom of choice fails to be valid in the total
setoid models Q(MLTT), and even more in Q(mTT), under the identification



of propositions with mono sets. In Q(MLTT) the propositional axiom of choice
survives only for those setoids whose equivalence relation is the propositional
equality of MLTT. Only the validity of the axiom of unique choice continues to
hold in its generality in Q(MLTT) (see also [MLO06]).

Remark 4. In order to interpret quotients in mTT we also considered to mimic
the exact completion on a regular category in [CV98,Hyl82] by taking only those
equivalence relations obtained by comprehension from the propositional fibra-
tion. But we ended up just in a list-arithmetic pretopos, for example not neces-
sarily closed under dependent products, since mTT is predicative and the axiom
of choice is not a theorem there.

Acknowledgements: I thank Giovanni Curi, Ferruccio Guidi, Pino Rosolini,
Giovanni Sambin, Thomas Streicher, Silvio Valentini for very useful discussions
on the topics treated here, and Jesper Carlstrom about the notion of Us.
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4 Appendix: The qmTT typed calculus

We present here the inference rules to form sets and propositions in qmTT. Note
that to write the elimination constructors of the various sets and propositions
we adopt the higher order syntax as in [NPS90] 3.

3 For example, note that the elimination constructor of disjunction Ely(w,ap,ac)
binds the open terms ap(z) € A [x € B] and ac(y) € A [y € C]. Hence these
open terms should be then encoded into the elimination constructor given that they



For brevity, in presenting formal rules we omit the corresponding equality
rules that are defined as in [Mar84].

The contexts are generated by the same rules as for mTT in [MS05]. Note
that the piece of context common to all judgements involved in a rule is omitted
and that the typed variables appearing in a context are meant to be added to
the implicit context as the last one. We also recall that the contexts are made of
assumptions on sets only, and that we have the rule prop-into-set and prop-
mono mentioned in section 2.

The rules to generate the propositions in gqmTT are the following:

Falsum

a€ Ll Aprop
F-Fs) L E-Fs) —MMMM—
s) prop s) (@ €A

Propositional Equality

Cset ceC deC ceC p € Eq(C, ¢, d)
L-E E-E — 7
Eq(C,c,d) prop a) eqc(c) € Eq(C, ¢, c) a) c=deC
Implication

qa)

B prop C prop Bprop Cprop c¢(z) €C [z € B]
m = PP PP 1y e
B — C prop Aoz .e(zr) e B—C
beB feB-—C
Ap_(f,b)eC
Conjunction

F-I

E-Im

B prop C prop I-A) Bprop Cprop beB ce(C
B A C prop (bac) € BAC
de BANC de BAC

1-A —5—— Eo2-

aop LEDAC
7 (d) € B 75 (d) e C
Disjunction

F-A)

B prop C prop 1-V) Bprop Cprop beB Bprop Cprop ceC
BV C prop inly(b) e BVC inrv(c) e BVC
A prop we€BVC ap(z) € Alx € B] ac(y)€ AlyeC]
Ely(w,ap,ac) € A
Existential quantification

F-v)

12—\/)

E-V)

C(z) prop [z € B
J2esC(z) prop

C(z)prop [x€B] beB ceC(b)
<b,3 C> € HZEBC(I)
M prop d € 34eC(z) m(z,y) € M [z € B,y € C(x)]
Els(d,m) € M

F-3)

1.3)

B-3J)

are needed in the disjunction conversion rules. To simplify the notation we use the
higher order syntax as in [NPS90]. Thanks to this syntax from the open term ag(z) €
A [z € B] we get (z € B)ag(x) of higher type (z € B) A. Then by n-conversion
among higher types (z € B) ap(z) is equal to ap and we can simply write the short
expression ap to recall the open term where it comes from.



Universal quantification
C(z) prop [z € B Ly C(z) prop [z € B] c¢(z) € C(z) [z € B]
VzerC(x) prop AvaB.c(x) € VoerC(2)
be B f€VeenCl(x)
Apy(f,b) € C(b)

The rules to generate qmTT sets are the following:

F-v

E-V

Empty set

F-Em) No set F-Em) a € Ny A(z) set [x € No]

empo(a) € A(a)

Singleton set

S) Ny set 1-S) * € Ny C-8) teN;1 M(z)[z€Ni] ce M%)

Eln, (t,c) € M(¢)

Indexed Sum set

C(x) set [z € B be B ceC(b)
YeenC(x) set ) (b,c) € XoepC(2)
M(z) [z € XoeC(2)]
d€ YyepC(z) m(z,y) € M((z,y)) [z € B,y € C(z)]
Els(d,m) € M(d)
M(2) [z € XeepC(2)]
beB ceC(b) m(z,y) € M({z,y)) [r € B,y € C(z)]
Els({b,c),m) = m(b,c) € M({(b,c))

Disjoint Sum set

F-X)

E-Y)

C-X)

C set B set ceC beB
) e B "Piwwecrs  "Vimects
A(z) [z € C+ B]
weC+B aolx) € Alinl(z)) [t € O] asly) € Alinr(y)) [y € Bl
Eli (w,ac,aB) € A(w)
A(z) [z € C+ B]
ceC ac(z) € A(inl(z)) [x € C] agB(y) € A(inr(y)) [y € B]
Ely (inl(c),ac,aB) = ac(c) € A(inl(c))
A(z) [z € C+ B]
be B ac(z) € A(inl(z)) [x € C] as(y) € A(inr(y)) [y € B
Ely(inr(b),ac,aB) = ap(b) € A(inr(b))
Dependent Product set

E-+)

Ci1-+)

Co-+)

C(z) set [z € B] 7 _c€C@)z e B]
b1 I,epC(z) set - AP ce H,epC(x)

be B fe€ l,epC(z) be B c(z) € C(zx)[x € B]
R e o petr Ap(\z”.c(z),b) = c(b) € C(b)
seI1 ¢ € II;epC(x)

\e® Ap(e,x) = ¢ € TepC(x)



Boolean universe

F-bU Uy set L-bU N € Us L-bU N; € U,

de U,

E-
bu T'(d) set

BC1-bU T(No) =Ny  BCa-bU T(Np) = Ny

Quotient set

refl(z) € R(z,z) [z € A]

sym(z,y,2) € R(y,z) [x € A, y € A, z € R(z,y)]

trans(z,y,z,u,v) € R(z,z) [t € A,y € A, z € A,
u € R(z,y), v € R(y, 2)]

R(z,y) prop [z € A,y € A]

Q) A/R set
a€ A A/R set a€A beA de R(a,b) A/R set

Q) e AR ea-Q) W= € A/R

L(z) [z € A/R]
Q) peEA/R I(z) e L([z]) [x € A] Uz)=1Uy) € L([z]) [x € A,y € A,d € R(z,y)]

Elq(l,p) € L(p)

L(z2) [z € A/R]

Q) a€A l(z)e L(z]) [x € A U(z)=1(y) € L([z]) [x € A,y € A,d € R(z,y)]
Elq(l,[a]) = l(a) € L([a])

Effectiveness

a€A beA [al=[b€A/R
eff(a,b) € R(a,b)

List set
C set . . ..\ SEList(C) ceC
List(C) set Li-list) € € List(C) L-list) cons(s, ¢) € List(C)
L(z) [z € List(C)]
s€ List(C) a€ L(e) lz,y,z) € L(cons(z,y)) [z € List(C),y € C,z € L(x)]

list)

E-li
ISt) ElL'Lst (CL, l7 8) € L(S)

L(z) [z € List(C)]
a€ L(e) I(z,y,z) € L(cons(z,y)) [z € List(C),y € C,z € L(x)]

-list
Cr-list) FElrisi(a,l,€) = a € L(e)

L(z) [z € List(C)]
s€ List(C) ceC ae€ Le)
l(z,y,2) € L(cons(z,y)) [z € List(C),y € C,z € L(z)]
Elrist(a,l,cons(s,c)) = (s, ¢, Elpist(a,l, s)) € L(cons(s,c))
Note that List(NN1) corresponds to the set of natural numbers represented as
lists on a singleton, with 0 = € and s(n) = cons(n, *) for n € List(Ny).

Cz-list)




