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Abstract. The elementary quotient completion of an elementary doctrine in the sense
of Lawvere was introduced in previous work by the first and third authors. It generalizes
the exact completion of a category with finite products and weak pullbacks. In this
paper, we characterize when an elementary quotient completion is locally cartesian closed
in terms of properties of the elementary doctrine which generates it. It generalizes the
characterization of locally cartesian closed exact completions given by the third author
with Carboni, in the case that the exact completion is performed on a finite product
category with weak pullbacks.

1. Introduction

The study of constructions for completing a category with quotients is a central topic
in mathematics and in computer science. Well-known related notions are those of the
exact completions of a category with finite limits, and of a regular category, see [Carboni
and Celia Magno, 1982, Carboni and Vitale, 1998], which have been widely studied and
applied.

In [Maietti and Rosolini, 2013b], the first and third authors generalized the notion
of exact completion on a category with weak finite limits to that of an elementary quo-
tient completion of an elementary doctrine [Lawvere, 1970] as a universal construction to
provide such a doctrine with quotients. The fundamental contribution of Bill Lawvere in
determining structure in logic cannot be overestimated. Hyperdoctrines, introduced in
[Lawvere, 1969], have proved to be a crucial tool for the study of logic and its applications,
see e.g. the survey in [Pitts, 2000] and the references there.

The exact completion of a category C with finite products and weak pullbacks is a
principal instance of such a construction since the doctrine of subobjects of an exact
completion is the elementary quotient completion of the weak subobject doctrine of C ,
see [Lawvere, 1996], see also [Grandis, 2000] for the notion of weak subobject. However,
not all elementary quotient completions produce exact categories. Notable examples of

The paper contains results presented by the authors at several international meetings in the past years,
in particular at the Logic Colloquium 2016 and Category Theory 2017, and during the Trimester devoted
to Types, Homotopy Type Theory and Verification at the Hausdorff Research Institute for Mathematics
in 2018. The three authors would like to thank the organisers of these events allow them to present the
results. The research by the third author was supported in part by MUR Excellence Department Project
awarded to Dipartimento di Matematica, Università di Genova, CUP D33C23001110001.
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non-exact categories arising as quotient completions include the category of equilogical
spaces of [Scott, 1996, Bauer et al., 2004] and that of assemblies over a partial combinatory
algebra, see [Hyland, 1982, van Oosten, 2008]). Other relevant examples are provided by
the syntactic category of total setoids in dependent type theory, in the style of [Bishop,
1967], over the Calculus of Inductive Constructions [Coquand and Huet, 1988, Coquand
and Paulin, 1990], the theory at the base of the proof-assistant Rocq, as well as the
syntactic quotient category used to build the Minimalist Foundation in [Maietti, 2009],
described in [Maietti and Rosolini, 2013b]. In these examples, the base of the syntactic
doctrine generating the elementary quotient completion has only weak pullbacks.

In the paper, we study sufficient and necessary conditions that a Lawverian elementary
doctrine satisfies, to guarantee that the base of its elementary quotient completion is
locally cartesian closed. Such conditions amount to require that the elementary doctrine
is slicewise weakly cartesian closed, see Definition 3.5.

That characterization generalizes that for the locally cartesian closed exact comple-
tions in [Carboni and Rosolini, 2000], as well as its revision in [Emmenegger, 2020]. In
particular, when applied to categories with finite products and weak equalizers, the notion
of slicewise weakly cartesian closed category provides necessary and sufficient conditions
equivalent to those in [Emmenegger, 2020] but formulated only in terms of adjunctions
or their weakened form. We also give a negative answer (see Proposition ??) to the pos-
sibility of extending the elementary quotient completion bi-adjunction of [Maietti and
Rosolini, 2013b] to a 2-category of elementary doctrines admitting weak comprehension
with comprehensive diagonals, but we established a universal property, under suitable
hypotheses, in parallel with what is proved in [Carboni and Vitale, 1998] for the exact
completion of a category with weak finite limits.

In future work, we will investigate how the characterization presented here can be
extended to locally cartesian closed elementary quotient completions of doctrines on a base
category with weak finite products, such as the “biased doctrines” considered in [Cioffo,
2022, Cioffo, 2023]. In [Cioffo, 2022], the author characterized locally cartesian closed
elementary quotient completions for biased doctrines that are also universal, by adapting
notions inspired by [Emmenegger, 2020]. As a subsequent development, we intend to
study how to enforce such a characterization in the general case of biased doctrines in
such a way that the characterizations in [Carboni and Rosolini, 2000, Emmenegger, 2020]
arise as special instances.

The proofs presented in the paper are carried out mainly using the internal logic of
the doctrines involved, producing explicit calculations that make it evident that they are
entirely constructive and suitable for formalisation in a proof assistant.

2. Basic properties of elementary doctrines

Mainly to introduce the notation that we use in the rest of the paper, we briefly recall
the construction of the elementary quotient completion of an elementary doctrine from
[Maietti and Rosolini, 2013b], together with some properties of a doctrine.
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2.1. Elementary doctrines

An indexed poset P :C op // Pos on a category C with finite products is a primary
doctrine when each fiber is an inf-semilattice, and any reindexing functor Pf :P (B) //

P (A), for f :A // B in C , preserves finite infs, i.e. P takes values in the category InfSL
of inf-semilattices and finite infs preserving homomorphisms. A primary doctrine is an
elementary doctrine when, for every object A in C , there is an object δA in P (A×A)
such that for every arrow e := ⟨pr1, pr2, pr2⟩:X×A // X×A×A in C , where pri denotes
the homonymous projection from the product X × A, the assignment

E

e(α) := P⟨pr′1,pr′2⟩(α) ∧X×A×A P⟨pr′2,pr′3⟩(δA)

for α in P (X × A) and pr′i the homonymous projection from the product X × A × A
determines a left adjoint to

Pe:P (X × A× A) // P (X × A).

We call C the base of the doctrine. One says that α is over A when α is an element
of P (A). The top element over the object A of C is denoted by ⊤A, and given α and β
over A, their inf is α∧Aβ (we may drop subscripts when these are clear from the context).

Elementary doctrines are just another, conceptually slightly different, presentation of
the amnestic Eq-fibrations of [Jacobs, 1999]. An obvious 1-1 correspondence is just a
direct extension of the usual indexed family/function correspondence.

For an elementary doctrine, the assignment

E

⟨idA,idA⟩(α) := Ppr1(α) ∧A×A δA

for α in P (A) determines a left adjoint to the reindexing

P⟨idA,idA⟩:P (A× A) // P (A).

Thus, δA is determined uniquely for each object A in C . We will refer to δA as the fibered
equality on A.

Elementary doctrines were inspired by Lawvere’s notion of hyperdoctrine [Lawvere,
1970], that provide an appropriate mathematical structure to study logical theories inde-
pendently of their presentation. Indeed, the examples of elementary doctrines that come
directly from first-order logic are given by the indexed posets of Lindenbaum–Tarski al-
gebras of well-formed formulas. In detail, given a theory T in the first order language
L , the base category is the category V whose objects are lists of distinct variables and
where an arrow is a list (tj)

m
j=1: (xi)

n
i=1

// (yj)
m
j=1 of terms of L where each term tj is

in the variables x1, . . . , xn. To obtain the primary doctrine LTT :V op // Pos, the fiber
over the list of variables (xi)

n
i=1 in V is the Lindenbaum–Tarski algebra LTT (x⃗) of the

equivalence classes of well-formed formulas in the free variables (xi)
n
i=1 with respect to

provable equivalence in T . Infs in LTT (xi) are given by conjunctions. The top element
is any true formula. The primary doctrine LTT is elementary if and only the equality is
definable in T . We refer the reader to [Maietti and Rosolini, 2013a] for more details.

Direct examples of elementary doctrines from categories are given by
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• the subobject functor SubC :C op // Pos for C a category with finite limits. The
object δA is the subobject represented by the diagonal on A;

• the functor of variations ΨD :Dop // Pos, introduced in [Lawvere, 1996], when
the category D has binary products and weak pullbacks. Recall that ΨD(A) is the
poset reflection of the comma category D/A.

Another family of examples is that of evaluations into an inf-semilattice: given an
inf-semilattice H , consider the primary doctrine PH : Set op // Pos which sends a set A to
the poset H A of H -valued functions, and a function f :A // B to pre-composition with
it: PH (f) = − ◦ f . It is an elementary doctrine if and only if H has a bottom element,
see [Emmenegger et al., 2020]. In this case δA is the function that maps (a, a′) to ⊤ when
a = a′, and to ⊥ otherwise.

Observe that an elementary doctrine P :C op // Pos gives the possibility of “evaluat-
ing” how equal two arrows f, g:X // A in the category C are with respect to the “logic”
of P by looking at the object P⟨f,g⟩(δA) in P (X). This object could be ⊤X without f and
g being actually equal as arrows in C .

We say that diagonals are comprehensive in the elementary doctrine P :C op // Pos
when ⊤X ≤ P⟨f,g⟩(δA) always yields that f = g.

The elementary doctrine SubC :C op // Pos of subobjects, for any category C with
finite limits, has comprehensive diagonals as well as that of variations ΨD :Dop // Pos
when D has finite products and weak pullbacks.

Elementary doctrines are the objects of the 2-category ED where a 1-arrow P // D
is a pair made by a functor F :C // D that preserves finite products and a natural
transformation f :P // D ◦F op that preserves finite meets and fibered equality (we refer
the reader to [Maietti and Rosolini, 2013a] for the explicit description). We limit ourselves
to note that the category ED(LTT , SubSet ) is equivalent to the category of models of the
theory T and 1-1 homomorphisms, for T a Horn theory, i.e. a theory in the ∧ =-
fragment.

We recall from [Maietti and Rosolini, 2013a] that it is possible to force comprehensive
diagonals in an elementary doctrine P :C op // Pos as follows: Consider the quotient
category XP where two arrows f, g:A // B are equivalent if ⊤A ≤ Pf,g(δB). And note
that the action of P on equivalent arrows is the same so that P actually factors through
the (opposite of the) quotient functor Q:C // XP .

2.2. Existential doctrines

Similarly to the way elementary doctrines structure logical theories with equality, exist-
ential doctrines provide the doctrinal structure for existential quantification. In the spirit
of [Lawvere, 1970] we say that a primary doctrine P :C op // Pos is existential when,
for very A1 and A2 in C , for a(ny) projection pri:A1 × A2

// Ai, i = 1, 2, the func-
tor Ppri :P (Ai) // P (A1 × A2) has a left adjoint

E

pri and those left adjoints satisfy the
following two conditions.
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Beck-Chevalley condition : for any pullback diagram

X ′ pr′
//

f ′
��

A′

f
��

X
pr
// A

with pr a projection (hence also pr′ a projection), for any β in P (X), the canonical
inequality

E

pr′Pf ′(β) ≤ Pf

E

pr(β) in P (A
′) is an equality.

Frobenius Reciprocity : for pr:X // A a projection, α in P (A), β in P (X), the ca-
nonical inequality

E

pr(Ppr(α) ∧ β) ≤ α ∧

E

pr(β) in P (A) is actually an equality.

The primary doctrine LTT :V op // Pos associated to a first order theory T is exist-
ential: left adjoints along projections are given by existential quantification. The doctrine
SubC :C op // Pos of subobjects on a category C with finite limits is existential if and only
if C is regular (see [Jacobs, 1999] on page 258). On the other hand, when D has finite
products and weak pullbacks, the weak subobject doctrine ΨD :Dop // Pos is existential
as left adjoints are given by post-composition. For H an inf-semilattice, the primary
doctrine PH : Set op // Pos is existential if and only if H is a frame, see [Emmenegger
et al., 2020].

2.3. Remark.

As shown in [Lawvere, 1970], for an elementary existential doctrine P :C op // Pos every
reindexing Pf has a left adjoint

E

f . For f :A // B the map

E

f :P (A) // P (B) is

E

f (α): =

E

pr2 [Pf×idB(δB) ∧ Ppr1(α)]

see also [Pitts, 2002]. Moreover, such a left adjoint satisfies the Frobenius Reciprocity.
But they need not satisfy the Beck–Chevalley condition, see e.g. [Maietti and Trotta,
2023] for a counterexample.

Elementary existential doctrines are the 0-cells of the 2-category EED, the 2-full sub-
category of ED whose 1-cells are those 1-cells (F, b):P // R which also preserves the
left adjoints to reindexing along projections. For a theory T axiomatised in the ∃∧ =-
fragment, the category EED(LTT , SubSet ) is equivalent to the category of models of T
with elementary homomorphisms (in the model-theoretic sense of “elementary”, i.e. those
1-1 homomorphisms which reflect existential quantification).

2.4. Hyperdoctrines

It should already be clear how a primary doctrine P :C op // Pos provides the core struc-
ture to be adjusted to model other logical operations: so we say that P is
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• implicational if, for every object A in C , every α in P (A), the functor α ∧
−:P (A) // P (A) has a right adjoint α ⇒ −:P (A) // P (A), and reindexing pre-
serves the operation, i.e. Pf (α⇒ β) = Pf (α) ⇒ Pf (β);

• universal if, for A1 and A2 in C , for a(ny) projection pri:A1 ×A2
// Ai, i = 1, 2,

the functor Ppri :P (Ai) // P (A1 × A2) has a right adjoint

A

pri , and these right
adjoints satisfy the Beck-Chevalley condition : for any pullback diagram

X ′ pr′
//

f ′
��

A′

f
��

X
pr
// A

with pr a projection (hence also pr′ a projection), for any β in P (X), the canonical
inequality Pf

A

pr(β) ≤

A

pr′Pf ′(β) in P (A′) is an equality.

A hyperdoctrine is a primary doctrine which is elementary, existential, implicational,
and universal. Note that our notion of hyperdoctrine differs from the original in [Lawvere,
1969] in that in our case the base category C is not required to be closed and the pre-
ordered fibers must be strict orders equipped with left and right adjoints satisfying Beck-
Chevalley conditions.

2.5. Remark.

Let P be an elementary doctrine such that every reindexing Pf has a left adjoint

E

f and
every inf-semilattice P (A) has pseudocomplements, that is, P (A), seen as a category, is
cartesian closed. Then the left adjoints satisfy the Frobenius Reciprocity (in the general
sense of Remark 2.3) if and only if P is implicational. Indeed, the compositions Pf (α⇒ −)
and Pf (α) ⇒ Pf (−) coincides if and only if the compositions of their left adjoints α∧

E

f (−)
and

E

f (Pf (α) ∧ Pf (−)) coincide.

Clearly the primary doctrine LTT :V op // Pos associated to a first-order theory T
is a hyperdoctrine: the cartesian closed structure in a fiber is provided by the logical
implication; the right adjoint to reindexing along a projection is provided by the universal
quantification.

If C is a Heyting category (also called logos in [Freyd and Scedrov, 1990]), the primary
doctrine SubC :C op // Pos of subobjects is a hyperdoctrine.

Assuming that D has finite limits and each comma category D/A is weakly cartesian
closed, the primary weak subobject doctrine ΨD :Dop // Pos is a hyperdoctrine. We shall
see later how to generalize the description to the case when D is assumed to have only
(finite products and) weak pullbacks.

Finally, similar to the existential case, given an inf-semilattice H , the primary doctrine
PH : Set op // Pos is implicational and universal if and only if H is a frame, see [Pitts,
2002].
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2.6. Remark.

As for the left adjoint in Remark 2.3, Lawvere showed that in an implicational and
universal doctrine P :C op // Pos every map of the form Pf has a right adjoint

A

f . For
f :A // B the map

A

f :P (A) // P (B) is

A

f (α): =

A

pr2 [Pf×idB(δB) ⇒ Ppr1(α)], see also
[Pitts, 2002].

2.7. Comprehension

A primary doctrine P :C op // Pos is said to admit comprehension if for every A in C
and every α in P (A) there is an arrow {|α|}:X // A such that ⊤X ≤ P{|α|}(α), and for
every arrow f :Y // A such that ⊤Y ≤ Pf (α) there is a unique arrow k:Y // X such
that {|α|}k = f , see [Jacobs, 1999, Maietti and Rosolini, 2013b].

In case the mediating arrows k are not required to be unique, one says that P admits
weak comprehension as in [Maietti and Rosolini, 2013b]. Sometimes, we may add the
adjective “strong” when P admits comprehension to stress that fact in comparison with
the weak condition.

Furthermore, we shall often refer to the arrow {|α|} as the comprehending arrow of
α, or just as a comprehensive arrow if we drop the reference to the object α in the
fiber.

2.8. Remark.

Suppose P is a primary doctrine admitting weak comprehension. To check the uniqueness
of the mediating arrow, it is sufficient (and necessary) that {|α|}:X // A is monic. So P
admits strong comprehension if (and only if) each comprehensive arrow {|α|}:X // A is
monic.

Note that, for a doctrine P admitting comprehension, if α ≤ β in P (X), then ⊤X ≤
P{|α|}(β). When also the converse holds, one says that comprehension is full , i.e. for every
A and every α, β over A, if ⊤X ≤ P{|α|}(β), then α ≤ β.

Examples of primary doctrines admitting full comprehension are the subobject doc-
trines SubC :C op // Pos, for C with finite limits—a comprehending arrow of a subobject
is any representative of the subobject.

On the other hand, when D has finite products and weak pullbacks, the doctrine
ΨD :Dop // Pos of variations admits full weak comprehension—any representative of a
variation is a comprehending arrow for the variation.

For H an inf-semilattice, the doctrine PH admits strong comprehension. Given α
in PH (A) the arrow {|α|} is the inclusion

{
a ∈ A

∣∣ α(a) = ⊤
}
� � //A. In general, the

comprehension on PH is not full, e.g. take H with at least three elements and α, β:A // H
which agree only on α−1{⊤} = β−1{⊤}.

In general, a doctrine of the form LTT :V op // Pos does not admit comprehension.
Comprehensive diagonals were originally introduced in [Maietti and Rosolini, 2013b]

with the name of “comprehensive equalizers” in light of the property that an elementary
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doctrine P :C op // Pos has comprehensive diagonals if and only if diagonals in C are
the comprehending arrows of the corresponding fibered equalities, i.e. ⟨idA, idA⟩ = {|δA|},
see [Maietti and Rosolini, 2013b, Proposition 4.6]. Furthermore, when P admits full
comprehension, comprehensive diagonals assure that its base C has equalizers.

2.9. Proposition.

Suppose P :C op // Pos is an elementary doctrine with comprehensive diagonals.

(i) If P admits weak comprehension, then C has weak equalizers, hence weak finite
limits.

(ii) If P admits strong comprehension, then C has equalizers, hence all finite limits.

Proof. A weak equalizer of f, g:X // A is {|P⟨f,g⟩(δA)|}.

2.10. Proposition.

Let P be an elementary existential doctrine admitting weak comprehension. Then weak
comprehension is full if and only if

E

{|α|}(⊤X) = α for every {|α|}:X // A.

Proof. Assume P admits full weak comprehension. By the adjunction

E

{|α|} ⊣ P{|α|}, from
⊤X = P{|α|}(α) it follows that

E
{|α|}(⊤X) ≤ α. Fullness applied to the adjunction unit

⊤X ≤ P{|α|}(

E

{|α|}(⊤X)) ensures instead that α ≤

E

{|α|}(⊤X) holds.
Conversely, if

E

{|α|}(⊤X) = α, from⊤X = P{|α|}(β) it follows α =

E

{|α|}(⊤X) =

E

{|α|}P{|α|}(β) ≤
β using the counit of the adjunction

E

{|α|} ⊣ P{|α|}.

2.11. Proposition.

Let P :C op // Pos be an elementary existential doctrine admitting full weak comprehen-
sion.

(i) If P has comprehensive diagonals, and the diagram

P
g
//

k
��

A

f
��

B
h // C

is a weak pullback, then Pf

E

h =

E

gPk.

(ii) If every reindexing Pf has a right adjoint, then P is implicational.

Proof. (i) See [Maietti et al., 2017, Theorem 2.19].
(ii) See [Maietti and Rosolini, 2013b, Lemma 4.9].
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We end this part on comprehension by recalling the free completion of an elementary
doctrine to one admitting comprehension, and the logical notation that one can employ
with elementary doctrines.

Given an elementary doctrine P :C op // Pos, the free comprehension completion is
the doctrine Pc :Cc

op // Pos where the base Cc has objects pairs (A,α) where A is in C
and α is in P (A). An arrow f : (A,α) // (B, β) is an arrow f :A // B in C such that
α ≤ Pf (β). The functor Pc maps each (A,α) to Pc(A,α) =

{
ϕ ∈ P (A)

∣∣ ϕ ≤ α
}
and

each f : (A,α) // (B, β) to the function Pc(f):Pc(B, β) // Pc(A,α) determined by the
assignment ψ 7→ Pf (ψ) ∧ α. For ϕ in Pc(A,α) it is {|ϕ|} = idA: (A, ϕ) // (A,α).

2.12. Proposition.

Suppose P :C op // Pos is elementary existential admitting full weak comprehension with
comprehensive diagonals. If the variational doctrine ΨC has a right adjoint for every
reindexing (ΨC )f , then P is a hyperdoctrine.

Proof. Proposition 2.9 (ii) ensures that C has weak pullbacks. The universal quantifier
of α in P (A) along f :A // B is ∃Πf ({|α|})⊤X where Πf ({|α|}):X // A is the universal
quantifier {|α|} along f in ΨC (B), thanks to [Maietti et al., 2019, Proposition 2.3] that
crucially employs Proposition 2.10, see also [Maietti et al., 2017, Remark 2.10]. The fact
that P is implicational follows from Proposition 2.11 (ii).

As explained in [Jacobs, 1999, Maietti and Rosolini, 2016], one can associate a de-
ductive calculus to elementary doctrines, that of the ∧=-fragment over type theory with
just a unit type and a binary product type constructor. We will use it with the following
notation.

Let P :C op // Pos be an elementary doctrine. We write

a1:A1, . . . , ak:Ak | ϕ1, . . . , ϕn ⊢ ψ

in place of
ϕ1 ∧ . . . ∧ ϕn ≤ ψ in P (A1 × . . .× Ak).

where we identify formulas ϕ1, . . . ϕn and ψ with their interpretation. We write simply
a1:A1, . . . , ak:Ak ⊢ ψ in case there are no premisses (n = 0). The “binary predicate” δA
in P (A×A) will be written as a:A, a′:A | a=Aa

′. Also we write a1:A1, . . . , ak:Ak | α ⊣⊢ β
to abbreviate a1:A1, . . . , ak:Ak | α ⊢ β and a1:A1, . . . , ak:Ak | β ⊢ α.

If P is also existential and a:A, x:X | ϕ, i.e. ϕ is in P (A×X), we write a:A | ∃x:Xϕ in
place of

E

pr1ϕ in P (A). And when P is universal, for ϕ in P (A×X) we write a:A | ∀x:Xϕ
in place of

A

pr1ϕ in P (A). We will denote ϕ ⇒ ψ the logical implication of two formulas
ϕ and ψ and ϕ ∧ ψ their conjunction.

We shall employ the logical notation whenever we feel that intuition or readability is
improved.
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2.13. The elementary quotient completion

To present the construction of the elementary quotient completion for an elementary
doctrine, we start by recalling from [Maietti and Rosolini, 2013b, Maietti and Rosolini,
2013a] the notion of P -equivalence relation and P -quotient for one such relation.

Let P :C op // Pos be an elementary doctrine. A P -equivalence relation ρ on the
object A of C is an element in P (A× A) such that

(i) a:A ⊢ ρ(a, a);

(ii) a1:A, a2:A | ρ(a1, a2) ⊢ ρ(a2, a1);

(iii) a1:A, a2:A, a3:A | ρ(a1, a2) ∧ ρ(a2, a3) ⊢ ρ(a1, a3).

When no confusion may arise, we drop the reference to the doctrine P in the locution
P -equivalence relation.

An obvious example of a P -equivalence relation is the fibered equality on an object
in C . Also, given an arrow for f :A // B, the reindexing Pf×f (σ) of a P -equivalence
relation on B is a P -equivalence relation on A.

It is also clear that in an elementary doctrine of subobjects SubC :C op // Pos over
a category C with finite limits, a SubC -equivalence relation is precisely an equivalence
relation ρ:R // //A× A in C , see [Barr, 1971].

The relevance of the notion of P -equivalence relation may appear when instantiating
the doctrine to the case of variations: consider a category D with finite products and weak
pullbacks, and let ΨD :Dop // Pos be the elementary weak subobject doctrine. An object
ρ of ΨD(A×A) is a ΨD-equivalence relation on A if and only if it is a pseudo-equivalence
relation of C in the sense of [Carboni and Celia Magno, 1982, Carboni, 1995].

Just to complete the review of the examples of elementary doctrines treated in the
previous subsections, in an elementary doctrine LTT :V op // Pos built out of a first
order theory T , an LTT -equivalence relation on (xi)

n
i=1 is a formula ϕ(. . . , xi, . . . , x

′
i, . . .)

in 2n-variables such that

• ⊢T ϕ(. . . , xi, . . . , xi, . . .);

• ⊢T ϕ(. . . , xi, . . . , x
′
i, . . .) ⇒ ϕ(. . . , x′i, . . . , xi, . . .);

• ⊢T ϕ(. . . , xi, . . . , x
′
i, . . .) ∧ ϕ(. . . , x′i, . . . , x′′i , . . .) ⇒ ϕ(. . . , xi, . . . , x

′′
i , . . .)

When H is an inf-semilattice, a PH -equivalence relation on A is an H -valued ultra-
pseudodistance on A, i.e. a function ρ:A× A // H such that for all a, a′, a′′ in A

• ρ(a, a) = ⊤;

• ρ(a, a′) = ρ(a′, a′′);

• ρ(a, a′) ∧ ρ(a′, a′′) ≤ ρ(a, a′′).
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2.14. Definition.

Let P be elementary doctrine P :C op // Pos. An arrow q:A // A/ρ is said to be a
P -quotient of the P -equivalence relation ρ when a1:A, a2:A | ρ(a1, a2) ⊢ q(a1)=A/ρq(a2)
and for every arrow f :A // Y such that a1:A, a2:A | ρ(a1, a2) ⊢ f(a1)=Y f(a2) there
exists a unique h:A/ρ // Y such that the diagram

A
q

//

f ''

A/ρ

h��
Y

commutes in C .

2.15. Definition.

An elementary doctrine P :C op // Pos on a base with pullbacks is said to have stable
effective quotients when

• each P -equivalence relation has a P -quotient;

• any P -quotient q:A // A/ρ is effective , namely in the internal language the
judgement a1:A, a2:A | q(a1)=A/ρq(a2) ⊢ ρ(a1, a2) holds;

• any P -quotient is stable , namely in every pullback

P
q′
//

f ′

��

B

f
��

A
q
// A/ρ

the arrow q′ is a quotient.

2.16. Definition.

Given an elementary doctrine P :C op // Pos and a P -equivalence relation ρ on the object
A of C , the inf-semilattice of descent data Desρ is the sub-semilattice of P (A) on those
α such that

a1:A, a2:A | α(a1) ∧ ρ(a1, a2) ⊢ α(a2).

For an arrow f :A // B in C the function Pf :P (B) // P (A) takes values in DesPf×f (δB),
the inf-semilattice of descent data on the “kernel pair” of f . We say that f is of effective
descent when Pf :P (B) // DesPf×f (δB) is an isomorphism.
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2.17. Remark.

To justify the terminology introduced above, note that when C is a category with finite
limits, the elementary doctrine SubC has stable quotients if and only if C is exact. When
this is the case, then quotients are of effective descent.

We are ready to review the construction of elementary quotient completion introduced
in [Maietti and Rosolini, 2013b]. The construction freely adds stable quotients of effect-
ive descent and comprehensive diagonals as the result of composing the completion in
[Maietti and Rosolini, 2013a, Theorem 4.5], which freely adds stable effective quotients,
and the completion in [Maietti and Rosolini, 2013a, Theorem 5.7] which freely adds com-

prehensive diagonals. In this way, it determines a left bi-adjoint (̂−):ED // QED to
the inclusion of the 2-subcategory QED of ED on those elementary doctrines with stable
effective quotients and comprehensive diagonals whose 1-cells are 1-cells in ED preserving
quotients. The original universal property in [Maietti and Rosolini, 2013b] was instead
shown for elementary doctrines with full comprehension and comprehensive diagonals.

Given an elementary doctrine P :C op // Pos, let Q P be the category whose objects
are pairs (A, ρ) where A is an object in C and ρ is a P -equivalence relation on A. An
arrow in Q P is [f ]: (A, ρ) // (B, σ), an equivalence class of arrows f :A // B in C such
that

a1:A, a2:A | ρ(a1, a2) ⊢ σ(f(a1), f(a2))

and where f and g are equivalent if

a:A ⊢ σ(f(a), g(a)).

Composition is defined by composing in C the representative arrows of the equivalence
classes. The category Q P has finite products: we just point out that a product of objects
(A, ρ) and (B, σ) of Q P is the diagram

(A, ρ) (A×B, ρ⊠ σ)
[pr1]oo

[pr2] // (B, σ)

where (ρ⊠ σ)(a1, b1, a2, b2) is the P -equivalence relation ρ(a1, a2) ∧ σ(b1, b2).
The elementary quotient completion of P is the doctrine P̂ :Q op

P
// Pos where

P̂ (A, ρ) = Desρ P̂[f ] = Pf

The elementary structure of P̂ is obtained by choosing δ(A,ρ) = ρ. Moreover, if σ is a

P̂ -equivalence relation on (A, ρ), then a P̂ -quotient for it is [idA]: (A, ρ) // (A, σ). One

sees also that quotients in P̂ are stable and of effective descent. We refer the reader to
[Maietti and Rosolini, 2013b] for all the details.

There are important remarks about the elementary quotient completion.
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2.18. Remarks.

One of the motivating examples for the study of the elementary quotient completion is
given by doctrines of the form ΨD :Dop // Pos where D is a category with finite products
and weak pullbacks. As proved in [Maietti and Rosolini, 2013b], the doctrine Ψ̂C is
SubCex/lex . So, in particular, Q ΨC is equivalent to Cex/lex.

In [Maietti and Rosolini, 2013a] it is shown that the elementary quotient completion
is the extensional collapse of another quotient completion, which is also a co-completion,
see [Pasquali, 2015]. For doctrines of the form LTT :V op // Pos that co-completion is
related to the elimination of imaginaries of the theory T , as analysed in [Emmenegger
et al., 2020].

Assuming the Axiom of Choice, i.e. epis in Set split, the base of P̂H :Q op
PH

// Pos

is equivalent to UMH , the category of H -valued ultrametric spaces. Indeed, the functor
mapping f : (A, ρ) // (B, σ) in UMH to [f ]: (A, ρ) // (B, σ) in Q PH is full and faithful
as ρ(x, x′) = ⊤ implies x = x′. For essential surjectivity, take (A, ρ) in Q PH and consider
the quotient q:A // A/∼ where ∼ is the equivalence relation satisfying a ∼ a′ if and only
if ρ(a, a′) = ⊤. The arrow [q]: (A, ρ) // (A/∼, ∃q×qρ) in Q PH is an isomorphism whose
inverse is represented by any section of q.

2.19. Remark.

It is quite evident that the elementary structure plays no role in the construction of P̂ ,
but it is necessary to embed C into Q P , see [Pasquali, 2015, Emmenegger et al., 2020]
for a detailed analysis of the situation.

The embedding is given by the functor J :C // Q P that assigns to each f :X // Y
the arrow [f ]: (X, δX) // (Y, δY ). This functor preserves binary products and is full; it is
faithful when P has comprehensive diagonals.

2.20. Proposition.

Let P :C op // Pos be an elementary doctrine. Then

(i) P is existential if and only if P̂ is existential;

(ii) P is implicational if and only if P̂ is implicational;

(iii) P is universal if and only if P̂ is universal.

Proof. The sufficient conditions are proved in [Maietti and Rosolini, 2013b, Proposi-

tions 6.1 and 6.7]. Each necessary condition follows immediately since P̂ restricts to P
along JP .
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2.21. Proposition.

Let P :C op // Pos be an elementary doctrine with comprehensive diagonals. Consider the
square 1 of arrows in Q P , and the corresponding square 2 of representative arrows in
C :

(S, θ)

[h]

��

[k]
// (X, δX)

[f ]

��

(Y, δY )
[g]

// (A, δA)

1

S

h

��

k // X

f

��

Y g
// A

2

(i) Square 1 commutes if and only if square 2 commutes.

(ii) If 1 is a pullback in Q P , then 2 is a weak pullback in C .

(iii) If 2 is a weak pullback in C and θ = Pk×k(δX)∧Ph×h(δY ), then 1 is a pullback in
Q P .

Proof. (i) If 1 commutes, then ⊤S ≤ P⟨fk,gh⟩(δA). Besides, the hypothesis on compre-
hensive diagonals ensures the identity fk = gh. The converse is immediate.
(ii) Assume 1 is a pullback in Q P , and suppose a:C // X and b:C // Y are such that
fa = gb. By (i) the diagram

(C, δC)

[b]
��

[a]
// (X, δX)

[f ]
��

(Y, δY )
[g]

// (A, δA)

commutes. So there is an arrow [u]: (C, δC) // (S, θ) filling in the diagram

(C, δC)

[b]

��

[a]

,,[u]
))

(S, θ)

[h]

��

[k]
// (X, δX)

[f ]

��

(Y, δY )
[g]

// (A, δA)
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Again, by (i) the diagram
C

b

��

a
++u ''

S

h
��

k
// X

f
��

Y g
// A

commutes.
(iii) Assume 2 is a weak pullback in C , and θ = Pk×k(δX) ∧ Ph×h(δY ), i.e.

x:S, y:S | θ(x, y) ⊣⊢ k(x)=Xk(y) ∧ h(x)=Y h(y).

Consider [a]: (C, ρ) // (X, δX) and [b]: (C, ρ) // (Y, δY ) such that the diagram

(C, ρ)

[b]
��

[a]
// (X, δX)

[f ]
��

(Y, δY )
[g]

// (A, δA)

commutes. By (i), one has that fa = gb. Since 2 is a weak pullback, there is u:C // S
with ku = a and hu = b in C . Moreover, since [a] and [b] are arrows of Q P , one has that

x:C, y:C | ρ(x, y) ⊢ a(x)=Xa(y) ∧ b(x)=Y b(y)

⊢ k(u(x))=Xk(u(y)) ∧ h(u(x))=Y h(u(y))

⊢ θ(u(x), u(y))

which proves that [u]: (C, ρ) // (S, θ) is an arrow in Q P . Finally, assume [u′] is such that
[k][u′] = [a] and [h][u′] = [b]. Then ⊢ θ(u(c), u′(c)), hence [u] = [u′].

Recall now that, as first observed in [Maietti and Rosolini, 2013b, Propositions 4.6,
Lemma 5.3], an elementary quotient completion of an elementary doctrine admitting weak
comprehension has strong comprehension and, hence, pullbacks.

2.22. Proposition.

Let P :C op // Pos be an elementary doctrine admitting weak (full) comprehension. Then
Q P admits strong (full) comprehension.

Proof. Suppose α is in Q P (A, ρ). So α is in P (A); let {|α|}:X // A be a weak compre-
hending arrow of α with respect to P . Then [{|α|}]: (X,P{|α|}×{|α|}(ρ)) // (A, ρ) is a strong
comprehending arrow with respect to Q P , as one derives from [Maietti and Rosolini,
2013b, Lemma 5.3].
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2.23. Proposition.

Let P be an elementary doctrine on C with weak comprehension. Then Q P has pullbacks.

Proof. This follows from Propositions 2.9 and 2.22.

In the base category of an elementary doctrine admitting full comprehension with
comprehensive diagonals, monic arrows coincide with injection arrows as shown in [Maietti
and Rosolini, 2013b]. This characterization can be generalized to doctrines admitting just
full weak comprehension.

2.24. Proposition.

Let P :C op // Pos be an elementary doctrine admitting full weak comprehension with
comprehensive diagonals. An arrow m:X // A is monic if and only if Pm×m(δA) = δX .

Proof. If Pm×m(δA) = δX , then a representative of the weak comprehension {|Pm×m(δA)|}
can be taken to be that of {|δX |} which, thanks to comprehensive diagonals, can be taken to
be ⟨idX , idX⟩. Hence, the weak pullback of m along itself, whose projections can be com-
puted as pr1{|Pm×mδA)|} and pr2{|Pm×m(δA)|} following [Maietti et al., 2017, Remark 2.14],
can also be taken to be identities, and hence m is monic.

For the converse, suppose that m:X // A is monic, then the commutative square
∆Am = (m×m)∆X is a pullback. Since P admits weak full comprehension, by Proposi-
tion 2.11 it holds that Pm×m(δA) = Pm×m

E
∆A

(⊤A) =
E

∆X
Pm(⊤A) =

E
∆X

(⊤X) = δX .

As mentioned above, from [Maietti and Rosolini, 2013b] we know that the elementary
quotient completion freely adds stable effective quotients (of effective descent type) to
elementary doctrines admitting full comprehension with comprehensive diagonals. Let
ECD denote the subcategory of doctrines in ED admitting full comprehension with com-
prehensive diagonals, and 1-cells those of ED preserving them (it was denoted EqD in
[Maietti and Rosolini, 2013b]). Let QCD be the subcategory of doctrines in ECD which
have stable effective quotients of effective descent and 1-cells are those 1-cells of ECD
which preverse them (it was QD in [Maietti and Rosolini, 2013b]).

Furthermore, write Q:ECD // QCD the left bi-adjoint to the inclusion of QCD
into ECD which maps a doctrine P :C op // Pos to P̂ :Q op

P
// Pos. The unit of this

adjunction at P is the pair (HP , ηP ):P // P̂ where HP :C // Q P maps f :A // B to
[f ]: (A, δA) // (B, δB) and where ηP (A):P (A) // DesδA is the identity on P (A).

The counit is the pair (ED, εD): D̂ // D for Q a doctrine in QCD, where ED maps an
object (A, ρ) in Q D to A/ρ, (a choice of) the D-quotient of the D-equivalence relation ρ
in the base of Q, and an arrow [f ]: (A, ρ) // (B, σ) to the unique arrow f ′:A/ρ // B/σ
induced on the quotients.

One may wonder if the above left bi-adjoint can be extended to the inclusion of QCD
into some category C having elementary doctrines with full weak comprehension and
comprehensive diagonals as objects. As in the case of the exact completion of a category
with weak finite limits in [Carboni and Vitale, 1998], we will answer this question in the
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negative in Proposition 2.28. But we can provide a universal property of a special kind
in Proposition 2.29.

2.25. Remark.

One reason for the name EqD in [Maietti and Rosolini, 2013b] instead of ECD is that
doctrines admitting full comprehension with comprehensive diagonals have equalisers in
the base. Along this line, note that the category Lex of finite limit categories can be seen
as a full reflective subcategory of ECD by taking a category C to SubC . The reflector
R from ECD to Lex maps a doctrine P :C op // Pos to its base C which is a finite limit
category by (ii) of Lemma 2.9. In particular, the unit from a doctrine P :C op // Pos
to SubC is the pair (IdC , {|−|}) that is an elementary morphism of doctrines as shown in
[Maietti et al., 2017, Theorem 2.15], which trivially preserves comprehending arrows.

2.26. Lemma.

Let P :C op // Pos be an elementary doctrine on the regular category C , suppose P ad-

mits weak comprehension with comprehensive diagonals. If Q (HP , ηP ): P̂ //
̂̂
P preserves

comprehending arrows, then the doctrine P actually admits strong comprehension.

Proof. One can read in Proposition 2.22 that the elementary quotient completion of a
doctrine turns weak comprehension into strong comprehension: in details, given (A, ρ) in

Q P and α in P̂ (A, ρ), let {|α|}:X // A be a weak P -comprehending arrow for α in C .

Then [{|α|}]: (X,P{|α|}×{|α|}(ρ)) // (A, ρ) is a strong P̂ -comprehending arrow for α in Q P .
The functor component of Q (HP , ηP ) maps that arrow to

[[{|α|}]] : ((X, δX), P{|α|}×{|α|}(ρ)) // ((A, δA), ρ)

where the arrow within the outer pair of brackets is [{|α|}]: (X, δX) // (A, δA) in Q P . On

the other hand, the action of Q (HP , ηP ) on the fiber P̂ (A, ρ) takes α to itself as an object

in
̂̂
P ((A, δA), ρ). Its comprehending arrow in Q P̂ is

[[{|α|}]] : ((X,P{|α|}×{|α|}(δA)), P{|α|}×{|α|}(ρ)) // ((A, δA), ρ)

where, this time, the arrow within the outer pair of brackets is the strong comprehending
arrow [{|α|}]: (X,P{|α|}×{|α|}(δA)) // (A, δA) in Q P . The assumption that Q (HP , ηP ): P̂ //̂̂
P preserves comprehensive arrows yields that there is an arrow in Q P̂

((X,P{|α|}×{|α|}(δA)), P{|α|}×{|α|}(ρ))

[[{|α|}]] **

// ((X, δX), P{|α|}×{|α|}(ρ))

[[{|α|}]]uu

((A, δA), ρ)
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Say [k]: (X,P{|α|}×{|α|}(δA)) // (X, δX) is a representative in Q P for that iso in Q P̂ , and

x:X, y:X | {|α|}(x)=A{|α|}(y) ⊢ k(x)=Xk(y) (1)

The case of interest for the proof is when ρ = δA; so also

x:X ⊢ {|α|}(x)=A{|α|}(k(x)). (2)

Factor {|α|}:X // A in the regular category C as X e � 1-Y //
m //A where e is a regular epi

and m is monic. Since P has comprehensive diagonals, (1) and (2) ensure that k factors
through e and there is a commutative triangle

X
e

� )%

{|α|}

��

k // X

{|α|}

��

Y
��

m

��

t
66

A

So m:Y // A is also a comprehending arrow for α with respect to P . Being monic, it is
a strong one for α.

2.27. Lemma.

There is a doctrine P admitting weak full comprehension and with comprehensive diagon-

als such that Q(HP , ηP ): P̂ //
̂̂
P is not in QCD.

Proof. Suppose C has finite limits and take the doctrines ΨC as P . Suppose Q (HΨC , ηΨC )
is in QCD. So ΨC is equivalent to SubC by Lemma 2.26. And, since ΨC satisfies the rule
of choice by [Maietti et al., 2017, Theorem 5.9], also the doctrine SubC satisfies the rule of
choice. But this is not always the case, take e.g. the subobject doctrine of a non-boolean
topos C . Indeed, if SubC satisfied the rule of choice, then it would satisfy the axiom of
choice, as shown in [Maietti, 2017], and hence it would have to be boolean by Diaconescu’s
Theorem, see [Diaconescu, 1975].

2.28. Proposition.

It is impossible to equip the collection of elementary doctrines admitting weak full compre-
hension with comprehensive diagonals, with a structure of 2-category C in such a way that
C includes ECD, is included in ED and the family (H, η) is the unit of a bi-adjunction
between the inclusion of QCD into C and the extension of Q:ECD // QCD to C.

Proof. Ifn (H, η) is the unit of such an adjunction, then for every P in C, the arrow
(HP , ηP ) in ED has to be also an arrow in C. Therefore Q(HP , ηP ) is an arrow in QCD
for every P , which is impossible by Lemma 2.27.
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Let P :C op // Pos and Q:Dop // Pos be elementary doctrines admitting full weak
comprehension, and assume that Q has stable effective quotients of effective descent (so
Q admits full strong comprehension). Following the analogy with [Carboni and Vitale,
1998], we say that a 1-cell (F, f):P // Q in ED is comprehensive-covering if for
every α in P (A) and every weak P -comprehensive arrow {|α|}:X // A in C there is a
Q-comprehending arrow {|fA(α)|}:Y // FA in C ′ such that the arrow q:FX // Y , filling
in

FX
q

//

F ({|α|}) ##

Y

{|fA(α)|}||

F (A)

by the universal property of comprehension, is a quotient arrow.
Whilst the elementary quotient completion of elementary doctrines admitting full weak

comprehension with comprehensive diagonals can not be characterized as part of a left bi-
adjoint, it enjoys a universal property with respect to comprehensive-covering morphisms
as follows.

For P a doctrine admitting full weak comprehension with comprehensive diagonals
and Q in QCD, denote clcED(P,Q) the full subcategory of ED(P,Q) whose objects are
the comprehensive-covering (F, f):P // Q.

Recall that the elementary quotient completion is a left bi-ajoint (̂−):ED // QED to
the inclusion of the subcategory QED of ED on those elementary doctrines with stable
effective quotients and comprehensive diagonals whose 1-cells are 1-cells in ED preserving
quotients.

2.29. Proposition.

Suppose P :C op // Pos is a doctrine admitting full weak comprehension with comprehens-
ive diagonals and Q:Dop // Pos is in QCD. The categorical equivalence ED(P,Q) ≡
QED(P̂ , Q) determined by the elementary quotient completion restricts to an equivalence

between the categories clcED(P,Q) and QCD(P̂ , Q).

Proof.By Proposition 2.22, the doctrine P̂ is inQED. Consider next (F, f) in clcED(P,Q)

and its corresponding 1-cell in (F ′, f ′) in QED(P̂ , Q). In the following, given α ∈
Des (A,ρ) ⊆ P (A), we are going to consider two comprehending arrows: one for α ∈
P̂ (A, ρ) = Des (A,ρ); one for α ∈ P̂ (A, δA) = P (A). We shall distinguish the two occur-
rences of α, keeping the original name for the second, and writing the first as αρ. The
action of F ′:Q P

// D takes the comprehensive arrow [{|αρ|}]: (X,P{|α|}×{|α|}(ρ)) // (A, ρ)
in Q P to

F ′([{|αρ|}]):F (X)/fX×X(P{|α|}×{|α|}(ρ))
// F (A)/fA×A(ρ).

as one easily sees recalling that f :P • //QF op so, in particular,

fX×X(P{|α|}×{|α|}(ρ)) = QF ({|α|})×F ({|α|})fA×A(ρ). (3)
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Since the arrow {|α|}:X // A is a comprehending arrow in C for α ∈ P (A), there is a
commutative diagram in D

F (X)

F ({|α|}) ##

g
// Y��

{|fA(α)|}
��

F (A)

(4)

with the comprehending arrow of fA(α) a monic in D. Since F (A)/fA×A(ρ)
is a quotient

of F (A) and α is a descent data, one can complete the commutative diagram in (4) with
a pullback square, obtaining

Y
��

{|fA(α)|}
��

� 1-Z
��

{|f ′
(A,ρ)(αρ)|}

��

F (X)
F ({|α|})

//

g
77

� /,

F (A)
F ′[idA]

� 1-F (A)/fA×A(ρ)
= F ′(A, ρ)

F (X)/fX×X(P{|α|}×{|α|}(ρ))

OO

F ′([{|αρ|}])
OO

Since Q is a functor, QF ({|α|})×F ({|α|})fA×A(ρ) = Qg×gQ{|fA(α)|}×{|fA(α)|}fA×A(ρ), and from (3)
it follows that the mono {|f ′

(A,ρ)(αρ)|} is (isomorphic to) the mono F ′([{|αρ|}]) for every

object (A, ρ) in Q P , and every αρ in P̂ (A, ρ), if and only if the arrow q:F (X) // Y is a
quotient for every object A in C , and every α in P (A).

2.30. Remark.

Another way to prove Proposition 2.28 would be to show that comprehensive-covering
morphisms do not compose in general, as in [Carboni and Vitale, 1998] for the case of
the exact completion of a category with weak finite limits. Indeed, every pair of the form
(HP , ηP ):P // P̂ is comprehensive-covering, but, with arguments similar to those used
in the proof of Lemmas 2.26 and 2.27, one sees that the composition of the two units
(HP̂ , ηP̂ ) ◦ (HP , ηP ) is not comprehensive-covering when P is the weak subobject doctrine
of a non-boolean topos.

However, this fact does not prevent to show any universal property for the element-
ary quotient completion of elementary doctrines admitting full weak comprehension with
comprehensive diagonals. Indeed, as showed in Proposition 2.29, when restricting to
small doctrines the functor clcED(P,−) on QCD is bi-represented through the element-
ary quotient completion, since comprehensive-covering morphisms are closed under post-
composition with doctrines in QCD.
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3. Preparatory results for the characterization theorem

In this section, we introduce some technical notions that will be used in the proof of the
characterization Theorem 4.12 in §4.

3.1. Definition.

Let C be a category with finite products and let J :D � � //C be an inclusion of a subcat-
egory in it. We say that an object X is weakly exponentiable relative to D if the
functor

X × (−):D // C

is a weak left adjoint, in the sense of [Kainen, 1971]: for every object Y in C there are an
object W in D and an arrow in C

X × J(W ) ev // Y

such that for every D in D and every arrow f :X×J(D) // Y in C there is a commutative
diagram

X × J(D)

idX × J
(
f̂
)
��

f

$$

D

f̂
��

X × J(W ) ev // Y W

where f̂ :D // W is in D and the dotted arrow indicates that the condition need not
determine it uniquely.

3.2. Remark.

The condition of weak left adjoint in Definition 3.1 provides a family of surjective functions

D(D,W ) � 1-C (X × J(D), Y )

natural in D.

We shall be interested in weak relative exponentiability in slice categories of the form
Q P/(A, δA). They shall involve specific objects, which will be introduced in Definition 3.4.

3.3. Remark.

Consider a category C with finite products. An object Y is weakly exponentiable in C in
the usual sense if (and only if) it is weakly exponentiable relative to C . So C is weakly
cartesian closed if and only if every object is weakly exponentiable relative to C .
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3.4. Definition.

Let P :C op // Pos be an elementary doctrine, and let Q P be its elementary quotient
completion. An arrow in Q P of the form [f ]: (X, δX) // (A, δA) is called a dependent
P -projective . We write as DA the full sucategory of Q P/(A, δA) on the dependent
P -projectives in it.

In case C has pullbacks, local cartesian closure suffices to show that the doctrine ΨC
is universal. In the weak case, we choose a definition that requires it explicitly.

Let P :C op // Pos be an elementary doctrine admitting weak full comprehension with
comprehensive diagonals. We know that its base C has weak pullbacks and Q P has
pullbacks by Propositions 2.9 and 2.23.

3.5. Definition.

We say that an elementary doctrine P :C op // Pos admitting weak full comprehension
with comprehensive diagonals is slicewise weakly cartesian closed when the following
conditions are satisfied:

(i) the doctrine P is implicational and universal;

(ii) for every object A in C , each dependent P -projective is weakly exponentiable in
Q P/(A, δA) relative to DA.

3.6. Remark.

It may be useful to expand on condition (ii), taking advantage of the full embedding
J :C // Q P introduced in Remark 2.19—so, in particular, JA = (A, δA). Given objects
Jf : JX // JA and [g]: (Y, ρ) // JA in the slice category Q P/JA, there is a diagram of
arrows in C

S

ev
''

p2
//

p1

��

W

w

��

Y

g
~~

X
f

// A

where the inner square is a weak pullback by Proposition 2.21. The arrow ev:S // A is
the representative of an arrow [ev]: Jf ×JA Jw // [g] in Q P/JA such that, for any arrow

u:U // A in C and any arrow [k]: Jf ×JA Ju // [g] in Q P/JA, there exists k̂:U // W
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in C such that the diagram

Jf ×JA Ju

[k]

&&

J idX ×JA Jk̂

��

Jf ×JA Jw
[ev]

// [g]

commutes in Q P/JA.

3.7. Remark.

In [Cioffo, 2023], it is shown that a category Q P/(A, δA) is an example of elementary
quotient completion of a suitable biased elementary doctrine P/A for which depend-
ent P -projectives [f ]: (X, δX) // (A, δA) are covering projections. It makes sense thus
to introduce the notion of slicewise weakly cartesian closed biased elementary doctrine
P :C op // Pos when P is implicational and universal and every P/A-projective is weakly
exponentiable in Q P/(A, δA) relative to P/A-projectives, for every object A of C .

3.8. Definition.

Let P :C op // Pos be an elementary doctrine with comprehensive diagonals whose base
C has weak pullbacks. We say that P is slicewise cartesian closed on dependent
projectives if the following conditions are satisfied.

(i) The doctrine P is implicational and universal;

(ii) For every objectA in C , each dependent P -projective is exponentiable in Q P/(A, δA).

3.9. Remark.

The notion of extensional exponential is introduced [Emmenegger, 2020] in a category with
weak finite limits. Such a notion is equivalent to the universal property in Remark 3.6 in
the case of a variational doctrine of a category with finite products and weak equalizers.

Later, in his Ph.D. thesis [Cioffo, 2022], Cipriano Cioffo Jr. extended Emmenegger’s
notion to biased elementary doctrines. Such a notion is also equivalent to the univer-
sal property in Remark 3.6 for doctrines with the properties listed at the beginning of
Definition 3.5.

4. Local cartesian closure for an elementary quotient completion

In this section, we generalize to the elementary quotient completion the well-known fact
that the exact completion Cex/lex of a category C with finite limits (a.k.a. ex/lex comple-
tion) of [Carboni and Celia Magno, 1982] transforms a weak locally cartesian structure
on C into a locally cartesian closed structure on Cex/lex.
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4.1. Lemma.

Suppose that P :C op // Pos is elementary, admits full weak comprehension with com-
prehensive diagonals (hence C has weak pullbacks by Proposition 2.9). If Q P is locally
cartesian closed and P is existential, then P is a hyperdoctrine.

Proof. Note first of all that, since Q P is locally cartesian closed, the variational doctrine
ΨQ P

has right adjoints along any reindexing (ΨQ P
)[f ], hence it is implicational and uni-

versal, and admits full weak comprehension. By Proposition 2.20, P̂ is existential since
P is existential. Since P̂ admits full strong comprehension, by Proposition 2.12 it follows
that P̂ is universal and implicational. Applying again Proposition 2.20 yields that P is
universal and implicational, and hence a hyperdoctrine.

4.2. Lemma.

Suppose that P :C op // Pos is elementary with comprehensive diagonals, and admits full
weak comprehension (hence C has weak pullbacks by Proposition 2.9). If Q P is locally
cartesian closed, then for every object A in C , a dependent P -projective over A is weakly
exponentiable relative to DA.

Proof. Let [f ]: (X, δX) // (A, δA) be a dependent P -projective and g: (Y, τ) // (A, δA)
any object in Q P . Consider the following diagram in Q P

(S ′, θ′)

[q2]

��

[q1]
// (W, δW )

[idW ]

��

(S, θ)

[ev]
**

[p2]
//

[p1]

��

(W, ξ)

[g][f ]

��

(Y, τ)

[g]
{{

(X, δX)
[f ]

// (A, δA)

where the two squares are pullbacks and [ev]: (S, θ) // (Y, τ) is the universal arrow of the
exponential. Fix a representative w of the equivalence class [g][f ]. Then w: (W, δW ) //

(A, δ) together with [evq2]: (S
′, θ′) // (Y, τ) is clearly a weak exponential of [f ] over [g]

relative to the full subcategory DA on the P -dependent projections.
Indeed, for any arrow u:U // A in C and any arrow [k]: Jf ×JA Ju // [g] in Q P/JA,
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by cartesian closure of Q P/JA there exists [k̂]: (U, δU) // (W, ξ) such that in Q P/JA

Jf ×JA Ju

[k]

&&

J idX ×JA [k̂]

��

Jf ×JA [g][f ]
[ev]

// [g]

Now, observe that J(k̂) = [k̂]: (U, δU) // (W, δW ) satisfies the required condition of weak
exponentiability

Jf ×JA Ju

[k]

&&

J idX ×JA Jk̂

��

Jf ×JA Jw
[evq2]

// [g]

as described in Remark 3.6.

4.3. Proposition.

Suppose P :C op // Pos is elementary with comprehensive diagonals and admits full weak
comprehension. Suppose also that Q P is locally cartesian closed. If P is existential, or P
is implicational and universal, then P is a slicewise weakly cartesian closed hyperdoctrine.

Proof. After Lemma 4.2, one needs only to invoke Lemma 4.1 to get that, in case P is
existential, P is also universal and implicational.

We now aim at proving a partial converse to Proposition 4.3, where we shall consider
only the case when the elementary doctrine P is universal and implicational because of
Proposition 4.3. To that purpose, we produce an equivalent presentation of objects of
C/A, giving an algebraic presentation in line with the characterization in [Maietti, 2009,
Proposition 4.12].

For the sake of simplicity, we introduce some explicit notations for certain arrows
related to constructions in the base Q P of the elementary quotient completion.

4.4. Notation.

Let P :C op // Pos be an elementary doctrine admitting full weak comprehension. Let
f :B // A be a representative of an arrow [f ]: (B, σ) // (A, ρ) in Q P , and write cρ,f :X //

B ×A a comprehending arrow for Pf×idA(ρ) in P (B ×A). We use the following notation
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for the compositions in the diagram

B

X

fσ
77

fρ
''

cρ,f
// B × A

pr1

OO

pr2
��

A

Write σf for the P -equivalence relation on X determined by the conjunction Pfσ×fσ(σ)∧
Pfρ×fρ(ρ) = Pfσ×fσ(σ) so that in the internal logic σf (x, x

′) abbreviates the formula
σ(fσ(x), fσ(x′)).

4.5. Remark.

It is immediate to see from the definition of the relation σf that the arrow fσ:X // B
determines an arrow [fσ]: (X, σf ) // (B, σ) in Q P as well as the arrow fρ:X // A gives
an arrow [fρ]: (X, σf ) // (A, ρ).

Also, there is a commutative diagram in C

B
f

// A

B
k

//

⟨idB, f⟩
--

idB
00

f ..

X

fσ

77

fρ

''

cρ,f
// B × A

pr1

OO

pr2
��

f × idA
// A× A

pr′1

OO

pr′2
��

A
idA

// A

(5)

where the arrow k exists by weak universality of cρ,f :X // B × A, since ρ is a P -
equivalence relation and

P⟨idB ,f⟩Pf×idA(ρ) = P⟨f,f⟩(ρ) = ⊤B.

In particular, it gives a retraction pair

B

k
33idB

''

X.

fσ

tt

Moreover, ⊤X = P⟨ffσ ,fρ⟩(ρ) since ⟨ffσ, fρ⟩ = (f × idA)cρ,f , i.e.

x:X ⊢ ρ(ffσ(x), fρ(x)) (6)

in the internal logic of the doctrine P .
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4.6. Proposition.

In the notations of Remark 4.5, the following diagram

(B, σ)

[f ]
!!

[k]
11

[idB]
EE

(X, σf )

[idX ]
YY

[fρ]
}}

[fσ]
qq

(A, ρ)

commutes in Q P .

Proof. To complete the proof after Remark 4.5, one must show that [k]: (B, σ) //

(X, σf ), and [k][fσ] = [idX ]: (X, σf ) // (X, σf ). They both easily follow from the fact
that fσk = idB. Indeed, in the internal logic

x:B, x′:B | σ(x, x′) ⊢ σ(fσ(k(x)), fσ(k(x′)))

says that [k]: (B, σ) // (X, σf ) is well defined, while

x:X ⊢ σ(fσ(x), fσ(x))

⊢ σ(fσ(kfσ(x)), fσ(x))

proves that [k][fσ] = [idX ].

4.7. Remark.

Proposition 4.6 shows that [fσ]: [fρ] ˜ // [f ] in the slice category Q P/(A, ρ). Note, though,
that [f ] and [fρ] need not factor through each other in C . Indeed, Remark 4.5 shows that
f factors through fρ in C , but nothing guarantees the other factorisation may occur. Since
Q P is a category with finite limits, one can see that [fρ] is isomorphic to Σ[idA][idA]

∗([f ]),
where Σ[idA] denotes the left adjoint to the pullback functor [idA]

∗:Q P/(A, ρ) // Q P/(A, δA)
along the map [idA]: (A, δA) // (A, ρ). This is similar to the homotopical account of par-
tial equivalence relations given in [Frey, 2023] (see diagram (5.2) p. 15).

The following is the fundamental step toward the proof of the main result. It takes
advantage of the iso [fσ]: [fρ] ˜ // [f ] in the slice category Q P/(A, ρ) to compute explicitly
any product of [f ] in the slice category starting from a product in the slice category C/A.

Like before, we employ Notation 4.4.
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4.8. Lemma.

Let P :C op // Pos be an elementary existential doctrine admitting weak comprehension
with comprehensive diagonals. Consider two arrows

(W, θ)

[q]
��

(B, σ)
[f ]
// (A, ρ)

in Q P , and consider the following diagrams

Z

3q′
��

f ′
ρ
//W

q
��

X
fρ
// A

(Z, Pq′×q′(σf ) ∧ Pf ′
ρ×f ′

ρ
(θ))

4[q′]
��

[f ′
ρ]

// (W, θ)

[q]
��

(X, σf )
[fρ]

// (A, ρ).

If 3 is a weak pullback in C , then 4 is a pullback in Q P .

Proof. We write ζ for the P -equivalence relation Pq′×q′(σf )∧Pf ′
ρ×f ′

ρ
(θ) on Z. Clearly, if

diagram 3 commutes in C , then so does 4 in Q P . Consider a commutative diagram

(C, γ)

[h]

��

[ℓ]

--
(Z, ζ)

[q′]
��

[f ′
ρ]

// (W, θ)

[q]
��

(X, σf )
[fρ]

// (A, ρ)

(7)

in Q P . So, in the internal logic of P , we have that

(a) x, x′:C | γ(x, x′) ⊢ ρ(fρ(h(x)), fρ(h(x′)));

(b) x, x′:C | γ(x, x′) ⊢ σ(fσ(h(x)), fσ(h(x′))).

Recall that [fρ] = [ffσ] by Proposition 4.6. So from (a) we get

x:C ⊢ ρ(ffσh(x), qℓ(x)).

Hence, weak universality of cρ,f :X // B ×A produces a filler j in the following diagram
in C

C

⟨h, ℓ⟩
��

j
//

h
��

X

cρ,f
��

⟨ffσ, fρ⟩

))

fσ

��

X ×W
fσ × q

//

pr′1
��

B × A
f × idA

//

pr1
��

A× A

X
fσ

// B
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From fσh = fσj and (b), we get x, x′:C | γ(x, x′) ⊢ σ(fσ(j(x)), fσ(j(x′))) showing that
[j]: (C, γ) // (X, σf ) is well defined, and also

x, x′:C | γ(x, x′) ⊢ σ(fσ(j(x)), fσ(h(x′)))

showing that [j] and it is equal to [h]: (C, γ) // (X, σf ). Moreover, also the following
diagram commutes in C

C

j
��

ℓ //W

q
��

X
fρ
// A

Therefore, since 3 is a weak pullback, there is an arrow

C

j

��

m ''

ℓ
,,

Z

q′
��

f ′
ρ

//W

q
��

X
fρ

// A

Thanks to the definition of the P -equivalence relation ζ, it is immediate to prove that
that gives a unique arrow filling in the diagram (7).

4.9. Remark.

It is possible to derive a moral from Lemma 4.8. Even though there are only weak
pullbacks in C , each object in a slice category of Q P may be replaced by an isomorphic
copy on which pullbacks can be computed as if weak pullbacks in C were actual pullbacks.

As obscure as that moral may be, it is going to be employed in the construction of
exponentials in each slice category of Q P .

We approach the main theorem of the section introducing the explicit construction of
an exponential in the slice Q P/(A, ρ); the following notation presents the first steps of
that construction by producing the relevant P -equivalence relation to be used then in the
proof of Theorem 4.12.

4.10. Notation.

The following notation that will be used in the proofs of the Lemma 4.11 and The-
orem 4.12.

Let P :C op // Pos be a slicewise weakly cartesian closed doctrine which admits weak
comprehension. Let [f ]: (B, σ) // (A, ρ) and [g]: (C, τ) // (A, ρ) be two objects in the
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slice category Q P/(A, ρ). Consider the arrows fρ:X // A and gρ:Y // A in C , in-
troduced in Notation 4.4, as well as the corresponding P -equivalence relations σf on X
and τg on Y . Then, in the slice category Q P/(A, δA) take the P -dependent project-
ive [fρ]: (X, δX) // (A, δA) and the arrow [gρ]: (Y, Pgρ×gρ(δA) ∧ τg) // (A, δA) obtained
by pulling back [gρ]: (Y, τg) // (A, ρ) along [idA]: (A, δA) // (A, ρ) as in the following
commutative diagram

(Y, Pgρ×gρ(δA) ∧ τg)

[gρ]
��

[idY ]
// (Y, τg)

[gρ]
��

(A, δA)
[idA]

// (A, ρ).

which is a pullback thanks to Lemma 4.8. Consider a weak exponential [p]: (V, δV ) //

(A, δA) of [fρ]: (X, δX) // (A, δA) and [gρ]: (Y, Pgρ×gρ(δA) ∧ τg) // (A, δA) which gives, in
C , the following arrows

S

ev′

&&

q2
//

q1

��

V

q

��

Y

gρ
��

X
fρ

// A

(8)

where the inner square is a weak pullback. For a variable v:V , write ξ(v) for the formula

∀s,s′:S [[(q2(s) =V v ∧ q2(s′) =V v) ∧ σf (q1(s), q1(s′))] ⇒ τg(ev
′(s), ev′(s))]

—note that the antecedent of the implication yields that the pair ⟨s, s′⟩ is in the P -
equivalence relation imposed on the upper left vertex in the diagram 4 of Lemma 4.8.

Consider the comprehending arrow {|ξ|}:W // V . Take the weak pullback of {|ξ|}
along q2 and paste it with that in diagram (8) to obtain another weak pullback and the
composition ev = ev′u:V // Y , which will eventually be part of the evaluation arrow:

Z

u

��
p1

��

p2
// ev

��

W

{|ξ|}

��
p

��

S

ev′

''

q2
//

q1

��

V

q

��

Y

gρ
~~

X
fρ

// A

(9)
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The necessary final piece of data is the appropriate P -equivalence relation onW : consider
variables w,w′:W and write θ(w,w′) for the formula

ρ(p(w), p(w′))∧

∧∀z,z′:Z

[[
(p2(z) =W w ∧ p2(z′) =W w′)∧

∧σf (p1(z), p1(z′))

]
⇒ τg(ev(z), ev(z

′))

]
(10)

so that θ is in P (W ×W )—the same comment as for the formula ξ(v) above, applies here
with the pair ⟨z, z′⟩.

With the notation above, the proof of the following lemma is intuitively easy.

4.11. Lemma.

The relation θ in notation 4.10 is a P -equivalence relation over W such that

z:Z, z′:Z | θ(p2(z), p2(z′)) ∧ σf (p1(z), p1(z′)) ⊢ τg(ev(z), ev(z′))

Hence, the relation η defined as

η(z, z′) = θ(p2(z), p2(z
′)) ∧ σf (p1(z), p1(z′)) (11)

is a P -equivalence relation over Z.

The following theorem is the first characterization of locally cartesian closed element-
ary quotient completions.

4.12. Theorem.

Suppose P is an elementary existential doctrine admitting full weak comprehension with
comprehensive diagonals. The following are equivalent:

(i) P is slicewise weakly cartesian closed;

(ii) P is slicewise cartesian closed on dependent projectives;

(iii) Q P is locally cartesian closed.

Proof. (iii) ⇒ (i) follows from Lemma 4.3.
(iii) ⇒ (ii): Condition (i) of Definition 3.8 follows from Proposition 4.1, while condition
(ii) is immediate.
(i)⇒(iii): Suppose that P is slicewise weakly cartesian closed. Let [f ]: (B, σ) // (A, ρ)
and [g]: (C, τ) // (A, ρ) be objects in Q P/(A, ρ). Here, we align to the notation used
after Lemma 4.11. Consider ev:Z // Y defined as in (9) and η as in (11). By definition
of η, the arrow ev determines an arrow

[ev]: (Z, η) // (Y, τg)
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in Q P/(A, ρ) from [fρp1] to [gρ]. Moreover, Lemma 4.8 ensures that (Z, η) is the pullback
of [p] along [fρ].

Thanks to Proposition 4.6, it suffices to show that [p] is the exponential in Q P/(A, ρ)
of [gρ] and [fρ] with evaluation [ev]: [fρ] ×(A,ρ) [p] // [gρ]. Consider an arbitrary object
[h]: (D, ν) // (A, ρ) in Q P/(A, ρ), and let [m]: [fρ] ×(A,ρ) [h] // [gρ]. By Lemma 4.8 we
can assume

(Q,Pd1×d1(σf ) ∧ Pp2×p2(ν))

[fρd1] ((

[m]
// (Y, τg)

[gρ]}}

(A, ρ)

depicting an arrow in Q P/(A, ρ) for an appropriate weak pullback in C

Q

d1
��

p2
// D

h
��

X
fρ
// A.

Consider the commutative diagram

(Q,Pd1×d1(σf ) ∧ Pp2×p2(ν))

[fρd1]

&&

[m]
,,
(Y, τg)

[gρ]
��

(Q,Pd1×d1(δX) ∧ Pp2×p2(δD))

[idQ]
33

[fρd1]
))

[m]
--

(Y, Pgρ×gρ(δA) ∧ τg)

[idY ]

55

[gρ]
��

(A, ρ)

(A, δA)
[idA]

55

where the square on the right face is a pullback. Since P is slicewise weakly cartesian
closed,

[m]: (Q,Pd1×d1(δX) ∧ Pp2×p2(δD)) // (Y, Pgρ×gρ(δA) ∧ τg)
determines a commutative triangle

D

h ''

m̂ // V

qww
A

in C where V is a weak exponential, and a commutative diagram

Jfρ ×(A,δA) Jh

[m]

&&

J idX ×(A,δA) Jm̂

��

Jfρ ×(A,δA) Jq
[ev′]

// [gρ]
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in Q P/(A, δA) with [gρ]: (Y, Pgρ×gρ(δA) ∧ Pgτ×gτ (τ)) // (A, δA). Therefore,

d:D ⊢ ∀s,s′:S[(q2(s) =V m̂(d) ∧ q2(s′) =V m̂(d)) ∧ σf (q1(s), q1(s′)) ⇒ τg(ev
′(s), ev′(s))]

holds and, by the weak universal property of comprehension, there is an arrow µ:X // W
such that m̂ = µ{|ξ|}. Thus, the arrow µ determines the required arrow [µ]: (D, π) //

(W, θ) in Q P/(A, ρ). Uniqueness is a direct consequence of the definition of θ.
(ii) ⇒ (iii): The proof is similar to that of (i) ⇒ (iii).

4.13. Corollary.

Suppose C is a category with finite products and weak pullbacks, the following are equival-
ent:

(i) the variational doctrine ΨC :C op // Pos is slicewise weakly cartesian closed;

(ii) Cex/lex is locally cartesian closed.

Proof. It follows as a direct application of Theorem 4.12 knowing that Cex/lex is equivalent
to Q ΨC and that ΨC is elementary existential, and it admits full weak comprehension and
has comprehensive diagonals, if C has finite products and weak pullbacks.

4.14. Corollary.

Suppose C is a category with finite limits; the following are equivalent:

(i) ΨC :C op // Pos is slicewise weakly cartesian closed;

(ii) C has weak dependent products, as in [Birkedal et al., 1998, Definition 3.5]

Proof. It follows from Corollary 4.13 and [Birkedal et al., 1998, Theorem 3.8].

4.15. Corollary.

Suppose C is a category with finite products and weak pullbacks, the following are equival-
ent:

(i) ΨC :C op // Pos is slicewise weakly cartesian closed;

(ii) C has extensional dependent products as in [Emmenegger, 2020, Definition 3.1].

Proof. It follows from Corollary 4.13 and [Emmenegger, 2020, Theorem 3.6].
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5. Examples

Main applications of Theorem 4.12 include those for the category Asm of assemblies over
a given partial combinatory algebra, see [Hyland, 1982, van Oosten, 2008]. In [Maietti
et al., 2019] we showed that Asm is the base of the elementary quotient completion of the
doctrine of strong subobjects on the category of partitioned assemblies. Hence, what is
shown here gives an alternative proof that the locally cartesian closure of Asm is inherited
from that of partitioned assemblies.

Other noteworthy examples arise in type theory through the construction of special
kinds of “setoid models”. Indeed, as noted in [Maietti and Rosolini, 2013b, §7], the models
of total setoids à la Bishop, constructed either over Coquand-Huet-Paulin’s Calculus of
Inductive Constructions [Coquand, 1990, Coquand and Paulin, 1990], or over Martin-
Löf’s type theory [Nordström et al., 1990], or over the intensional level of the Minimalist
Foundation [Maietti, 2009], can be represented as the base of the elementary quotient
completion of a suitable syntactic doctrine on a base that merely has weak pullbacks.

In particular, the setoid model used to build the Minimalist Foundation in [Maietti,
2009] was one of the motivating examples for introducing the elementary quotient com-
pletion in [Maietti and Rosolini, 2013b].

Another application of Theorem 4.12 is for the category of ultrametric spaces. As
shown in [Dagnino and Pasquali, 2022], using the axiom of choice in the metatheory, this
category is equivalent to the elementary quotient completion of the elementary doctrine
P[0,∞]: Set op // Pos employing the complete Heyting algebra of the extended positive reals
[0,∞].

6. Conclusions

We generalized Carboni and Rosolini’s characterization of locally cartesian closed exact
completions of a category with finite products and weak pullbacks in [Carboni and Ro-
solini, 2000, Emmenegger, 2020].

An independent characterization of locally cartesian closed quotient completions for
doctrines with weak finite limits was given in [Cioffo, 2022], with the additional hypo-
thesis that the considered doctrines are universal. In future work, we explore how such
a characterization can be extended to include those for exact completions of categories
with weak finite limits in [Carboni and Rosolini, 2000, Emmenegger, 2020] as instances.

A further analysis of the categorical structure inherited by the elementary quotient
completion is in [Maietti et al., 2021]. As a subsequent work, we aim to carry out such an
analysis by including inductive and coinductive constructions such as those investigated
in [Moerdijk and Palmgren, 2000, Emmenegger, 2021, van den Berg and De Marchi, 2007].
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