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Abstract

We consider a version of the minimalist foundation previously introduced to formalize predicative
constructive mathematics. This foundation is equipped with two levels to meet the usual informal
practice of developing mathematics in an extensional set theory (its extensional level) with the
possibility of formalizing it in an intensional theory enjoying a proofs as programs semantics (its
intensional level).

For the intensional level we show a realizability interpretation validating Bar Induction and formal
Church thesis for type-theoretic functions. This is possible because in our foundation the well-known
result by Kleene that Brouwer’s principle of Bar Induction is inconsistent with the formal Church
thesis for choice sequences can be decomposed as follows: Brouwer’s Bar Induction, where choice
sequences are functional relations, is inconsistent with the formal Church thesis for type-theoretic
functions (from natural numbers to natural numbers) and the axiom of unique choice transforming
a functional relation between natural numbers into a type-theoretic function. As a consequence this
model disproves the validity of the axiom of unique choice in our foundation.

This model can serve to interpret the whole foundation in a classical predicative set theory by
keeping the computational interpretation of predicative sets as data types and their type-theoretic
functions as programs. Moreover it shows that choice sequences of Cantor space, those of Baire
space, and real numbers both as Dedekind cuts or Cauchy sequences, do not form a set in the
minimalist foundation.

MSC 2000: 03G30 03B15 18C50 03B20 03F55
Keywords: constructive type theory, realizability interpretation, axiom of unique choice, formal
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1 Introduction

The need of a minimalist foundation. Various logical systems are available in the literature to
formalize constructive mathematics: they range from axiomatic set theories à la Zermelo-Fraenkel, as
Aczel’s CZF [AR01, Acz78, Acz82, Acz86] or Friedman’s IZF [Bee85], to the internal set theory of
categorical universes as topoi or pretopoi [MM92, JM95, Mai05b], to type theories as Martin-Löf’s
type theory [NPS90] or Coquand’s Calculus of Inductive Constructions [Coq90, CP90]. No existing
constructive foundation has yet supersided the others as the standard one as Zermelo-Fraenkel set
theory did for classical mathematics.

Also various machine-aided proof development systems are available to implement mathematics (see,
for example, [Wie06]). Most of those for constructive mathematics, as for example Coq [Coq10, BC04]
or Nuprl [The95], distinguish themselves for being based on typed systems, respectively the Calculus
of (Co)Inductive Constructions and Nuprl’s Computational Type Theory [ABC+06], which are also
paradigm of (functional) programming languages with the possibility of extracting the computational
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contents of constructive mathematical proofs. Indeed a peculiar characteristic of what we call “con-
structive formal systems”, contrary to classical ones, is that they enjoy a computational interpretation,
which we can call proofs-as-programs semantics, in which we can extract programs witnessing provable
existential statements [BC85]. A paradigmatic example is Kleene realizability interpretation [Tv88a] for
the intuitionistic version of Peano arithmetics, called Heyting arithmetics.

Another relevant aspect is that the proof assistants based on an intensional type theory, as for
example Agda [BDN09] (on Martin-Löf’s type theory), or Coq or Matita [ARCT11] (on the Calculus of
Inductive Constructions), enjoy a decidable type checking of proofs (and programs).

Starting from the paper [MS05], together with G. Sambin we embarked on the project of developing
a minimalist foundation to be considered as a common core among the most relevant constructive
foundations. We wanted to design such a foundation as a theory equipped with two levels in order
to meet the usual practice of developing mathematics in an extensional set theory, represented by an
extensional level, with the practice of formalizing it in a computer-assisted way within an intensional
type theory suitable for program extraction. Then, the compatibility of this minimalist foundation with
the most relevant constructive and classical extensions, at the right level, would make a proof-assistant
based on such a foundation more suitable for formalizing reusable proofs.

The notion of constructive foundation. More in detail, in [MS05] we required that a constructive
foundation should be equipped with one level, called intensional, given by a proofs-as-programs theory,
another level, called extensional, given by a set theory where to formalize mathematical proofs, with in
addition a requirement on how to link the levels: the extensional level should be obtained by abstraction
from the intensional one according to Sambin’s forget-restore principle in [SV98] so to preserve the
extraction of programs from proofs. We also formalized the notion of proofs-as-programs theory in a
very technical sense in comparison with the intuitive idea of a theory enjoying a semantics where proofs
are interpreted as programs. Indeed, in [MS05] we defined a proofs-as-programs theory as one consistent
with the formal Church thesis and the axiom of choice. The reason is that we had in mind that the theory
should satisfy an interpretation similar to Kleene realizability one for Heyting arithmetics, where these
principles are validated. Then, this definition of proofs-as-programs theory turned to be very useful in
discriminating intensional and constructive theories versus extensional and classical ones (see [MS05]).

The two levels of the minimalist foundation. In [Mai09] we built an example of our de-
sired minimalist two level constructive foundation. Its two levels are both given by a type theory à la
Martin-Löf: the first is an intensional type theory as [NPS90], called mTT, with propositions defined
primitively to avoid the validity of choice principles and the latter is an extensional one, called emTT,
with proof-irrelevance of propositions and quotients (similar to those implemented in Nuprl [The95]).
The extensional level is then interpreted in the intensional one via a quotient model based on total
setoids à la Bishop [Bis67, Hof97, BCP03, Pal05]. The quotient model is an instance of an abstract
quotient completion described in [MR13] and shows how extensional concepts are obtained by just ab-
stracting from equalities of intensional ones. In [Mai09] we also emphasized that it is enough to present
the extensional level as a fragment of the internal language of a quotient completion of the intensional
one in order to meet the abstract link in [MS05] between the two levels of a constructive foundation.

A realizability interpretation validating Bar Induction and Church thesis for type-
theoretic functions. As advocated in [MS05], a main novelty of our foundation in [Mai09], which
is also a major difference with respect to Martin-Löf’s type theory, is that it should not validate the
axiom of unique choice turning a functional relation into a type-theoretic function, even restricted to
natural numbers. Formally, this distinction is possible because, at both levels of our foundation, we dis-
charged the isomorphism “propositions-as-sets” of Martin-Löf’s type theory and we built propositions via
primitive constructors distinct from those for sets, as it happens in the Calculus of Constructions [Coq90]
of which mTT is a predicative version.

Therefore in our foundation, contrary to most extensional constructive theories in the literature, such
as Aczel’s CZF or the internal theory of a topos (for example in [Mai05b]), we have two distinct notions
of function: the usual notion of functional relation and that of type-theoretic function.

The benefit of this is the possibility of revisiting the well known result by Kleene [KV65, Tv88a] that
Brouwer’s principle of Bar Induction, or better the Fan theorem derived from it, is inconsistent with the
formal Church thesis for choice sequences [Tv88a, Rat05, Dum00]. Indeed, at the extensional level of our
foundation this result gives that Brouwer’s Bar Induction (BIfr) where choice sequences are functional
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relations is inconsistent with the formal Church thesis (CTtt) for type-theoretic functions from natural
numbers to natural numbers in the presence of the axiom of unique choice on natural numbers (AC!N,N)
turning a functional relation into a type-theoretic function.

Therefore, in the absence of unique choice, it makes sense to investigate consistency of our foundation
with BIfr and CTtt.

The importance of finding a consistent extension where BIfr and CTtt are valid is that of providing a
setting, with a denotation for lawlike computable sequences, apt to develop constructive analysis, where
BIfr, or better the Fan theorem, has already shown to be very useful (see for example [Bri08, BR87])
given its topological meaning. Indeed, topologically, the traditional formulation of Bar Induction on
choice sequences on natural numbers, defined as functional relations, is equivalent to spatiality of Baire
point-free topology (see [FG82, Sam87, GS07]) since choice sequences on natural numbers amount to be
the formal points of Baire topology. In essence Bar Induction says that we can reason on the Baire space
of choice sequences in a point-free inductive way (and in our formulation BIfr we extend this to spaces
of choice sequences on any set). Furthermore, the topological reading of Kleene’s result says that we ca
not do this if choice sequences are assumed to be computable. Therefore, in the presence of BIfr we need
to keep the concept of choice sequence as a not computable one (see also [Sam08]). Then, if identify
lawlike sequences with type-theoretic functions and we are interesting in keeping their computational
meaning, we end up in a theory where both BIfr and CTtt are present.

Here we show a realizability interpretation validating BIfr +CTtt for a slightly modified version of
our two-level foundation in [Mai09], where we restricted the collection constructors to a minimum to
represent the power collection of a set. Its intensional level is called mTT0 and its extensional one
emTT0.

We interpret emTT0 validating BIfr +CTtt by lifting an interpretation of the intensional level mTT0

that validates the mTT0-translations BIifr + CTitt of the corresponding emTT0-formulations BIfr +CTtt.
Both interpretations of mTT0 and of emTT0, called proof-irrelevant realizability interpretations, for short
pf-realizability, can be placed in an ambient theory which can be either the classical set theory ZFC or
Aczel’s CZF extended with BIfr. We give such a name to these interpretations because propositions
are interpreted in a proof-irrelevant way, namely as propositions of the ambient theory, while sets and
type-theoretic terms are interpreted as in Kleene realizability (see [Tv88b]).

More in detail, in order to validate CTitt the pf-realizability interprets mTT0-sets as subsets of
natural numbers and their families of elements as suitable computable functions, like in the realizability
interpretation à la Kleene built in [Tv88b] for a version of Martin-Löf’s type theory. Then, it interprets
mTT0-propositions as subsets of the zero singleton in ZFC (and as subsets/subclasses in CZF). Finally,
to validate BIifr the pf-realizability interpret mTT0-collections as sets in ZFC (and as classes in CZF)
and their families of elements as functions with no computational contents. An advantage of the pf-
realizability interpretation is that of making well visible the separation, advocated in [Sam08], between
computable concepts as the set of lawlike sequences on natural numbers and those not computable
concepts as the collection of formal points of the Baire topology or Cantor topology. Actually, the pf-
realizability interpretation in ZFC shows that choice sequences of Baire space and also those of Cantor
space do not form a set in emTT0 but just proper collections. The reason is that such collections are
interpreted as not countable sets while all mTT0-sets are interpreted as ZFC-subsets of natural numbers
and hence as countable ZFC-sets. For the same reason, also real numbers, both as Dedekind cuts or as
Cauchy sequences, do not form a set in emTT0 because according to the proof-irrelevant realizability
interpretation in ZFC they are interpreted as ZFC-reals which are not countable.

The proof-irrelevant realizability model for mTT0 can be lifted to interpret the extensional level
emTT0 and provides a natural way to interpret predicatively our minimalist foundation in the classical
set theory ZFC, or in Feferman’s predicative classical/constructive theories [Fef79], by keeping the
interpretation of type-theoretic functions as computable ones.

This model cannot validate theories as CZF because the addition of the principle of excluded middle
makes it become the whole theory ZF [Acz78], which is not predicative. Actually the interpretation of
our foundation described here can be thought of the intended semantics of our minimalist foundation
both in Aczel’s CZF and in classical set theory. In the future we hope to extend this interpretation to
model the intensional level of our original foundation in [Mai09].

It is worth recalling that theories including relevant features of a proofs-as-programs semantics, as
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the identification of existential quantifications with strong indexed sums in Martin-Löf’s type theory, do
not enjoy an intuitive interpretation in classical set theory preserving logical connectives and quantifiers
as our minimalist foundation. Therefore a proof-assistant based on our foundation would be more
suitable to develop reusable proofs in a modular way both in its constructive and classical extensions
(implementations of systems based on our foundation are under development in the proof assistant
Matita [AMC+11]).

2 The two-level theory: mTT0 and emTT0

As described in the introduction, in [Mai09] we built a two-level foundation meeting the requirements
in [MS05].

Here we consider a slightly modified version of this foundation where we restrict collection construc-
tors to a minimum to formalize Bar Induction. Its intensional level is called mTT0 and its extensional
one emTT0.

mTT0 is a fragment of mTT and, as mTT, it has the following features: it is represented by an
intensional type theory as [NPS90] (written by using the same higher-order syntax, see also [Gui09]), with
collections distinct from sets to represent the power collection of a set in a predicative way; propositions
are defined in a primitive way to avoid the validity of choice principles; we distinguish small propositions
as those propositions closed only under quantification over sets to define subsets of a set; we identify any
proposition with the collection of its proofs, as well as any small proposition with the set of its proofs to
implement useful operations on subsets advocated in [SV98, Sam14]; we replace usual equality rules in
[NPS90] with substitution rules given explicitly, in order to avoid the presence of the ξ-rule for λ-terms.

We recall from [Mai09] that the mentioned change of equality rules enable us to show consistency
of mTT0 with the axiom of choice and formal Church thesis, as advocated in [MS05] via a realizability
interpretation à la Kleene (see [Mar75]). Luckily, this change of equality rules does not affect the inter-
pretation of the extensional level emTT0 where the ξ-rule is present and it is equivalent to extensionality
of type-theoretic functions.

Also the extensional level emTT0 shares with the extensional level emTT in [Mai09] the fact that it
is an extensional type theory as [Mar84] which is closed under effective quotient sets (similar to those in
[The95]). Moreover, its propositions, defined primitively as in mTT0, are proof-irrelevant, namely they
are equipped with at most a unique canonical proof-term.

The only difference between mTT0 and mTT, as well as between emTT0 and emTT, is that strong
indexed sums of collection families are restricted to strong indexed sums of propositional functions only.
In other terms the rules F-Σ), I-Σ), E-Σ), C-Σ) of strong indexed sums in mTT and emTT in [Mai09]
are simply replaced by the following ones

Strong Indexed Sum of a propositional function

F-ip)
C(x) prop [x ∈ B]

Σx∈BC(x) col
I-ip)

b ∈ B d ∈ C(b) C(x) prop [x ∈ B]

〈b, d〉 ∈ Σx∈BC(x)

E-ip)

M(z) col [z ∈ Σx∈BC(x)]
d ∈ Σx∈BC(x) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(d,m) ∈M(d)

C-ip)

M(z) col [z ∈ Σx∈BC(x)]
b ∈ B c ∈ C(b) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ( 〈b, c〉,m ) = m(b, c) ∈M(〈b, c〉)

In emTT0 we add also the equality rules of such strong indexed sums corresponding to eq-Σ), I-eq
Σ), E-eq Σ) in emTT.
Moreover, in emTT0 we have also the collection of subsets of the singleton as in emTT (in [Mai09] we
forgot to add to emTT the rule sm-eq) saying that the propositional equality of subsets is small):

4



Power collection of the singleton

F-P) P(1) col I-P)
B props

[B] ∈ P(1)
eq-P)

true ∈ B ↔ C

[B] = [C] ∈ P(1)
eff-P)

[B] = [C] ∈ P(1)

true ∈ B ↔ C

sm-eq)
U ∈ P(1) V ∈ P(1)

Eq(P(1), U, V ) props
η-P)

U ∈ P(1)

U = [Eq(P(1), U, [tt] ) ]

where tt ≡ ⊥ → ⊥ represents the truth constant.

Then, we have also function collections from a set toward P(1) to represent the power collection of a
set:

Function collection to P(1)

F-Fc)
B set

B → P(1) col
I-Fc)

c(x) ∈ P(1) [x ∈ B] B set

λxB .c(x) ∈ B → P(1)

E-Fc)
b ∈ B f ∈ B → P(1)

Ap(f, b) ∈ P(1)
βC-Fc)

b ∈ B c(x) ∈ P(1) [x ∈ B] B set

Ap(λxB .c(x), b) = c(b) ∈ P(1)

ηC-Fc)
f ∈ B → P(1)

λxB .Ap(f, x) = f ∈ B → P(1)
(x not free in f)

The above restriction of strong indexed sums is enough to interpret these function collections in mTT0

as in [Mai09]. Hence we define an interpretation of the extensional level emTT0 into mTT0 as that
in [Mai09] as follows. Note that we use the word type as a meta-variable varying on collection, set,
proposition, small proposition:

Def. 2.1 We call
(−)i : emTT0 → mTT0

the restriction of the interpretation of emTT-dependent types and terms into mTT-extensional depen-
dent types and terms in [Mai09], where, in particular, dependent sets are interpreted as total dependent
setoids à la Bishop [Bis67, Pal05] 1.

This is well defined because emTT0-propositions are interpreted as mTT0-propositions from which
we get that strong indexed sums of propositional functions in emTT0 are defined via strong indexed
sums of propositional functions in mTT0 as follows (recall that σx

x′
are isomorphisms needed to interpret

substitution):
Strong Indexed Sum :
( Σy∈BC(y) )I col [ΓI ] ≡ Σy∈BICI(y) col [ΓI ]

and z =Σy∈BC(y)I z
′ ≡ ∃d∈π1(z)=BIπ1(z′) σ

π1(z′)
π1(z) (π2(z)) =CI(π1(z′)) π2(z′) for z, z′ ∈ ( Σy∈BC(y) )I .

with terms constructors interpreted exactly as in [Mai09].
Moreover, the function collection towards P(1) is interpreted by using only strong indexed sums of

propositional functions as follows (recall from [Mai09] that the notation cĨ stands for the composition
of the interpretation cI with suitable canonical isomorphisms):

Function collection toward P(1) :
(B → P(1) col [Γ] )I ≡ Σh∈BI→props ∀y1∈BI ∀y2∈BI ( y1 =BI y2 → (Ap(h, y1) ↔ Ap(h, y2) ) )

with equality z =P z
′ ≡ ∀y∈BI (Ap(π1(z) , y) ↔ Ap(π1(z′) , y) ) for z, z′ ∈ (B → P(1) )I

1Note that we can not turn such an interpretation (−)i into one that interprets emTT0 in a categorical model of
quotients built over mTT0 as done over mTT in [Mai09], because there we interpreted contexts via generic strong indexed
sums not available in mTT0. Here we can only turn (−)i into an interpretation of emTT0 in a syntactic indexed category
built out of mTT0, for example as in [Hof97], where emTT0-contexts are interpreted as mTT0-extensional contexts exactly
as done by (−)i.
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(λyB .c )I ≡ 〈λyB̃ .cĨ , p 〉 where p ∈ ∀y1∈BI ∀y2∈BI ( y1 =BI y2 → ( cĨ(y1) ↔ cĨ(y2) ) )

(Ap(f, b) )I ≡ Ap(π1(f Ĩ) , bĨ)

σx
′
x (w) ≡ 〈λy′BI(x′). σx

′,y′

x,σx

x′
(y′)

(Ap(π1(w) , σx
x′

(y′) ) ), p 〉 for x, x′ ∈ ΓI and w ∈ (B → P(1) )I(x) where

p is a proof-term witnessing the preservation of equalities obtained from π2(w).

2.1 Comparison of our minimalist foundation with Aczel’s CZF

Recalling from [MS05] that theories satisfying extensionality of functions are not proofs-as-programs
ones (i.e. consistent with formal Church thesis and axiom of choice), clearly CZF, being one of those, is
not a proofs-as-programs theory, and, of course, is not apt to be the intensional level of a constructive
foundation. However it enjoys an interpretation in Martin-Löf’s intensional type theory [Acz78, Acz82,
Acz86, RT06] (with disjunction and suitable existence properties). One could then view CZF as the
extensional level of Martin-Löf’s intensional type theory. But, according to our technical notion of
constructive foundation in [Mai09], the extensional level should be seen as the internal theory of a
quotient completion of the intensional one and we do not know how to accomplish this for CZF.

In any case, it makes sense to compare our extensional level emTT with CZF. We recall from
[Mai09] that our emTT is certainly interpretable in Aczel’s CZF [AR01] by interpreting sets as CZF
sets, collections as classes, propositions as subclasses of the singleton and small propositions as subsets
of the singleton (in order to make the rules prop-into-col and props-into-set valid) and typed terms
as functions. In particular, the power collection P(A) of a set A is interpreted as the corresponding
power collection of subsets.

This interpretation however looses the computable meaning of typed terms. What we will show in
the next is a realizability interpretation where typed terms are seen as computable.

3 Formulation of CTtt, AC!N,N and BIfr

The goal of our work is to build a model of the extensional level emTT0 of our minimalist foundation
extended with Bar Induction where choice sequences are functional relations, for short BIfr, and the
formal Church thesis for type-theoretic functions, for short CTtt, in a set theory S as ZFC or CZF+BIfr.

Given that our extensional level emTT0 can be interpreted in mTT0 via quotients, to fulfil our
purpose it is enough to provide a model of the intensional level mTT0 which validates the translations
BIifr and CTitt of the emTT0-formulations BIfr and CTtt. Then an interpretation for emTT0 in the set
theory S will be defined by closing under suitable quotients that of mTT0.

Here we start by presenting the formulation of CTtt and of unique choice on natural numbers AC!N,N,

where N denotes the set of natural numbers in emTT0 (and mTT0). Then we pass to formulate BIfr in
topological terms as pioneered in [FG82] but in the context of formal topology [Sam87, GS07], namely of
point-free topology developed in a predicative way (for a survey and related notation see [Sam03]). We
then review its connection with the traditional formulation of Bar Induction and Fan theorem [Dum00,
Tv88a, Rat05] (see [Sam14] for a survey and further developments about this). Then we use Kleene’s
result [Tv88a] about inconsistency of Fan theorem with Church thesis for choice sequences to deduce
that Bar Induction is inconsistent with CTtt and unique choice. Finally we formulate such principles at
the intensional level.

3.1 Formulation of CTtt, AC!N,N and BIfr at the extensional level

One of the benefits of our foundation emTT0 is that it allows to have two notions of function: one
is that of functional relation and the other is that of type-theoretic function (or operation as called in
[Sam14]). In emTT0 a functional relation from a set A to a set B is identified with a small proposition
aR b props [a ∈ A, b ∈ B] satisfying 2

2As usual ∃!y ∈ A R(x, y) ≡ ∃y ∈ B R(x, y) ∧ ∀y1, y2 ∈ B ( R(x, y1) ∧ R(x, y1)→ Eq(B, y1, y2) ).
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∀x ∈ A ∃!y ∈ B R(x, y)

Instead in emTT0 a type-theoretic function from a set A to a set B is identified with an element of the
set A→ B

f ∈ A→ B

We recall that canonical terms of the set A→ B are of the form λx.t(x) obtained by λ-abstraction from
terms of the form t(x) ∈ B [x ∈ A].

Note here that while the collection of functional relations from a set A to a set B does not need to
form a set, instead by definition the type-theoretic functions from a set A to a set B form a set!
Given that type-theoretic functions are meant to be computable as in Feferman’s theories [Fef79], it
makes sense to formulate the formal Church thesis only for them, namely to say that all type theoretic
functions from natural numbers to natural numbers are internally recursive:

(CTtt) ∀f ∈ N→ N ∃e ∈ N ( ∀x ∈ N ∃y ∈ N T (e, x, y) ∧ U(y) =N f(x) )

where T (e, x, y) is the Kleene predicate expressing that y is the computation executed by the program
numbered e on the input x and U(y) is output of the computation y.
Note that the notion of functional relation is more general than that of type-theoretic function from A
to B, unless we can derive the set-theoretic axiom of unique choice on natural numbers, formulated in
emTT0 as follows: for any small proposition aR b props [a ∈ A, b ∈ B]

( AC!N,N ) ∀x ∈ N ∃!y ∈ N R(x, y) −→ ∃f ∈ N→ N ∀x ∈ N R(x, f(x))

The absence of unique choice was exactly one of the key features desired for our minimalist foundation
as explained in [MS05]. The main motivation was to be able to identify the notion of choice sequence
with that of functional relation, as done in the context of axiomatic set theory, and that of lawlike
sequence with that of type-theoretic function (see [Sam08] for the relevance of this distinction).

To express this we identify the tree with nodes labelled by lists of elements in a set A with A∗ ≡
List(A) itself:

Def. 3.1 (choice sequence) Given a set A, a choice sequence on the tree A∗ is a functional relation
from N to A defined by a small proposition α(x, y) props [x ∈ N, y ∈ A] in emTT0.
We write αεCH(A) to mean that α is a choice sequence.

Def. 3.2 (lawlike sequence) Given a set A, a lawlike sequence on the tree A∗ is a type-theoretic
function f ∈ N→ A from natural numbers to A in emTT0.

Remark 3.3 Note that in [Tv88a] the notion of choice sequence is identified with that of type-theoretic
function f : N→ N while in [Rat05] with that of functional relation.

Now we formulate the principle of Bar Induction in topological terms by employing an inductively
generated formal topology put on the tree A∗ (see [Sam14]). In the next in emTT0 we use the notion of
subset with its ε-relation as in [Mai09]: a subset V of A∗ is a term V ∈ P(A∗), with P(A∗) ≡ A∗ → P(1)
and lεV ≡ Eq(P(1), V (l), [tt] ) for a list l ∈ A∗.

Def. 3.4 The tree formal topology over A is the formal topology (A∗, /AN ) where /AN is inductively
generated by the following rules (see [CSSV03])

rfl
lεV

l /AN V
≤ s vop l l /AN V

s /AN V
tr
∀x ∈ A cons(l, x) /AN V

l /AN V

where s vop l ≡ ∃t∈A∗ s =A∗ [l, t], i.e. l is an initial segment of s.
The above tree topology is called Cantor formal topology when A is the boolean set {0, 1} and we

indicate its cover with /C ≡ /{ 0,1 }N . Moreover, it is called Baire formal topology when A is the set of
natural numbers N and we indicate its cover with /B ≡ /NN .
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We just recall that a subset V of A∗ is called a formal open of the formal topology /AN if V =
/AN (V ) ∈ P(A∗) holds, where in turn /AN (V ) ≡ { l ∈ A∗ | l /AN V }.

Then the frame associated to the formal topology /AN is represented by the formal opens of /AN ,
with inclusion as order. The intersection of two opens V,W in the frame is given by /AN (V ↓W ) where
V ↓W ≡ { s ∈ A∗ | ∃lεV s vop l ∧ ∃wεW s vop w }. The arbitrary supremum of a family of opens
Vi∈I in the frame is given by /AN (

⋃
i∈I Vi ) where

⋃
i∈I Vi ≡ { s ∈ A∗ | ∃i ∈ I sεVi }.

In [Val07] it is shown how to build the above tree formal topologies in an extension of Martin-Löf’s
type theory with the help of the axiom of choice (which is a theorem there!). In the quotient model
built over Martin-Löf’s type theory in the same way as the quotient model over mTT in [Mai09], this
axiom of choice survives only when it is applied to copies of sets of the intensional level (and we can call
it intensional axiom of choice) and hence it does not entail classical logic as the full extensional one (see
[ML06, Car04]). Given that we do not have such a choice principle in emTT0 we simply postulate the
existence of tree formal topologies as added axioms to emTT0. We indicate this extension with emTT0+
/AN .

Before proceeding we define a useful notation introduced in [Sam03]:

Def. 3.5 (G-relation ) Given a set A and subsets V,W of A∗ we define

V GW ≡ ∃l ∈ A∗ ( lεV ∧ lεW )

We then recall the notion of a formal point for the tree formal topologies of the form /AN :

Def. 3.6 (formal point of /AN ) A subset α ofA∗ for a given setA is a formal point, written αεPt(/AN ),
if it satisfies the following conditions:

∃l∈A∗ lεα
∀l1,l2∈A∗ ( l1εα ∧ l2εα → ∃s∈A∗ ( sεα ∧ s vop l1 ∧ s vop l2 ) )
∀s∈A∗ ( sεα → (∀l∈A∗ s vop l → lεα ) )
∀lεA∗ ( lεα → ∃a∈A cons(l, a)εα )

In the next, we use the following abbreviations to quantify over formal points: for any formula φ(α)
∀αεPt(/AN ) φ(α) ≡ ∀α ∈ A∗ → P(1) (αεPt(/AN ) → φ(α) )
∃αεPt(/AN ) φ(α) ≡ ∃α ∈ A∗ → P(1) (αεPt(/AN ) ∧ φ(α) ).

Now note that choice sequences on the tree A∗ are exactly the formal points of the tree formal
topology over A:

Proposition 3.7 The collection of formal points Pt(/AN ) of the tree formal topology over a set A are
in bijection with the choice sequences on the tree A∗.

Proof. Given a formal point α, we can define a functional relation as follows:

αfr(n, a) ≡ ∃ lεα Eq(A, ln+1, a)

where ln is the n-th component of l.
Conversely, given a functional relation α(x, y) props [x ∈ N, y ∈ A] the following subset

αpt ≡ { l ∈ A∗ | ∀n ∈ N ( 1 ≤ n ≤ lh(l) → α(n, ln+1) )}

where lh(l) is the length of l, turns out to be a formal point.

An alternative proof follows after noting, as observed in [Sig95], that any tree formal topology is the
exponential formal topology of the discrete formal topology of natural numbers on itself (see [Mai05a]
for a constructive and predicative construction of exponentiation). Therefore its formal points are in
bijection with functional relations, being these all continuous. This explains why we label the cover /AN

of the tree formal topology over A with AN .
Then, we are ready to formulate Bar Induction as spatiality of the tree formal topology on a given

set A similarly to [FG82]:
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Def. 3.8 (Bar Induction in topological form) In emTT0 + /AN the principle of Bar Induction in
topological form is the following statement: for any given set A in emTT0

( BIfr(A) ) ∀l ∈ A∗ ∀V ∈ P(A∗) ( ∀αεPt(/AN ) ( lεα → α G V )→ l /AN V )

This formulation of BIfr(A) essentially means that the topology put on the formal points of the tree
A∗, that are its choice sequences, coincides with the point-free one and hence we can reason on it by
induction on finite sequences, being the point-free one inductively generated (see [Sam08, Sam14]).
We give specific names to Bar Induction on the Baire formal topology and on Cantor formal topology:

Def. 3.9 (Bar Induction on Baire and Cantor formal topologies) We call BIfr(N) the above for-
mulation of BIfr(A) on Baire formal topology, namely when A ≡ N.

We call BIfr({ 0, 1 }) the above formulation of BIfr(A) on Cantor formal topology, namely when
A ≡ { 0, 1 }.

Note that spatiality of Cantor formal topology allows to derive compactness of Cantor space [FG82].
In the rest of the paper we just say BIfr to mean BIfr(A) for any given set A and emTT0 + BIfr to
mean emTT0+ /AN + BIfr(A) for any given set A.

3.2 Connection of BIfr with traditional formulations

Here, we review the connection of our topological formulation of Bar Induction with more traditional
formulations of it and with Fan theorem. We want to make this clear in order to derive an inconsistency of
CTtt with AC!N,N and BIfr in emTT0 from Kleene’s proof in [Dum00, Tv88a, Rat05] about inconsistency
of the Fan theorem with Church thesis for functional relations.

We start with defining the notion of bar of a list:

Def. 3.10 (bar of a list) Given a set A, a bar of a list l on the tree A∗ is a subset V of A∗ satisfying

∀αεCH(A) (α G { l } → α G V )

We then say that

- V is monotone if ∀l ∈ A∗ ( lεV → ∀a ∈ A cons(l, a)εV ) holds.

- V is inductive if ∀l ∈ A∗ ( ∀a ∈ A cons(l, a)εV → lεV ) holds.

Now we are ready to give the traditional formulation of Monotone Bar Induction as in [Dum00,
Tv88a, Rat05] for A ≡ N and here extended also when A ≡ { 0, 1 }:

Def. 3.11 (traditional Bar Induction) For A ≡ N or A ≡ { 0, 1 } the principle of Bar induction
BItrA says that every inductive subset Q of A∗ containing a monotone bar V of the empty list contains
the empty list:

(BItrA ) ∀V,Q ∈ P(A∗) ( ∀αεCH(A) α G V
∧ ∀l ∈ A∗ ( lεV → ∀a ∈ A cons(l, a)εV )
∧ ∀l ∈ A∗ ( ∀a ∈ A cons(l, a)εQ → lεQ )
∧ ∀l ∈ A∗ ( lεV → lεQ ) )

→ nilεQ

holds, where nil is the empty list.

In order to see the connection between the traditional formulation of Bar Induction and our topo-
logical form it is convenient to note that monotone inductive subsets of lists over a set A are in bijection
with formal opens of the tree formal topology over a set A:
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Lemma 3.12 A subset V of A∗ is monotone and inductive if and only if V is a formal open in the tree
formal topology over A, i.e. we can derive a proof of

Eq( P(A∗) , V , /AN (V ) )

Proof. Given a monotone inductive subset, we can prove by induction that /AN (V ) ⊆ V and the other
inclusion is obvious. The converse is trivial.

This lemma suggests a reformulation of BItrA in terms of monotone inductive bars:

Def. 3.13 The principle of monotone bar induction MBInilA says that, for a given set A, every monotone
inductive bar of the empty list in A∗ contains the empty list (and hence by monotonicity every list):

(MBInilA )
for all monotone inductive subset V of A∗

∀αεCH(A) α G V → nilεV

We also give the following more general definition of monotone bar induction:

Def. 3.14 The general principle of monotone bar induction MBIA says that, for a given set A, every
monotone inductive bar of a list l in A∗ contains the list l:

(MBIA)
for all monotone inductive subset V of A∗

∀l ∈ A∗ ( ∀αεCH(A) ( α G { l } → α G V ) → lεV )

Now we show that all the above formulations of Bar Induction are equivalent when applied to Baire and
Cantor formal topologies:

Theorem 3.15 In emTT0+ /AN , for A ≡ N or A ≡ { 0, 1 } the following are equivalent:

1. BIfr(A)

2. MBIA

3. MBInilA

4. BItrA

Proof. 1↔ 2 Clearly BIfr(A) is equivalent to MBIA because of lemma 3.12.
2↔ 3 To prove that MBInilA entails MBIA note that given a monotone inductive bar V for l then

W ≡ V
⋃
{s ∈ N∗ | l 6= s 3 ∧ Eq(N, lh(s) , lh(l)) }

is a bar of the empty list. Therefore, from lemma 3.12 we get that /AN (W ) is a monotonic inductive bar
of the empty list and from MBInilA we obtain that nilε/AN (W ) and by monotonicity also that lε/AN (W ),
i.e. l /AN W . Now, by intersecting the open /AN (W ) with the open generated from { l } we get the
open /AN ({ l } ↓W ) with l /AN { l } ↓W . Now observe that { l } ↓W ⊆ V being V monotone. Hence,
by transitivity of /AN as a formal cover we conclude l /AN V . Being V a monotone inductive bar, by
lemma 3.12 we conclude lεV .
3↔ 4 MBInilA entails BItrA , as shown in [Sam14], if we consider the minimum inductive subset containing
a given monotone bar V. This is monotone, it is contained in Q and coincides with /AN (V ). By MBInilA
we get that nilε /AN (V ) and hence we conclude nilεQ.
Conversely, BItrA implies MBInilA trivially by taking Q ≡ V for a given monotone inductive bar V .

A consequence of Bar Induction on the tree N∗, namely of BItrN, is the well known Fan theorem

regarding choice sequences from N to the boolean set (see [Dum00, Tv88a, Rat05]):

3The equality on N∗ or { 0, 1 }∗ is decidable being decidable that on N and on { 0, 1 }.
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Def. 3.16 (traditional Fan theorem) The traditional formulation of Fan theorem, called here FTnil,
says that every bar V of the empty list in {0, 1}∗ is uniform, namely there exists a subset of V , which
is still a bar of the empty list, with lists bounded by a fixed natural number:

(FTnil) ∀V ∈ P({ 0, 1 }) ( ∀αεCH({ 0, 1 }) α G V → ∃n ∈ N ∀αεCH({ 0, 1 }) α G Vn )

where Vn ≡ { v ∈ { 0, 1 }∗ | vεV ∧ lh(v) ≤ n }.

We can extend the formulation of the Fan theorem to bars of a generic list:

Def. 3.17 (Fan theorem with bars of a generic list) The more general formulation of Fan theo-
rem, called here FT, says that every bar V of a list l in {0, 1}∗ is uniform, namely there exists a subset
of V , which is still a bar of the list l, with lists bounded by a fixed natural number:

(FT)
∀l ∈ A∗ ∀V ∈ P({ 0, 1 })

( ∀αεCH({ 0, 1 }) ( α G { l } → α G V ) → ∃n ∈ N ∀αεCH({ 0, 1 }) ( α G { l } → α G Vn ) )

But with this formulation of Fan theorem on generic lists we do not get a stronger statement than the
traditional one and more importantly this is also equivalent to Bar Induction on the Cantor formal
topology BIfr({ 0, 1 }):

Theorem 3.18 In emTT0+ /AN the following are equivalent

1. BIfr({ 0, 1 })

2. FT

3. FTnil

Proof. 1 ↔ 2 The proof is given in [GS07] and it can be easily carried out in emTT0 being based
on induction over the generation of Cantor formal topology.
2↔ 3 To prove that FTnil entail FT note that given a bar V for l then

W ≡ V
⋃
{s ∈ { 0, 1 }∗ | l 6= s ∧ Eq(N, lh(s), lh(l)) }

is a bar of the empty list. Hence, by FTnil there exists a natural numbers n such that Wn is a bar of
the empty list, and hence Vn is a bar of l.

We can also show that Bar Induction on the Cantor formal topology, or equivalently the Fan theorem,
is a consequence of Bar Induction on the Baire formal topology:

Proposition 3.19 BIfr(N) entails FT in emTT0.

Proof. Thanks to theorem 3.18 we just show that BIfr(N) entails BIfr({ 0, 1 }). As suggested to us by
T. Streicher this follows from the fact that Cantor formal topology is a retract of Baire formal topology,
i.e. that there exist morphisms E : /C → /B , R : /B → /C such that R · E = id/C in the category
of inductively generated formal topologies (the definition of such a category can be found in [Mai05a]
and in loc. cit.). In particular, the existence of R is in turn based on a retraction σ : N∗ → { 0, 1 }∗ of
the embedding i : { 0, 1 }∗ → N∗ of boolean lists into lists of natural numbers, where σ ≡ List(σ̃) is the
lifting of the operation σ̃(x) ∈ {0, 1} [x ∈ N] defined as follows:

σ̃(x) ≡

{
0 if x ≡ 0

1 otherwise
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Indeed, we can define E : /C → /B and R : /B → /C as follows: given s ∈ N∗ and l ∈ { 0, 1 }∗

l E s ≡ l /C {x ∈ { 0, 1 }∗ | Eq( N∗, x, s) } sR l ≡ σ(s) /C l

where for easiness we just consider a list l ∈ { 0, 1 }∗ also as a list in N∗. (We just recall that, for any
formal open V of /B , then E−(V ) is a formal open of /C and this gives rise to a frame morphism from
the Baire frame to the Cantor one. Similarly R− gives rise to a frame morphism from the Cantor frame
to the Baire one.)
Then, one derives BIfr({ 0, 1 }) from BIfr(N) by using E and R. The essence is that any bar V of a list
l in the Cantor formal topology yields to a bar R−(V ) ≡ { s ∈ N∗ | ∃vεV sR v } for the list l in the
Baire formal topology. Then by BIfr(N) we get l /B R−(V ) and hence also that E−(l) /C E−(R−(V )).
From this and from lεE−(l) and R·E = id/C we conclude l /C V . Hence BIfr({ 0, 1 }) holds, as claimed.

3.3 Inconsistency of AC!N,N+ CTtt+ BIfr

Here we reread in our foundation Kleene’s well known result that the Fan theorem is inconsistent with
the formal Church thesis saying that all choice sequences are recursive [KV65]. We found at least two
ways in which choice sequences are defined in the literature. Some authors, like [Tv88a], identify choice
sequences with type-theoretic functions and hence their intended formal Church thesis to get Kleene’s
result coincides with our CTtt. Since in the presence of unique choice our notion of choice sequence
coincides with that in [Tv88a], Kleene’s result in our setting amounts to say that the Fan theorem
together with AC!N,N is inconsistent with CTtt.

Others authors identify choice sequences with functional relations as in [Rat05] and their intended
formal Church thesis to get Kleene’s result is then a consequence of combining our Church thesis CTtt

for type-theoretic functions with the axiom of unique choice. Also in this case Kleene’s result amounts
to inconsistency of the Fan theorem together with CTtt + AC!N,N.

Therefore we deduce for our foundation:

Proposition 3.20 There is no model of emTT0 + FT + CTtt + AC!N,N.

Proof. Given that Heyting arithmetics of finite types can be seen as a fragment of emTT0, we can
mimick Kleene’s proof in [Tv88a] because by the presence of AC!N,N our choice sequences become

identified with type-theoretic functions, namely lawlike sequences, as in [Tv88a].

Thanks to propositions 3.18, 3.19 we then conclude:

Corollary 3.21 emTT0 + BIfr(N) + CTtt + AC!N,N is inconsistent.

Hence, emTT0 + BIfr + CTtt + AC!N,N is inconsistent, too, where we recall that BIfr means BIfr(A)
for all set A.

These inconsistency statements provide a rereading of Kleene’s result as follows: in the presence of
BIfr, we can not identify all choice sequences, defined as functional relations between natural numbers,
with lawlike ones, defined as terms of type N → N, if these are also internally recursive (as stated in
our formal Church thesis). Topologically, this implies that we can not reason in a point-free inductive
way in the Baire space, or in the Cantor space, if choice sequences are assumed to be computable.

Then, it comes natural to ask whether without unique choice AC!N,N our emTT0 turns out to be
consistent with BIfr and CTtt. This is what we are going to show in the next. As a byproduct we will
conclude that unique choice on natural numbers does not generally holds in emTT0.

3.4 Formulation of CTtt, AC!N,N and BIfr at the intensional level

Now, we describe the interpretation of CTtt and AC!N,N and BIfr at the intensional level mTT0. The
translations of CTtt and AC!N,N are essentially the identity while that of BIfr is not because we need

to represent the power collection of subsets as a suitable quotient (see [Mai09]).
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We start by giving the definition of tree formal topology on a setoid or extensional set (A,=A) in mTT0,
namely on an mTT0-set A equipped with an equivalence relation

x =A y props [x ∈ A, y ∈ A]

as in [Mai09]. The following formulation is obtained by translating in mTT0 the notion of tree formal
topology of emTT0 by using the interpretation (−)i in definition 2.1:

Def. 3.22 (tree formal topology in mTT0) A tree formal topology in mTT0 on a setoid (A,=A)
in mTT0 consists of a proposition

l /iAN V props [l ∈ A∗, V ∈ A∗ → props]

with a proof of the proposition

l1 /
i
AN V ↔ l2 /

i
AN W props [l1, l2 ∈ A∗, V,W ∈ A∗ → props, u ∈ l1 =A∗ l2,

z ∈ ∀x∈A∗ V (x)↔W (x)]

where the equality on lists =A∗ is defined from =A as in [Mai09], and /iAN is inductively generated
(see [CSSV03]) from the rules rfl, ≤, tr in def. 3.4 written as axioms in the implicative form with
corresponding proof-terms.

Before giving the interpretation of BIfr, CTtt and AC!N,N in mTT0, we need to extend the inter-

pretation (−)i of emTT0 into mTT0 to include the existence of tree formal topologies in both theories:

(−)i : emTT0 + /AN → mTT0 + /i
AiN

by simply interpreting each /AN as /i
AiN supposing (Ai,=Ai) the setoid interpretation of the emTT0-set

A. Hence, we are ready to prove:

Lemma 3.23 According to the interpretation (−)i : emTT0 + /AN → mTT0 + /iAN in definition 2.1,
supposing (Ai,=Ai) the setoid interpretation in mTT0 of the emTT0-set A, then
- The translation of BIfr(A) for an emTT0-set A in mTT0 + /i

AiN is the following:

(BIfr(Ai))
∀ l ∈ List(Ai) ∀ V ∈ List(Ai)→ props

( ∀α ∈ List(Ai)→ props ( αεPt(/i
AiN) ∧ α(l) → α G V )→ l /i

AiN V )

where α G V and αεPt(/i
AiN) are defined as in emTT0 in definition 3.8.

- The translation of CTtt and AC!N,N, called CTitt and AC!iN,N are essentially the same as CTtt and

AC!N,N
4.

Thanks to the interpretation of emTT0 into mTT0 and to prop. 3.21 we get:

Corollary 3.24

mTT0 + BIifr(N) + CTitt + AC!iN,N is inconsistent, and hence mTT0 + BIifr + CTitt + AC!iN,N (where

BIifr means BIifr(A) for any mTT0-set A with an equivalence relation =A), is inconsistent, too.

Proof. Thanks to the interpretation (−)i in def. 2.1, a proof that falsum is true in the extension
emTT0 + BIfr(N) + CTtt + AC!N,N converts to the construction of a proof-term for falsum in mTT0

+ BIifr(N) + CTitt + AC!iN,N.

4Note that, according to the interpretation (−)i based on that in [Mai09], the emTT0-set of natural numbers is
interpreted as the mTT0-set of natural numbers N equipped with the propositional equality of N. Hence, the support
of the interpretation of the emTT0-set N → N turns out to be the mTT0-set N → N itself because all mTT0-functions
between natural numbers preserve the propositional equality on N.
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Corollary 3.25 If mTT0 + BIifr + CTitt is consistent, then

- mTT0 does not validate AC!iN,N;

- emTT0 + BIfr + CTtt is consistent;

- emTT0 does not validate unique choice on natural numbers AC!N,N.

4 The intermediate level mTTeq
0

In building a realizability interpretation for mTT0 validating BIifr and CTitt we encountered some tech-
nical obstacles when interpreting the strong indexed sum elimination constructor on proper collections.
We are able to solve such difficulties if we adopt projections as strong indexed sum elimination con-
structors. But, in an intensional type theory as mTT0, adopting projections as strong indexed sum
elimination constructors does not seem to be equivalent to adopting the current elimination construc-
tor ElΣ(d,m). This is instead so if we replace the intensional propositional equality Id(A, a, b) with
the extensional propositional equality Eq(A, a, b) as in [Mar84]. Therefore, we give our realizability
interpretation for an extension of mTT0, called mTTeq0 , where the propositional equality Id(A, a, b) is
replaced by the stronger extensional one Eq(A, a, b) whose rules are the following

Extensional Propositional Equality

F-Eq)
C col c ∈ C d ∈ C

Eq(C, c, d) prop
I-Eq)

c ∈ C
eq ∈ Eq(C, c, c)

E-Eq)
p ∈ Eq(C, c, d)

c = d ∈ C
C-Eq)

p ∈ Eq(C, c, d)

p = eq ∈ Eq(C, c, d)

and we adopt projections as indexed sum elimination constructors both on collections and on sets to-
gether with β and η-conversion rules as follows:

Strong Indexed Sum elimination and conversion rules

E1-Σ)
d ∈ Σx∈BC(x)

π1(d) ∈ B
E2-Σ)

d ∈ Σx∈BC(x)

π2(d) ∈ C(π1(d))

C1-Σ)
b ∈ B c ∈ C(b)

π1( 〈b, c〉 ) = b ∈ B
C2-Σ)

b ∈ B c ∈ C(b)

π2( 〈b, c〉 ) = c ∈ C(b)

η-Σ)
d ∈ Σx∈BC(x)

〈π1( d ) , π2( d ) 〉 = d ∈ Σx∈BC(x)

Luckily, the realizability interpretation we intend to build for mTT0 validates the rules of mTTeq0 .
Indeed, this interpretation is based on Kleene’s realizability interpretation for a version of Martin-Löf’s
type theory in [Tv88b], which was already known to validate the rules of Eq(A, a, b) in the absence of
ξ-rule for λ-terms and in the presence of substitution rules in place of usual equality rules in [NPS90]
(see [Mar75]).

Hence, we can interpret mTT0 into mTTeq0 , both extended with BIifr + CTitt as follows:

Proposition 4.1 We can interpret mTT0 + BIifr + CTitt into mTTeq0 + BIifr + CTitt as the identity
on all constructors except for those of the propositional equality Id which are interpreted as those of the
extensional one Eq, and except for the strong indexed sum elimination constructor which is interpreted
via projections.

Proof. We interpret the indexed sum elimination constructor of mTT0 in mTTeq0 as follows: given
d ∈ Σx∈BC(x) [Γ] and m(x, y) ∈M(〈x, y〉) [Γ, x ∈ B, y ∈ C(x)] then

ElΣ(d,m) ≡ m(π1(d), π2(d))
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that is of type M(〈π1(d), π2(d)〉) by definition. But by the substitution rules and the rule conv) 5 (see
the rules of mTT in [Mai09]) and the above η-Σ) of mTTeq0 we conclude that it is of type M(d) as well,
as required.
Concerning the propositional equality: the constructor idA(a) of mTT0 is interpreted as eq of mTTeq0
and the elimination constructor El Id(p, (x)c(x)) as c(a), given that its type C(a, a, eq) happens to be
equal to C(a, b, p) by the rules subT) and conv) in [Mai09] since from p ∈ Eq(A, a, b) we get a = b ∈ A
and also p = eq ∈ Eq(A, a, b) by the rules of Eq.

Note that indexed sum projections can be defined in mTT0 from the original indexed elimination con-
structor ElΣ as follows:

π1(z) ≡ ElΣ(z, (x, y).x) π2(z) ≡ ElΣ(z, (x, y).y)

By the original conversion rule of Σ, they clearly satisfy C1-Σ) and C2-Σ) conversions but η-Σ) does not
seem to follow.

5 The proof-irrelevant realizability interpretation of the inten-
sional level

Here we describe an interpretation of mTTeq0 extended with Bar Induction BIifr and the formal Church

thesis CTitt in a set theory S which can be the classical set theory ZFC or Aczel’s CZF extended with
Bar Induction BIfr, for short CZF+BIfr. We call such an interpretation proof-irrelevant realizability
interpretation, for short pf-realizability interpretation of mTTeq0 . Thanks to proposition 4.1 this gives an
interpretation also for mTT0 in S.

The underlying idea of our pf-realizability interpretation is to interpret mTTeq0 -sets and their elements
in an effective way, namely mTTeq0 -sets as subsets of natural numbers and their families of elements as
suitable computable functions, like in the realizability interpretation à la Kleene built in [Tv88b] for a
version of Martin-Löf’s type theory. Then, we interpret mTTeq0 -propositions in a proof-irrelevant way as
subsets of the zero singleton in ZFC, and as subclasses in CZF (only small propositions are interpreted
there as subsets). Finally, to validate BIifr we interpret mTTeq0 -collections as sets in ZFC (and as classes

in CZF) and their families of elements as functions with no computational contents.
Then, in order to validate the formal Church thesis we add a computational requirement saying

that a function interpreting a family of set elements has the property to be computed by a family of
programs depending on the interpretation of the minimum context part containing all its proper collection
assumptions. Indeed, the idea is to interpret the dependency of a set element on a set assumption as
a computable functional dependence, computed by a program represented by a Gödel number. Instead
we interpret the dependency on a proper collection assumption as a functional dependence with no
computational contents. Finally, note that, given that propositions are interpreted in a proof-irrelevant
way as subsets (or subclasses) of the zero singleton, their proofs are interpreted as zero constant functions
which are trivially computable.

Now we explain some problems in building such an interpretation separating computable and not
computable entities. Recalling that contexts of mTTeq0 are telescopic, a proper collection assumption
could be in the middle of a context after some set assumptions. In this case the dependency on such
set assumptions is treated simply as a functional dependence by loosing its computational contents. For
example, the term

x+ y ∈ N [x ∈ N, y ∈ N]

will be interpreted as the sum function computed by a program with the interpretation of both assump-
tions as inputs. But if we consider its weakening with a proper collection assumption, for example

x+ y ∈ N [x ∈ N, V ∈ props, y ∈ N]

5We just recall that this rule says that from a ∈ A and A = B type we get a ∈ B.
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the resulting term turns out to be interpreted as a family of programs with one input depending on the
interpretation of V and in turn also of x as non-computable assumptions. It is only after a substitution
of V with some closed term that we get access to the sum function computed by a program with two
inputs.

Given that we follow Kleene’s interpretation of set constructors as in [Tv88b] for a version of Martin-
Löf’s type theory, this problem of restoring missing computable codes appears when interpreting the
strong indexed sum elimination constructor of mTT in [Mai09] from a proper strong indexed sum
collection toward a set. Luckily we can solve this problem for mTTeq0 just because there we restricted
its strong indexed sum collections to be only strong indexed sums of propositional functions. Indeed,
in mTTeq0 we can only eliminate from a proper collection toward a proper collection, which does not
cause any problem of interpretation. Or we can eliminate from a proper collection toward a proposition,
whose elements, even after substitutions, are always interpreted as the constant zero function. Hence
we can assign to them the constant zero program in a canonical way: for example, after interpreting

t(z1, z2) ∈ Σx∈props φ(x) [z1 ∈ Σx∈props φ(x), z2 ∈ N]

as a suitable function in S, its second projection

π2(t(z1, z2)) ∈ φ(π1(z1)) [z1 ∈ Σx∈props φ(x), z2 ∈ N]

turns out to be interpreted as its second projection in S. Moreover, for each w1ε(Σx∈props φ(x))I the
constant zero program code bz2 7→ 0c computes the function

π2(t(z1, z2))I(w1,−) : w2 7→ π2(t(z1, z2))I(w1, w2)

on the computable input w2εN
I .

In the more general case of strong indexed sums of a collection family indexed on proper collections
or sets we are not able to assign canonical codes that can be restored when we eliminate towards sets. In
order to interpret them we need to build a more complex realizability interpretation where the apparently
forgotten codes of set inputs, on which proper collection assumptions depend, are all stored in order to
use them after substitution. This more complex interpretation is left to future work.

The interpretation of propositions as subsets/subclasses of the zero singleton is crucial to vali-
date BIifr(its interpretation will correspond to BIfr which is a theorem both in ZFC and, of course,

in CZF+BIfr). Recall also that we can not interpret propositions according to Kleene’s realizability
interpretation [Tv88a] because this interpretation validates the axiom of choice, and, hence, the axiom
of unique choice AC!iN,N which is inconsistent with BIifr and CTitt. Moreover, interpreting proposi-

tions as subsets/subclasses of the zero singleton allows us to validate also the rules prop-into-col and
props-into-set in [Mai09].

Now we start to properly define the proof-irrelevant realizability interpretation of mTTeq0 in a set
theory S as ZFC or CZF+BIfr. To this purpose we first fix some abbreviations regarding computable
functions we are going to use. We denote with N the set of natural numbers in S. Then {n} : N → N
stands for the computable partial function with Gödel number n. Moreover, we will simply write

{n}(y)εB ≡ ∃wεN T (n, y, w) ∧ U(w)εB

for a natural number n and for a subset B of N . Conversely, given a partial computable function
z 7→ f(z) : N → N , then bz 7→ f(z)c denotes a natural number such that

{ bz 7→ f(z)c }(x) = f(x)

Moreover, the isomorphism of the set of natural numbers N with its binary product N ×N is denoted
by the following functions in S:

〈pr1, pr2〉 : N → N ×N and pair : N ×N → N
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Finally, after recalling that the set of natural numbers N is isomorphic to the set of lists on itself, we
denote its list structure as in type theory: the empty list is nil, which is 0 in N , consList(N )(−,−) is

the list constructor appending an element to a list and RecList(N )(−,−,−) is the constructor defining

a term by recursion on lists.
In order to validate BIifr we need to distinguish sets from proper collections. To this purpose we will

use the following decidable function saying when a type is a proper collection (for short is-pc) that is
neither a set nor a proposition for any mTTeq0 -expression A for which we know that in mTTeq0 A type [Γ]
is derivable 6:

is-pc(A) ≡
{

0 if A set or A prop
1 otherwise

In mTTeq0 we can decompose any context Γ in two parts: one, called Γp, is the minimal context part
containing all proper collection assumptions, and hence the remaining part, called Γt, is made of set or
proposition assumptions only:

Lemma 5.1 Any context Γ can be decomposed into Γp,Γt where Γp ≡ ∅ or Γp ≡ x1 ∈ A1, . . . , xn ∈
An with is-pc (An) = 1, and Γt ≡ ∅ or Γt ≡ y1 ∈ B1, · · · ∈ Bm made only of set or proposition
assumptions, namely is-pc (Bi) = 0 for i = 1, . . . ,m.

Def. 5.2 (pf-realizability interpretation of mTTeq0 ) Here we define the interpretation

(−)I : mTTeq0 −→ S

where S can be ZFC classical set theory or CZF+ BIfr.
A context Γ is interpreted by induction by means of disjoint unions as follows:

(∅ cont)I ≡ {0} (Γ, x ∈ A cont)I ≡
⊎
zεΓI A

I(z)

A type judgement is interpreted as a family of sets in ZFC, or a family of sets/classes in CZF

(B type [Γ] )I ≡ (BI(z) )zεΓI

In particular, dependent sets turn out to be interpreted as families of subsets of natural numbers:

(B set [Γ] )I ≡ (BI(z) )zεΓI such that BI(z) ⊆ N

and dependent propositions as subsets of the zero singleton {0} in ZFC, or subclasses of the zero singleton
in CZF that become subsets when they interpret small propositions:

(B prop [Γ] )I ≡ (BI(z) )zεΓI such that BI(z) ⊆ {nεN | n = 0 }

A type equality judgement is interpreted as the extensional equality between families

(B = C type [Γ] )I ≡ ∀zεΓI BI(z) = CI(z)

A term judgement is interpreted as a function

( b ∈ B [Γ] )I ≡ zεΓI 7→ bI(z) ∈ BI(z)

6More formally is-pc(A ) is defined by induction on type constructions as follows:
is-pc(A ) ≡ 0 for A ≡ N0, N1, List(C), B + C,⊥, B ∧ C,B ∨ C,B → C,∃x∈BC(x), ∀x∈BC(x),Eq(A, a, b)
is-pc(A ) ≡ 0 for A ≡ Σx∈BC(x) iff is-pc(B ) = 0 and is-pc(C(x) ) = 0
is-pc( p ) ≡ 0 for p ∈ props
is-pc(A ) ≡ 1 for A ≡ props, B → props.
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and, if is-pc(B) = 0, namely if B is a dependent set or a proposition, this must be equipped with a
suitable family of program codes b](zp)εN depending on ΓIp , namely on the interpretation of the minimal

context part including all proper collection assumptions, and computing the function zt 7→ bI(zp, zt)
7:

i.e. we assume that there exists

zpεΓ
I
p 7→ b](zp)εN s. t. ∀ztεΓIt (zp) bI(zp, zt) = {b](zp)}(zt)

where, in the case Γt ≡ ∅, i.e. there are no set inputs available, we simply consider the program code
coinciding with the output.
In the next we will simply abbreviate b](zp) ≡ bzt 7→ bI(zp, zt)c when applicable.
A term equality judgement is interpreted as the extensional equality of functions:

( b = c ∈ B [Γ] )I ≡ ∀zεΓI bI(z) = cI(z)

Now, we give the interpretation of mTTeq0 -constructors. Actually this will be a partial interpretation of
the so-called “raw syntax” in [Mai05b], namely of the syntax forming types and typed terms of mTTeq0 ,
because term equalities are involved in the formation of types and typed terms.

Note that for simplicity, we interpret strong indexed sums of propositional functions indexed on a
set in a computational way being mTTeq0 -propositions interpreted as subsets of the zero singleton.

In the following, we denote the power of a set X in S as P(X).
Assumption of variables is interpreted as follows:

(x ∈ A [Γ, x ∈ A,∆] )I ≡

 zp 7→ bzt 7→ πn+1(zp, zt)c if is-pc(A) = 0

z 7→ πn+1(z) if is-pc(A) = 1

Collection and set constructors are interpreted as follows:

( Σx∈BD(x) col [Γ] )I ≡
{

( { nεN | pr1(n)εBI(z) ∧ pr2(n)εCI(z, pr1(n)) } )zεΓI if is-pc (B) = 0
(
⊎
xεBI(z) C

I(z, x) )zεΓI if is-pc (B) = 1

( 〈b, d〉 ∈ Σx∈BD(x) [Γ] )I ≡
{

zp 7→ bzt 7→ pair( bI(zp, zt) , c
I(zp, zt) )c if is-pc (B) = 0

z 7→ (bI(z), dI(z)) if is-pc (B) = 1

(π1(d) ∈ B [Γ] )I ≡
{

zp 7→ bzt 7→ pr1( d
I(zp, zt) )c if is-pc (B) = 0

z 7→ π1(dI(z)) if is-pc (B) = 1

(π2(d) ∈ C(d) [Γ] )I ≡
{

zp 7→ bzt 7→ pr2( d
I(zp, zt) )c if is-pc (Σx∈BC(x)) = 0

zp 7→ bzt 7→ 0c if is-pc (Σx∈BC(x)) = 1

( props col [Γ] )I ≡ (P({0}) )zεΓI
(B → props col [Γ] )I ≡ (BI(z)→ P({0}) )zεΓI
(λxB .C ∈ B → props [Γ] )I ≡ z 7→ (x 7→ CI(z, x) )
(Ap(f, b) ∈ props [Γ] )I ≡ z 7→ fI(z) ( bI(z) )
(N0 set [Γ] )I ≡ ( ∅ )zεΓI
( empo )I ≡ zp 7→ bzt 7→ 0c
(N1 set [Γ] )I ≡ ( { 0 } )zεΓI
( ∗ ∈ N1 [Γ] )I ≡ zp 7→ bzt 7→ 0c

( ElN1(t, c) ) ∈M(t) [Γ] )I ≡
{

zp 7→ bzt 7→ cI(zp, zt)c if is-pc (M(t)) = 0
z 7→ cI(z) if is-pc (M(t)) = 1

(List(C) set [Γ] )I ≡ ( { nεN | ∀jεN ( 1 ≤ j ≤ lh(n) ∧ pj(n)εCI(z) ) } )zεΓI

where lh(n) is the length of the list encoded by n and pj(n) its ith-projection.
( ε ∈ List(C) [Γ] )I ≡ zp 7→ bzt 7→ 0c

7From now on, when writing the dependency of a function on a disjoint union, we simply write bI(zp, zt) instead of
bI( (zp, zt) ), where (zp, zt) represents the pairing of zp with components of zt to become an element of ΓI made of nested
disjoint unions. The same we do for families depending on a disjoint union, i.e. we write CI(w, z) for wεAI , zεBI(x)
instead of CI( (w, z) ).
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( cons(s, c) ∈ List(C) [Γ] )I ≡ zp 7→ bzt 7→ consList(N )( s
I(zp, zt) , c

I(zp, zt) )c

( ElList(a, l, s) ∈ L(s) [Γ] )I ≡


zp 7→ bzt 7→

RecList(N )( a
I(zp, zt) , (x, y, w). lI(zp, zt, x, y, w) , sI(zp, zt) )c

if is-pc (L(s)) = 0
z 7→ RecList(N )( a

I(z), (x, y, w). lI(z, x, y, w) , sI(z) )

if is-pc (L(s)) = 1

(B + C set [Γ] )I ≡ ( {nεN | (n = (0, y) ∧ yεBI(z) ) ∨ (n = (1, y) ∧ yεCI(z) ) } )zεΓI
( inl(b) ∈ B + C [Γ] )I ≡ zp 7→ bzt 7→ pair(0, bI(zp, zt) )c
( inl(c) ∈ B + C [Γ] )I ≡ zp 7→ bzt 7→ pair(1, cI(zp, zt) )c

( El+(d, aB , a{ 0,1 }N ) ∈ A(w) [Γ] )I ≡



zp 7→ bzt 7→
{

aIB(zp, zt, y) if dI(zp, zt) = pair(0, y)
aIC(zp, zt, y) if dI(zp, zt) = pair(1, y)

c

if is-pc (A(w)) = 0

z 7→
{

aIB(z, y) if dI(z) = pair(0, y)
aIC(z, y) if dI(z) = pair(1, y)

if is-pc (A(w)) = 1

( Πx∈BC(x) set [Γ] )I ≡ ( { nεN | ∀yεN yεBI(z)→ {n}(y)εCI(z, y) } )zεΓI

(λxB .c ∈ Πx∈BC(x) [Γ] )I ≡ zp 7→ bzt 7→ S1
m(c](zp) , zt )c

with {S1
m( c](zp) , zt )}(x) = { c](zp) }(zt, x) for all zt, x by s-m-n theorem with m length of Γt

(Ap(f, b) ∈ C(b) [Γ] )I ≡ zp 7→ bzt 7→ { fI( zp, zt ) }( bI( zp, zt ) )c.
Now, we give the interpretation of propositions:
(⊥ prop [Γ] )I ≡ ( ∅ )zεΓI
( ro(a) )I ≡ zp 7→ bzt 7→ 0c
(∃x∈BC(x) prop [Γ] )I ≡ ( { nεN | n = 0 ∧ ∃xεN (xεBI(z) ∧ 0εCI(z, x) ) } )zεΓI
( 〈b,∃ c〉 ∈ ∃x∈BC(x) )I ≡ zp 7→ bzt 7→ 0c
( ElΣ(d,m) ∈M(d) [Γ] )I ≡ zp 7→ bzt 7→ 0c
(B ∨ C prop Γ] )I ≡ ( { nεN | (n = 0 ∧ 0εBI(z) ∨ 0εCI(z) ) } )zεΓI
I( inl∨(b) ∈ B ∨ C [Γ] )I ≡ zp 7→ bzt 7→ 0c
( inr∨(c) ∈ B ∨ C [Γ] )I ≡ zp 7→ bzt 7→ 0c
( El∨(d, aB , aC) ∈ A [Γ] )I ≡ zp 7→ bzt 7→ 0c
(B ∧ C prop [Γ] )I ≡ ( { nεN | n = 0 ∧ 0εBI(z) ∧ 0εCI(z) } )zεΓI
( 〈b,∧ c〉 ∈ B ∧ C [Γ] )I ≡ zp 7→ bzt 7→ 0c
(πB1 (d) ∈ B [Γ] )I ≡ zp 7→ bzt 7→ 0c
(πC2 (d) ∈ C [Γ] )I ≡ zp 7→ bzt 7→ 0cI
(B → C prop [Γ] )I ≡ ( { nεN | n = 0 ∧ 0εBI(z) → 0εCI(z) } )zεΓI
(∀x∈BC(x) prop [Γ] )I ≡ ( {nεN | n = 0 ∧ ∀yεN ( yεBI(z)→ 0εCI(z, y) ) } )zεΓI

(λxB .c ∈ Πx∈BC(x) [Γ] )I ≡ zp 7→ bzt 7→ 0c
(Ap(f, b) ∈ C(b) [Γ] )I ≡ zp 7→ bzt 7→ 0c
(Eq(A, a, b) prop [Γ] )I ≡ ( { nεN | n = 0 ∧ aI(z) = bI(z) } )zεΓI
I( idA(a) ∈ Id(A, a, a) [Γ] )I ≡ zp 7→ bzt 7→ 0c
( El Id(p, (x)c(x)) ∈ C(a, b) [Γ] )I ≡ zp 7→ bzt 7→ 0c

In order to show the validity theorem, we need to show how weakening and substitutions are interpreted.

Lemma 5.3 For any judgements B type [Γ] and b ∈ B [Γ] derived in mTTeq and interpreted as

(B type [Γ] )I ≡ (BI(z) )zεΓI and ( b ∈ B [Γ] )I ≡ zεΓI 7→ bI(z)εBI(z)

weakening is interpreted as follows:

(B type [Γ,∆] )I = (BI(z) )(z,w)ε( Γ,∆ )I

I( b ∈ B [Γ,∆] ) = (z, w)ε( Γ,∆ )I 7→ bI(z)
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Proof. By induction on the derivation of the judgements.

Now we show how substitution is interpreted via composition of functions by using the following
abbreviations: given a context Γ ≡ Σ, xn ∈ An,∆ with ∆ ≡ xn+1 ∈ An+1, ..., xk ∈ Ak then for every
a ∈ An [Σ] and for any type B type [Γ] we simply write the type B after substitution of xn with a in
the form B[xn/a] type [Σ,∆a] instead of the more correct form B[xn/an][xi/x

′
i]i=n+1,...,k type [Σ,∆a]

where ∆a ≡ x′n+1 ∈ A′n+1, ..., x
′
k ∈ A′k and A′j ≡ Aj [xn/an][xi/x

′
i]i=n+1,...,j−1 for j = n+ 1, ..., k.

Similar abbreviations are used also for terms.

Lemma 5.4 For any judgements B type [Γ] and b ∈ B [Γ] derived in mTTeq0 and interpreted as

(B type [Γ])I ≡ (BI(z1, . . . , zn) )zεΓI and ( b ∈ B [Γ] )I ≡ zεΓI 7→ bI(z)εBI(z)

substitution is interpreted as follows:
supposed Γ ≡ Σ, xn ∈ An,∆ with ∆ ≡ xn+1 ∈ An+1, ..., xk ∈ Ak then for every a ∈ An [Σ] interpreted
as

( a ∈ An [Σ] )I ≡ wεΣI 7→ aI(z)εAn
I(w1, . . . , wn−1)

with w = (w1, . . . , wn−1), if the interpretations (B[xn/a] type [Σ,∆a] )I and ( b[xn/a] ∈ B[xn/a] [Σ,∆a] )I

are well defined, then

(B[xn/a] type [Σ,∆a] )I = (BI(w, aI(w), w′) )(w,w′)ε( Σ,∆a )I

( b[xn/a] ∈ B[xn/a] [Σ,∆a] )I = (w,w′)ε( Σ,∆a )I 7→ bI(w, aI(w), w′ )εBI(w, aI(w), w′)

Proof. By induction on the derivation of judgements.

Theorem 5.5 (pf-realizability validity) The calculus mTTeq0 is validated by the pf-realizability in-
terpretation of definition 5.2 for S = ZF or S = CZF, namely:
If A type [Γ] is derivable in mTTeq0 then (A type [Γ] )I is well defined.
If a ∈ A [Γ] is derivable in mTTeq0 then ( a ∈ A [Γ] )I is well defined.
Supposed A type [Γ] and B type [Γ] derivable in mTTeq0 , if A = B type [Γ] is derivable in mTTeq0 ,
then (A = B type [Γ] )I is valid.
Supposed a ∈ A [Γ] and b ∈ A [Γ] derivable in mTTeq0 , if a = b ∈ A [Γ] is derivable in mTTeq0 , then
( a = b ∈ A [Γ] )I is valid.

Moreover, the interpretation (−)I also validates CTitt.

If S is the classical set theory ZFC or Aczel’s CZF + BIfr, then the interpretation (−)I validates BIifr
when interpreting a generic /iAN , for any emTT0-set A (interpreted in mTTeq0 as the setoid (Ai,=Ai)),
as the corresponding S-tree formal topology over (Ai)I quotiented under the interpretation of its equality
(=Ai)I .
If S is the classical set theory ZF, then the interpretation (−)I validates the principle of excluded middle
EM, written P ∨ ¬P for a proposition P .

Proof. By induction on the derivation of judgements. Note that the interpretation of the second
projection E2-ip) is well defined given that a valid proposition is interpreted as the zero singleton.
Indeed, if for each z ∈ ΓI we have that π2(dI(z))εCI(z, π1(dI(z))), this means that for z ∈ ΓI then
CI(z, π1(dI(z))) is inhabited. Since it is a subset of {0} we deduce CI(z, π1(dI(z))) = {0} and hence
π2(dI(z)) = 0. Therefore, for every zpεΓ

I
p and ztεΓ

I
t (zp) we conclude π2(dI(zp, zt)) = {bzt 7→ 0c}(zt)

as wanted. Finally η-conversion, beside β-one is valid because 〈pr1, pr2〉 is an isomorphism with pair.
The rules of Extensional Propositional Equality are valid: in particular the rule E-Eq) of mTTeq0 is valid
because from the assumption that pI(z)εEq(A, c, d)I for any zεΓI we conclude cI(z) = dI(z) for any
zεΓI .
The interpretation of lambda abstraction in the rule I-Π) is well defined by s-m-n theorem.
EM is valid for S=ZFC, since propositions are interpreted as their boolean value.
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BIifr is valid for S=ZFC because it turns out to be interpreted as spatiality of a generic tree formal

topology which is a ZFC theorem (actually ZF together with the axiom of dependent choices would be
enough to validate BIifr).

CTitt is valid because type-theoretic functions are interpreted as computable functions with a chosen
program code.

Note that, to prove the above theorem, it is crucial to have substitution rules in terms derivable in
the calculus.

Corollary 5.6 The proof-irrelevant realizability interpretation in definition 5.2 can be adapted to inter-
pret the calculus mTT0 extended with BIifr and CTitt.

Proof. We interpret the syntax of mTT0 according to proposition 4.1 in mTTeq0 which is then interpreted
according to the pf-realizability interpretation in definition 5.2. We conclude that it is well defined by
proposition 4.1 and theorem 5.5.

6 The proof-irrelevant realizability interpretation of the exten-
sional level

Here we show how to lift the proof-irrelevant realizability interpretation (−)I in definition 5.2 to interpret
emTT0 in the set theory S, where S=ZFC or S=CZF+BIfr. The pf-realizability interpretation of
emTT0 is defined by first interpreting the emTT0-syntax via the interpretation of definition 2.1 according
to which emTT0-types are interpreted as extensional dependent types in mTT0. Then extensional
dependent types in mTT0 are interpreted in S as suitable families of quotients of the corresponding
pf-realizability interpretation of the mTT0-types representing their supports.

Def. 6.1 The interpretation of type judgements of emTT0

(−)q : emTT0 → S

is defined as follows by using the interpretations (−)I in definition 5.2 and (−)i in definition 2.1:
A context Γ is interpreted by induction by means of disjoint unions as follows:

(∅ cont)q ≡ {0} (Γ, x ∈ A cont)q ≡
⊎
zεΓq Aq(z)

An dependent type judgement is interpreted as a family of quotients

(B type [Γ] )q ≡ (Q(Bi(x)I/(=Bi)I ) )zεΓq

where with the notation Q(Bi(x)I/(=Bi)I ) we mean the lifting of the family ( Bi(x)I/(=Bi)I )xε(Γi)I

on the disjoint union of quotients Γq.
In particular, if Γ is the empty context, then ( B type [ ] )q ≡ (Bi)I/(=Bi)I is the quotient of (Bi)I

over the equivalence relation (=Bi)I .
A type equality judgement is interpreted as the extensional equality between set/class families

(B = C type [Γ] )q ≡ ∀zεΓq Bq(z) = Cq(z)

A dependent term judgement is interpreted as a function

( b ∈ B [Γ] )q ≡ zεΓq 7→ Q([(bi)I(w)])εBq(z)

where Q([(bi)I(w)]) is the unique function induced from [(bi)I(w)] for wε(Γi)I on the disjoint union of
quotients Γq.
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A term equality judgement is interpreted as the extensional equality of functions:

( b = c ∈ B [Γ] )q ≡ ∀zεΓq bq(z) = cq(z)

Note that the interpretation is obviously well defined when S = ZFC. When S = CZF + BIfr,
it is also well defined after observing that the equivalence relations used by the interpretation (−)i on
collections in mTT0 are built up on set-theoretic equivalence relations possibly with the equality of
subsets.

Theorem 6.2 (extensional pf-realizability validity) The calculus emTT0 is validated by the pf-
realizability interpretation (−)q of definition 6.1 for S = ZF or S = CZF.

Moreover, the interpretation (−)q also validates CTtt.
If S is the classical set theory ZFC or CZF+BIfr, then the interpretation (−)q validates BIfr provided

that /AN , for any emTT0-set A, is interpreted as the corresponding S-tree formal topology over Aq.
If S is the classical set theory ZF, then the interpretation (−)q validates the principle of excluded middle
EM, written P ∨ ¬P for any proposition P .

Thanks to this proof-irrelevant realizability interpretation we can show that choice sequences both
of Cantor space and of Baire space, as well as real numbers, both as Dedekind cuts and as Cauchy
sequences à la Bishop, do not form a set in emTT0.

To this purpose we recall from [NS99] that Dedekind cuts can be equivalently expresses as formal
points of the topology of real numbers, whose definition can be expressed in emTT0 as follows:

Def. 6.3 (Formal topology of real numbers) The formal topology of real numbers (Q × Q,CR) is
an inductively generated formal topology defined as follows. The base is Q × Q and the basic neighbour-
hoods are pairs of rational numbers, 〈p, q〉 with p, q ∈ Q. A preorder on Q × Q is defined as follows

〈p, q〉 ≤ 〈p′, q′〉 ≡ p′ ≤ p ≤ q ≤ q′

for p, q, p′, q′ in Q. The cover is defined inductively by the following rules (which are a formulation in
our context of Joyal axioms, cf. [Joh82], pp. 123-124):

q ≤ p
〈p, q〉�R U

〈p, q〉 ∈ U
〈p, q〉�R U

p′ ≤ p < q ≤ q′ 〈p′, q′〉�R U
〈p, q〉�R U

p ≤ r < s ≤ q 〈p, s〉�R U 〈r, q〉�R U
〈p, q〉�R U

wc
wc(〈p, q〉) �R U
〈p, q〉�R U

where in the last axiom we have used the abbreviation

wc(〈p, q〉) ≡ { 〈p′, q′〉 ∈ Q × Q | p < p′ < q′ < q}

(wc stands for ‘well-covered’).

As shown in [NS99], also in emTT0 we can prove that formal points of the formal topology �R are
in bijection with Dedekind cuts:

Proposition 6.4 In emTT+�R, formal points of the inductively generated formal topology R are in
bijection with the collection of Dedekind cuts on the rationals.

Given a formal point α ∈ Pt(R) we can build the following Dedekind cut:

Lα ≡ { p ∈ Q | 〈p, q〉 ε α } Uα ≡ { q ∈ Q | 〈p, q〉 ε α }8

Conversely, given a Dedekind cut (L,U) we can define the following formal point

α(L,U) ≡ { 〈p, q〉 ∈ Q×Q | p ε L & q ε U }
8Note that the base of our topology R does not contain +∞,−∞ as that in [NS99].
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In [NS99] it is proved that formal points of �R, or Dedekind cuts, are also in bijective correspondence
with Cauchy sequences à la Bishop [Bis67] of which we recall the definition:

Def. 6.5 (Cauchy sequence à la Bishop) A function R(x, y) props [x ∈ N, y ∈ Q], indicated with
the usual notation (xn)x∈N, is a Cauchy sequence in emTT if we can prove for any n,m ∈ N+

| xn − xm | ≤ 1/n+ 1/m9

where N+ denotes the set of positive natural numbers Σx∈N x ≤ 1.

However, in emTT0 only Cauchy sequences à la Bishop can be shown to be formal points of �R as
in [NS99], but not the converse because formal points are shown to give rise to Cauchy sequences by
using a choice principle that in emTT0 is not available.

Corollary 6.6 (choice sequences as proper collections) In the calculus emTT0+ /AN + /R choice
sequences of Cantor space Pt(/{ 0,1 }N ), those of Baire space Pt(/NN ), and real numbers both as Dedekind
cuts or Cauchy sequences à la Bishop do not form a set but proper collections.

Proof. In ZFC according to the proof-irrelevant realizability interpretation the mentioned collections
are interpreted as quotients of non-countable sets while all emTT0-sets are interpreted as ZFC-quotients
of subsets of natural numbers and hence as countable ZFC-sets. Indeed, choice sequences of Baire
(Cantor) space are interpreted as ZFC-choice sequences of Baire (Cantor) space, as well as, real numbers
both as Dedekind cuts or Cauchy sequences are interpreted as ZFC-real numbers, provided that �R gets
interpreted as the ZFC-formal topology of real numbers.

This result makes more evident the non-validity of unique choice in emTT0, because lawlike sequences
of Cantor or Baire spaces form a set, while generic choice sequences do not. Also for real numbers, Cauchy
sequences à la Bishop defined by type-theoretic functions f ∈ N+ → Q, which we can call lawlike Cauchy
sequences à la Bishop, form a set, but generic Cauchy sequences do not.

Remark 6.7 (Predicativity of the proof-irrelevant realizability interpretation.) If we add the
principle of excluded middle EM to emTT0 we do not get that the power-collection of small propositions
becomes a set as it happens when it is added to CZF [Acz78]. Indeed the extension CZF+EM is equal to
the classical set theory ZF. In particular, when EM is added to CZF, all the subsets of a set get identified
with their characteristic boolean functions which form a set by exponentiation. Even in emTT0 + EM a
subset defined by a propositional function φ(x) props [x ∈ A] corresponds to a functional relation in the
boolean set {0, 1} given by R(x, y) ≡ ( y = 1 ∧ φ(x) ) ∨ ( y = 0 ∧ ¬φ(x) ) for x ∈ A, in a bijective way.
But the collection of such functional relations do not necessarily form a set. Only those subsets enjoying
a type-theoretic characteristics functions in the boolean set {0, 1} form a set. The lack of the validity
of the axiom of unique choice prevents from identifying the collection of boolean functional relations on
A ≡ N with the corresponding set of type-theoretic characteristics functions. This is more evident in
the pf-realizability interpretation because the type theoretic functions from N to the boolean sets are
identified with the recursives ones.

Remark 6.8 (Non validity of unique choice) Note that, a direct proof that AC!N,N is not valid

in mTTeq0 and hence in mTT0 and emTT0, can be obtained from th. 5.5 and interpretation (−)i in
section 2 with arguments like those used here where we replace BIfr (and BIifr) with the principle of
excluded middle EM. This is because emTT0 + CTtt + AC!N,N is inconsistent with EM, thanks to a

proof similar to that in prop.0.1 in [MS05] provided that one starts with the formula

∀x ∈ N ∃!y ∈ N ( ( y = 1 ∧ P (x) ) ∨ ( y = 0 ∧ ¬P (x) ) )

9This is formally written as ∀ p ∈ Q ∀ q ∈ Q ( R(n, p) & R(m, q) → | q − p |≤ 1/n + 1/m ) where the definition of
module is the usual one.
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Remark 6.9 (Compatibility with Markov principle) Note from th. 6.2 when S is ZFC we deduce
that emTT0 is consistent with BIfr and CTtt and Markov principle

∀x ∈ N (P (x) ∨ ¬P (x) ) → (¬¬∃y ∈ N P (x) → ∃y ∈ N P (x) )

given that the pf-realizability interpretation for mTTeq validates the law of excluded middle and hence
also Markov principle.

This setting may provide a way to reconciliate Brouwer’s intuitionism with Markov’s mathematics,
as soon as one drops the axiom of unique choice.

7 Conclusions: three extensions of our foundation

Thanks to the rereading of Kleene’s result in our foundation emTT0 as stated in cor. 3.21, emTT0 +
BIfr + CTtt + AC!N,N is inconsistent. However any combination of two such principles seems to be
consistent with emTT0, and it gives a specific behavior of choice sequences defined as functional relations
between natural numbers.
Here, we list the various cases briefly:

1. emTT0 + BIfr + CTtt : in this theory type-theoretic functions between natural numbers are
recursive thanks to CTtt, but can not be identified with choice sequences on natural numbers
given that AC!N,N can not hold; a model for this theory is described in this paper and provides an
interpretation in ZFC or in CZF+BIfr which preserves the computable meaning of typed terms.

2. emTT0 + BIfr + AC!N,N: in this theory choice sequences on natural numbers correspond to
type-theoretic functions, but such type-theoretic functions can not be internally recursive given
that CTtt can not hold; a model for this theory is the intuitive interpretation of sets and collections
(with their elements) as the corresponding sets in ZFC, or sets/collections in CZF, and propositions
as subsets of the singleton set in ZFC, and subcollections/subsets in CZF; the model provides a
direct interpretation in ZFC or in CZF+BIfr, but this does not preserve the computable meaning
of typed terms.

3. emTT0 + CTtt + AC!N,N: in this theory choice sequences on natural numbers are identified
with type-theoretic functions, which are also internally recursive but BIfr, as well as excluded
middle, is not valid; a model for this theory is current work in progress and it will be defined
as the quotient completion of the model for mTT0 extending the original Kleene’s realizability
interpretation [Tv88a] (it is straightforward to see that it validates the set-theoretic part of mTT0)
and serving as the proofs-as-programs semantics of mTT0 for program extraction.

In the future we intend to investigate how to extend the realizability interpretation shown here for
the whole original intensional theory mTT in [Mai09]. A model for just showing a classical consistency
of the theory with BIifr+ CTitt could be derived from that for the Calculus of Constructions [Coq90]

in [Str92], which disproves the axiom of unique choice and validates the principle of excluded middle.
Then, it would be worthwhile to investigate whether this model can provide an intuitive predicative
interpretation validating BIifr+ CTitt as the one shown here when based on constructive foundations as
CZF.
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[ML06] P. Martin-Löf. 100 years of Zermelo’s axiom of choice:what was the problem with it? The
Computer Journal, 49(3):10–37, 2006.

26



[MM92] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic. A first introduction to Topos
theory. Springer Verlag, 1992.

[MR13] M. E. Maietti and G. Rosolini. Quotient completion for the foundation of constructive math-
ematics. To appear in Logica Universalis, 2013. Available via http://arxiv.org/abs/1202.

1012.

[MS05] M. E. Maietti and G. Sambin. Toward a minimalist foundation for constructive mathematics.
In L. Crosilla and P. Schuster, editor, From Sets and Types to Topology and Analysis: Prac-
ticable Foundations for Constructive Mathematics, number 48 in Oxford Logic Guides, pages
91–114. Oxford University Press, 2005.

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin Löf ’s Type Theory. Claren-
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8 Appendix: The intensional level mTT0

As mTT in [Mai09], the inference rules of mTT0 involve judgements written in the style of Martin-Löf’s
type theory [Mar84, NPS90] that may be of the form:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

where types include collections, sets, propositions and small propositions, namely

type ∈ {col, set, prop, props }

For easinesss, the piece of context common to all judgements involved in a rule is omitted and typed
variables appearing in a context are meant to be added to the implicit context as the last one.
Note that to write the elimination constructors of our types we adopt the higher-order syntax in [NPS90]
(see also [Gui09]). According to this syntax the open term aB(x) ∈ A [x ∈ B] yields to (x ∈ B) aB(x)
of higher type (x ∈ B)A. Then, by η-conversion among higher types, it follows that (x ∈ B) aB(x) is
equal to aB . Hence, we often simply write the short expression aB to recall the open term where it
comes from..
We also have a form of judgement to build contexts:

Γ cont

whose rules are the following

∅ cont F-c
A type [Γ]

Γ, x ∈ A cont
(x ∈ A 6∈ Γ)

Then, the first rule to build elements of type is the assumption of variables:

var)
Γ, x ∈ A,∆ cont

x ∈ A [Γ, x ∈ A,∆]

Among types there are the following embeddings: sets are collections and propositions are collections

set-into-col)
A set

A col
prop-into-col)

A prop

A col

Strong Indexed Sum of a propositional function

F-ip)
C(x) prop [x ∈ B]

Σx∈BC(x) col
I-ip)

b ∈ B d ∈ C(b) C(x) prop [x ∈ B]

〈b, d〉 ∈ Σx∈BC(x)

E-ip)

M(z) col [z ∈ Σx∈BC(x)]
d ∈ Σx∈BC(x) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(d,m) ∈M(d)

C-ip)

M(z) col [z ∈ Σx∈BC(x)]
b ∈ B c ∈ C(b) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ( 〈b, c〉,m ) = m(b, c) ∈M(〈b, c〉)

Sets are generated as follows:

28



Empty set

F-Em) N0 set E-Em)
a ∈ N0 A(x) col [x ∈ N0]

empo(a) ∈ A(a)

Singleton

S) N1 set I-S) ? ∈ N1 E-S)
t ∈ N1 M(z) col [z ∈ N1] c ∈M(?)

ElN1(t, c) ∈M(t)
C-S)

M(z) col [z ∈ N1] c ∈M(?)

ElN1(?, c) = c ∈M(?)

Strong Indexed Sum set

F-Σ)
C(x) set [x ∈ B] B set

Σx∈BC(x) set
I-Σ)

b ∈ B c ∈ C(b) C(x) set [x ∈ B] B set

〈b, c〉 ∈ Σx∈BC(x)

E-Σ)

M(z) col [z ∈ Σx∈BC(x)]
d ∈ Σx∈BC(x) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(d,m) ∈M(d)

C-Σ)

M(z) col [z ∈ Σx∈BC(x)]
b ∈ B c ∈ C(b) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(〈b, c〉,m) = m(b, c) ∈M(〈b, c〉)

List set

F-list)
C set

List(C) set
I1-list)

List(C) set

ε ∈ List(C)
I2-list)

s ∈ List(C) c ∈ C
cons(s, c) ∈ List(C)

E-list)

L(z) col [z ∈ List(C)] s ∈ List(C) a ∈ L(ε)
l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(s, a, l) ∈ L(s)

C1-list)

L(z) col [z ∈ List(C)] a ∈ L(ε)
l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(ε, a, l) = a ∈ L(ε)

C2-list)

L(z) col [z ∈ List(C)] s ∈ List(C) c ∈ C a ∈ L(ε)
l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(cons(s, c), a, l) = l(s, c,ElList(s, a, l)) ∈ L(cons(s, c))

Disjoint Sum set

F-+)
B set C set

B + C set
I1-+)

b ∈ B B set C set

inl(b) ∈ B + C
I2-+)

c ∈ C B set C set

inr(c) ∈ B + C

E-+)

A(z) col [z ∈ B + C]
w ∈ B + C aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(w, aB , aC) ∈ A(w)

C1-+)

A(z) col [z ∈ B + C]
b ∈ B aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(inl(b), aB , aC) = aB(b) ∈ A(inl(c))

C2-+)

A(z) col [z ∈ B + C]
c ∈ C aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(inr(c), aB , aC) = aC(c) ∈ A(inr(c))
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Dependent Product set

F-Π)
C(x) set [x ∈ B] B set

Πx∈BC(x) set
I-Π)

c(x) ∈ C(x) [x ∈ B] C(x) set [x ∈ B] B set

λxB .c(x) ∈ Πx∈BC(x)

E-Π)
b ∈ B f ∈ Πx∈BC(x)

Ap(f, b) ∈ C(b)

βC-Π)
b ∈ B c(x) ∈ C(x) [x ∈ B] C(x) set [x ∈ B] B set

Ap(λxB .c(x), b) = c(b) ∈ C(b)

Propositions are generated as follows:

Falsum

F-Fs) ⊥ prop E-Fs)
a ∈ ⊥ A prop

ro(a) ∈ A

Disjunction

F-∨)
B prop C prop

B ∨ C prop
I1-∨)

b ∈ B B prop C prop

inl∨(b) ∈ B ∨ C
I2-∨)

c ∈ C B prop C prop

inr∨(c) ∈ B ∨ C

E-∨)

A prop
w ∈ B ∨ C aB(x) ∈ A [x ∈ B] aC(y) ∈ A [y ∈ C]

El∨(w, aB , aC) ∈ A

C1-∨)

A prop B prop C prop
b ∈ B aB(x) ∈ A [x ∈ B] aC(y) ∈ A [y ∈ C]

El∨(inl∨(b), aB , aC) = aB(b) ∈ A

C2-∨)

A prop B prop C prop
c ∈ C aB(x) ∈ A [x ∈ B] aC(y) ∈ A [y ∈ C]

El∨(inr∨(c), aB , aC) = aC(c) ∈ A

Conjunction

F-∧)
B prop C prop

B ∧ C prop
I-∧)

b ∈ B c ∈ C B prop C prop

〈b,∧ c〉 ∈ B ∧ C

E1-∧)
d ∈ B ∧ C
πB1 (d) ∈ B

E2-∧)
d ∈ B ∧ C
πC2 (d) ∈ C

β1 C-∧)
b ∈ B c ∈ C B prop C prop

πB1 (〈b,∧ c〉) = b ∈ B
β2 C-∧)

b ∈ B c ∈ C B prop C prop

πC2 (〈b,∧ c〉) = c ∈ C

Implication

F-→)
B prop C prop

B → C prop

I-→)
c(x) ∈ C [x ∈ B] B prop C prop

λ→x
B .c(x) ∈ B → C

E-→)
b ∈ B f ∈ B → C

Ap→(f, b) ∈ C

βC-→)
b ∈ B c(x) ∈ C [x ∈ B] B prop C prop

Ap→(λ→x
B .c(x), b) = c(b) ∈ C
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Existential quantification

F-∃) C(x) prop [x ∈ B]

∃x∈BC(x) prop
I-∃) b ∈ B c ∈ C(b) C(x) prop [x ∈ B]

〈b,∃ c〉 ∈ ∃x∈BC(x)

E-∃)

M prop
d ∈ ∃x∈BC(x) m(x, y) ∈M [x ∈ B, y ∈ C(x)]

El∃(d,m) ∈M

C-∃)

M prop C(x) prop [x ∈ B]
b ∈ B c ∈ C(b) m(x, y) ∈M [x ∈ B, y ∈ C(x)]

El∃(〈b,∃ c〉,m) = m(b, c) ∈M

Universal quantification

F-∀) C(x) prop [x ∈ B]

∀x∈BC(x) prop
I-∀) c(x) ∈ C(x) [x ∈ B] C(x) prop [x ∈ B]

λ∀xB .c(x) ∈ ∀x∈BC(x)

E-∀) b ∈ B f ∈ ∀x∈BC(x)

Ap∀(f, b) ∈ C(b)
βC-∀) b ∈ B c(x) ∈ C(x) [x ∈ B] C(x) prop [x ∈ B]

Ap∀(λ∀x
B .c(x), b) = c(b) ∈ C(b)

Propositional Equality

F-Id)
A col a ∈ A b ∈ A

Id(A, a, b) prop
I-Id)

a ∈ A
idA(a) ∈ Id(A, a, a)

E-Id)

C(x, y) prop [x : A, y ∈ A]
a ∈ A b ∈ A p ∈ Id(A, a, b) c(x) ∈ C(x, x) [x ∈ A]

El Id(p, (x)c(x)) ∈ C(a, b)

C-Id)

C(x, y) prop [x : A, y ∈ A]
a ∈ A c(x) ∈ C(x, x) [x ∈ A]

El Id(idA(a), (x)c(x)) = c(a) ∈ C(a, a)

Then, small propositions are generated as follows:

⊥ props
B props C props
B ∨ C props

B props C props
B → C props

B props C props
B ∧ C props

C(x) props [x ∈ B] B set

∃x∈BC(x) props

C(x) props [x ∈ B] B set

∀x∈BC(x) props

A set a ∈ A b ∈ A
Id(A, a, b) props

And we add rules saying that a small proposition is a proposition and that a small proposition is a set:

props-into-prop)
A props
A prop

props-into-set)
A props
A set

Then, we also have the collection of small propositions and function collections from a set toward it:
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Collection of small propositions

F-Pr) props col I-Pr)
B props
B ∈ props

E-Pr)
B ∈ props
B props

Function collection to props

F-Fun)
B set

B → props col
I-Fun)

c(x) ∈ props [x ∈ B] B set

λxB .c(x) ∈ B → props

E-Fun)
b ∈ B f ∈ B → props

Ap(f, b) ∈ props
βC-Fun)

b ∈ B c(x) ∈ props [x ∈ B] B set

Ap(λxB .c(x), b) = c(b) ∈ props

Equality rules include those saying that type equality is an equivalence relation and substitution of equal
terms in a type:

ref)
A type

A = A type
sym)

A = B type

B = A type
tra)

A = B type B = C type

A = C type

subT)

C(x1, . . . , xn) type [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1) ]

a1 = b1 ∈ A1 . . . an = bn ∈ An(a1, . . . , an−1)

C(a1, . . . , an) = C(b1, . . . , bn) type

conv)
a ∈ A A = B type

a ∈ B
conv-eq)

a = b ∈ A A = B type

a = b ∈ B

9 Appendix: The intermediate typed calculus mTTeq
0

The typed calculus mTTeq is an extension of mTT where the propositional equality Id is replaced by
the extensional equality Eq defined as follows:

Extensional Propositional Equality

I-Eq)
C col c ∈ C d ∈ C

Eq(C, c, d) prop
I-Eq)

c ∈ C
eq(c) ∈ Eq(C, c, c)

E-Eq)
p ∈ Eq(C, c, d)

c = d ∈ C
C-Eq)

p ∈ Eq(C, c, d)

p = eqC(c) ∈ Eq(C, c, d)

Then the rules for indexed sums on collections and sets are the following:
Strong Indexed Sum of a propositional function

F-ip)
C(x) prop [x ∈ B]

Σx∈BC(x) col
I-ip)

b ∈ B c ∈ C(b) C(x) prop [x ∈ B]

〈b, c〉 ∈ Σx∈BC(x)

E1-ip)
d ∈ Σx∈BC(x)

π1(d) ∈ B
E2-ip)

d ∈ Σx∈BC(x)

π2(d) ∈ C(π1(d))

C1-ip)
b ∈ B c ∈ C(b) C(x) prop [x ∈ B]

π1( 〈b, c〉 ) = b ∈ B
C2-ip)

b ∈ B c ∈ C(b) C(x) prop [x ∈ B]

π2( 〈b, c〉 ) = c ∈ C(b)

η-ip)
d ∈ Σx∈BC(x)

〈π1( d ) , π2( d ) 〉 = d ∈ Σx∈BC(x)
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Strong Indexed Sum set

F-Σ)
C(x) set [x ∈ B]

Σx∈BC(x) set
I-Σ)

b ∈ B c ∈ C(b) B set C(x) set [x ∈ B]

〈b, c〉 ∈ Σx∈BC(x)

E1-Σ)
d ∈ Σx∈BC(x)

π1(d) ∈ B
E2-Σ)

d ∈ Σx∈BC(x)

π2(d) ∈ C(π1(d))

C1-Σ)
b ∈ B c ∈ C(b) B set C(x) set [x ∈ B]

π1( 〈b, c〉 ) = b ∈ B

C2-Σ)
b ∈ B c ∈ C(b) B set C(x) set [x ∈ B]

π2( 〈b, c〉 ) = c ∈ C(b)

η-Σ)
d ∈ Σx∈BC(x)

〈π1( d ) , π2( d ) 〉 = d ∈ Σx∈BC(x)

10 Appendix: The extensional level emTT0

As emTT to build types and terms of emTT0 we use the same kinds of judgements used in mTT0.
Contexts are generated by the same context rules of mTT0.
Also here, the only change we do on emTT0 with respect to emTT is to allow only strong indexed sums
of propositional functions as generic collection constructors:

Strong Indexed Sum of a propositional function

F-ip)
C(x) prop [x ∈ B]

Σx∈BC(x) col
I-ip)

b ∈ B c ∈ C(b) C(x) prop [x ∈ B]

〈b, c〉 ∈ Σx∈BC(x)

E-ip)

M(z) col [z ∈ Σx∈BC(x)]
d ∈ Σx∈BC(x) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(d,m) ∈M(d)

C-ip)

M(z) col [z ∈ Σx∈BC(x)] C(x) prop [x ∈ B]
b ∈ B c ∈ C(b) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ( 〈b, c〉,m ) = m(b, c) ∈M(〈b, c〉)

Sets are generated as follows:

Empty set

F-Em) N0 set E-Em)
a ∈ N0 A(x) col [x ∈ N0]

empo(a) ∈ A(a)

Singleton set

S) N1 set I-S) ? ∈ N1 E-S)
t ∈ N1 M(z) col [z ∈ N1] c ∈M(?)

ElN1(t, c) ∈M(t)
C-S)

M(z) col [z ∈ N1] c ∈M(?)

ElN1(?, c) = c ∈M(?)
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Strong Indexed Sum set

F-Σ)
C(x) set [x ∈ B] B set

Σx∈BC(x) set
I-Σ)

b ∈ B c ∈ C(b) C(x) set [x ∈ B] B set

〈b, c〉 ∈ Σx∈BC(x)

E-Σ)

M(z) type [z ∈ Σx∈BC(x)]

d ∈ Σx∈BC(x) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(d,m) ∈M(d)

C-Σ)

M(z) type [z ∈ Σx∈BC(x)]

b ∈ B c ∈ C(b) m(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(〈b, c〉,m) = m(b, c) ∈M(〈b, c〉)

List set

F-list)
C set

List(C) set
I1-list)

List(C) set

ε ∈ List(C)
I2-list)

s ∈ List(C) c ∈ C
cons(s, c) ∈ List(C)

E-list)

L(z) col [z ∈ List(C)] s ∈ List(C) a ∈ L(ε)
l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(s, a, l) ∈ L(s)

C1-list)

L(z) col [z ∈ List(C)] a ∈ L(ε)
l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(ε, a, l) = a ∈ L(ε)

C2-list)

L(z) col [z ∈ List(C)] s ∈ List(C) c ∈ C a ∈ L(ε)
l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(cons(s, c), a, l) = l(s, c,ElList(s, a, l)) ∈ L(cons(s, c))

Disjoint Sum set

F-+ )
B set C set

B + C set
I1-+)

b ∈ B B set C set

inl(b) ∈ B + C
I2-+)

c ∈ C B set C set

inr(c) ∈ B + C

E-+)

A(z) col [z ∈ B + C]
w ∈ B + C aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(w, aB , aC) ∈ A(w)

C1-+)

A(z) col [z ∈ B + C]
b ∈ B aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(inl(b), aB , aC) = aB(b) ∈ A(inl(c))

C2-+)

A(z) col [z ∈ B + C]
c ∈ C aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(inr(c), aB , aC) = aC(c) ∈ A(inr(c))
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Dependent Product set

F-Π)
C(x) set [x ∈ B] B set

Πx∈BC(x) set
I-Π)

c(x) ∈ C(x) [x ∈ B] C(x) set [x ∈ B] B set

λxB .c(x) ∈ Πx∈BC(x)

E-Π)
b ∈ B f ∈ Πx∈BC(x)

Ap(f, b) ∈ C(b)

βC-Π)
b ∈ B c(x) ∈ C(x) [x ∈ B] C(x) set [x ∈ B] B set

Ap(λxB .c(x), b) = c(b) ∈ C(b)

ηC-Π
f ∈ Πx∈BC(x)

λxB .Ap(f, x) = f ∈ Πx∈BC(x)
(x not free in f)

Quotient set

Q)

A set R(x, y) ∈ props [x ∈ A, y ∈ A]

Equiv(R)

true ∈ R(x, x) [x ∈ A]
true ∈ R(y, x) [x ∈ A, y ∈ A, u ∈ R(x, y)]
true ∈ R(x, z) [x ∈ A, y ∈ A, z ∈ A,

u ∈ R(x, y), v ∈ R(y, z)]

A/R set

I-Q)
a ∈ A A/R set

[a] ∈ A/R
eq-Q)

a ∈ A b ∈ A true ∈ R(a, b) A/R set

[a] = [b] ∈ A/R

E-Q)

L(z) col [z ∈ A/R]

p ∈ A/R l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQ(p, l) ∈ L(p)

C-Q)

L(z) col [z ∈ A/R]

a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQ(l, [a]) = l(a) ∈ L([a])

Effectiveness

eff)
a ∈ A b ∈ A [a] = [b] ∈ A/R A/R set

true ∈ R(a, b)

emTT0 propositions are mono, namely they are inhabited by at most a canonical proof-term:

prop-mono)
A prop p ∈ A q ∈ A

p = q ∈ A prop-true)
A prop p ∈ A

true ∈ A
Propositions are generated as follows:

Falsum

F-Fs) ⊥ prop E-Fs)
true ∈ ⊥ A prop

true ∈ A

Extensional Propositional Equality

F-Eq)
C col c ∈ C d ∈ C

Eq(C, c, d) prop
I-Eq)

c ∈ C
true ∈ Eq(C, c, c)

E-Eq)
true ∈ Eq(C, c, d)

c = d ∈ C
C-Eq)

p ∈ Eq(C, c, d)

p = eqC(c) ∈ Eq(C, c, d)
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Implication

F-Im)
B prop C prop

B → C prop
I-Im)

true ∈ C [x ∈ B] B prop C prop

true ∈ B → C

E-Im)
true ∈ B true ∈ B → C

true ∈ C

βC-→ B prop b ∈ B c ∈ C [x ∈ B]

Ap→(λ→x
B .c, b) = c(b) ∈ C

ηC-→ f ∈ B → C

λ→xB .Ap→(f, x) = f
(x not free in f)

Conjunction

F-∧)
B prop C prop

B ∧ C prop
I-∧)

true ∈ B true ∈ C B prop C prop

true ∈ B ∧ C

E1-∧)
true ∈ B ∧ C
true ∈ B

E2-∧)
true ∈ B ∧ C
true ∈ C

Disjunction

F-∨)
B prop C prop

B ∨ C prop
I1-∨)

true ∈ B B prop C prop

true ∈ B ∨ C
I2-∨)

true ∈ C B prop C prop

true ∈ B ∨ C

E-∨)
A prop true ∈ B ∨ C true ∈ A [x ∈ B] true ∈ A [y ∈ C]

true ∈ A

C1-∨)

A prop
b ∈ B aB(x) ∈ A [x ∈ B] aC(y) ∈ A [y ∈ C]

El∨(inl∨(b), aB , aC) = aB(b) ∈ A

C2-∨)

A prop
c ∈ C aB(x) ∈ A [x ∈ B] aC(y) ∈ A [y ∈ C]

El∨(inr∨(c), aB , aC) = aC(c) ∈ A

η- ∨ t ∈ A [z ∈ C +D]

El∨(z, (x)t(inl∨(x)), (y)t(inr∨(x))) = t(z) ∈ A

Existential quantification

F-∃) C(x) prop [x ∈ B]

∃x∈BC(x) prop
I-∃) b ∈ B true ∈ C(b) C(x) prop [x ∈ B]

true ∈ ∃x∈BC(x)

E-∃)
M prop true ∈ ∃x∈BC(x) true ∈M [x ∈ B, y ∈ C(x)]

true ∈M

C-∃)

M prop
b ∈ B c ∈ C(b) true ∈M [x ∈ B, y ∈ C(x)]

El∃(〈b,∃ c〉,m) = m(b, c) ∈M
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Universal quantification

F-∀) C(x) prop [x ∈ B]

∀x∈BC(x) prop
I-∀) true ∈ C(x) [x ∈ B] C(x) prop [x ∈ B]

true ∈ ∀x∈BC(x)

E-∀) b ∈ B true ∈ ∀x∈BC(x)

true ∈ C(b)
βC-∀) b ∈ B c(x) ∈ C(x) [x ∈ B]

Ap∀(λ∀x
B .c(x), b) = c(b) ∈ C(b)

ηC-∀) f ∈ ∀x∈BC(x)

λ∀x
B .Ap∀(f, x) = f ∈ ∀x∈BC(x)

As in mTT0, small propositions are generated as follows:

⊥ props
B props C props
B ∨ C props

B props C props
B → C props

B props C props
B ∧ C props

C(x) props [x ∈ B] B set

∃x∈BC(x) ∈ props
C(x) props [x ∈ B] B set

∀x∈BC(x) props

A set a ∈ A b ∈ A
Eq(A, a, b) props

Contrary to mTT0, in emTT0 we do not have the intensional collection of small propositions but the
quotient of the collection of small propositions under equiprovability representing the power collection
of the singleton:

Power collection of the singleton

F-P) P(1) col I-P)
B props

[B] ∈ P(1)
eq-P)

true ∈ B ↔ C

[B] = [C] ∈ P(1)
eff-P)

[B] = [C] ∈ P(1)

true ∈ B ↔ C

U ∈ P(1) V ∈ P(1)

Eq(P(1), U, V ) props
η-P)

U ∈ P(1)

U = [Eq(P(1), U, [tt] ) ]

where tt ≡ ⊥ → ⊥ represents the truth constant.

Then, we have also function collections from a set toward P(1):

Function collection to P(1)

F-Fc)
B set

B → P(1) col
I-Fc)

c(x) ∈ P(1) [x ∈ B] B set

λxB .c(x) ∈ B → P(1)

E-Fc)
b ∈ B f ∈ B → P(1)

Ap(f, b) ∈ P(1)
βC-Fc)

b ∈ B c(x) ∈ P(1) [x ∈ B] B set

Ap(λxB .c(x), b) = c(b) ∈ P(1)

ηC-Fc)
f ∈ B → P(1)

λxB .Ap(f, x) = f ∈ B → P(1)
(x not free in f)

Then, as in mTT0 we add the embedding rules of sets into collections set-into-col, of propositions into
collections prop-into-col, of small propositions into sets props-into-set and of small propositions into
propositions props-into-prop.
Moreover, we also add the equality rules ref), sym), tra) both for types and for terms saying that type
and term equalities are equivalence relations, and the rules conv), conv-eq).
Contrary to mTT0, we add all the equality rules about collections and sets saying that their constructors
preserve type equality as follows:
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Strong Indexed Sum Collection-eq

eq-ip)
C(x) = D(x) prop [x ∈ B] B = E col

Σx∈BC(x) = Σx∈ED(x) col

Function collection-eq

eq-Fc)
B = E set

B → P(1) = E → P(1) col

Lists-eq

eq-list)
C = D set

List(C) = List(D) set

Strong Indexed Sum set-eq

eq-Σ)
C(x) = D(x) set [x ∈ B] B = E set

Σx∈BC(x) = Σx∈ED(x) set

Disjoint Sum-eq

eq-+)
B = D set C = E set

B + C = D + E set

Dependent Product-eq

eq-Π)
C(x) = D(x) set [x ∈ B] B = E set

Πx∈BC(x) = Πx∈ED(x) set

Quotient set-eq

eq-Q)
A = B set R(x, y) = S(x, y) props [x ∈ A, y ∈ A] Equiv(R) Equiv(S)

A/R = B/S set

Then, emTT0 includes the following equality rules about propositions:

Disjunction-eq

eq-∨)
B = D prop C = E prop

B ∨ C = D ∨ E prop

Implication-eq

eq-→)
B = D prop C = E prop

B → C = D → E prop

Conjunction-eq

eq-∧)
B = D prop C = E prop

B ∧ C = D ∧ E prop

Propositional equality-eq

eq-Eq)
A = E col a = e ∈ A b = c ∈ A

Eq(A, a, b) = Eq(E, e, c) prop

Existential quantification-eq

eq-∃) C(x) = D(x) prop [x ∈ B] B = E col

∃x∈BC(x) = ∃x∈ED(x) prop

Universal quantification-eq

eq-∀) C(x) = D(x) prop [x ∈ B] B = E col

∀x∈BC(x) = ∀x∈ED(x) prop

Analogously, we add eq-∨), eq-→), eq-∧), eq-Eq), eq-∃), eq-∀) restricted to small propositions.
Moreover, equality of propositions is that of collections, that of small propositions coincides with that
of props and is that of propositions and that of sets:

prop-into-col eq)
A = B prop

A = B col
props-eq1)

A = B props
A = B ∈ props

props-eq2)
A = B ∈ props
A = B props

props-into-prop eq)
A = B props
A = B prop

props-into-set eq)
A = B props
A = B set

Equality of sets is that of collections:

set-into-col eq)
A = B set

A = B col

Contrary to mTT0, also for terms we add equality rules saying that all the constructors preserve equality
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as in [NPS90]:

I-eq Σ)
b = b′ ∈ B c = c′ ∈ C(b) C(x) set [x ∈ B] B set

〈b, c〉 = 〈b′, c′〉 ∈ Σx∈BC(x)

E-eq Σ)

M(z) col [z ∈ Σx∈BC(x)]
d = d′ ∈ Σx∈BC(x) m(x, y) = m′(x, y) ∈M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(d,m) = ElΣ(d′,m′) ∈M(d)

E-eq Em)
a = a′ ∈ N0 A(x) col [x ∈ N0]

empo(a) = empo(a
′) ∈ A(a)

E-eq S)
t = t′ ∈ N1 M(z) col [z ∈ N1] c = c′ ∈M(?)

ElN1(t, c) = ElN1(t
′, c′) ∈M(t)

I2-eq list)
s = s′ ∈ List(C) c = c′ ∈ C

cons(s, c) = cons(s′, c′) ∈ List(C)

E-eq list)

L(z) col [z ∈ List(C)] s = s′ ∈ List(C) a = a′ ∈ L(ε)

l(x, y, z) = l′(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(s, a, l) = ElList(s
′, a′, l′) ∈ L(s)

I-eq Q)
a = a′ ∈ A A/R set

[a] = [a′] ∈ A/R

E-eq Q)

L(z) col [z ∈ A/R]

p = p′ ∈ A/R l(x) = l′(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQ(p, l) = ElQ(p′, l′) ∈ L(p)

I1-eq +)
b = b′ ∈ B B set C set

inr(b) = inr(b′) ∈ B + C
I2-eq +)

c = c′ ∈ C B set C set

inl(c) = inl(c′) ∈ B + C

E-eq +)

A(z) col [z ∈ B + C]

d = d′ ∈ B + C aB(x) = a′B(x) ∈ A(inl(x)) [x ∈ B] aC(y) = a′C(y) ∈ A(inr(y)) [y ∈ C]

El+(d, aB , aC) = El+(d′, a′B , a
′
C) ∈ A(w)

I-eq Π)
c(x) = c′(x) ∈ C(x) [x ∈ B] C(x) set [x ∈ B] B set

λxB .c(x) = λxB .c′(x) ∈ Πx∈BC(x)
E-eq Π)

b = b′ ∈ B f = f ′ ∈ Πx∈BC(x)

Ap(f, b) = Ap(f ′, b′) ∈ C(b)

I-eq Fc)
c(x) = c′(x) ∈ P(1) [x ∈ B] B set

λxB .c(x) = λxB .c′(x) ∈ B → P(1)
E-eq Fc)

b = b′ ∈ B f = f ′ ∈ B → P(1)

Ap(f, b) = Ap(f ′, b′) ∈ P(1)

Analogously, we define I-eq ip), E-eq ip) for indexed sum collections of propositional functions as
I-eq Σ) and E-eq Σ).
Note that I-eq Π) is the so-called ξ-rule in [Mar75].
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