
Joyal’s arithmetic universe as list-arithmetic pretopos

Maria Emilia Maietti

Dipartimento di Matematica Pura ed Applicata

University of Padova

via Belzoni n.7, 35100 Padova, Italy

maietti@math.unipd.it

January 27, 2010

Abstract

We explain in detail why the notion of list-arithmetic pretopos should be taken as the general
categorical definition for the construction of arithmetic universes introduced by Andrè Joyal to give
a categorical proof of Gödel’s incompleteness results.

We motivate this definition for three reasons: first, Joyal’s arithmetic universes are list-arithmetic
pretopoi; second, the initial arithmetic universe among Joyal’s constructions is equivalent to the
initial list-arithmetic pretopos; third, any list-arithmetic pretopos enjoys the existence of free internal
categories and diagrams as required to prove Gödel’s incompleteness.

In doing our proofs we make an extensive use of the internal type theory of the categorical
structures involved in Joyal’s constructions.

The definition of list-arithmetic pretopos is equivalent to the general one that I came to know in
a recent talk by Andrè Joyal.

MSC 2000: 03G30 03B15 18C50 03B20 03F55
Keywords: Pretopoi, dependent type theory, categorical logic.

1 Introduction

The categories of topoi and pretopoi can be viewed as universes of abstract sets in which to develop
mathematics (see [LR03, Joh77, JM95, MM92, Hyl82]). Joyal’s arithmetic universes provide further
examples of such universes.

Andrè Joyal introduced arithmetic universes in some lectures given in the seventies, all still un-
published, to provide a categorical proof of Gödel’s incompleteness theorems. He defined arithmetic
universes by giving a general construction of examples including the free initial one. He then intended
to prove incompleteness by mimicking the diagonal argument of Cantor’s theorem within the initial
arithmetic universe [Joy05]. Indeed, the initial arithmetic universe supports the amount of self-reference
needed to perform the mentioned argument because it contains an internal copy of itself.

At that time it was not clear what to take as the most general categorical structure behind the
construction of arithmetic universes by Joyal. It was only clear that the desired categorical structure
should support the construction of free internal categories and diagrams generated from graphs. In
[Mor96, Wra85, Tay05] it is more or less said that the general definition of an arithmetic universe should
be a pretopos with free internal categories and diagrams. Here we propose the notion of list-arithmetic
pretopos as the general notion of arithmetic universe, as first announced in [Mai03] and used in [Mai05b].

We think that our proposal is justified by the following reasons:

1. all the examples of arithmetic universe built by Joyal are list-arithmetic pretopoi;

2. the construction of the initial arithmetic universe by Joyal is equivalent to the initial list-arithmetic
pretopos;

1

3. list-arithmetic pretopoi enjoy free internal categories and diagrams as Joyal proved for any of his
arithmetic universes.

In order to prove 1) and 2) we briefly describe how Joyal built his arithmetic universes.
An arithmetic universe à la Joyal is a category of the form (Pred(S))ex built in 3 steps as follows:

- take a Skolem theory S, namely a cartesian category with a parameterized natural numbers object
where all the objects are finite products of the natural numbers object;

- take the category Pred(S) of predicates in S, which gives a regular category;

- make its exact completion (Pred(S))ex on a regular category (see [CV98]).

Now, given that the category of predicates Pred(S) is not only regular but also enjoys stable finite
disjoint coproducts and parameterized list objects, as shown by Joyal and in [Rol76, Mor96, Wra85],
then its exact completion (Pred(S))ex inherits stable finite disjoint coproducts and parameterized list
objects, and hence it turns out to be a list-arithmetic pretopos, namely fact 1) holds.
To prove fact 2), we first observe that the category of predicates of the initial Skolem theory Sin is
equivalent to the initial regular locos. From this we derive that the initial arithmetic universe, which is
(Pred(Sin))ex built on the initial Skolem theory, is equivalent to the initial list-arithmetic pretopos.
Finally, to prove fact 3), namely that free internal categories and diagrams exist in any list-arithmetic
pretopos, we employ list objects. In particular, to prove the universal properties of the free constructions
we build the needed morphisms by iteration on natural numbers.

It is worth mentioning that, when proving fact 2) above, we notice that the category of predicates
of the initial Skolem category is also equivalent to the construction of the initial arithmetic lextensive
category. This implies that the initial arithmetic universe Ain is also equivalent to the construction of the
initial pretopos with a parameterized natural numbers object. All this says that the notion of pretopos
with a parameterized natural numbers object, called arithmetic pretopos, surely satisfies corresponding
facts 1) and 2). But we are not able to prove the corresponding fact 3), namely that any arithmetic
pretopos supports free internal categories and diagrams or it is list-arithmetic. We leave this as an open
problem.

In showing our results we employ internal languages of the categorical structures involved and these
are taken from [Mai05a]. Also in [Rol76] and in [Mor96, Wra85] a term language is presented to reason
within a Skolem theory and to build the category of predicates on it.

Here we reason within all the three stages of Joyal’s constructions by adopting internal languages
that are defined in a modular way as dependent type theories in the style of Martin-Löf’s extensional
type theory in [Mar84]. These languages are obtained by combining type constructors corresponding
to properties defining the various categorical structures thanks to the modular correspondence between
them described in [Mai05a].

Finally, we want to remark that the notion of list-arithmetic pretopos as a general definition of
arithmetic universe is equivalent to the one that I came to know in a recent talk [Joy05] by Andrè Joyal
as a pretopos with free monoid actions (the notion of free monoid actions can be found in [Rol76]).

2 The definition of list-arithmetic pretopos and related cate-

gorical structures.

Here we recall the definition of list-arithmetic pretopos and of some weaker categorical structures that
we will use in the next. We also remind readers of a key preservation property that such structures have
in order to enjoy an internal language as a dependent type theory according to [Mai05a].
Note that when we speak of functor preserving some categorical structure we mean preservation up to
isomorphism.

One of the basic concepts to build an arithmetic universe are the notions of Skolem category and
Skolem theory. A Skolem category is equipped with the minimum structure needed to interpret primitive
recursion on natural numbers. We start by reminding the notion of parameterized natural numbers
object:

2

Def. 2.1 A parameterized natural numbers object in a category with finite products is an object N
together with maps 0 : 1 → N , s : N → N such that for every b : B → Y and g : Y → Y there is a
unique rec(b, g) making the following diagrams commute

B
<id,0·!B> //

b
''P

P

P

P

P

P

P

P

P

P

P

P

P

P

B×N

rec(b,g)

��

B×N
id×s

oo

rec(b,g)

��
Y Y

g
oo

with !B : B → 1 the unique map towards the terminal object.

It is worth recalling here that in the presence of function spaces, as in a cartesian closed category,
this parameterized version of natural numbers object is equivalent to the usual natural numbers ob-
ject [Joh02a].

Def. 2.2 A Skolem category is a category with finite products (i.e. a category with terminal object 1
and binary products) and a parameterized natural numbers object.
A Skolem theory is a Skolem category whose objects are finite products of the natural numbers object.

Next, we consider more complex categorical structures that enable one to interpret primitive recursion:

Def. 2.3 A lextensive category is a finitely complete category, that is a category with a terminal object
and pullbacks, equipped with stable finite disjoint coproducts [CLW93].
If a lextensive category has a parameterized natural numbers object it is said to be arithmetic lextensive.

Def. 2.4 A finitely complete category U has parameterized list objects if for any object A ∈ ObU , there
is an object List(A) with maps rAo : 1 → List(A) , rA1 : List(A) × A → List(A) such that for every
b : B → Y and g : Y ×A→ Y there is a unique rec(b, g) making the following diagrams commute

B
<id,rA

o ·!B>
//

b
((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

B×List(A)

rec(b,g)

��

B×(List(A)×A)
id×rA

1oo

(rec(b,g)×idA)·σ

��
Y Y×A

g
oo

where σ : B × (List(A) × A) → (B × List(A)) × A is the associative isomorphism defined in detail as
<< π1 , π1 · π2 > , π2 · π2 >.

In [Coc90] there is an equivalent definition of parameterized list objects in terms of recursive objects
and preservation of recursive objects by the pullback functor !∗D : U → U/D sending an object B to
π1 : D ×B → D.

Def. 2.5 A locos is a lextensive category with parameterized list objects.
If a locos is also a regular category it is called a regular locos.

Finally, we recall the categorical definition of pretopos [MR77], [JM95].

Def. 2.6 A pretopos is a category equipped with finite limits, stable finite disjoint coproducts and stable
effective quotients of monic equivalence relations.
If a pretopos has a parameterized natural numbers object it is called an arithmetic pretopos.
If a pretopos has parameterized list objects it is called a list-arithmetic pretopos.

Note that a list-arithmetic pretopos is an arithmetic pretopos since the parameterized list object on the
terminal object gives a parameterized natural numbers object.
An important property that all these categorical structures enjoy is that their structure is local.
We say that a structure on a finitely complete category U is local when it satisfies the following:

1. If U has the considered structure then so does the slice category U/A for every object A ∈ ObU .

3

2. for every morphism f : A→ B in U the pullback functor f∗ : U/B → U/A preserves the considered
structure of the corresponding slice categories.

We recall that all the above mentioned categorical structures are local (see [Mai05a] for a proof):

Proposition 2.7 The structural properties of being

- arithmetic lextensive

- a regular locos

- an arithmetic pretopos

- a list-arithmetic pretopos

are all local.

The property of being local for a categorical structure is a prerequisite in order to enjoy an internal
dependent type theory as described in [Mai05a]. In particular property 1) of a local structure is needed
to model types with dependencies. Indeed a dependent type is modelled in a slice category and hence
any slice category has to be equipped with all the structure of the starting category. Instead property 2)
is needed to make valid the interpretation of substitution via pullback. Indeed, given that substitution of
terms both in types and in terms is interpreted via a functor isomorphic to the pullback pseudofunctor,
then all the structure used to interpret types and terms has to be preserved under the interpretation of
substitution, and hence under pullbacks.

3 An internal language for list-arithmetic pretopoi and related

structures

Here we describe internal languages of the categorical structures presented in the previous section in
terms of a dependent type theory in the style of Martin-Löf’s extensional type theory in [Mar84].

What is an internal language? When we say that a calculus T provides an internal language of
some categorical structures we mean not only that T is valid and complete with respect to the considered
categorical structures, but also that the category of the theories associated to T is in a sort of equivalence
with the category of the considered categorical structures. Usually such an equivalence is shown on one
hand by mapping a category to its internal language, which is obtained by augmenting T with some
specific axioms, and on the other hand by mapping a theory of T to the syntactic category built out of
the theory (the one built to prove completeness!). For more details and examples see [Mai05a].

The fact that the described correspondence gives rise to a sort of equivalence means in particular
that any categorical structure is equivalent to the syntactic category built out of its internal language.
Therefore, we can perform categorical constructions inside any categorical structure by using its internal
language.

Note that the link between a typed calculus and a class of categorical structures in terms of the
internal language theorem is much stronger than the link established by a soundness and completeness
theorem. Indeed, a simple validity and completeness theorem between a calculus and a class of categorical
structures does not generally guarantee that the calculus provides the internal language of the considered
categories (for an example of this see [MMdPR05]).

Modular correspondence type constructors/categorical properties In order to single out
the dependent typed theories of the categorical structures mentioned in the previous section we will
make use of the modular correspondence between type constructors and categorical properties described
in [Mai05a]. We just recall here the correspondence for the categorical properties of our interest:

4

Type constructors Categorical properties

terminal type finite limits
+ indexed sum types
+ extensional equality types

quotient types on stable images
the total equivalence relation

quotient types on stable quotients on
mono equivalence relations monic equivalence relations
+ effectiveness axiom + effectiveness of quotients

false type stable initial object
+ disjoint sum types stable binary coproducts
+ disjointness axiom + disjointness of coproducts

natural numbers type parameterized natural numbers object

list types parameterized list objects

We also recall that, to interpret the above type constructors in a finitely complete category with the cor-
responding categorical properties, in [Mai05a] we made use of a split fibration associated to the codomain
one following [Hof95]. This makes the original naive interpretation in [See84] (see also [Joh02b]) correct
when interpreting substitution.

3.1 The typed calculus for list-arithmetic pretopoi

Now we describe in detail the rules of the dependent typed calculus that provides an internal language
for list-arithmetic pretopoi (it was first introduced in [Mai99b] and reported in [Mai03, Mai05a]). We
call such a calculus Tau because we will identify the general notion of arithmetic universe with that of
list-arithmetic pretopos. Moreover, we will use the pure calculus Tau to build the initial list-arithmetic
pretopos that will be shown to be equivalent to the initial arithmetic universe among Joyal’s construc-
tions.

The calculus Tau is equipped with types, which should be thought of as sets or data types, and with
typed terms which represent elements of the types to which they belong. In addition types may depend
on typed terms. Hence, dependent types should be better thought of set families.
In the style of Martin-Löf’s type theory, we have four kinds of judgements [NPS90]:

A type [Γ] A = B [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the type judgement, the equality between types, the term judgement and the equality between
terms of the same type. The contexts Γ of these judgements are telescopic [dB91], since types are allowed
to depend on variables of other types. The contexts are generated by the following rules

1C) ∅ cont 2C)
Γ cont A type [Γ]

Γ, x ∈ A cont
(x ∈ A 6∈ Γ)

plus the rules of equality between contexts [Str91], [Pit00].
In the following, we present the inference rules to construct type judgements and term judgements
with their equality judgements by recursion. One should also add all the inference rules that express
reflexivity, symmetry and transitivity of the equality between types and terms together with the type
equality rules conv) and conv-eq) and the assumption of variables:

a ∈ A [Γ] A = B [Γ]

a ∈ B [Γ]
conv)

a = b ∈ A [Γ] A = B [Γ]

a = b ∈ B [Γ]
conv-eq)

Γ, x ∈ A,∆ cont

x ∈ A [Γ, x ∈ A,∆]
var)

5

We can derive then the structural rules of weakening and of a suitable exchange.
In the following we give the formation rules for types specific to Tau with the corresponding introduction,
elimination and conversion rules of their terms. But we omit the equality rules expressing that all the type
and term constructors preserve equality as in [Mar84] and that are necessary to derive the substitution
rules. Moreover, we adopt the usual definitions of bound and free occurrences of variables and we identify
two terms under α-conversion. Note that the context common to all judgements involved in a rule will
be omitted. The typed variable appearing in a context is meant to be added to the implicit context as
the last one.
The rules to generate Tau’s types and terms are all present in the extensional version of Martin-Löf’s
type theory [Mar84] except for the disjointness axiom, the rules about quotients types restricted to mono
equivalence relations and the effectiveness axiom.
Supposing A type and R(x, y) type [x, y ∈ A], we will write Equiv(R) to mean the following three
judgements: refl(x) ∈ R(x, x) [x ∈ A], sym(x, y, z) ∈ R(y, x) [x ∈ A, y ∈ A, z ∈ R(x, y)], trans(x, y, z, u, v) ∈

R(x, z) [x ∈ A, y ∈ A, z ∈ A, u ∈ R(x, y), v ∈ R(y, z)].
Moreover, we will write Mono(R) to mean

z = w ∈ R(x, y) [x ∈ A, y ∈ A, z ∈ R(x, y), w ∈ R(x, y)]

The Tau dependent typed calculus

Terminal type

Tr) ⊤ type I-Tr) ⋆ ∈ ⊤ C-Tr)
t ∈ ⊤

t = ⋆ ∈ ⊤

False type

Fs) ⊥ type E-Fs)
a ∈ ⊥ B type

r⊥(a) ∈ B

Indexed Sum type

Σ)
C(x) type [x ∈ B]

Σx∈BC(x) type
I-Σ)

b ∈ B c ∈ C(b) Σx∈BC(x) type

< b, c >∈ Σx∈BC(x)

E-Σ)
d ∈ Σx∈BC(x) m(x, y) ∈ M(< x, y >) [x ∈ B, y ∈ C(x)]

ElΣ(d, m) ∈ M(d)

C-Σ)
b ∈ B c ∈ C(b) m(x, y) ∈ M(< x, y >) [x ∈ B, y ∈ C(x)]

ElΣ(< b, c >, m) = m(b, c) ∈ M(< b, c >)

Equality type

Eq)
C type c ∈ C d ∈ C

Eq(C, c, d) type
I-Eq)

c ∈ C

eq ∈ Eq(C, c, c)

E-Eq)
p ∈ Eq(C, c, d)

c = d ∈ C
C-Eq)

p ∈ Eq(C, c, d)

p = eq ∈ Eq(C, c, d)

Disjoint Sum type

+)
B type C type

B + C type
I1-+)

b ∈ B B + C type

inl(b) ∈ B + C
I2-+)

c ∈ C B + C type

inr(c) ∈ B + C

E-+)

A(z) [z ∈ B + C]
w ∈ B + C aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(w, aB, aC) ∈ A(w)

C1-+)

A(z) [z ∈ B + C]
b ∈ B aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(inl(b), aB, aC) = aB(b) ∈ A(inl(b))

C2-+)

A(z) [z ∈ B + C]
c ∈ C aB(x) ∈ A(inl(x)) [x ∈ B] aC(y) ∈ A(inr(y)) [y ∈ C]

El+(inr(c), aB, aC) = aC(c) ∈ A(inr(c))

6

Disjointness

dis-+)
b ∈ B c ∈ C inl(b) = inr(c) ∈ B + C

dsj(b, c) ∈ ⊥

Quotient type

Q)
R(x, y) type [x ∈ A, y ∈ A] Mono(R) Equiv(R)

A/R type

I-Q)
a ∈ A A/R type

[a] ∈ A/R
eq-Q)

a ∈ A b ∈ A d ∈ R(a, b) A/R type

[a] = [b] ∈ A/R

E-Q)

L(z) [z ∈ A/R]
p ∈ A/R l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A,d ∈ R(x, y)]

ElQ(l, p) ∈ L(p)

C-Q)

L(z) [z ∈ A/R]
a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQ(l, [a]) = l(a) ∈ L([a])

Effectiveness
a ∈ A b ∈ A [a] = [b] ∈ A/R

eff(a, b) ∈ R(a, b)

List type

list)
C type

List(C) type
I1-list)

List(C) type

ǫ ∈ List(C)
I2-list)

s ∈ List(C) c ∈ C

cons(s, c) ∈ List(C)

E-list)

L(z) [z ∈ List(C)]
s ∈ List(C) a ∈ L(ǫ) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, s) ∈ L(s)

C1-list)

L(z) [z ∈ List(C)]
a ∈ L(ǫ) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, ǫ) = a ∈ L(ǫ)

C2-list)

L(z) [z ∈ List(C)]
s ∈ List(C) c ∈ C a ∈ L(ǫ) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, cons(s, c)) = l(s, c, ElList(a, l, s)) ∈ L(cons(s, c))

Note that we can represent the type of natural numbers N as lists on the terminal type since this
represents a chosen singleton. Therefore, we define N ≡ List(⊤) with 0 ≡ ǫ and successor s(n) ≡
cons(n, ∗) for n ∈ List(⊤).

Remark 3.1 Note also that the elimination rule of the Indexed Sum type can be equivalently replaced
by the following projections

d ∈ Σx∈BC(x)

π1(d) ∈ B
E1-Σ

d ∈ Σx∈BC(x)

π2(d) ∈ C(π1(d))
E2-Σ

and corresponding β and η conversion rules

b ∈ B c ∈ C(b)

π1(< b, c >) = b ∈ B
β1 C-Σ

b ∈ B c ∈ C(b)

π2(< b, c >) = c ∈ C(b)
β2 C-Σ

d ∈ Σx∈BC(x)

< π1(d), π2(d) >= d ∈ Σx∈BC(x)
η C-Σ

Remark 3.2 (Notation on lists) Given s, s′ ∈ List(A) we abbreviate

⌊s, s′⌋ for Rec(s, cons, s′) ∈ List(A)

which is the operation appending a list to another one.
Moreover, for s ∈ List(A) and a ∈ A we will write

⌊s, a⌋ for cons(s, a) and ⌊a⌋ for cons(ǫ, a)

7

Mono types and quotients. In [Mai05a] we introduced the notion of mono type, namely a type B [Γ]
for which

w = z ∈ B [Γ, w ∈ B, z ∈ B]

is derivable. Since the interpretation of a mono type as given in [Mai05a] turns out to be a monomor-
phism, we can then represent the quotient of a monic equivalence relation in the internal language
of a pretopos as the quotient type of a mono equivalence relation. Then, effectiveness of quotients is
represented by adding a specific axiom. Note that the fact that effectiveness holds for mono equiva-
lence relations is crucial. Indeed effectiveness of quotients on generic relations may lead to classical
logic [Mai99a].
Finally we anticipate here that in Tau we can define quotients on arbitrary relations that are not ne-
cessarily equivalences. Categorically this corresponds to the fact that in any list-arithmetic pretopos
arbitrary coequalizers exist (see next section).
Coproducts. Coproducts are represented by disjoint sums as in [Mar84] and to represent disjointness
we need to add a specific axiom. Indeed, disjointness is not generally derivable by using the same
argument in [Smi88] for Peano’s fourth axiom.
Coherent logic in a pretopos. Mono types in Tau inherit enough structure to validate coherent
logic by interpreting falsum, equality, conjunction, disjunction and existential quantification on a type
as follows: for φ, ψ mono types

Interpretation of connectives:

falsum ≡ ⊥ s =A t ≡ Eq(A, s, t)

φ ∧ ψ ≡ φ× ψ φ ∨ ψ ≡ (φ⊕ ψ)/⊤

∃x∈A φ(x) ≡ (Σx∈A φ(x))/⊤

Thanks to the way connectives are interpreted, they inherit elimination rules that are stronger than the
usual ones in intuitionistic logic (see the discussion on the calculus of regular categories on page.22 in
[Mai05a]).

Now we describe the internal languages of the categorical structures defined in section 2 and weaker
than that of list-arithmetic pretopos. These can be deduced from the table previously described:
The typed calculus of Skolem categories Tsk. The calculus Tsk is a type theory with no dependent
types including the following type constructors: terminal type, product types and the natural numbers
type with the rules of List(⊤) in Tau restricted to non-dependent types that is

Product type

B type C type

B × C type
×)

b ∈ B c ∈ C

〈b, c〉 ∈ B × C
I-×)

d ∈ B × C

π1(d) ∈ B
E1-×)

d ∈ B × C

π2(d) ∈ C
E2-×)

b ∈ B c ∈ C

π1(〈b, c〉) = b ∈ B
C1-Σ)

b ∈ B c ∈ C

π2(〈b, c〉) = c ∈ C
C2-×)

d ∈ B × C

〈π1(d) , π2(d) 〉 = d ∈ B × C
η-×)

Natural Numbers type

N type
nat

0 ∈ N
I1-nat

n ∈ N

s(n) ∈ N
I2-nat

L type

n ∈ N a ∈ L l(y) ∈ L [y ∈ L]

ElN (a, l, n) ∈ L
E-nat

L type

a ∈ L l(y) ∈ L [y ∈ L]

ElN (a, l, 0) = a ∈ L
C1-nat

L type

n ∈ N a ∈ L l(y) ∈ L [y ∈ L]

ElN(a, l, s(n)) = l(ElN (a, l, n)) ∈ L
C2-nat

8

The typed calculus of arithmetic lextensive categories Talxt. The calculus Talxt includes the
following type constructors: terminal type, indexed sum types, extensional equality types, false type,
disjoint sum types, disjointness axiom, the natural numbers type having the rules of List(⊤) in Tau that
is:

Natural Numbers type

N type
nat

0 ∈ N
I1-nat

n ∈ N

s(n) ∈ N
I2-nat

L(z) type [z ∈ N]

n ∈ N a ∈ L(0) l(x, y) ∈ L(s(x)) [x ∈ N, y ∈ L(x)]

ElN (a, l, n) ∈ L(n)
E-nat

L(z) type [z ∈ N]

a ∈ L(0) l(x, y) ∈ L(s(x)) [x ∈ N, y ∈ L(x)]

ElN(a, l, 0) = a ∈ L(0)
C1-nat

L(z) type [z ∈ N]

n ∈ N a ∈ L(0) l(x, y) ∈ L(s(x)) [x ∈ N, y ∈ L(x)]

ElN(a, l, s(n)) = l(n, ElN (a, l, n)) ∈ L(s(n))
C2-nat

The typed calculus of locoi Tl. The calculus Tl is obtained by extending Talxt with list types. Hence
it includes the following type constructors: terminal type, indexed sum types, extensional equality types,
false type, disjoint sum types, disjointness axiom, list types.
The typed calculus of regular locoi Trl. The calculus Trl is obtained by extending Tl with quotient
types on the total relation namely:

Quotient types on the total relation

A type

A/⊤ type
Qtr

a ∈ A

[a] ∈ A/⊤
I-Qtr

a ∈ A b ∈ A

[a] = [b] ∈ A/⊤
eq-Qtr

L(z) type [z ∈ A/⊤]

p ∈ A/⊤ l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A]

ElQ(l, p) ∈ L(p)
E-Qtr

L(z) type [z ∈ A/⊤]

a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A]

ElQ(l, [a]) = l(a) ∈ L([a])
C-Qtr

Hence Trl includes the following type constructors: terminal type, indexed sum types, extensional equal-
ity types, false type, disjoint sum types, disjointness axiom, list types and quotient types of the kind
A/⊤.
The typed calculus of arithmetic pretopoi Tpn. The calculus Tpn includes the following type
constructors: terminal type, indexed sum types, extensional equality types, false type, disjoint sum
types, disjointness axiom, quotient types on mono equivalence relations with the effectiveness axiom and
the natural numbers type.

9

In other words Tpn is the fragment of the dependent type theory Tau in section 3 without list types but
with the natural numbers type N ≡ List(⊤).

By using the typed calculi we can build the initial structures among the categorical structures they
describe.
From [Mai05a] we recall that given a typed calculus T for a certain kind of categorical structures, let us
say S-structures, the initial S-structure amounts to the category CT defined as follows:

Def. 3.3 The objects of CT are the closed types A,B,C... of T modulo their equality, and the morphisms
between two types, A and B, are the expressions (x) b(x) (see [NPS90]) corresponding to the judgement
b(x) ∈ B [x ∈ A] - where the type B does not depend on A - modulo their definitional equality, that
is we state that (x) b(x) ∈ CT (A , B) and (x) b′(x) ∈ CT (A , B) are equal if and only if we can derive
in T the judgement b(x) = b′(x) ∈ B [x ∈ A]. The composition in CT is defined by substitution, that
is given (x) b(x) ∈ CT (A , B) and (y) c(y) ∈ CT (B , C) their composition is (x) c(b(x)). The identity is
(x)x ∈ CT (A , A) obtained from x ∈ A [x ∈ A].

Then by following the technique used in [Mai05a] we can prove that the above calculi provide internal
languages of the corresponding structures and give rise to the initial structures in a modular way:

Theorem 3.4 The following hold:

• Tsk provides an internal language for Skolem categories and CTsk
, also called Sin, is the initial

Skolem category, and it is also the initial Skolem theory.

• Talxt provides an internal language for arithmetic lextensive categories and CTalxt
is the initial

arithmetic lextensive category.

• Trl provides an internal language for regular locoi and CTrl
is the initial regular locos.

• Tpn provides an internal language for arithmetic pretopoi and CTpn
is the initial arithmetic pretopos.

• Tau provides an internal language for list-arithmetic pretopoi and CTau
is the initial list-arithmetic

pretopos.

Remark 3.5 It is worth mentioning that in [Wra85, Mor96] an initial Skolem category is built and
used to model a programming language representing primitive recursive functions. Also in [Rol76] a
term language including a primitive recursive operator is presented to reason within a Skolem theory.

3.2 First applications of our internal languages

Before entering into the main topic of our paper we give two applications regarding the use of the internal
language of the mentioned categorical structures to prove some of their categorical properties.
The first application is a simple proof that parameterized list objects are local in a locos as first proved in
[Coc90]. The second application is the proof that list-arithmetic pretopoi are closed under coequalizers.

3.2.1 Locality of locoi

Here we apply the internal type theory of a locos to show that its structure is local with a simple proof
alternative to that in [Coc90]. First of all, note that the difficulty in proving that a locos C is local relies
in proving that parameterized list objects are local. Indeed, the structure of lextensive category is local
because the forgetful functor from C/A to C creates finite limits and stable finite disjoint coproducts.

To prove that C/A enjoys parameterized list objects we use the internal language of a locos and we
anticipate a technique to define operations by iteration that will use also to build free internal categories
and diagrams.
First note that the notion of parameterized list object corresponds in type theory to the notion of list
type of a closed type. Hence, we can easily prove that the typed calculus for locoi can be taken to be
a fragment T ∗

l of the typed calculus Tl already presented. The fragment T ∗
l is obtained from Tl by

allowing list types List(A) only if A is a closed type. List objects are needed to interpret such list types,

10

while their parameterization is needed to interpret the structural rule of weakening applied to such list
types with their terms.

Now, we prove that in T ∗
l we can represent list types List(B(x)) [x ∈ A] on types B(x) type [x ∈ A]

depending on at most one type. This is enough to deduce categorically that any slice category of a locos
C is equipped with list objects. Indeed, for any C-object A and for any C/A-object b : B → A we can
form the list object List(b) as the interpretation of the list type on the dependent type Σy∈B b(y) =A x
for x ∈ A. In T ∗

l the type of lists on a dependent type B(x) [x ∈ A] with A closed type can be defined
by using the indexed sum type as follows: for x ∈ A

List(B(x)) ≡ Σw∈List(Σx∈AB(x)) π1(w) =List(A) mult(x, lh(w))

where π1 ≡ Lst(π1) is the lifting on lists of the first projection, lh(w) is the length of the list w (see the
appendix for related definitions) and mult(x, lh(w)) ≡ ⌊x, x, . . . , x⌋︸ ︷︷ ︸

n-times

is the list with n-times x, formally

defined by induction on natural numbers as follows: for x ∈ A and n ∈ N

mult(x, n) ≡

{
ǫ if n = 0

⌊mult(x,m), x⌋ if n = m+ 1

Then, the list constructors are the following: for x ∈ A

ǫB(x) ≡ < ǫΣ, eq >

consB(x)(s, b) ≡ < ⌊π1(s) , < x, b >⌋ , eq > for s ∈ List(B(x)) , b ∈ B(x)

where ǫΣ is the empty list in List(Σx∈AB(x)).
Finally, in order to prove the validity of the elimination rule on List(B(x)) in the context of an

extensional type theory, as described in [Mai05a], it is sufficient to prove the validity of the elimination
rule towards types not depending on List(B(x)) for x ∈ A

E-list)

C type
s ∈ List(B(x)) c ∈ C l(y, z) ∈ C [y ∈ C, z ∈ B(x)]

ElList(c, l, s) ∈ C

with corresponding β and η conversion rules. However, since we can not use the full elimination on
List(Σx∈AB(x)), given that List(B(x)) is defined as a proper subtype of List(Σx∈AB(x)), we define
the elimination constructor by iteration, i.e. by induction on natural numbers.
Therefore, given a type C [x ∈ A] - not depending on List(B(x)) - and a term c ∈ C [x ∈ A,w ∈ Γ]
(representing the value on the empty list, that is the base step) and l(y, z) ∈ C [x ∈ A,w ∈ Γ, y ∈ C, z ∈
B(x)] (representing the inductive step) we define

Ellist(c , l , z) ≡ Itr(c , l , z , lh(z1)) ∈ C [x ∈ A,w ∈ Γ, z ∈ List(B(x))]

where in turn
Itr(c , l , z , n) ∈ C [x ∈ A,w ∈ Γ, z ∈ List(B(x)), n ∈ N]

is defined as follows

Itr(c , l , z , 0) ≡ c

Itr(c , l , z , n+ 1) ≡

{
l(Itr(c , l , z , n) , pn+1(z1)) if n+ 1 ≤ lh(z1)

Itr(c , l , z , n) if n+ 1 > lh(z1)

where z1 ≡ π1(z) and pn(s) is the n-th element of the list s (see the appendix). Then, we can easily
prove that this elimination constructor enjoys the corresponding β and η conversions.
Moreover, we can show that such list objects in C/A are preserved by pullbacks. In particular the
pullback of the interpretation of List(B(x)) [x ∈ A] in C/A along f : C → A, thought of as a term
f(y) ∈ A [y ∈ C], turns out to be isomorphic to the interpretation of

List(B(x))[x/f] ≡ Σw∈List(Σx∈AB(x)) π1(w) =List(A) mult(f(y) , lh(w))

11

obtained by substituting x with f(y) for y ∈ C. Analogously the pullback of the interpretation of
B(x) [x ∈ A] in C/A along f : C → A turns out to be isomorphic to the interpretation of B(f(y)) [y ∈ C]
and then, its list object turns out to be the interpretation of

List(B(x)[x/f]) ≡ Σz∈List(Σy∈C B(f(y)) π1(w) =List(C) mult(y , lh(w))

for y ∈ C. Now we show that List(B(x))[x/f] is isomorphic to List(B(x)[x/f]) by just defining a
morphism in the slice category over C

φ : List(B(x))[x/f] → List(B(x)[x/f])

as φ(w) ≡ φ̃(w , lh(w1)) where φ̃(w , n) is in turn defined by iteration on natural numbers as follows:
for y ∈ C, w ∈ List(B(x))[x/f]

φ̃(w , 0) ≡ < ǫΣ , eq >

φ̃(< w , n+ 1) ≡

{
< ⌊π1(φ̃(w , n)) , < y, pn+1(w1) >⌋ , eq > if n+ 1 ≤ lh(w1)

φ̃(< w, eq >, n) if n+ 1 > lh(w1)

where w1 ≡ π1(w).
φ is an isomorphism whose inverse can be defined in an analogous way by iteration on natural numbers.

3.2.2 A list-arithmetic pretopos has coequalizers

Now we are going to prove that any list-arithmetic pretopos U has got coequalizers by using its internal
language. The key point is to show how to make the relation needed to coequalize two given maps into
an equivalence relation. To do this we use lists in a crucial way.

Proposition 3.6 In any list-arithmetic pretopos U the coequalizer of any two given morphisms

C

a //

b
// A

exists.

Proof. First, we consider the following reflexive and symmetric relation on A: for z, z′ ∈ A

R(z, z′) ≡ z =A z
′

∨ ∃c∈C a(c) =A z ∧ b(c) =A z
′

∨ ∃c∈C b(c) =A z ∧ a(c) =A z
′

Then, to define its transitive closure the idea is the following: in order to express that an element z ∈ A
is connected to w ∈ A through a finite list of elements x1, x2, x3 such that

R(z, x1) ∧ R(x1, x2) ∧ R(x2, x3) ∧ R(x3, w)

it is enough to require the existence of a list s ≡ ⌊< z, x1 >,< x1, x2 >,< x2, x3 >,< x3, w >⌋ with
the property that the list ⌊x1, x2, x3⌋, containing the second components of elements in the back list
⌊< z, x1 >,< x1, x2 >,< x2, x3 >⌋, is equal to the list with the first components of elements in the front
list ⌊< x1, x2 >,< x2, x3 >,< x3, w >⌋. Moreover, z must be the first component of the first element in
s, while z′ must be the second component of the last element in s.
Hence, we define:

Rt(z, z
′) ≡ ∃s∈List∗(Q) Lst(π̃2)(bck(s)) =List(A) Lst(π̃1)(frt(s))

∧ z =A π̃1(fst(s)) ∧ z′ =A π̃2(las(s))

where Q ≡ Σw∈A×AR(π1(w), π2(w)) and π̃1 ≡ π1 · π1 and π̃2 ≡ π2 · π1 (see the appendix for precise
definitions of non-empty lists List∗(Q) and operations Lst(−), fst, las, bck and frt).
It follows easily that Rt is an equivalence relation and that [−] : A → A/Rt, that is the map assigning
to every x ∈ A its equivalence class in A/Rt, is the coequalizer of a and b.

12

4 Joyal’s arithmetic universes

In this section we describe the construction of arithmetic universes given by Andrè Joyal in the seventies.
The construction can be read in unpublished notes by Joyal himself, Gavin Wraith [Wra85], in [Mor96]
and partly in [Rol76].
Joyal built examples of arithmetic universes by taking the exact completion of the category of predicates
built out of a Skolem theory.
Before giving the definition of predicate we define some primitive recursive operations and review some
key properties of the natural numbers object in any Skolem category.

Def. 4.1 Given a Skolem category S, the predecessor, truncated subtraction, order, equality are defined
as follows

x ·− 1 ≡

(

0 ·− 1 ≡ 0

(n + 1) ·− 1 ≡ n
x ·− y ≡

(

x ·− 0 ≡ x

x ·− (n + 1) ≡ (x ·− n) ·− 1

x ∨ y ≡ x+ (y ·− x) x ∧ y ≡ x ·− (x ·− y) eq(x, y) ≡ 1 ·− ((x ·− y) ∨ (y ·− x))

Def. 4.2 (predicate [Wra85, Mor96]) A predicate in a Skolem category S is an S-morphism P :
N → N between natural numbers satisfying P ∗ P = P where ∗ : N × N → N is the multiplication
among natural numbers.

In essence a predicate is an S-morphism with values 0, 1. It defines a decidable subobject of N whose
elements can be thought of those with value 1. By using the above definitions as proved in classical
recursion [Odi89] we can show:

Proposition 4.3 In any Skolem category S the collection of predicates forms a boolean algebra with
bounded existential and universal quantifications where the order is defined as follows

P ≤ Q ≡ P ·−Q =S 0

namely the truncated subtraction of them is the zero constant morphism in S.
In particular, the equality induced by the order is the equality predicate above defined and it amounts to
the equality of S-morphisms, i.e. we have

P ≤ Q and Q ≤ P iff eq(P,Q) =S 1 iff P =S Q

Moreover, the conjunction is the multiplication, i.e. P ∧Q =S P ∗Q, and the complement of P is 1 ·−P .

Proposition 4.4 In any Skolem category S the following holds:

• the natural numbers object N is isomorphic to the binary product of itself N × N , namely there
exist S-morphisms

pair : N ×N → N pr1 : N → N pr2 : N → N

such that in S < pr1 · pair, pr2 · pair >=S id pair· < pr1, pr2 >=S id

• in S the natural numbers object N is a parameterized list object over itself.

Proof. We employ the internal language of a Skolem theory.
By following standard ideas in recursion theory (see for example [Odi89]) we define the pairing map as
follows

pair(x, y) ≡ 2x ∗ (2 ∗ y + 1) ·− 1

which provides the required isomorphism with the following projections

pr1(z) ≡ min{ x ≤ z | ∃y ≤ z z =S pair(x, y) } pr2(z) ≡ min{ y ≤ z | ∃x ≤ z z =S pair(x, y) }

13

N turns out to be a list object on itself by using the binary representation of natural numbers. The
idea is to represent the empty list as zero, and a list like ⌊n1, n2, . . . , nm⌋ as the number represented in
binary digits as the list starting with 1 followed by a number of zeros equal to the last element nm of
the list, and then again 1 followed by a number of zeros equal to the last but one element nm−1 of the
list and so on. For example:

ǫ 7−→ 0
⌊0⌋ 7−→ 1
⌊3⌋ 7−→ 1000 = 23

⌊0, 1, 3⌋ 7−→ 1000101 = 26 + 22 + 1

Conversely any natural number in binary digits represents a list where each nth-element counts the
nested zeros after the nth-1 counted from the right.
More formally, the list constructors are defined as follows:

1. ǫ ≡ 0

2. cons(s, n) ≡ 2c · 2n + s where c ≡ min{ x ≤ s | 2x > s }.

After defined the nth-projection of any natural number thought of as a list, we define the list elimination
constructor recList(N)(b, g, z) by induction on natural numbers, by starting from b and then iterating
the application of g up to the length of z, if this is not zero. This construction is analogous to the
corresponding one for list objects in a slice category of a locos in section 3.2.1.

Remark 4.5 In [Rol76] and in a draft by Joyal, a predicate is defined to be an S-morphism P : Nk → N
from a finite product of N to N satisfying P ∧1 =S P . If S is a Skolem theory, then these predicates are
the decidable subsets of S-objects in S, given that objects of S are only finite products of N . However
thanks to proposition 4.4, predicates on Nk with k ≥ 1 are in bijective correspondence with predicates
on N by precomposing with the isomorphism between Nk and N . Hence, without loss of generality, we
can restrict to predicates from N to N . In this case definition 4.7 is equivalent to that by Joyal since
P ∗ P =S P iff P ∧ 1 =S P .

Now, we are ready to define the category of predicates of a Skolem theory S:

Def. 4.6 [Mor96, Wra85] Given a Skolem theory S the category Pred(S) of predicates in S is defined
as follows:

• Ob(Pred(S)): predicates in S, namely morphisms P : N → N such that P ∗ P =S P ;

• Hom(P,Q): S-morphisms f : N → N such that P ≤ Q · f (where Q · f is the composition of Q
with f) and two such S-morphisms f : N → N and g : N → N are equal iff P ∗ f =S P ∗ g.

Note that, if the Skolem theory is the full subcategory SZFC of the usual category of classical ZFC-sets
with only finite products of natural numbers as objects, then Pred(SZFC) is the category having subsets
of natural numbers as objects. Indeed a subset is characterized by the elements with value 1 through
a predicate P that is its characteristic function. Moreover, morphisms of Pred(SZFC) turn out to be
functions mapping the domain subset to the codomain subset. Finally, two maps are considered equal
if they are equal on the domain subset.
Joyal proved that the category of predicates Pred(S) is a regular locos:

Proposition 4.7 ([Wra85, Mor96, Rol76]) The category Pred(S) of a Skolem theory S is regular
with stable finite disjoint coproducts and parameterized list objects. Moreover, there is an epi-mono
factorization where epimorphisms split.

Proof. We describe the claimed structure of Pred(S).
The terminal object is given by the predicate ⊤Pred : N → N defined as the singleton zero for n ∈ N

⊤Pred(n) ≡ 1 ·− n

14

The binary product of two predicates P and Q is given by

(P ×Q)(n) ≡ P (pr1(n)) ∗Q(pr2(n)) for n ∈ N

The two projections of P × Q are πP : P × Q → P and πQ : P × Q → Q defined as: πP (n) ≡ pr1(n)
and πQ(n) ≡ pr2(n) for n ∈ N .
The pairing morphism of f : C → P and g : C → Q is defined as < f, g >Pred (n) ≡ pair(f(n), g(n))
for n ∈ N .
The equalizer of two morphisms f, g : P → Q is

Eq(f, g)(n) ≡ P (n) ∗ eq(f(n), g(n)) for n ∈ N

and the equalizer injection e : Eq → P is defined as e(n) ≡ n for all n ∈ N . Obviously, the morphism
factoring any h : C → P equalizing f and g is h itself but with codomain Eq.
The initial object is given by the predicate ⊥Pred : N → N defined as

⊥Pred(n) ≡ 0 for n ∈ N

The binary coproduct of two predicates P and Q is defined as follows: for n ∈ N

(P +Q)(n) ≡ even(n) ∗ P (n/2) + odd(n) ∗Q(n ·− 1/2)

where n/2 is the quotient of the division by 2 and the operations even, odd are defined as follows:

even(n) ≡

(

even(0) ≡ 1

even(n + 1) ≡ 1 ·− even(n)
odd(n) ≡

(

odd(0) ≡ 0

odd(n + 1) ≡ 1 ·− odd(n)

The injections iP : P → P +Q and iQ : Q→ P +Q are defined as iP (n) ≡ 2 ∗n and iQ(n) ≡ 2 ∗ n+ 1
for n ∈ N . Given f : P → C and g : Q→ C their coproduct morphism f + g : P +Q→ C is defined as
follows for n ∈ N

(f + g)(n) ≡ even(n) ∗ f(n/2) + odd(n) ∗ g(n ·− 1/2)

It follows easily that such binary coproducts are stable under pullbacks.
The image object of a morphism f : P → Q is defined as follows: for n ∈ N

(Imf)(n) ≡ P (n) ∗ eq(n, p(n))

where
p(n) ≡ min{ x ≤ n | P (x) ∗ eq(f(x), f(n)) = 1 }

Its image morphism ιf : Imf → Q is defined as ιf (n) ≡ f(n) for n ∈ N and this factors f through
p : P → Imf defined as the above p(n) for n ∈ N , i.e. f = ιf · p in Pred(S). Moreover, p has a section
p−1 : Imf → P defined as p−1(n) ≡ n, that is p · p−1 = id in Pred(S). Since epimorphisms of image
factorizations split then images are stable under pullbacks.
The parameterized list object of a predicate is defined by using the fact that N is isomorphic to List(N)
by prop 4.4. Hence, given a predicate P its parameterized list object is

List(P)(n) ≡

{
1 if n ≡ 0

List(P)(m) ∗ P (k) if n ≡ consList(N)(m, k)

The list structure of List(P) is induced by that of List(N) as follows: r0
List(P) : ⊤ → List(P) is defined

for n ∈ N as
r0
List(P)(n) ≡ 0

and r1
List(P) : List(P) × P → List(P) is defined as

r1
List(P)(n) ≡ consList(N)(pr1(n) , pr2(n)) for n ∈ N

15

Then, given b : C → Q and g : Q× P → Q we put recList(P)(b, g)(n) ≡ recList(N)(b, g, n) for n ∈ N .

Now, we are finally ready to give Joyal’s definition of arithmetic universe. It amounts to the exact
completion (Pred(S))ex of the category of predicates built out of a Skolem theory S. Given that the
category of predicates of a Skolem theory is regular as proved in proposition 4.7, then we can use the
exact completion performed on a regular category (see [CV98] and loc. cit.). However, since in Pred(S)
epimorphisms of image factorizations split, then we can define the morphisms in such exact completions
(Pred(S))ex as Pred(S)-morphisms preserving the equivalence relations. Therefore, we put:

Def. 4.8 A Joyal-arithmetic universe is the category (Pred(S))ex built out of a Skolem theory S as
follows:

• Ob(Pred(S))ex: (X,R) where X is an object of Pred(S) and R : dom(R) → X ×X is a monic
categorical equivalence relation on X;

• Hom((X,R), (Y, S)): Pred(S)-morphisms f : X → Y preserving the equivalence relations, that is
R ≤ (f × f)∗(S) as subobjects where (f × f)∗(S) is the first projection of the pullback of S along
f × f .

Moreover, two arrows f, g : (X,R) → (Y, S) in Hom((X,R), (Y, S)) are equal iff R ≤ (f × g)∗(S).

We also recall the definition of the embedding of Pred(S) into (Pred(S))ex :

Def. 4.9 (embedding) The embedding functor

Y : Pred(S) −→ (Pred(S))ex

is defined as follows:
Y(P) ≡ (P, x =P y) Y(f) ≡ f

where x =P y ≡ Eq(π1, π2) is the identity relation on P , that is the equalizer of the projections π1, π2

from P ×P in Pred(S) (categorically Eq(π1, π2) is isomorphic to the diagonal < id, id >: P → P ×P).

We now give the main result of this section:

Proposition 4.10 (Pred(S))ex is a list-arithmetic pretopos.

Proof. In [Wra85, Mor96] it is shown that (Pred(S))ex is a pretopos with list objects but we can show
that list objects are also parameterized. We know from [CV98] that this category is exact and hence we
just describe finite coproducts and list objects (cf. [Car95, BCRS98]).
Note that in doing this we employ the internal language of a regular locos provided by Trl according to
which we can consider the equivalence relation R as a type-theoretic equivalence relation.
The initial object of (Pred(S))ex is (⊥Pred, x =⊥Pred

x) with x =⊥Pred
x is the identity relation.

The binary coproduct of two objects (X,R) and (Y, S) is (X + Y,R+ S) where X + Y is the coproduct
in Pred(S) and R+ S is defined as follows: for z, z′ ∈ X + Y

(R+ S)(z, z′) ≡

∃x∈X ∃x′∈X (z =X iX(x)) ∧ (z′ =X iX(x′)) ∧ R(x, x′)

∨

∃y∈Y ∃y′∈Y (z = iY (y)) ∧ (z′ =Y iY (y′)) ∧ S(y, y′)

∨

⊥ ∧ (∃x∈X ∃y∈Y (z =X iX(x) ∧ z′ = iY (y)) ∨ (z′ =X iX(x) ∧ z = iY (y)))

R+ S can be proved to be an equivalence relation since in Trl, as proved in [Mai05a], given an element
z ∈ X + Y we can derive a proof of

(∃x∈X inl(x) =X z) ∨ (∃y∈Y inr(y) =Y z)

The injections are iR : (X,R) → (X+Y,R+S) and iS : (X,R) → (X+Y,R+S) defined as iR(x) ≡ iX(x)
for x ∈ X and iS(y) ≡ iY (y) for y ∈ Y .

16

The list object of (X,R) is (List(X), List(R)) where List(X) is the list object of X in Pred(S) and
List(R) is defined as follows:

List(R)(s, s′) ≡

∃t∈List(Σx∈XΣx′∈XR(x,x′)) (π1(t) =List(X) s) ∧ (π2(t) =List(X) s
′) ∧ (lh(s) =List(X) lh(s′))

∨

⊥ ∧ (lh(s) < lh(s′) ∨ lh(s′) < lh(s))

where lh(l) is the length of the list l and π1 ≡ Lst(π1) and π1 ≡ Lst(π1 · π2) are obtained by lifting
the first and second projections on lists (see the appendix) and x < x′ ≡ ∃y∈N x′ =N x + (y + 1) for
x, x′ ∈ N .
List(R) can be proved to be an equivalence relation since in Trl, given two lists s, s′ ∈ List(X), we can
derive a proof of

(lh(s) =List(X) lh(s′)) ∨ (lh(s) < lh(s′)) ∨ (lh(s′) < lh(s))

Moreover, the list structure on (List(X), List(R)) is defined as follows:

r
(X,R)
o : (⊤, x =⊤ x) → (List(X), List(R)) as r

(X,R)
o (x) ≡ rXo (x)

for x ∈ X

r
(X,R)
1 : (List(X), List(R))× (X,R) → (List(X), List(R)) as r

(X,R)
1 (s, x) ≡ rX1 (s, x)

for s ∈ List(X), x ∈ X

The list object is parameterized. Indeed, given f : (Z,H) → (C,M) and g : (C,M)× (X,R) → (C,M),
by using the property of the list object List(X) in Pred(S) we obtain a Pred(S)-morphism

rec(f, g) : Z × List(X) −→ C

satisfying rec(f, g)· < id, rXo >= f and rec(f, g) · (id × rX1) = (g · (rec(f, g) × id)) · σ in Pred(S) and
hence in (Pred(S))ex .
We can prove that rec(f, g) is a morphism in (Pred(S))ex from (Z,H)× (List(X), List(R)) to (C,M).
Indeed, given z, z′ ∈ Z for which H(z, z′) holds and s, s′ ∈ List(X) for which List(R)(s, s′) holds, we
prove that M(rec(f, g)(< z, s >) , rec(f, g)(< z′, s′ >)) holds by showing by induction on n ∈ N the
validity of

M(rec(f, g)(< z , partn(s) >) , rec(f, g)(< z′ , partn(s
′) >))

where partn(s) is a list operation defined in the appendix. This lets us prove what wanted since
partk(s) =List(X) s holds for k ≥ lh(s).
Finally, we can show uniqueness of rec(f, g) in an analogous way. Indeed, for any morphism h with the
same domain and codomain of rec(f, g) satisfying

h· < id, r
(X,R)
o >= f

h · (id× r
(X,R)
1) = (g · (h× id)) · σ

in (Pred(S))ex, we can then prove by induction on n ∈ N the validity of

M(rec(f, g)(< z , partn(s) >) , h(< z′ , partn(s
′) >))

from which rec(f, g) =(Pred(S))ex
h follows.

Observe that (Pred(Sin))ex built out of the initial Skolem category Sin amounts to the initial arith-
metic universe (Pred(Sin))ex in the category of Joyal-arithmetic universes and functors induced from
functors between Skolem theories, with a fixed choice of their structure, preserving the Skolem structure.
Note that Pred(Sin) turns out to be the category of primitive recursive predicates.
In the following we simply call Ain the initial arithmetic universe (Pred(Sin))ex.

17

5 The category of primitive recursive predicates via type the-

ory

Here we outline how the category of primitive recursive predicates is equivalent to the initial arithmetic
lextensive category CTad

and also to the initial regular locos CTrl
.

To this purpose, we define two embeddings

Ead : Pred(Sin) −→ CTad
Erl : Pred(Sin) −→ CTrl

where Ead is defined as follows:

• Ead(P) ≡ Σx∈N P (x) =N 1

for any predicate P in ObPred(Sin).

• Ead(f)(z) ≡ < f(π1(z)) , eq >∈ Σx∈N Q(x) =N 1 [z ∈ Σx∈N P (x) =N 1]

for f : P → Q in Pred(Sin), that is Ead(f) is the function associating f(x) satisfying Q(f(x)) =N 1
to any x ∈ N such that P (x) =N 1 holds.

The functor Erl can be defined essentially in the same way. Indeed observe that the calculus Tad is a
fragment of Trl after recalling to represent the natural numbers object as the list type on the terminal

type. This means that the category CTad
is a subcategory of CTrl

and that the embedding CTad

�

� irl
ad // CTrl ,

which is the identity on objects and morphisms, preserves the arithmetic lextensive structure. Then, we
define Erl as the composition of the embedding irlad with Ead

Erl ≡ irlad · Ead

In the next we prove that the embeddings Ead and Erl preserve the relevant structure of their domain
categories. To prove this we will make use of the fact that 0 =N n+ 1 is false:

Lemma 5.1 In the typed calculus Tad from a proof of 0 =N n+ 1 for n ∈ N , we can derive a proof of
falsum ⊥. Therefore, also in any arithmetic lextensive category we can prove that 0 =N n + 1 is false
for n ∈ N .

Proof. By the elimination rule on the natural numbers n ∈ N we can define the term

(tt ⊕ ff) (n) ∈ ⊤⊕⊤

as follows

(tt ⊕ ff) (n) ≡

{
tt if n ≡ 0

ff if n ≡ m+ 1

where tt ≡ inl(∗) and ff ≡ inr(∗)
Hence, if there existed a proof of 0 =N n + 1, then by the rule E-Eq) of the extensional propositional
equality we would get 0 = n + 1 ∈ N . Hence, by equality preservation of tt ⊕ ff we would obtain that
(tt⊕ff)(0) = (tt⊕ff)(s(n)) ∈ ⊤⊕⊤ . Now, after recalling that (tt⊕ff)(0) = tt and (tt⊕ff)(n+1) = ff,
we would also get

ff = tt ∈ ⊤⊕⊤

By disjointness of sum, namely by rule dis-+), we would conclude a proof of ⊥ as claimed.

Now, we are ready to prove that the embeddings Ead and Erl have the following preservation properties:

Lemma 5.2 The embedding Ead is an arithmetic lextensive functor and Erl is a regular locos functor.

18

Proof. We first show that Ead preserves the arithmetic lextensive structure. The structure of CTad
is

described in [Mai05a].
Ead preserves the terminal object because, thanks to lemma 5.1, Σx∈N⊤Pred(x) =N 1 is isomorphic to ⊤
which can be chosen as a terminal object of CTad

(see [Mai05a]). Indeed, the key point is to prove that if
< x, eq >∈ Σx∈N⊤Pred(x) =N 1 then < x, eq >=Ead(⊤P red)< 0, eq > holds. This follows by elimination
of disjunction from

x =N 0 ∨ ∃y∈N x =N s(y)

that can be proved by induction on natural numbers. In the case x =N 0 we conclude trivially, and in
the case x =N s(y) for some y ∈ N we conclude by lemma 5.1.
Ead preserves binary products. Recall from [Mai05a] that the indexed sum type allows to define the
binary product Ead(P) × Ead(Q) in CTad

, for P,Q predicates, with projections π1(z) ∈ Ead(P) and
π2(z) ∈ Ead(Q), respectively, for z ∈ Ead(P) × Ead(Q).
Then, observe that the morphism induced by projections in Pred(Sin)

〈Ead(πP), Ead(πQ)〉 : Ead(P ×Q) −→ Ead(P) × Ead(Q)

has an inverse defined as follows: for z ∈ Ead(P) × Ead(Q)

In×(z) ≡< pair(π1(z1), π1(z2)) , eq >

where z1 ≡ π1(z) and z2 ≡ π2(z).
Ead preserves equalizers. Recall that the equalizer of Ead(f) and Ead(g) in CTad

, for f, g : P → Q in
Pred(Sin), is defined as

EqCTad
(Ead(f) , Ead(g)) ≡ Σz∈Ead(P) Ead(f)(z) =Ead(Q) Ead(g)(z)

and the equalizer map is π1 : EqCTad
(Ead(f) , Ead(g)) −→ Ead(P). Since the equalizer embedding

e : Eq(f, g) → P gives Ead(f) · Ead(e) = Ead(g) · Ead(e) in CTad
, it induces a morphism

Uneq : Ead(Eq(f, g)) −→ EqCTad
(Ead(f) , Ead(g))

defined as Uneq(z) ≡< Ead(e)(z) , eq > for z ∈ Ead(Eq(f, g)), which is indeed an isomorphism with
inverse Ineq defined as Ineq(z) ≡ 〈π1(π1(z)) , eq 〉 for z ∈ EqCTad

(Ead(f) , Ead(g)).
Ead preserves the initial object, since ⊥, which can be chosen as the initial object in CTad

, is isomorphic
to Σx∈N 0 =N 1 thanks to lemma 5.1.
Ead preserves binary coproducts since in Tad we can prove that N is isomorphic to the coproduct of
even numbers with odd ones. To prove this more in detail, recall that the type Ead(P) + Ead(Q) is a
binary coproduct of Ead(P) and Ead(Q) for given predicates P and Q, and its injections are the terms
inl(z) ∈ Ead(P) + Ead(Q) for z ∈ Ead(P) and inr(w) ∈ Ead(P) + Ead(Q) for w ∈ Ead(Q).
Now, the coproduct morphism induced by the injections in Pred(Sin)

Ead(j1) ⊕ Ead(j2) : Ead(P) + Ead(Q) −→ Ead(P +Q)

is an isomorphism with inverse In⊕ defined as follows: for z ∈ Ead(P +Q)

In⊕(z) ≡

{
inl(〈 z1/2 , eq 〉) if even(z1) = 1

inr(〈 (z1 ·− 1)/2 , eq 〉) if odd(z1) = 1

where z1 ≡ π1(z).
Erl is a lextensive functor being the composition of Ead with an embedding preserving such a structure.
In order to prove that Erl is a regular locos functor, we need to show that it preserves images and list
objects.
We start by showing that Erl preserves images. We recall from [Mai05a] that the image object of a
morphism Erl(f) : Erl(P) → Erl(Q) in CTrl

is defined as

Im(Erl(f)) ≡ Σw∈Erl(Q) ∃z∈Erl(P) Erl(f)(z) =Erl(Q) w

19

and the image morphism ιE(f) : Im(Erl(f)) −→ Erl(Q) is defined as

ιE(f)(z) ≡ π1(z) ∈ Erl(Q)

for z ∈ Im(Erl(f)).
From the image factorization of f in Pred(Sin) it follows that Erl(f) = Erl(ιf) · Erl(p) with Erl(ιf)
monic since Erl preserves pullbacks (recall that a monomorphism is characterized by the fact that the
projections of its pullback along itself are isomorphic to the identities). Hence by the universal property
of images there exists a morphism

Unim : Im(Erl(f)) −→ Erl(Imf)

that is indeed an isomorphism with inverse Inim defined as follows: for z ∈ Erl(Imf)

Inim(z) ≡< < f(z1) , eq > , [< z1 , eq > , eq >] >

where z1 ≡ π1(z).
Finally, we show that Erl preserves list objects. We recall that the list object of Erl(P) in CTrl

is
List(Erl(P)) with list constructors

r
Erl(P)
o (z) ≡ ǫ ∈ List(Erl(P)) for z ∈ ⊤

r
Erl(P)
1 (z) ≡ cons(π1(z) , π2(z)) for z ∈ List(Erl(P)) × Erl(P)

By using the list structure of N as defined in proposition 4.4, we can easily define an isomorphism

Bin : List(Erl(P)) −→ Erl(List(P))

by induction on the list z ∈ List(Erl(P)) as follows:

Bin(z) ≡

< 0 , eq > if z ≡ ǫ

< consList(N)(π1(Bin(s)) , π1(a)) , eq > if z ≡ cons(s, a)

for s ∈ List(Erl(P)) , a ∈ Erl(P)

whose inverse Inlist is defined by iteration on natural numbers as

Inlist(z) ≡ Ĩnlist(z , lh(z1))

for z ∈ Erl(List(P)) where z1 ≡ π1(z) and in turn Ĩnlist(z , lh(z1)) is defined as follows

Ĩnlist(z , 0) ≡ ǫ

Ĩnlist(z , n+ 1) ≡

{
cons(Ĩnlist(z , n) , < pn+1(z1), eq >) if n+ 1 ≤ lh(z1)

Ĩnlist(z , n) if n+ 1 > lh(z1)

where pn+1(z1) is the n+ 1-th projection of the number z1 thought of as a list in List(N).

Thanks to this lemma we are ready to prove that:

Theorem 5.3 The syntactic categories CTad
and CTrl

are equivalent to Pred(Sin).

Proof. Since by proposition 4.7 we know that Pred(Sin) is a regular locos, then by the initiality
of CTad

and CTrl
, as stated in theorem 3.4, there exist an arithmetic lextensive functor and a regular

locos functor, respectively Jad : CTad
−→ Pred(Sin) and Jrl : CTrl

−→ Pred(Sin), defined through the
corresponding interpretations of Tad and Trl in Pred(Sin) as detailed in [Mai05a].
It turns out that both Jad · Ead and Jrl · Erl are naturally isomorphic to the identity functor. This is
because the interpretation of a predicate P turns out to be isomorphic to itself as a Pred(Sin)-morphism
and eq(P, 1) = P holds in Sin.
Moreover, being CTad

and CTrl
respectively an initial up to iso arithmetic lextensive category and an

initial up to iso regular locos, then Ead · Jad : CTad
−→ CTad

and Erl · Jrl : CTrl
−→ CTrl

are naturally
isomorphic to the corresponding identity functors and hence we conclude.

20

Corollary 5.4 The initial arithmetic lextensive category CTad
is equivalent to the initial regular locos

CTrl
.

From this corollary we conclude that stable images and parameterized list objects are definable in the
initial arithmetic lextensive category by translating back into CTad

the image and list structures of CTrl
via

the equivalences in theorem 5.3. But, since these equivalences are built through interpretation functors,
defined in turn by induction on type and term constructors, we can not expect to be able to construct
images and lists internally to any arithmetic lextensive category. Indeed the construction of images and
list objects rely on the fact that every object can be considered a predicate on natural numbers as in
Pred(Sin): this is an external property that does not seem necessarily valid internally in any arithmetic
lextensive category. Logically it means that any type of the internal language of CTad

, which is the pure
calculus Tad without the addition of axioms, can be seen as an indexed sum of a predicate on natural
numbers. But this property does not seem necessarily valid in any theory of Tad.

6 The initial arithmetic universe via type theory

Here, we outline how the construction of the initial arithmetic universe Ain is equivalent to the initial
arithmetic pretopos CTpn

and also to the initial list-arithmetic pretopos CTau
.

To this purpose, analogously to the embeddings of lemma 5.2 we define the embeddings

Epn : Pred(Sin) −→ CTpn
Eau : Pred(Sin) −→ CTau

They are essentially defined as Ead. Indeed observe that the calculus Tad is a fragment of Tpn and also of
Tau, always after recalling to represent the natural numbers object as the list type on the terminal type.
This means that the category CTad

is a subcategory of CTpn
and also of CTau

. Therefore the embeddings

CTad

�

�
ipn

ad // CTpn CTad

�

� iau
ad // CTau

which are the identity on objects and morphisms, preserve the arithmetic lextensive structure. Then,
we put

Epn ≡ ipnad · Ead Eau ≡ iauad · Ead

Now note that Epn and Eau enjoy the same preservation properties of Ead and also of Erl when applicable:

Lemma 6.1 The embedding Epn is regular and preserves finite disjoint coproducts and the parameterized
natural numbers object.
The embedding Eau is regular and preserves finite disjoint coproducts and parameterized list objects.

Therefore, by the above lemma, since Ain is the exact completion of Pred(Sin), by its universal prop-
erty [CV98] there exist two exact functors

Êpn : Ain −→ CTpn
Êau : Ain −→ CTau

such that
Êpn · Y ≃ Epn Êau · Y ≃ Eau

Êpn can be explicitly defined as follows:

• Êpn((X,R)) ≡ Epn(X)/Epn(R),

• Êpn(f) ≡ Q(Epn(f)) for f : (X,R) → (Y, S), where Q(Epn(f)) is the unique map from the
quotient Epn(X)/Epn(R) to Epn(Y)/Epn(S) such that Q(Epn(f))([x]) ≡ [Epn(f)(x)] for x ∈
Epn(X).

21

The functor Êau is defined in the same way by using Eau in place of Epn. However, since Tpn is a fragment
of Tau, and hence the category CTpn

is a subcategory of CTau
with an embedding

CTpn
�

�

iau
pn

// CTau

preserving the arithmetic pretopos structure, it turns out that Êau satisfies

Êau = iaupn · Êpn

From [CV98] we know that Êau as well as Êpn are exact functors. Here we check that they preserve also
finite coproducts and, respectively, list objects and the natural numbers object:

Lemma 6.2 The functor Êpn : Ain −→ CTpn
preserves the arithmetic pretopos structure as well as the

functor Êau : Ain −→ CTau
preserves the list-arithmetic pretopos structure.

Proof. For simplicity, we just show that Êau preserves finite disjoint coproducts and list objects. The
proof that Êpn is an arithmetic pretopos functor can be seen a special case of the above, given that these
functors are defined in the same way and that natural numbers are lists on the terminal type.
Moreover we use the abbreviations XE and RE for Eau(X) and Eau(R) respectively.

Clearly, Êau preserves the initial object. Indeed, given that Eau preserves the initial object, then
Êau((⊥Pred, x =⊥Pred

x)) ≃ ⊥/(x =⊥ x) which is in turn isomorphic to ⊥.

Now we prove that Êau preserves the binary coproduct structure. The binary coproduct of Êau((X,R))

and Êau((Y, S)) is XE/RE +Y E/SE with the coproduct structure described in lemma 5.2 for CTad
. Since

Eau preserves coproducts, for simplicity we suppose Êau((X + Y,R+ S)) ≡ XE + Y E/RE + SE . Then,
injections in (X + Y,R+ S) induce an isomorphism

Êau(iR) ⊕ Êau(iS) : Êau((X,R)) + Êau((Y, S)) −→ Êau((X + Y,R+ S))

whose inverse Q(Incp) is defined as the unique map induced on the quotient XE + Y E/RE + SE by a
map Incp : XE +Y E −→ XE/RE +Y E/SE defined by elimination on the sum as follows: for w ∈ XE +Y E

Incp(w) ≡

{
inl([x]XE/RE) if w = inl(x) for x ∈ XE

inr([y]Y E/RE) if w = inr(y) for y ∈ Y E

Now we prove that Êau preserves the list object structure. The list object on Êau(X,R) = XE/RE is
List(XE/RE) with the list structure described in lemma 5.2 for CTrl

. Since Eau preserves list objects,

for simplicity we suppose Êau((List(X), List(R)) ≡ List(XE)/List(RE). Now, by induction on the list
structure of List(XE/RE) we can define an isomorphism

Unlist : List(Êau(X,R)) −→ Êau((List(X), List(R))

as follows: for z ∈ List(XE/RE)

Unlist(z) ≡

{
[ǫ]L′ if z = ǫ

Q(cons)(Unlist(l) , c) if w = cons(l, c) for l ∈ List(XE/RE), c ∈ XE/RE

where L′ ≡ List(XE)/List(RE) and in turn

Q(cons) : List(XE)/List(RE) ×XE/RE −→ List(XE)/List(RE)

is the unique map induced on the quotients List(XE)/List(RE) and XE/RE such that

Q(cons)([s]L′ , [x]XE/RE) ≡ [cons(s, x)]L′

for s ∈ List(XE) and x ∈ XE .

22

The inverse of Unlist, called Q(Inlist), can be defined as the unique map induced on the quotient
List(XE)/List(RE) by a map Inlist : List(XE) −→ List(XE/RE) preserving the relation List(RE)
and defined by induction on List(X)E as follows: for w ∈ List(XE)

Inlist(w) ≡

{
ǫ if w = ǫ

cons(Inlist(s) , [x]XE/RE) if w = cons(s, x) for s ∈ List(XE), x ∈ XE

In order to show that Inlist preserves the relation List(RE), namely that if List(RE)(w,w′) holds then
Inlist(w) =List(XE/RE) Inlist(w

′) holds, too, we prove that Inlist(partn(w)) =List(XE/RE) Inlist(partn(w
′))

holds by induction on natural numbers.

Now, we are ready to prove:

Theorem 6.3 Both the syntactic categories CTpn
and CTau

are equivalent to Ain.

Proof. Since by proposition 4.10 we know that Ain is a list-arithmetic pretopos, by the initiality of
CTpn

and of CTau
, as stated in theorem 3.4, there exist an arithmetic pretopos functor Jpn : CTpn

−→ Ain

and a list-arithmetic pretopos functor Jau : CTau
−→ Ain defined on objects and morphisms through

the interpretation of Tpn and of Tau in Ain, respectively, as described in [Mai05a].
Then, note that Jpn · Epn and Jau · Eau are both naturally isomorphic to Y. Indeed, since the

interpretation of a predicate P in the initial Skolem category turns out to be isomorphic to Y(P)
thinking of P as a morphism, eq(P, 1) =Sin

P holds and Y preserves finite limits (see [CV98]), then the
interpretation of Epn(P) is still isomorphic to Y(P) and the same happens for morphisms.

Hence, we get Y ≃ Jpn · Epn ≃ Jpn · (Êpn · Y) ≃ (Jpn · Êpn) · Y and by the uniqueness property of the

exact completion we conclude that Jpn · Êpn is naturally isomorphic to the identity functor. The same
argument lets us conclude that Jau · Eau is also isomorphic to Y.

Moreover, being CTpn
the initial up to iso arithmetic pretopos and CTau

the initial up to iso list-

arithmetic pretopos, thanks to theorem 3.4 we also get that Êpn · Jpn is naturally isomorphic to the

identity functor as well Êau · Jau. Therefore, we conclude that both CTpn
and CTau

are equivalent to Ain.

Corollary 6.4 The initial arithmetic pretopos CTpn
is equivalent to the initial list-arithmetic pretopos

CTau
.

From this corollary we deduce that parameterized list objects are definable in the initial arithmetic
pretopos via the equivalences in theorem 6.3. But it is worth noticing also here, as after corollary 5.4,
that, since such equivalences make use of interpretation functors defined by induction on type and term
constructors, we can not directly deduce that any arithmetic pretopos is list-arithmetic.
This is not an exceptional fact: consider for example that the initial finite product category and the
initial finite limit category coincide with the trivial category with one object and one arrow.
We end by leaving as an open problem whether a generic arithmetic pretopos is also list-arithmetic.

7 Free internal categories and diagrams in a list-arithmetic pre-

topos

In this section we show how to define free internal categories and diagrams within a list-arithmetic
pretopos by means of its internal language. Recall that any list-arithmetic pretopos U is equivalent to
the syntactic category CT (U) built out of its internal type theory T (U). This type theory is obtained
from Tau by adding specific axioms regarding the proper dependent types and terms of U and their
corresponding equalities valid in U , as described in [Mai05a].

The use of the internal language is helpful here to perform proofs by induction. In particular, in
building free internal categories and diagrams a key difficulty is to define operations on proper subtypes

23

of list types with no specific recursion principle available. We overcome this difficulty by defining such
operations by recursion on natural numbers through iteration of suitable operations. And here the use
of a logical/type theoretic language in which to perform inductions as usual is more helpful than the
categorical reasoning via universal properties.
This technique has already been applied to prove that the slice categories of a locos enjoy list objects
in section 3.2.1. Moreover, it is also the same technique that one can adopt to prove that in a Skolem
category the natural numbers object N is a list object on itself as stated in proposition 4.4.

7.1 Free internal categories

Given a graph G ≡ (G0,G1, dmG , cdG) internal to a list-arithmetic pretopos U

G1

dmG
//

cdG

// G0

we build the free internal category generated from it. For a general account on these concepts about
internal category theory we refer to [Joh77] or [MM92] or [Joh02a].

Def. 7.1 Given a graph G ≡ (G0,G1, dmG , cdG) internal to U , we define the category CG as a candidate
to be the free internal category generated from G as follows.
The objects of CG are defined as the graph objects CG

0 ≡ G0.
The morphisms of CG are defined as the coproduct of the graph objects G0 representing the identity

maps with lists of composable graph arrows represented by ĈG
1:

CG
1 ≡ G0 ⊕ ĈG

1

where ĈG
1 is formally defined as the equalizer of the set of non-empty lists of composable arrows,

namely lists of arrows ⌊f1, . . . , fn⌋ such that ⌊dmG(f2), . . . , dmG(fn)⌋, that is frt · Lst(dmG)([f1, . . . , fn]),
is equal to the list ⌊cdG(f1), . . . , cdG(fn−1)⌋, that is bck ·Lst(cdG)(⌊f1, . . . , fn⌋) (see the definition of such
operations in the appendix):

dCG
1

�

�

// List∗(G1)

frt·Lst(dmG)
//

bck·Lst(cdG)
// List(G0)

where

ĈG
1 ≡ Σw∈List∗(G1) frt · Lst(dmG)(w) =List(G0) bck · Lst(cdG)(w)

The domain morphism dmCG : CG
1 −→ CG

0 is defined as the coproduct morphism of the identity with
the domain of the first morphism of the list

dmCG ≡ id⊕ (dmG · (fst · π1))

while the codomain morphism cdCG : CG
1 −→ CG

0 is defined as the coproduct morphism of the identity
with the codomain of the last morphism of the list

cdCG ≡ id⊕ (cdG · (las · π1))

The unit eCG : CG
0 → CG

1 is defined as the first injection

eCG (x) ≡ inl(x) for x ∈ CG
0

It follows immediately that
dmCG · eCG = id cdCG · eCG = id

The composition of morphisms

CmpCG (w) ∈ CG
1 [w ∈ CG

1 ×CG
0
CG

1]

24

where CG
1 ×CG

0
CG

1 is the vertex of the pullback of dmCG along cdCG

CG
1 ×CG

0
CG

1 ≡ Σf∈CG
1

Σg∈CG
1

cdCG (f) =CG
0

dmCG (g)

is defined by cases after noting that by distributivity of coproducts with respect to pullbacks we have

(G0 ⊕ ĈG
1) ×CG

0
(G0 ⊕ ĈG

1)

∼= (G0 ×CG
0
G0) ⊕ (G0 ×CG

0
ĈG

1) ⊕ (ĈG
1 ×CG

0
G0) ⊕ (ĈG

1 ×CG
0
ĈG

1)

In the next we simply write < z1 ,CG
0
z2 > for z1, z2 ∈ CG

1 such that < z1 , < z2 , eq >>∈ CG
1×CG

0
CG

1

In detail the composition is defined by cases as follows

CmpCG (< z1 ,CG
0
z2 >) ≡

inl(x) if z1 = inl(x) = z2

for x ∈ G0

inr(s) if z1 = inl(x) and z2 = inr(s)

for x ∈ G0 and for s ∈ ĈG
1

inr(s) if z2 = inl(y) and z1 = inr(s)

for y ∈ G0 and for s ∈ ĈG
1

inr(< ⌊π1(s1), π1(s2)⌋, eq >) if z1 = inr(s1) and z2 = inr(s2)

for s1 ∈ ĈG
1 and for s2 ∈ ĈG

1

It is easy to check that this is well defined and that the composed morphism has the right domain and
codomain:

dmCG · π′
1 = dmCG · CmpCG cdCG · π′

2 = cdCG · CmpCG
1

where π′
1 and π′

2 are respectively the first and second projection of the pullback of dmCG along cdCG .
Moreover, given that the operation of appending a list to another is associative, it follows that the
composition is associative, too

CmpCG · (CmpCG × id) · σ = CmpCG · (id× CmpCG)

where σ is isomorphism from CG
1 ×CG

0
(CG

1 ×CG
0
CG

1) to (CG
1 ×CG

0
CG

1) ×CG
0
CG

1.
Finally it is easy to show that the defined composition admits the morphism eCG as identity:

CmpCG · (eCG × id) = π′
2 CmpCG · (id× eCG) = π′

1

Then, we are ready to prove:

Proposition 7.2 Internally to any list-arithmetic pretopos U , given a graph G ≡ (G0, G1, dmG , cdG)

G1

dmG
//

cdG

// G0

then the category CG ≡ (CG
0, CG

1, dmCG , cdCG , eCG , CmpCG) defined above in definition 7.1

CG
1

dm
CG

//

cd
CG

// CG
0

e
CGoo CmpCG : CG

1 ×CG
0
CG

1 −→ CG
1

is the free internal category generated by it.

Proof. Let CG
0 and CG

1 be defined as above. Then we define the injection from the graph into its
claimed free internal category as follows: j0 : G0 −→ CG

0 is the identity map, that is j0 ≡ idG0
in U , and

j1 : G1 → CG
1 is defined as j1(f) ≡ inr(< ⌊f⌋ , eq >) for f ∈ G1. Then, (j0, j1) is a graph morphism

from G to CG since it satisfies

dmD · j1 = j0 · dmG cdD · j1 = j0 · cdG

25

Now, we prove that (j0, j1) has the universal property of lifting a graph morphism (ψ0, ψ1) from G to an
internal category D to an unique internal functor (ψlf

0 , ψ
lf
1) from CG to D

G
(j0,j1)

//

(ψ0,ψ1)
&&N

N

N

N

N

N

N

N

N

N

N

N

N

N CG

(ψ0
lf , ψ1

lf)

��

D

Hence, given an internal category D ≡ (D0, D1, dmD, cdD, eD, CmpD)

D1

dmD //

cdD

// D0eDoo CmpD : D1 ×D0
D1 −→ D1

and a graph morphism (ψ0, ψ1) where ψ0 : G0 → D0 and ψ1 : G1 → D1 are maps in U satisfying

dmD · ψ1 = ψ0 · dmG cdD · ψ1 = ψ0 · cdG

we define an internal functor

ψlf
0 : CG

0 −→ D0 ψlf
1 : CG

1 −→ D1

such that ψlf
0 · j0 = ψ0 and ψlf

1 · j1 = ψ1. Being C0 = G0, we obviously define

ψlf
0 ≡ ψ0

Then, in order to define ψlf
1 : CG

1 → D1, recall that CG
1 = G0 ⊕ ĈG

1. Hence we define ψlf
1 as a coproduct

morphism of the action on identity morphisms and on lists of composable graph morphisms. To identity
morphisms we associate the corresponding identity ones by using ψ0. Instead to a list of composable
G-graph morphisms we associate the composition of their values as D-morphisms via ψ1. Hence, we
define

ψlf
1 ≡ (eD · ψ0) ⊕ (app · C(ψ1))

where
C(ψ1) : ĈG

1 −→ ĈD
1

is just the lifting of ψ1 between the corresponding list parts defined as follows: for z ∈ ĈG
1

C(ψ1)(z) ≡< Lst(ψ1)(π1(z)) , eq >∈ ĈD
1

and
app : ĈD

1 −→ D1

is a map sending a list of composable morphisms of D1 into their composition. At this point note that

we can not define app by using an inductive elimination rule on ĈD
1 as for List∗(G1) in proposition A.4

of the appendix. But we define app by iteration: we first fix a list s obtained by first projection from

ĈD
1, then we compose the first element of the list with the second and so on, namely to define the value

of app(s) we iterate the described operation for a number of times equal to the length of s minus one

(we start to apply from zero!). Formally, we define app as follows: for s ∈ ĈD
1

app(s) ≡ ãpp(s, lh(s1) − 1)

by using the operation

ãpp(s, n) ∈ D1 [s ∈ ĈD
1, n ∈ N]

defined in turn by induction on natural numbers as follows:

26

ãpp(s, 0) ≡ p1(s1) ãpp(s, n+1) ≡

{
CmpD(< ãpp(s, n) ,D0

pn+2(s1) >) if n+ 2 ≤ lh(s1)

ãpp(s, n) if n+ 2 > lh(s1)

where s1 ≡ π1(s).
Actually, in order to guarantee that ãpp is well-defined we need to know that ãpp(s , n) has the same
codomain as the domain of pn+2(s1) and we have to add this information when defining it by induction.
Therefore, formally ãpp is obtained by applying the first projection on the corresponding term of type

Σx∈D1
((cdD(x) =D0

dmD(pn+2(s1)) ∧ n+ 2 ≤ lh(s1)) ∨ n+ 2 > lh(s1)) [s ∈ ĈD
1, n ∈ N]

defined by induction on natural numbers essentially as ãpp together with a proof of the needed extra
information.
Clearly, it follows that ψlf

1 · j1 = ψ1. Moreover, we can prove that ψlf
1 is functorial, i.e. it satisfies the

following equations:
dmD · ψlf

1 = ψlf
0 · dmCG cdD · ψlf

1 = ψlf
0 · cdCG

ψlf
1 · eCG = eD · ψlf

0

CmpD · (ψlf
1 × ψlf

1) = ψlf
1 · CmpCG

In order to prove the first two equations, we show that the following equations hold, for s ∈ ĈD
1,

dmD(ãpp(s, n)) =D0
dmD(p1(s1)) cdD(ãpp(s, n)) =D0

cdD(pn+1(s1))

by induction on n ∈ N .

The third equation follows easily. Instead to prove the last equation, for z ∈ ĈD
1, w ∈ ĈD

1 such that
cdCD(inr(z)) =D0

dmCD (inr(w)) we derive the validity of the following: for n ≤ lh(z1) − 1

φ (< ⌊ z1 , w1 ⌋ , eq > , n) =D1
φ(z1, n)

and for n ≤ lh(w1) − 1

CmpD(φ(z, l1) ,D0
φ(w, n)) =D1

φ (< ⌊ z1 , w1 ⌋ , eq > , l1 + n+ 1)

where l1 = lh(z1) − 1 and z1 ≡ π1(z) and w1 ≡ π1(w). The actual proof is derived by induction on
n ∈ N towards the type obtained by enriching the above equations with the constrain on n in disjunctive
form, as done to derive ãpp.
Now we end by proving the uniqueness of (ψlf

0 , ψ
lf
1). Suppose that there exists an internal functor given

by ρ0 : CG
0 → D0 and ρ1 : CG

1 → D1 such that ρ0 · j0 = ψ0 and ρ1 · j1 = ψ1. Then, since j0 = id we
get that ρ0 = ψlf

0 follows trivially. It remains to prove that also ρ1 = ψlf
1 . To this purpose we prove by

induction on n ∈ N the following: for z ∈ ĈG
1 and n ≥ 1

ρ1(inr(p̂artn(z))) =D1
ψlf

1 (inr(p̂artn(z)))

where p̂artn(z) ≡< partn(z1) , eq > and z1 ≡ π1(z).
Then, by the elimination rule on the sum type CG

1 and knowing that partlh(s)(s) =List∗(G1) s holds, we

get that ψlf
1 (z) =D1

ρ1(z) for z ∈ CG
1 holds.

Therefore, we conclude that (ψlf
0 , ψ

lf
1) is the unique internal functor obtained by lifting (ψ0, ψ1). This

ends the proof that CG is the free category internally to a list-arithmetic pretopos.

7.2 Free internal diagrams

Applying the same technique adopted to build free internal categories, we can also prove that in any
list-arithmetic pretopos free internal categorical diagrams exist. Also here, the key point is to show the
universal property of the free internal diagram by defining an operation on a proper subtype of a list
type by iteration on natural numbers.

27

Proposition 7.3 In any list-arithmetic pretopos U , given the internal graph G ≡ (G0, G1, dmG , cdG)

G1

dmG
//

cdG

// G0

and the internal diagram π0 : F −→ G0 with the action

µ : F ×G0
G1 −→ F

such that the following diagram commutes

F ×G0
G1

π2 //

µ

��

G1

cdG

��

F π0

// G0

where F ×G0
G1 is the vertex of the pullback of dmG along π0

F ×G0
G1 ≡ Σf∈F Σz∈G1

π0(f) =G0
dmG(z)

and π2 its second projection,
we can lift µ to an unique action on CG

1

µlf : F ×CG
0
CG

1 −→ F

where F ×CG
0
CG

1 is the vertex of the pullback of dmCG along π0

F ×CG
0
CG

1 ≡ Σf∈F Σz∈CG
1
π0(f) =G0

dmCG (z)

that is µlf is an internal diagram on the underlying graph of the free category
CG ≡ (CG

0, C
G

1, dmCG , cdCG , eCG , CmpCG) such that

F ×G0
CG

1

π′
2 //

µlf

��

CG
1

cd
CG

��

F π0

// CG
0

π0 · µ
lf = cdCG · π′

2

where π′
1 and π′

2 are respectively the first and the second projections of the pullback of dmCG along π0,
and in addition also the following diagrams commute

F ×CG
0
CG

0
id×e

//

π′
1

((P

P

P

P

P

P

P

P

P

P

P

P

P

F ×CG
0
CG

1

µlf

��

F

F ×CG
0

(CG
1 ×CG

0
CG

1)
(µlf×id)·σ

//

id×Cmp
CG

��

F ×CG
0
CG

1

µlf

��

F ×CG
0
CG

1
µlf

// F

where

F ×CG
0

(CG
1 ×CG

0
CG

1)

≡ Σf∈F Σz1∈CG
1

Σz2∈CG
1

π0(f) =G0
dmCG (z1) ∧ cdCG (z1) =G0

dmCG (z2)

is the vertex of the pullback along π′
2 of the first projection of the pullback of dmCG along cdCG and σ is

the isomorphism from F ×CG
0

(CG
1 ×CG

0
CG

1) to (F ×CG
0
CG

1) ×CG
0
CG

1.

28

Proof. In order to define the action µlf , note that by distributivity of coproducts with respect to
pullbacks we get

F ×CG
0
CG

1 = F ×CG
0

(G0 ⊕ ĈG
1) ≃ (F ×G0

G0) ⊕ (F ×G0
ĈG

1)

Hence, by the elimination rule on the sum type we define µlf : F ×CG
0
CG

1 −→ F as follows: for f ∈ F ,
z ∈ CG

1 such that < f,CG
0
z >∈ F ×CG

0
CG

1

µ̃lf(< f,CG
0
z >) ≡

f if z = inl(x) for x ∈ G0

µ̃lf(f, s, lh(s1) − 1) if z = inr(s) for s ∈ ĈG
1 such that π0(f) =G0

dmCG (inr(s))

where s1 ≡ π1(s) and in turn

µ̃lf(f, s, n) ∈ F [f ∈ F, s ∈ ĈG
1, d ∈ π0(f) =G0

dmCG (inr(s))]

is defined as follows:

µ̃lf(f, s, 0) ≡ µ(< f ,G0
p1(s1) >)

µ̃lf(f, s, n+ 1) ≡

µ(< µ̃lf(f, s, n) ,G0

pn+2(s1) >) if n+ 2 ≤ lh(s1)

µ̃lf(f, s, n) if n+ 2 > lh(s1)

But in order to assure the well definedness of the above definition we need to know the validity of

π0(µ̃lf(f, s, n)) =G0
dmG(pn+2(s1)). Therefore, µ̃lf is formally obtained by applying the first projection

on the corresponding term of type

Σx∈F ((π0(x) =G0
dmG(pn+2(s1)) ∧ n+ 2 ≤ lh(s1)) ∨ n+ 2 > lh(s1)) [s ∈ ĈG

1, n ∈ N]

defined by induction on natural numbers essentially as app in the previous section together with a proof
of the needed extra information.
It follows that µlf is an internal diagram, namely that

π0 · µ
lf = cdCG · π′

2 µlf · (id× eCG) = π′
1 µlf · (id× CmpCG) = µlf · (µlf × id) · σ

and that µlf is unique with arguments similar to those used for ψlf
1 in theorem 7.2.

8 Conclusions

As promised we have shown here the following facts:

• arithmetic universes built by Joyal are list-arithmetic pretopoi;

• the initial arithmetic universe among Joyal’s constructions is equivalent to the initial list-arithmetic
pretopos;

• any list-arithmetic pretopos enjoys free categories and diagrams generated from graphs.

We think that these three facts provide the claimed justification for the identification of the general
notion of arithmetic universe with that of list-arithmetic pretopos:

Def. 8.1 An arithmetic universe is a list-arithmetic pretopos.

29

We leave as an open problem whether the notion of arithmetic pretopos, namely a pretopos with a
parameterized natural numbers object, can be taken as a notion of arithmetic universe. This suspicion is
supported by the fact that the initial arithmetic pretopos is equivalent to the initial arithmetic universe
built by Joyal. However we doubt that any arithmetic pretopos supports free internal categories and
diagrams or is list-arithmetic.

Finally, our general definition of arithmetic universe as list-arithmetic pretopos is equivalent to that
used in a recent talk by Andrè Joyal [Joy05].

Acknowledgements My acknowledgements go first to Martin Hyland, who proposed me to work
on arithmetic universes and helped me with many fruitful discussions during my staying in Cambridge.
Many thanks also to Steve Vickers for providing me Gavin Wraith’s unpublished notes [Wra85] with the
master’s thesis of his student [Mor96] and to Robin Cockett for sending Roland’s master’s thesis [Rol76].
Then, I wish also to thank Pino Rosolini, Giovanni Sambin, Paul Taylor and Silvio Valentini for their
generous promptness in discussing my research work. Finally, I am very grateful to Andrè Joyal for his
interest in this work and for letting me know his draft about Gödel incompleteness.

References

[BCRS98] L. Birkedal, A. Carboni, G. Rosolini, and D. Scott. Type theory via exact categories
(extended abstract). In Thirteenth Annual IEEE Symposium on Logic in Computer Science
(Indianapolis, IN, 1998), IEEE Computer Soc., pages 188–198, 1998.

[Car95] A. Carboni. Some free constructions in realizability and proof theory. J. Pure Appl.
Algebra, 103:117–148, 1995.

[CLW93] A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and distributive cate-
gory. Journal of Pure and Applied Algebra, 84:145–158, 1993.

[Coc90] J.R.B. Cockett. List-arithmetic distributive categories: locoi. Journal of Pure and Applied
Algebra, 66:1–29, 1990.

[CV98] A. Carboni and E.M. Vitale. Regular and exact completions. Journal of Pure and Applied
Algebra, 125:79–116, 1998.

[dB91] N.G. de Bruijn. Telescopic mapping in typed lambda calculus. Information and Compu-
tation, 91:189–204, 1991.

[Hof95] M. Hofmann. On the interpretation of type theory in locally cartesian closed categories. In
Computer science logic (Kazimierz, 1994), volume 933 of Lecture Notes in Comput. Sci.,
pages 427–441, 1995.

[Hyl82] J. M. E. Hyland. The effective topos. In The L.E.J. Brouwer Centenary Symposium
(Noordwijkerhout, 1981), volume 110 of Stud. Logic Foundations Math., pages 165–216.
North-Holland, Amsterdam-New York,, 1982.

[JM95] A. Joyal and I. Moerdijk. Algebraic set theory., volume 220 of Lecture Note Series. Cam-
bridge University Press, 1995.

[Joh77] P. Johnstone. Topos theory. Academic Press, 1977.

[Joh02a] P. T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 1., volume 43
of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York,, 2002.

[Joh02b] P. T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 2., volume 44
of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York,, 2002.

[Joy05] A. Joyal. The Gödel incompleteness theorem, a categorical approach. Cahiers de topologie
et geometrie differentielle categoriques, 16(3), 2005. Short abstract of the talk given at the
International conference Charles Ehresmann: 100 ans, Amiens, 7-9 October, 2005.

30

[LR03] F. W. Lawvere and R. Rosebrugh. Sets for mathematics. Cambridge University Press,
2003.

[Mai99a] M.E. Maietti. About effective quotients in constructive type theory. In W. Naraschewski
T. Altenkirch and B. Reus, editors, Types for proofs and programs. International workshop,
TYPES ’98. Kloster Irsee, Germany, March 27-31. 1999, volume 1657 of Lectures Notes
in Computer Science, pages 164–178. Springer Verlag, 1999.

[Mai99b] M.E. Maietti. The typed calculus of arithmetic universes. Technical report, University of
Birmingham, CSR-99-14, December 1999. also Technical Report-University of Padova n.5
Dec. 1999.

[Mai03] M.E. Maietti. Joyal’s arithmetic universes via type theory. In Category Theory in Computer
Science, 2002, volume 69 of Electronic Notes in Theoretical Computer Science. Elsevier,
2003.

[Mai05a] M.E. Maietti. Modular correspondence between dependent type theories and categories
including pretopoi and topoi. Mathematical Structures in Computer Science, 15(6), 2005.

[Mai05b] M.E. Maietti. Reflection into models of finite decidable fp-sketches in an arithmetic uni-
verse. In Category Theory in Computer Science, 2004, volume 122 of Electronic Notes in
Theoretical Computer Science, pages 105–126. Elsevier, 2005.

[Mar84] P. Martin-Löf. Intuitionistic Type Theory, notes by G. Sambin of a series of lectures given
in Padua, June 1980. Bibliopolis, Naples, 1984.

[MM92] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic. A first introduction to Topos
theory. Springer Verlag, 1992.

[MMdPR05] M.E. Maietti, P. Maneggia, V. de Paiva, and E. Ritter. Relating categorical semantics for
intuitionistic linear logic. Applied Categorical Structures, 13(1):1–36, 2005.

[Mor96] A. Morrison. Reasoning in arithmetic universes. Master’s thesis, University of London
- Imperial College of Science, Technology and Medicine, Advisor: S. Vickers, September
1996.

[MR77] M. Makkai and G. Reyes. First order categorical logic., volume 611 of Lecture Notes in
Mathematics. Springer Verlag, 1977.

[NPS90] B. Nordström, K. Peterson, and J. Smith. Programming in Martin Löf ’s Type Theory.
Clarendon Press, Oxford, 1990.

[Odi89] P. Odifreddi. Classical recursion theory., volume 125 of Studies in Logic and the Founda-
tions of Mathematics. North-Holland Publishing Co., 1989.

[Pit00] A.M. Pitts. Categorical logic. In Oxford University Press, editor, Handbook of Logic in
Computer Science, volume 5 of Oxford Sci. Publ., pages 39–128, 2000.

[Rol76] S. Roland. Essai sur les mathematiques algorithmiques. Master’s thesis, L’Universitè du
Quebec, Montreal - Maitrise es sciences (mathematiques), Advisor: A. Joyal, January 1976.

[See84] R. Seely. Locally cartesian closed categories and type theory. Math. Proc. Cambr. Phyl.
Soc., 95:33–48, 1984.

[Smi88] J. Smith. The independence of Peano’s fourth axiom from Martin Löf’s type theory without
universes. Journal of Symbolic Logic, 53, 1988.

[Str91] Th. Streicher. Semantics of type theory. Birkhäuser, 1991.

31

[Tay05] P. Taylor. Inside every model of abstract stone duality lies an arithmetic universe. In
Category Theory in Computer Science, 2004, volume 122 of Electronic Notes in Theoretical
Computer Science, pages 247–296. Elsevier, 2005.

[Wra85] G. C. Wraith. Notes on arithmetic universes and Gödel incompleteness theorems. Unpub-
lished manuscript., 1985.

A Appendix: Useful operations on list types

Here, we describe some very useful operations on list types following the notation in remark 3.2.
We warn the reader that when defining an operation by elimination on the list type we simply write the
base and inductive steps necessary to define it instead of writing the whole resulting proof-term.

Def. A.1 We define the length of a list lh(s) ∈ List(A) [s ∈ List(A)] by the elimination rule on the
list type as follows

lh(ǫ) ≡ 0 lh(⌊s, a⌋) ≡ lh(s) + 1

Def. A.2 Given a term φ(x) ∈ B [x ∈ A] we lift this term on lists by defining

Lst(φ)(s) ∈ List(B) [s ∈ List(A)]

by elimination on the list type as follows

Lst(φ)(ǫ) ≡ ǫ Lst(φ)(⌊s, a⌋) ≡ ⌊Lst(φ)(s), φ(a)⌋

Now, we define the type of non-empty lists which enjoys also a specific induction.

Def. A.3 The type of non-empty lists is defined as

List∗(A) ≡ Σt∈List(A) lh(t) ≥ 1

where n ≥ m may be defined as ∃y∈N n =N m+ y.

In the next, given a non-empty list l ∈ List(A) such that p ∈ lh(l) ≥ 1 we simply write

l∗ ∈ List∗(A) instead of < l, p >∈ List∗(A)

Observe that we can think of List∗(A) as the inductive type with the following constructors:

- the basic constructors of List∗(A) are the one element lists on A: for a ∈ A

⌊a⌋∗ ∈ List∗(A)

- the list constructor cons of List(A) produces a constructor

consList∗(z, a) ∈ List∗(A) [z ∈ List∗(A), a ∈ A]

defined as consList∗(z, a) ≡ cons(z1, a)
∗ where z1 ≡ π1(z).

In order to define operations on the type List∗(A) of non-empty lists, we can use an elimination rule
analogous to that one for List(A). This elimination says that in order to define an operation on the
type List∗(A) we first define the operation on the one element lists, which is the base case, and then we
specify how to define it on the lists obtained by adding a new element to a list on which the operation
is supposed to be already defined, which is the inductive case.

32

Proposition A.4 (Induction on non-empty lists) Given the type B(s) [s ∈ List∗(A)] and the fol-
lowing terms

(base case) d1(x) ∈ B(⌊x⌋∗) [x ∈ A]
(inductive case) d2(s , y , w) ∈ B(consList∗(s, y)) [s ∈ List∗(A), y ∈ A,w ∈ B(s)]

there exists a term ElList∗(z) ∈ B(z) [z ∈ List∗(A)] such that for s ∈ List∗(A), x ∈ A, y ∈ A

ElList∗(⌊x⌋∗) = d1(x)
ElList∗(consList∗(s, y)) = d2(s , y , ElList∗(s))

Proof. By using the hypothesis of our statement we can derive a proof of the type

Σz′∈List(A)∗ (B(z′) × w =List(A) π1(z
′)) + w =List(A) ǫ

by induction on w ∈ List(A). Then, observe that for z ∈ List∗(A), since π1(z) =List(A) ǫ is false
by sum disjointness (with a proof similar to that of proposition 5.1), and since z = z′ ∈ List∗(A) if
π1(z) =List(A) π1(z

′) holds, we then conclude a proof of B(z) as claimed.

Remark A.5 In order to facilitate the definition of operations on non-empty lists, here and in the main
body of this paper we simply write

l ∈ List∗(A) if l ∈ List(A) with a proof of lh(l) ≥ 1

and conversely also simply

l ∈ List(A) if l ∈ List∗(A)

Def. A.6 On List∗(A), we define the operation frt(s) ∈ List(A) [s ∈ List∗(A)] taking the front of a
non-empty list: for s ∈ List∗(A) and a ∈ A

frt(⌊a⌋) ≡ ǫ frt(⌊s, a⌋) ≡ ⌊frt(s), a⌋

and the operation bck(s) ∈ List(A) [s ∈ List∗(A)] taking the back of a non-empty list: for s ∈ List∗(A)
and a ∈ A

bck(⌊a⌋) ≡ ǫ bck(⌊s, a⌋) ≡ s

Moreover, we define the operation fst(s) ∈ A [s ∈ List∗(A)] selecting the first element of a list as follows:
for s ∈ List∗(A) and a ∈ A

fst(⌊a⌋) ≡ a fst(⌊s, a⌋) ≡ fst(s)

and the operation las(s) ∈ A [s ∈ List∗(A)] selecting the last element of a list as follows : for s ∈ List∗(A)
and a ∈ A

las(⌊a⌋) ≡ a las(⌊s, a⌋) ≡ a

Then, we define projections on a non-empty list. For every n ∈ N we define the n-th projection
pn(s) ∈ A [s ∈ List∗(A), n ∈ N] by the elimination rule on non-empty lists as follows

pn(s) ≡

a if s ≡ ⌊a⌋

pn(s
′) if s ≡ ⌊s′, a⌋ and n ≤ lh(s′)

a if s ≡ ⌊s′, a⌋ and n > lh(s′)

Finally, we use projections to define the n-th part of a list

partn(s) List(A) [s ∈ List(A), n ∈ N]

by induction on natural numbers as follows: given a list s ∈ List(A)

part0(s) ≡ ǫ partn+1(s) ≡

{
⌊partn(s), pn+1(s)⌋ if lh(s) ≥ 1 and n+ 1 ≤ lh(s)

partn(s) if n+ 1 > lh(s)

33

