JOYAL’S ARITHMETIC UNIVERSE AS LIST-ARITHMETIC
PRETOPOS

MARIA EMILIA MAIETTI
DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA
UNIVERSITY OF PADOVA
VIA BELZONI N.7, 35100 PADOVA, ITALY

ABSTRACT. We explain in detail why the notion of list-arithmetic pretopos should be
taken as the general categorical definition for the construction of arithmetic universes
introduced by Andre Joyal to give a categorical proof of Godel’s incompleteness results.

We motivate this definition for three reasons: first, Joyal’s arithmetic universes are list-
arithmetic pretopoi; second, the initial arithmetic universe among Joyal’s constructions
is equivalent to the initial list-arithmetic pretopos; third, any list-arithmetic pretopos
enjoys the existence of free internal categories and diagrams as required to prove Godel’s
incompleteness.

In doing our proofs we make an extensive use of the internal type theory of the categorical
structures involved in Joyal’s constructions.

The definition of list-arithmetic pretopos is equivalent to the general one that I came to
know in a recent talk by Andre Joyal.
MSC 2000: 03G30 03B15 18C50 03B20 03F55

Keywords: Pretopoi, dependent type theory, categorical logic.

1. Introduction

The categories of topoi and pretopoi can be viewed as universes of abstract sets in which
to develop mathematics (see [LR03, Joh77, JM95, MM92, Hyl82]). Joyal’s arithmetic
universes provide further examples of such universes.

Andre Joyal introduced arithmetic universes in some lectures given in the seventies,
all still unpublished, to provide a categorical proof of Gddel’s incompleteness theorems.
He defined arithmetic universes by giving a general construction of examples including
the free initial one. He then intended to prove incompleteness by mimicking the diagonal
argument of Cantor’s theorem within the initial arithmetic universe [Joy05]. Indeed, the
initial arithmetic universe supports the amount of self-reference needed to perform the
mentioned argument because it contains an internal copy of itself.

2000 Mathematics Subject Classification: 03G30, 03B15, 18C50, 03B20, 03F55.
Key words and phrases: Pretopoi, dependent type theory, categorical logic.
(© Maria Emilia Maietti

Dipartimento di Matematica Pura ed Applicata

University of Padova

via Belzoni n.7, 35100 Padova, Italy, . Permission to copy for private use granted.

1

2

At that time it was not clear what to take as the most general categorical structure
behind the construction of arithmetic universes by Joyal. It was only clear that the
desired categorical structure should support the construction of free internal categories
and diagrams generated from graphs. In [Mor96, Wra85, Tay05] it is more or less said that
the general definition of an arithmetic universe should be a pretopos with free internal
categories and diagrams. Here we propose the notion of list-arithmetic pretopos as the
general notion of arithmetic universe, as first announced in [Mai03] and used in [Mai05b].

We think that our proposal is justified by the following reasons:

1. all the examples of arithmetic universe built by Joyal are list-arithmetic pretopoi;

2. the construction of the initial arithmetic universe by Joyal is equivalent to the initial
list-arithmetic pretopos;

3. list-arithmetic pretopoi enjoy free internal categories and diagrams as Joyal proved
for any of his arithmetic universes.

In order to prove 1) and 2) we briefly describe how Joyal built his arithmetic universes.
An arithmetic universe a la Joyal is a category of the form (Pred(S))., built in 3 steps
as follows:

- take a Skolem theory S, namely a cartesian category with a parameterized natural
numbers object where all the objects are finite products of the natural numbers
object;

- take the category Pred(S) of predicates in S, which gives a regular category;
- make its exact completion (Pred(S))., on a regular category (see [CV98]).

Now, given that the category of predicates Pred(S) is not only regular but also enjoys
stable finite disjoint coproducts and parameterized list objects, as shown by Joyal and
in [Rol76, Mor96, Wra85|, then its exact completion (Pred(S))., inherits stable finite
disjoint coproducts and parameterized list objects, and hence it turns out to be a list-
arithmetic pretopos, namely fact 1) holds.
To prove fact 2), we first observe that the category of predicates of the initial Skolem
theory &;, is equivalent to the initial regular locos. From this we derive that the initial
arithmetic universe, which is (Pred(S;,,))e, built on the initial Skolem theory, is equivalent
to the initial list-arithmetic pretopos.
Finally, to prove fact 3), namely that free internal categories and diagrams exist in any
list-arithmetic pretopos, we employ list objects. In particular, to prove the universal
properties of the free constructions we build the needed morphisms by iteration on natural
numbers.

It is worth mentioning that, when proving fact 2) above, we notice that the category
of predicates of the initial Skolem category is also equivalent to the construction of the
initial arithmetic lextensive category. This implies that the initial arithmetic universe is

3

also equivalent to the construction of the initial pretopos with a parameterized natural
numbers object. All this says that the notion of pretopos with a parameterized natural
numbers object, called arithmetic pretopos, surely satisfies corresponding facts 1) and
2). But we are not able to prove the corresponding fact 3), namely that any arithmetic
pretopos supports free internal categories and diagrams or it is list-arithmetic. We leave
this as an open problem.

In showing our results we employ internal languages of the categorical structures in-
volved and these are taken from [Mai05al. Also in [Rol76] and in [Mor96, Wra85] a term
language is presented to reason within a Skolem theory and to build the category of
predicates on it.

Here we reason within all the three stages of Joyal’s constructions by adopting internal
languages that are defined in a modular way as dependent type theories in the style
of Martin-Lof’s extensional type theory in [Mar84]. These languages are obtained by
combining type constructors corresponding to properties defining the various categorical
structures thanks to the modular correspondence between them described in [Mai05a].

Finally, we want to remark that the notion of list-arithmetic pretopos as a general
definition of arithmetic universe is equivalent to the one that I came to know in a recent
talk [Joy05] by Andre Joyal as a pretopos with free monoid actions (the notion of free
monoid actions can be found in [Rol76]).

2. The definition of list-arithmetic pretopos and related categorical struc-
tures.

Here we recall the definition of list-arithmetic pretopos and of some weaker categorical
structures that we will use in the next. We also remind readers of a key preservation
property that such structures have in order to enjoy an internal language as a dependent
type theory according to [Mai05a].

Note that when we speak of functor preserving some categorical structure we mean preser-
vation up to isomorphism.

Among the basic concepts to build an arithmetic universe there are the notions of
Skolem category and Skolem theory. A Skolem category is equipped with the minimum
structure needed to interpret primitive recursion on natural numbers. We start by re-
minding the notion of parameterized natural numbers object:

2.1. DEFINITION. A parameterized natural numbers object in a category with finite prod-
ucts (i.e. a category with terminal object 1 and binary products) is an object N together
with maps 0: 1 — N, s : N'— N such that for every b: B — Y and g : Y — Y there is
a unique rec(b, g) making the following diagrams commute

<id,0-!p> idxs
N BxN

B Bx X
\ jrec(@g) lrec(b,g)
Y

<Y

g

with !5 : B — 1 the unique map towards the terminal object.

It is worth recalling here that in the presence of function spaces, as in a cartesian
closed category, this parameterized version of natural numbers object is equivalent to the
usual natural numbers object [Joh02a].

2.2. DEFINITION. A Skolem category is a category with finite products and a parame-
terized natural numbers object.

A Skolem theory is a Skolem category whose objects are finite products of the natural
numbers object.

Next, we consider more complex categorical structures that enable one to interpret prim-
itive recursion:

2.3. DEFINITION. A lextensive category is a finitely complete category, that is a cate-
gory with a terminal object and pullbacks, equipped with stable finite disjoint coprod-
ucts [CLW93].

If a lextensive category has a parameterized natural numbers object it is said to be
arithmetic lextensive.

2.4. DEFINITION. A finitely complete category U has parameterized list objects if for
any object A € ObU, there is an object List(A) with morphisms 72 : 1 — List(A) and
ri: List(A) x A — List(A) such that for every b: B —Y and g: Y x A — Y thereis a
unique rec(b, g) making the following diagrams commute

<id,r(f‘-!B> idxrf
B ——>—"> BxList(A) <————— Bx(List(A)x A)
) lrec(b,g) j(rec(b,g)xid,q)-o
Y Y xA

g

where 0 : B x (List(A) x A) — (B x List(A)) x A is the associative isomorphism defined
in detail as << m, M -y >, My - Ty >.

In [Coc90] there is an equivalent definition of parameterized list objects in terms of recur-
sive objects and preservation of recursive objects by the pullback functor %, : U — U/D
sending an object B tom : D x B — D.

2.5. DEFINITION. A locos is a lextensive category with parameterized list objects.
If a locos is also a regular category it is called a regular locos.

Finally, we recall the categorical definition of pretopos [MR77], [JM95].

2.6. DEFINITION. A pretopos is a category equipped with finite limits, stable finite dis-
joint coproducts and stable effective quotients of monic equivalence relations.

If a pretopos has a parameterized natural numbers object it is said to be an arithmetic
pretopos.

If a pretopos has parameterized list objects it is called a list-arithmetic pretopos.

5

Note that a list-arithmetic pretopos is an arithmetic pretopos since the parameterized list
object of the terminal object gives a parameterized natural numbers object.

An important property that all these categorical structures enjoy is that their structure
is local.

We say that a structure on a finitely complete category U is local when it satisfies the
following;:

1. If U has the considered structure then so does the slice category U/A for every
object A € ObU.

2. for every morphism f : A — B in U the pullback functor f*:U/B — U /A preserves
the considered structure of the corresponding slice categories.

We recall that all the above mentioned categorical structures are local (see [Mai05a] for
a proof):

2.7. PROPOSITION. The structural properties of being

arithmetic lextensive

- a regular locos

an arithmetic pretopos
- a list-arithmetic pretopos

are all local.

The property of being local for a categorical structure is a prerequisite in order to
enjoy an internal dependent type theory as described in [Mai05a]. In particular property
1) of a local structure is needed to model types with dependencies. Indeed a dependent
type is modelled in a slice category and hence any slice category has to be equipped
with all the structure of the starting category. Instead property 2) is needed to make
valid the interpretation of substitution via pullback. Indeed, given that substitution of
terms both in types and in terms is interpreted via a functor isomorphic to the pullback
pseudofunctor, then all the structure used to interpret types and terms has to be preserved
under the interpretation of substitution, and hence under pullbacks.

3. An internal language for list-arithmetic pretopoi and related structures

Here we describe internal languages of the categorical structures presented in the previous
section in terms of a dependent type theory in the style of Martin-Lof’s extensional type
theory in [Mar84].

What is an internal language? When we say that a calculus 7 provides an internal
language of some categorical structures we mean not only that 7 is valid and complete
with respect to the considered categorical structures, but also that the category of the

6

theories associated to 7 is in a sort of equivalence with the category of the considered
categorical structures. Usually such an equivalence is shown on one hand by mapping a
category to its internal language, which is obtained by augmenting 7 with some specific
axioms, and on the other hand by mapping a theory of T to the syntactic category built
out of the theory (the one built to prove completeness!). For more details and examples
see [Mai05a].

The fact that the described correspondence gives rise to a sort of equivalence means
in particular that any categorical structure is equivalent to the syntactic category built
out of its internal language. Therefore, we can perform categorical constructions inside
any categorical structure by using its internal language.

Note that the link between a typed calculus and a class of categorical structures in
terms of the internal language theorem is much stronger than the link established by a
soundness and completeness theorem. Indeed, a simple validity and completeness theorem
between a calculus and a class of categorical structures does not generally guarantee that
the calculus provides the internal language of the considered categories (for an example
of this see [MMdPRO05)).

Modular correspondence type constructors/categorical properties In order to
single out the dependent typed theories of the categorical structures mentioned in the pre-
vious section we will make use of the modular correspondence between type constructors
and categorical properties described in [Mai05a]. We just recall here the correspondence
for the categorical properties of our interest:

Type constructors

terminal type
+ indexed sum types
+ extensional equality types

quotient types on
the total equivalence relation

quotient types on
mono equivalence relations
+ effectiveness axiom

false type
+ disjoint sum types

+ disjointness axiom

natural numbers type

list types

Categorical properties

finite limits

stable images

stable quotients on
monic equivalence relations
+ effectiveness of quotients

stable initial object
stable binary coproducts
+ disjointness of coproducts

parameterized natural numbers object

parameterized list objects

7

We also recall that, to interpret the above type constructors in a finitely complete cat-
egory with the corresponding categorical properties, in [Mai0O5a] we made use of a split
fibration associated to the codomain one following [Hof95]. This makes the original naive
interpretation in [See84] (see also [Joh02b]) correct when interpreting substitution.

3.1. THE TYPED CALCULUS FOR LIST-ARITHMETIC PRETOPOI. Now we describe in
detail the rules of the dependent typed calculus that provides an internal language for
list-arithmetic pretopoi with a fixed choice of their structure (it was first introduced in
[Mai99b] and reported in [Mai03, Mai05a]). We call such a calculus 7, because we will
identify the general notion of arithmetic universe with that of list-arithmetic pretopos.
Moreover, we will use the pure calculus 7,, to build the initial list-arithmetic pretopos
that will be shown to be equivalent to the initial arithmetic universe among Joyal’s con-
structions.

The calculus 7,, is equipped with types, which should be thought of as sets or data
types, and with typed terms which represent elements of the types to which they belong.
In addition types may depend on typed terms. Hence, dependent types should be better
thought of set families.

In the style of Martin-Lof’s type theory, we have four kinds of judgements [NPS90]:

Atype Il A=B[I] acAll] a=beAll]

that is the type judgement, the equality between types, the term judgement and the
equality between terms of the same type. The contexts I' of these judgements are tele-
scopic [dB91], since types are allowed to depend on variables of other types. The contexts
are generated by the following rules

' cont Atype [T
Ize A cont

1C) O cont 20) (xre AgT)

plus the rules of equality between contexts [Str91], [Pit00].

In the following, we present the inference rules to construct type judgements and term
judgements with their equality judgements by recursion. One should also add all the infer-
ence rules that express reflexivity, symmetry and transitivity of the equality between types
and terms together with the type equality rules conv) and conv-eq) and the assumption
of variables:

ac Al A=BI
a€ B[l

a=be Al A=BI
a=be B

Ixe A,A cont var)
re Az e A A

conv) conv-eq)

We can derive then the structural rules of weakening and of a suitable exchange.

In the following we give the formation rules for types specific to 7, with the corresponding
introduction, elimination and conversion rules of their terms. But we omit the equality
rules expressing that all the type and term constructors preserve equality as in [Mar84]
and that are necessary to derive the substitution rules. Moreover, we adopt the usual
definitions of bound and free occurrences of variables and we identify two terms under

8

a-conversion. Note that the context common to all judgements involved in a rule will be
omitted. The typed variable appearing in a context is meant to be added to the implicit
context as the last one.

The rules to generate 7,,’s types and terms are all present in the extensional version
of Martin-Lof’s type theory [Mar84] except for the disjointness axiom, the rules about
quotients types restricted to mono equivalence relations and the effectiveness axiom.
Supposing A type and R(x,y) type [x,y € A], we will write Equiv(R) to mean the following
three judgements: refl(z) € R(z,z) [z € A], sym(z,y,2) € R(y,z) [z € A,y € A,z € R(x,y)],
trans(x,y, z,u,v) € R(z,z) [t € A,y € A,z € A,u € R(x,y),v € R(y, 2)].

Moreover, we will write Mono(R) to mean

z=we€ R(z,y) [r € Ay € A,z € R(z,y),w € R(z,y)]

The 7,, dependent typed calculus
Terminal type
) Tt LTy «eT CTr) —S 1
r e -1r -1r —
yp t=%xeT
False type
a €l Btype
Fs) Lt E-Fs) ———
s) L type s) (@) € B

Indexed Sum type

C(z) type [z € B] beB ceC(b) YzepC(x) type

%) Y.enC(x) type -2) <bc>€ YuepC(x)
F-3)) d e ¥,epC(x) m(z,y) € M(< z,y >) [z € B,y € C(z)]
Elx(d,m) € M(d)
o) beB ceC(b) m(x,y) € M(< z,y >) [z € B,y € C(x)]

Ely(< b,c >,m) =m(b,c) € M(< b,c>)
Equality type

Eq) Ctype ceC deC Fq) ceC
Y TTE(C e d) type Y Teq € Eq(Cre,0)
p € Eq(C,c,d) p € Eq(C, ¢, d)
E-E C-E
a) c=deC) p=-eq € Eq(C,c,d)
Disjoint Sum type
B type C type be B B+ C type ceC B+ C type
I;- Ir-
+) B+ C type 1-+) inl(b) e B+ C 2+) inr(c) e B+C

A(z) [z € B+ C]
we B+ C ap(z) € A(inl(z)) [z € B] ac(y) € A(inr(y)) [y € C]

E-
+) Eli(w,ap,ac) € A(w)

A2) [z € B+C]

be B ap(x) € A(inl(x)) [x € B] ac(y) € A(inr(y)) [y € C]
Ely(inl(b),ap,ac) = ap(b) € A(inl(b))

A2) [z € B+C]

ceC ap(z) € A(inl(x)) [z € B] ac(y) € A(inr(y)) [y € C]
Eli(inr(c),ap,ac) = ac(c) € A(inr(c))

Cl—+)

Cz——l-)

Disjointness
beB ceC inlb)=inr(c)e B+C

dis-
is+) dsj(b,c) € L

Quotient type
R(x,y) type [v € A,y € A] Mono(R) Equiv(R)

Q)

A/R type
acA A/R type acA beA de R(a,b) A/R type
Q) —rear ea-Q) W= € A/R
L(z) [z € A/R]
pq) P€ A/R U(z) € L([z]) [z € A] I(x) = U(y) € L([z]) [z € A,y € A, d € R(z,y)]
Elg(l,p) € L(p)
L(z) [z € A/R]
cQ) acA l(x)e L([z]) [v € 4] l(x)=1(y) € L([z]) [x € A,y € A,d € R(x,y)]
Flg(, [a]) = U(a) € L{[d))
Effectiveness wed beA [d=cA/R
eff(a,b) € R(a,b)
List type
, C type) List(C) type , s € List(C) ceC
list) List(C) type Li-list) € € List(C) Lo-list) cons(s, c) € List(C)
L(z) [z € List(C)]
_Jist) s € List(C) a € L(e) l(x,y,z) € L(cons(x,y)) [x € List(C),y € C,z € L(z)]
o FElrisi(a,l,s) € L(s)
L(z) [z € List(C)]
Oy list) a€ L(e) I(z,y,z) € L(cons(z,y)) [z € List(C),y € C,z € L(z)]

Elrist(a,l,e) = a € L(e)

L(z) [z € List(C)]

Oy list) s € List(C) ceC a€L(e) l(x,y,z) € L(cons(x,y)) [z € List(C),y € C,z € L(z)]
2-118

Elpist(a,l,cons(s,c)) =1(s,c, Elpist(a,l,s)) € L(cons(s,c))

Note that we can represent the type of natural numbers N as lists of the terminal type
since this represents a chosen singleton. Therefore, we define N = List(T) with 0 = ¢
and successor s(n) = cons(n,) for n € List(T).

10

3.2. REMARK. Note also that the elimination rule of the Indexed Sum type can be
equivalently replaced by the following projections

de EIGBC(I‘) de ExeBC(Sﬂ)

Eq1-% Eqo-%
mdyenB " ma(d) € C(m(d) 2
and corresponding 8 and 7 conversion rules
beB ceC(b beB ceC(b
=04 ew €W 5 o

mi(<bc>)=beB ma(< byc>)=ce C(b)

< Wl(d),ﬂg(d) >=de ngBC(JL’)

n C-X

3.3. REMARK. [Notation on lists]
Given s, s’ € List(A) we abbreviate

|s, 5] for Rec(s, cons, s') € List(A)

which is the operation appending a list to another one.
Moreover, for s € List(A) and a € A we will write

|s,a] for cons(s,a) and la] for cons(e,a)

Mono types and quotients. In [Mai05a] we introduced the notion of mono type, namely
a type B [I'] for which
w=z€B[[we B,z € B]

is derivable. Since the interpretation of a mono type as given in [Mai05a] turns out to be
a monomorphism, we can then represent the quotient of a monic equivalence relation in
the internal language of a pretopos as the quotient type of a mono equivalence relation.
Then, effectiveness of quotients is represented by adding a specific axiom. Note that the
fact that effectiveness holds for mono equivalence relations is crucial. Indeed effectiveness
of quotients on generic relations may lead to classical logic [Mai99a].

Finally we anticipate here that in 7,, we can define quotients on arbitrary relations that
are not necessarily equivalences. Categorically this corresponds to the fact that in any
list-arithmetic pretopos arbitrary coequalizers exist (see next section).

Coproducts. Coproducts are represented by disjoint sums as in [Mar84] and to represent
disjointness we need to add a specific axiom. Indeed, disjointness is not generally derivable
by using the same argument in [Smi88] for Peano’s fourth axiom.

Coherent logic in a pretopos. Mono types in 7, inherit enough structure to validate
coherent logic by interpreting falsum, equality, conjunction, disjunction and existential
quantification on a type as follows: for ¢, mono types

Interpretation of connectives:

falsum = L s=at = Eq(A,s,t)
PN = ¢ xp oVY = (¢ay)/T
ocad(r) = (Xpeao(z))/T

11

Thanks to the way connectives are interpreted, they inherit elimination rules that are
stronger than the usual ones in intuitionistic logic (see the discussion on the calculus of
regular categories on page.22 in [Mai05a]).

Now we describe the internal languages of the categorical structures defined in section 2
and weaker than that of list-arithmetic pretopos. These can be deduced from the table
previously described:

The typed calculus of Skolem categories 7,;,. The calculus 7, is a type theory with
no dependent types including the following type constructors: terminal type, product
types and the natural numbers type with the rules of List(T) in 7y, restricted to non-
dependent types that is

Product type
B type C type beB ceC
x) T p o X
B x C type (b,c) e BxC
de BxC de BxC
222 Ry 2= B
m@en 0 m@ec B
beB ceC beB ceC
Ci-2 Co-
m(b,c))=beB ') ma((bc))=ceC 2-x)
de BxC
- 7-%)
(mi(d), ma(d))=de BxC
Natural Numbers type
nenN)
N type nat 0EN Ii-nat 75(71) c N Is-nat
L type
neN a€L l(y) e L [y € L]
E-nat
Eln(a,l,n) € L
L type L type
aclL lly) e L [y € L] neN a€L lly)e L [ye L]
Ci-nat Co-nat
Eln(a,l,0) =a€ L Eln(a,l,s(n)) =1(Ely(a,l,n)) €L

The typed calculus of arithmetic lextensive categories 7,,:. The calculus 7.
includes the following type constructors: terminal type, indexed sum types, extensional

12

equality types, false type, disjoint sum types, disjointness axiom, the natural numbers

type having the rules of List(T) in 7y, that is:

Natural Numbers type

I -nat M
! s(n) e N

nat

— I>-nat
N type 0eN A

L(z) type [z € N]
ne€N ae€ L0) l(x,y) € L(s(z)) [x € N,y € L(z)]

Eln(a,l,n) € L(n) E-nat
L(z) type [z € N]
a€L(0) Iz,y) € L(s(z)) [z € N,y € L(z)] C nat
Eln(a,1,0) = a € L(0) 1
L(z) type [z € N]
neN acL(0) I(zy) € L(s(x)) [xr € N,y € L(2)] Cyonat

Eln(a,l,s(n)) =1l(n, Ely(a,l,n)) € L(s(n))

The typed calculus of locoi 7;. The calculus 7; is obtained by extending Tg;,; with
list types. Hence it includes the following type constructors: terminal type, indexed sum
types, extensional equality types, false type, disjoint sum types, disjointness axiom, list

types.

The typed calculus of regular locoi 7,;. The calculus 7,; is obtained by extending 7;

with quotient types on the total relation namely:

Quotient types on the total relation

acA be A

A type " a€ A
[a] = [b] € A/T

ATTupe O @eam "

eq-Qtr

L(z) type [z € A/T]
peA/T l(x) € L([z]) [x € 4] l(z) =1(y) € L([z]) [x € A,y € A]
Elg(l,p) € L(p)

L(z) type [z € A/T]
acA l(z) € L([z]) [x € A] l(z)=1U(y) € L([z]) [vr € A,y € 4]
Elg(l[al) = I(a) € L([a))

C-Qtr

13

Hence 7,; includes the following type constructors: terminal type, indexed sum types,
extensional equality types, false type, disjoint sum types, disjointness axiom, list types
and quotient types of the kind A/T.
The typed calculus of arithmetic pretopoi 7,,. The calculus 7,, includes the fol-
lowing type constructors: terminal type, indexed sum types, extensional equality types,
false type, disjoint sum types, disjointness axiom, quotient types on mono equivalence
relations with the effectiveness axiom and the natural numbers type.
In other words 7, is the fragment of the dependent type theory 7y, in section 3 without
list types but with the natural numbers type N = List(T).

By using the typed calculi mentioned so far we can build the initial structures among
the categorical structures they describe.
From [Mai0Oba] we recall that given a typed calculus T for a certain kind of categorical
structures, let us say S-structures, the initial S-structure amounts to the category Cr
defined as follows:

3.4. DEFINITION. The objects of Cr are the closed types A, B,C'... of 7 modulo their
equality, and the morphisms between two types, A and B, are the expressions (x) b(x) (see
[INPS90]) corresponding to the judgement b(z) € B [z € A] - where the type B does not de-
pend on A - modulo their definitional equality, that is we state that (z)b(z) € Cr(A, B)
and (x)b'(z) € Cr(A, B) are equal if and only if we can derive in T the judgement
b(x) =V(x) € B [x € A]. The composition in Cr is defined by substitution, that is given
(x)b(z) € Cr(A, B) and (y)c(y) € Cr(B, C') their composition is (z)c(b(x)). The
identity is (z)z € Cy(A, A) obtained from z € A [z € Al.

Then by following the technique used in [Mai05a] we can prove that the above calculi
provide internal languages of the corresponding structures and give rise to the initial
structures in a modular way:

3.5. THEOREM. The following hold:

o T, provides an internal language for Skolem categories and Cr,,, also called S;,,, is
the wnitial Skolem category, and it is also the initial Skolem theory.

® Tauut provides an internal language for arithmetic lextensive categories and Cr,, , is

the initial arithmetic lextensive category.

lxt

o 7. provides an internal language for reqular locoi and Cr,, is the initial reqular locos.

® Tpn provides an internal language for arithmetic pretopoi and Cr, is the initial
arithmetic pretopos.

e T, provides an internal language for list-arithmetic pretopoi and Cr,, is the initial
list-arithmetic pretopos.

14

3.6. REMARK. It is worth mentioning that in [Wra85, Mor96] an initial Skolem cate-
gory is built and used to model a programming language representing primitive recursive
functions. Also in [Rol76] a term language including a primitive recursive operator is
presented to reason within a Skolem theory.

3.7. FIRST APPLICATIONS OF OUR INTERNAL LANGUAGES. Before entering into the
main topic of our paper we give two applications regarding the use of the internal languages
of the mentioned categorical structures to prove some of their categorical properties.
The first application is a simple proof that parameterized list objects are local in a locos as
first proved in [Coc90]. The second application is the proof that list-arithmetic pretopoi
are closed under coequalizers.

3.8. Locality of locoi. Here we apply the internal type theory of a locos to show that its
structure is local with a simple proof alternative to that in [Coc90]. First of all, note that
the difficulty in proving that a locos C is local relies in proving that parameterized list
objects are local. Indeed, the structure of lextensive category is local because the forgetful
functor from C/A to C creates finite limits and stable finite disjoint coproducts.

To prove that C/A enjoys parameterized list objects we use the internal language of a

locos and we anticipate a technique to define operations by iteration that we will use also
to build free internal categories and diagrams in a list-arithmetic pretopos.
First note that the notion of parameterized list object corresponds in type theory to the
notion of list type of a closed type. Hence, we can easily prove that the typed calculus for
locoi can be taken to be a fragment 7;* of the typed calculus 7; already presented. The
fragment 7,* is obtained from 7; by allowing list types List(A) only if A is a closed type.
List objects are needed to interpret such list types, while their parameterization is needed
to interpret the structural rule of weakening applied to such list types with their terms.

Now, we prove that in 7,* we can represent list types List(B(z)) [v € A] of types
B(x) type [x € A] depending on at most one type. This is enough to deduce categorically
that any slice category of a locos C is equipped with list objects. Indeed, for any object
A in C and for any C/A-object b : B — A, thought of as a term b(y) € A [y € B], we can
form the list object List(b) as the interpretation of the list type of the dependent type
Yyep b(y) =a x for x € A. In 7,* the type of lists of a dependent type B(x) [z € A] with
A closed type can be defined by using the indexed sum type as follows: for x € A

List(B(x)) = YweList(SoeaB@) T1(W) =List(a) mult(z, h(w))

where 7 = Lst(m;) is the lifting on lists of the first projection, lh(w) is the length of
the list w (see the appendix for related definitions) and mult(z, lh(w)) = |z, x,...,z] is
——
n-times
the list with n-times z, formally defined by induction on natural numbers as follows: for
reAandne N

mult(z,n) = ‘ ifn =0
T | Imult(z,m),z] ifn=m+1

15

Then, the list constructors are the following: for z € A

B) = < ¥ eq >

consP@(s,b) =< |[m(s), <z,b>], eq > for s € List(B(z)) , b € B(x)

where €~ is the empty list in List(Z,eaB(x)).

Finally, in order to prove the validity of the elimination rule on List(B(z)) in the
context of an extensional type theory, as described in [MaiObal, it is sufficient to prove
the validity of the elimination rule towards types not depending on List(B(x)) for x € A

C type
s € List(B(z)) ceC Il(y,z) € ClyeC,z e B(z)]
Elpisi(c,l,s) € C

E-list)

with corresponding and n conversion rules. However, since we can not use the full
elimination on List(X,caB(x)), given that List(B(x)) is defined as a proper subtype of
List(X,caB(z)), we define the elimination constructor by iteration, i.e. by induction on
natural numbers.

Therefore, given a type C' [z € A] - not depending on List(B(z)) - together with a term
ce C [z e Ajw € T'] (representing the value on the empty list, that is the base step) and
l(y,2) e C [z € A,w e T,y € C,z € B(z)] (representing the inductive step) we define

Elist(c, 1, 2) = ltr(c, 1, z,lh(z)) e C [z € A,w €T,z € List(B(z))]
where in turn
ltr(c,l,z,n)eC [x€ AjweT,z € List(B(z)),n € N]
is defined as follows

ltr(c,1,2,0) = ¢
ltr(c,l,z,n+1) = {

I(ltr(e, 1, z,n), pari(z1)) ifn+1<Ih(z)
ltr(c, 1, z, n) if n+1>1lh(z)

where z; = m(2) and p,(s) is the n-th element of the list s (see the appendix). Then,
we can easily prove that this elimination constructor enjoys the corresponding # and 7
CONVersions.

Moreover, we can show that such list objects in C/A are preserved by pullbacks. In
particular the pullback of the interpretation of List(B(z)) [x € A]inC/Aalong f : C' — A,
thought of as a term f(y) € A [y € C], turns out to be isomorphic to the interpretation
of

List(B(x))[x/f] = YwerListueaB@) T1(W) =rListcay mult(f(y), Ih(w))

obtained by substituting x with f(y) for y € C. Analogously the pullback of the inter-
pretation of B(z) [z € A] in C/A along f : C' — A turns out to be isomorphic to the

16

interpretation of B(f(y)) [y € C] and then, its list object turns out to be the interpretation
of

List(B(z)[z/f]) = YierList(®yec Bfw) T (W) =Listc) mult(y, Th(w))
for y € C. Now we show that List(B(z))[x/f] is isomorphic to List(B(z)[x/f]) by just
defining a morphism in the slice category over C'

¢« List(B(x))[x/f] — List(B(x)[z/f])

as d(w) = ¢(w, Ih(w;)) where ¢(w, n) is in turn defined by iteration on natural num-
bers as follows: for y € C, w € List(B(z))[z/ f]

Hlw,0) = <&, eq>
~ _f < Im(é(w,n)), <y,pasa(wi) >], eq > ifn+1<lh(w)
gb(w,n—l—l)_{ (E(w,n) if n+ 1> lh(w;)

where w; = m (w).
¢ is an isomorphism whose inverse can be defined in an analogous way by iteration on
natural numbers.

3.9. A list-arithmetic pretopos has coequalizers. Now we are going to prove that any list-
arithmetic pretopos U has coequalizers by using its internal language. The key point is to
show how to make the relation needed to coequalize two given maps into an equivalence
relation. To do this we use lists in a crucial way.

3.10. PROPOSITION. In any list-arithmetic pretopos U the coequalizer of any two given
morphisms

exists.

PRrROOF. First, we consider the following reflexive and symmetric relation on A: for ele-
ments 2,z € A

R(z,2)= z=47
V. deee (alc)=az A blc)=a27")
Vo Jeee (ble)=az A alc) =4 7")

Then, to define its transitive closure the idea is the following: in order to express that an
element z € A is connected to 2’ € A through a finite list of elements x1, 29, 23 such that

R(erl) N R(..'L'l,ﬂig) A R(x27$3) A R({L’g,,Z/)

we require the existence of a list s = |< z,21 >, < x1, 19 >, < X9, 23 >, < 73,2’ >]| with
the property that the list |1, 9, 23], containing the second components of elements in the

17

back list |< z, 21 >, < 1,29 >, < T9,x3 >, is equal to the list with the first components
of elements in the front list | < x1, 29 >, < 9,23 >, < 3,2’ >|. Moreover, z must be the
first component of the first element in s, while 2z’ must be the second component of the
last element in s.
Hence, we define:

Ri(2,2') = Fseristr(@) (Lst(m2)(bek(s)) =risa) Lst(mr)(frt(s))
N z=xm(fst(s)) A 2 =4 m(las(s)))

where Q = Y caxa R(m(w), m(w)) and 73 = 71 -7 and T, = 7 -7 (see the appendix
for precise definitions of non-empty lists List*(()) and operations Lst(—), fst, las, bck and
frt).

It follows easily that Ry is an equivalence relation and that [—] : A — A/R;, that is the
map assigning to every x € A its equivalence class in A/R;, is the coequalizer of a and
b. [

4. Joyal’s arithmetic universes

In this section we describe the construction of arithmetic universes given by Andre Joyal
in the seventies. The construction can be read in unpublished notes by Joyal himself,
Gavin Wraith [Wra85], in [Mor96] and partly in [Rol76].

Joyal built examples of arithmetic universes by taking the exact completion of the category
of predicates built out of a Skolem theory.

Before giving the definition of predicate we define some primitive recursive operations and
review some key properties of the natural numbers object in a Skolem category.

4.1. DEFINITION. Given a Skolem category S, the predecessor, truncated subtraction,
order, equality are defined as follows

. _{ 0-1 =0 . _{ r=0 = x
r=—1= Ty =
m+1)=1 = n r=(n+1) = (x=n)=-1

zVy =x+ (y—2x) rAy =z (x=y) eqz,y) =1=((z~y) V (y=x))

4.2. DEFINITION. [Wra85, Mor96| A predicate in a Skolem category S is an S-morphism
P : N — N between natural numbers satisfying P x P =g P where x : N x N — N 1is the
multiplication morphism of natural numbers.

In essence a predicate is an S-morphism with values 0, 1. It defines a decidable sub-
object of N whose elements can be thought of those with value 1. By using the above
definitions as proved in classical recursion (for ex. see [0Odi89]) we can show:

18

4.3. PROPOSITION. In any Skolem category S the collection of predicates forms a boolean
algebra with bounded existential and universal quantifications where the order is defined
as follows

P<Q=P=Q=s0

namely the truncated subtraction of them is the zero constant morphism in S.
In particular, the equality induced by the order is the equality predicate above defined and
it amounts to the equality of S-morphisms, i.e. we have

P<Qand Q<P iff eq(P,Q) =s 1 iff P=s50Q

Moreover, the conjunction is the multiplication, i.e. PAQ =s PxQ, and the complement
of Pis1= P.
4.4. PROPOSITION. In any Skolem category S the following hold:

e the natural numbers object N is isomorphic to the binary product of itself N x N,
namely there exist S-morphisms
pair: N x N - N pri : N - N pro: N - N

such that < pry - pair, pra - pair >=g id pair- < pri,pr2 >=g id

e in S the natural numbers object N is a parameterized list object over itself.

ProOF. We employ the internal language of a Skolem theory.
By following standard ideas in recursion theory (see for example [Odi89]) we define the
pairing map as follows

pair(z,y) = 2" (2xy+1) =1

which provides the required isomorphism with the following projections

pri(z) = min{zx <z | Jy <z z =5 pair(z,y) } pra(z) = min{y <z | Jz < z z =5 pair(z,y) }

N turns out to be a list object over itself by using the binary representation of natural
numbers. The idea is to represent the empty list as zero, and a list like [ny, no, ..., n,, | as
the number represented in binary digits as the list starting with 1 followed by a number
of zeros equal to the last element n,, of the list, and then again 1 followed by a number
of zeros equal to the last but one element n,,_; of the list and so on. For example:

€ — 0
10] — 1
13] — 1000 = 23

10,1,3] +— 1000101 = 26 422 + 1

Conversely any natural number in binary digits represents a list where each nth-element
counts the nested zeros after the nth-1 counted from the right.
More formally, the list constructors are defined as follows:

19
l.e=0
2. cons(s,n) = 2°- 2"+ where ¢ = min{ z <s | 2 > s }.

After defined the nth-projection of any natural number thought of as a list, we define the
list elimination constructor recrs (b, g, z) by induction on natural numbers, by starting
from b and then iterating the application of g up to the length of z, if this is not zero.
This construction is analogous to the corresponding one for list objects in a slice category
of a locos in section 3.8. [

4.5. REMARK. In [Rol76] and in a draft by Joyal, a predicate is defined as an S-morphism
P : N¥ — N from a finite product of N to N satisfying P A1 =g P. If S is a Skolem
theory, then these predicates represent the decidable subobjects of S-objects, given that
objects in S are only finite products of N. However thanks to proposition 4.4, predicates
on N* with k > 1 are in bijective correspondence with predicates on N by precomposing
with the isomorphism between N* and N. Hence, without loss of generality, we can
restrict to predicates from N to N. In this case definition 4.7 is equivalent to that by
Joyal since Px P =g Piff PA1 =5 P.

Now, we are ready to define the category of predicates in a Skolem theory &:

4.6. DEFINITION. [Mor96, Wra85] Given a Skolem theory S the category Pred(S) of
predicates in S is defined as follows:

e Ob(Pred(S)): predicates in S, namely morphisms P : N — N such that PxP =g P;

e Hom(P,Q): S-morphisms f : N — N such that P < @ - f (where @ - f is the
composition of) with f) and two such S-morphisms f: N - Nand g: N - N
are equal iff Px f =g Pxg.

Note that, if the Skolem theory is the full subcategory Szpc of the usual cate-
gory of classical ZFC-sets with only finite products of natural numbers as objects, then
Pred(Szrc) is the category having subsets of natural numbers as objects. Indeed a subset
is characterized by the elements with value 1 through a predicate P that is its charac-
teristic function. Moreover, morphisms of Pred(Szpc) turn out to be functions mapping
the domain subset to the codomain subset. Finally, two maps are considered equal if they
are equal on the domain subset.

Joyal proved that the category of predicates Pred(S) is a regular locos:

4.7. PROPOSITION. [Wra85, Mor96, Rol76] The category Pred(S) of a Skolem theory S
s reqular with stable finite disjoint coproducts and parameterized list objects. Moreover,
epimorphisms of image factorizations split.

PRrOOF. We describe the claimed structure of Pred(S).
The terminal object is given by the predicate T p,.q : N — N defined as the singleton zero
forne N

Tprea(n) = 1=n

20

The binary product of two predicates P and @) is given by

(P xQ)(n) = P(pri(n)) * Q(pra(n)) forne N

The two projections of P x Q are mp : P x Q — P and mg : P x Q — @ defined as:
mp(n) = pri(n) and mg(n) = pra(n) for n € N.

The pairing morphism of f : C — P and g : C — @ is defined as < f,g >ppeq (n) =
pair(f(n),g(n)) for n € N.

The equalizer of two morphisms f,g: P — @ is

Eq(f,9)(n) = P(n)*eq(f(n),g(n)) forneN

and the equalizer injection e : Eq(f,g) — P is defined as e(n) = n for all n € N.
Obviously, the morphism factoring any h : C' — P equalizing f and g is h itself but with
Eq(f, g) as codomain.

The initial object is given by the predicate L p,..q: N — N defined as

Lprea(n) =0 forne N
The binary coproduct of two predicates P and () is defined as follows: for n € N
(P+Q)(n) = even(n) * P(n/2) + odd(n) * Q(n - 1/2)

where n/2 is the quotient of the division by 2 and the operations even, odd are defined as
follows:

() B even(()) =1 dd() Odd(O) =0
even(n) = even(n+1) = 1= even(n) oddin odd(n+1) = 1 = odd(n)

The injections ip : P — P + @ and ig : Q — P + @ are defined as ip(n) = 2 *n and
ig(n) = 2xn+1forn e N. Given f: P — C and g : Q — C their coproduct morphism
f+9: P+ Q — Cis defined as follows: forn € N

(f +9)(n) = even(n) x f(n/2) + odd(n) * g(n = 1/2)

It follows easily that such binary coproducts are stable under pullbacks.
The image object of a morphism f : P — () is defined as follows: for n € N

(Imf)(n) = P(n) *eq(n, p(n))

where
p(n) = min{ z <n | P(z)*xeq(f(z), f(n)) =s1}

Its image morphism vf : Imf — @ is defined as ¢f(n) = f(n) for n € N and this factors
f through p : P — Imf defined as the above p(n) for n € N, i.e. f =17 -pin Pred(S).
Moreover, p has a section p~! : Imf — P defined as p~'(n) = n, that is p-p~! = id in

21

Pred(S). Since epimorphisms of image factorizations split then images are stable under
pullbacks.

The parameterized list object of a predicate is defined by using the fact that N is isomorphic
to List(N) by prop 4.4. Hence, given a predicate P its parameterized list object is

1 ifn =0
List(P)(n) = { nn
List(P)(m) * P(k) if n = conspun)(m, k)
The list structure of List(P) is induced by that of List(N) as follows:
ro™UP) . T — List(P) is defined for n € N as

TOList(P)(n) =0
and 7 HP) : List(P) x P — List(P) is defined for n € N as
TlLiSt(P) (TL) = ConsList(N)(prl(n)) prZ(n))

Then, given b: C — Q and g : Q x P — Q we put recrispy(b, 9)(n) = recrisyny(b,g,n)
forn € N. m

Now, we are finally ready to give Joyal’s definition of arithmetic universe. It amounts
to the exact completion (Pred(S))., of the category of predicates built out of a Skolem
theory S. Given that the category of predicates in a Skolem theory is regular as proved
in proposition 4.7, then we can use the exact completion performed on a regular category
(see [CV98] and loc. cit.). However, since in Pred(S) epimorphisms of image factoriza-
tions split, then we can define the morphisms in such exact completions (Pred(S))e. as
Pred(S)-morphisms preserving the equivalence relations. Therefore, we put:

4.8. DEFINITION. A Joyal-arithmetic universe is the category (Pred(S))e, built out of a
Skolem theory S as follows:

e Ob(Pred(S))e:: (X, R) where X is an object of Pred(S) and R : dom(R) — X x X
1s a monic categorical equivalence relation on X ;

e Hom((X, R),(Y,S)): Pred(S)-morphisms f : X — Y preserving the equivalence
relations, that is R < (f x f)*(S) as subobjects where (f x f)*(S) is the first
projection of the pullback of S along f x f.

Moreover, two arrows f,g : (X,R) — (Y,5) in Hom((X, R), (Y, S5)) are equal iff
R < (f xg)(5).

We also recall the definition of the embedding of Pred(S) into (Pred(S))es:

22
4.9. DEFINITION. The embedding functor
Y : Pred(S) — (Pred(S))es
is defined as follows:

Y(P) = (Px=py) Y =7

where x =p y = FEq(m,m) is the identity relation on P, that is the equalizer of the
projections my, my from P x P in Pred(S) (categorically Fq(m,ms) is isomorphic to the
diagonal < id,id >: P — P x P).

We now give the main result of this section:
4.10. PROPOSITION. (Pred(S))e, is a list-arithmetic pretopos.

PROOF. In [Wra85, Mor96] it is shown that (Pred(S)).. is a pretopos with list objects
but we can show that list objects are also parameterized. We know from [CV9S8] that
this category is exact and hence we just describe finite coproducts and list objects (cf.
[Car95, BCRS98]).

Note that in doing this we employ the internal language of a regular locos provided by
T according to which we can consider the equivalence relation R as a type-theoretic
equivalence relation.

The initial object of (Pred(S))es is (Lpred, * =1p,,, *) Where z =,
relation.

The binary coproduct of two objects (X, R) and (Y, S)is (X +Y, R+ S) where X +Y is
the coproduct in Pred(S) and R + S is defined as follows: for z,2’ € X +Y

x is the identity

red

Trex Iwex (z=xix(x)) N (¢ =xix(2)) N R(z,2')
Vv

(R+5)(2,7) = Fyey yey (2 =iv(®) A (¢ =y iv(¥)) A Sy,¥)

Vv

L A FeexTyey ((z=xix(x) N2 =iy(y)) V (¢ =xix(z) N z=1iv(y)))

R + S can be proved to be an equivalence relation since in 7., as proved in [Mai0bal,
given an element z € X +Y we can derive a proof of

(Feex inl(z) =x 2) V (3yey inr(y) =y 2)

The injections are ix gy : (X, R) = (X +Y, R+ S) and iy,g): (Y, 5) = (X +Y,R+5)
defined as i(x g)(z) = ix(x) for x € X and i(y,5)(y) =iy (y) for y € Y.

The list object on (X, R) is (List(X), List(R)) where List(X) is the list object on X in
Pred(S) and List(R) is defined as follows:

teList(Spex Sye g R(zar)) (T1E) =Listx) s A T2(t) =List(x) 8" A
lh =7, Ih(s'
LlSt(R)(S, SI) = y N (3) List(X) (S))
L A (Ih(s) < Ih(s") V Ih(s") < Ih(s))

23

where Ih(l) is the length of the list I and 77 = Lst(m;) and 77 = Lst(m; - m2) are obtained
by lifting the first and second projections on lists (see the appendix) and x < 2/ =
Jyen @' =y + (y+1) for z,2" € N.

List(R) can be proved to be an equivalence relation since in 7., given s, s’ € List(X), we
can derive a proof of

(Ih(s) =ristcx) Ih(s")) v (Ih(s) < Th(s")) Vv (Ih(s") < Ih(s))
Moreover, the list structure on (List(X), List(R)) is defined as follows:

M (T 2 =1 2) = (List(X), List(R)) as 10" (2) = r¥(w)
forz e X
P (List(X), List(R)) x (X, B) — (List(X), List(R)) as i""(s,2) = r¥(s,)
for s € List(X), r € X

The list object is parameterized. Indeed, given the morphisms f : (Z, H) — (C, M) and
g:(C,M)x(X,R) — (C, M), by using the property of the list object List(X) in Pred(S)
we obtain a Pred(S)-morphism

rec(f,q) : Z x List(X) — C

satisfying rec(f, g)- < id,rX-!z >= f and rec(f, g) - (id x) = (g - (rec(f,g) x id)) - o in
Pred(S) and hence in (Pred(S))es-

We can prove that rec(f,) is a morphism in (Pred(S))., from (Z, H)x (List(X), List(R))
to (C, M). Indeed, given z, 2" € Z for which H(z,2’) holds and s, s’ € List(X) for which
List(R)(s, s") holds, we prove that M (rec(f,g)(< z,s >), rec(f,g)(< 2/, s" >)) holds by
showing by induction on n € N the validity of

M{(rec(f,9)(< z, parta(s) >) , rec(f,g)(< 2’ parta(s’) >))

where part,(s) is a list operation defined in the appendix. This lets us prove what wanted
since party(s) =p;s(x) s holds for k > Ih(s).

Finally, we can show uniqueness of rec(f,g) in an analogous way. Indeed, for any mor-
phism h with the same domain and codomain of rec(f, g) satisfying

h- <id, T((;X’R)'!(Z,H) >=f
he(idx rY = (g (hxid)) - o

in (Pred(S))esz, we can then prove by induction on n € N the validity of
M(rec(f,9)(< z, parta(s) >), h(< 2, party(s’) >))

from which rec(f, 9) =(pred(s)).. h follows. n

24

Observe that (Pred(S;,))e, built out of the initial Skolem category S;, amounts to
the initial arithmetic universe (Pred(Si,))e. in the category of Joyal-arithmetic universes
and functors induced from functors between Skolem theories, with a fixed choice of their
structure, preserving the Skolem structure. Note that Pred(S;,) turns out to be the
category of primitive recursive predicates.

In the following we simply call A;, the initial arithmetic universe (Pred(S;,))es-

5. The category of primitive recursive predicates via type theory

Here we outline how the category of primitive recursive predicates is equivalent to the
initial arithmetic lextensive category Cr,, and also to the initial regular locos Cr,.
To this purpose, we define two embeddings

Eua : Pred(S;,) — Cr,, En - Pred(Si,) — Cr,
where £,4 is defined as follows:

[} ad(P) = erNP(l‘) =N 1
for any predicate P in ObPred(S;,).

o Lu(f)(2) =< f(m(2)),eq >€ Tpen Q(z) =n 1 [z € Tyen Plz) =n 1]

for f: P — Qin Pred(S;,), that is E,4(f) is the function associating f(x) satisfying
Q(f(x)) =n 1 to any x € N such that P(z) =y 1 holds.

The functor &,; can be defined essentially in the same way. Indeed observe that the calculus
T.a is a fragment of T, after recalling to represent the natural numbers object as the list
type of the terminal type. This means that the category Cr, is a subcategory of Cr,

-1l
and that the embedding cr, d@ cr., , which is the identity on objects and morphisms,

preserves the arithmetic lextensive structure. Then, we define &,; as the composition of
the embedding z'gld with €,4

— gl
grl = l4q gad

In the next we prove that the embeddings &£,; and &,; preserve the relevant structure of
their domain categories. To prove this we will make use of the fact that 0 =y n + 1 is
false:

5.1. LEMMA. In the typed calculus Toq from a proof of 0 =y n+ 1 forn € N, we can
deriwe a proof of falsum L. Therefore, also in any arithmetic lextensive category we can
prove that 0 =x n+ 1 is false forn € N.

Proof. By the elimination rule on the natural numbers n € N we can define the term

(ttaff)(n)e TaT

25

as follows

it if n=>0
ffif n=m-+1

(ttaff) (n) = {

where tt = inl(x) and ff = inr(x)

Hence, if there existed a proof of 0 =y n + 1, then by the rule E-Eq) of the extensional
propositional equality we would get 0 = n + 1 € N. Hence, by equality preservation of
tt & ff we would obtain that (tt&ff)(0) = (tt®ff)(n+1) € T T . Now, after recalling
that (tt @ ff)(0) = tt and (tt & ff)(n + 1) = ff, we would also get

ff=tte THT

By disjointness of sum, namely by rule dis-+), we would conclude a proof of L as claimed.

Now, we are ready to prove that the embeddings £,,; and &,; have the following preservation
properties:

5.2. LEMMA. The embedding E,q is an arithmetic lextensive functor and &, is a reqular
locos functor.

ProoOF. We first show that &,; preserves the arithmetic lextensive structure. The struc-
ture of Cr,, is described in [Mai05a].

E.a preserves the terminal object because, thanks to lemma 5.1, Y,en T prea() =5 1
is isomorphic to T which can be chosen as a terminal object in C7,,. Indeed, the key
point is to prove that from < x,eq >€ Y,enT prea(x) =y 1 we derive the validity of

< x,eq >=¢, (Tpr.s)< 0,eq >. This follows by elimination of disjunction from

l':NO V ElyeN$:Ny+1

that can be proved by induction on natural numbers. In the case z =5 0 we conclude
trivially, and in the case x =y y + 1 for some y € N we conclude by lemma 5.1.

E,q preserves binary products. Recall from [Mai05a] that the indexed sum type allows to
define the binary product £,4(P) x E4(Q) in Cr,, for P,Q predicates, with projections
m1(2) € Eua(P) and ma(z) € E.a(Q), respectively, for z € E,q(P) x £,4(Q).

Then, observe that the morphism induced by the product projections in Pred(S;,)

<5ad(7l'p), Ead(ﬂ-Q» : 5ad(P X Q) — gad(P) X 5ad<Q)

has an inverse defined as follows: for z € £,4(P) X £.4(Q)

Ing(z) =< pair(mi(z1), m(22)), eq >

where z; = m1(2) and 2o = ma(2).

26

E.a preserves equalizers. Recall that the equalizer of E,4(f) and Eu4(g) in Cr,,, for f, g :
P — @ in Pred(S;,), is defined as

Eqer (Eaa(f).€ua(9)) = Licgap) Eaa(f)(2) =¢,u@) Eaa(9)(2)

and the equalizer map is m : Eqc, (&aa(f),€ealg)) —> Eua(P). Since the equalizer
embedding e : Eq(f,g) — P gives Euil(f) - Ead(e) = Eaa(g) - Eaale) in Cr,,, it induces a
morphism

Uneq . gad(EQ(fa g)) — chTad<8ad(f) 7gad(g))

defined as Un,,(2) =< Euile)(2), eq > for z € E,4(Eq(f, g)), which is indeed an isomor-
phism with inverse In., defined as Ine,(z) = (mi(m1(2)), eq) for z € Eqe,. (Eaalf), Eaalg))-
&4 preserves the initial object, since L, which can be chosen as the initial object in Cr,,,

is isomorphic to ¥, cny 0 =5 1 thanks to lemma 5.1.

Eqq preserves binary coproducts since in 7,4 we can prove that N is isomorphic to the
coproduct of even numbers with odd ones. To prove this more in detail, recall that the
type Eaa(P) + Eua(Q) is a binary coproduct of E,4(P) and E,4(Q) for given predicates
P and @, and its injections are the terms inl(z) € E,q(P) + E.a(Q) for z € E,q(P) and
inf(w) € Eua(P) + Eua(Q) for w € E,4(Q).

Now, the coproduct morphism induced by the injections in Pred(S;,)

Ead(Jr) ® Eaa(Jq) + Ead(P) + Ead(Q) — Eaa(P + Q)

is an isomorphism with inverse Ing defined as follows: for z € E,4(P + Q)

Ing(z) = inl((21/2, eq)) if even(z) = 1
@ inr(((z1=1)/2,eq)) if odd(z;) =1

where z; = m(2).

&1 1s a lextensive functor being the composition of £,4 with an embedding preserving such
a structure.

In order to prove that &, is a regular locos functor, we need to show that it preserves
images and list objects.

We start by showing that &, preserves images. We recall from [Mai0O5a] that the image
object of a morphism &,(f) : £,(P) = &£.4(Q) in Cr, is defined as

Im(En(f)) = Buweea@ Feeenr) Enlf)(2) =¢,.@ w

and the image morphism tg(s) : Im(Eu(f)) — £.(Q) is defined as

te(n)(2) = m(z2) € Ea(Q)

for z € Im(&.(f)).
From the image factorization of f in Pred(S;,) it follows that &(f) = &.(¢f) - En(p) with
&n(ty) monic since &, preserves pullbacks (recall that a monomorphism is characterized

27

by the fact that the projections of its pullback along itself are isomorphic to the identities).
Hence by the universal property of images there exists a morphism

Unim :]m(grl(f>> — 57’1(lmf)
that is indeed an isomorphism with inverse In;,, defined as follows: for z € £(Imf)
Ingm(z) =< < f(z1),eq >, [< z1,eq >,eq > | >
where z; = m(2).

Finally, we show that &, preserves list objects. We recall that the list object of &£.,(P) in
Cr., is List(&,(P)) with list constructors

Tgrz(P)@) = ¢ € List(£.4(P)) for ze T
ri"(z) = cons(m(2), ma(2)) for 2 € List(£:(P)) x €n(P)

By using the list structure of N as defined in proposition 4.4, we can easily define an
isomorphism

Bin : List(&.(P)) — &E.(List(P))
by induction on the list z € List(&£,(P)) as follows:
< 0,eq > if Z =€

Bin(z) = ¢ < conspigvy(m(Bin(s)), mi(a)), eq > if z = cons(s, a)
for s € List(E4(P)), a € E4(P)

whose inverse Inyg is defined by iteration on natural numbers as

—~—

Ingsi(2) = Ingg(2, Th(z))

for z € &.(List(P)) where z; = m(z) and in turn Ing(z, lh(z1)) is defined as follows

—~—

Inge(2,0) = €
.ﬁm\/hst(z,n—l—l)z c/ox/ns(lnlist(z,n), < pny1(z1),eq9 >) ?fn+1§|h(zl)
Inse(2z, n) if n+1>1lh(z)

where po11(21) is the n+1-th projection of the number z; thought of as a list in List(N).m
Thanks to this lemma we are ready to prove that:

5.3. THEOREM. The syntactic categories Cr,, and Cr, are equivalent to Pred(S;,).

28

PROOF. Since by proposition 4.7 we know that Pred(S;,) is a regular locos, then by the
initiality of Cr,, and Cr,, as stated in theorem 3.5, there exist an arithmetic lextensive
functor J,q : C1,, — Pred(S;,) and a regular locos functor J,; : Cr, — Pred(S;,),
defined through the corresponding interpretations of 7,4 and 7, in Pred(S;,) as detailed
in [Mai05a].

It turns out that both J,4-&.q and J,;- &, are naturally isomorphic to the identity functor.
This is because the interpretation of a predicate P turns out to be isomorphic to itself as
a Pred(S;,)-morphism and eq(P, 1) = P holds in S;,.

Moreover, being Cr,, and Cr, respectively an initial up to iso arithmetic lextensive
category and an initial up to iso regular locos, then &4 - Joa : Cr,, — Cr,, and
& - Jn » Cr, — Cr, are naturally isomorphic to the corresponding identity functors
and hence we conclude. [

5.4. COROLLARY. The initial arithmetic lextensive category Cr,, is equivalent to the ini-
tial reqular locos Cr, .

From this corollary we conclude that stable images and parameterized list objects are
definable in the initial arithmetic lextensive category by translating back into Cr,, the
image and list structures of Cr, via the equivalences in theorem 5.3. But, since these
equivalences are built through interpretation functors, defined in turn by induction on
type and term constructors, we can not expect to be able to construct images and lists
internally to any arithmetic lextensive category. Indeed the construction of images and
list objects rely on the fact that every object can be considered a predicate on natural
numbers as in Pred(S;,): this is an external property that does not seem necessarily valid
internally in any arithmetic lextensive category. Logically it means that any type in the
internal language of Cr.,, which is the pure calculus 7,4 without the addition of axioms,
can be seen as an indexed sum of a predicate on natural numbers. But this property does
not seem necessarily valid in any theory of Taq.

6. The initial arithmetic universe via type theory

Here, we outline how the construction of the initial arithmetic universe A;, is equivalent
to the initial arithmetic pretopos C7,, and also to the initial list-arithmetic pretopos Cr,,, .
To this purpose, analogously to the embeddings of lemma 5.2 we define the embeddings

Epn + Pred(S;,) — Cr,,, Eou : Pred(S;,) — Cr,,

They are essentially defined as £,4. Indeed observe that the calculus 7,4 is a fragment of
T and also of 7Tg,, always after recalling to represent the natural numbers object as the
list type of the terminal type. This means that the category Cr, is a subcategory of Cr.,
and also of Cr,,. Therefore the embeddings

29

which are the identity on objects and morphisms, preserve the arithmetic lextensive struc-
ture. Hence, we put

— pbn — jau
gpn = - gad gau = l4q " Cad

Now note that &, and &,, enjoy the same preservation properties of £,4 and also of &
when applicable:

6.1. LEMMA. The embedding &,, is reqular and preserves finite disjoint coproducts and
the parameterized natural numbers object.

The embedding 4, is reqular and preserves finite disjoint coproducts and parameterized
list objects.

Therefore, by the above lemma, since A;, is the exact completion of Pred(S;,), by its
universal property [CV98] there exist two exact functors

%Z.Amﬁcﬁm éa\u:Ain—>C7Eu
such that
gpn'yggpn gau'yggau

—

Epn can be explicitly defined as follows:

¢ Em((X,R)) = En(X)/Ep(R),

® gz;l(f) = Q(&En(f)) for f:(X,R) = (Y.,S), where Q(&,,(f)) is the unique map
from the quo tlent En(X)/Epn(R) to Epn(Y)/Epn(S) such that O(E,.(f))([x]) =
[Epn(f)()] for € Epn(X).

The functor 6/’(; is defined in the same way by using &,, in place of &,,. However, since
Ton is a fragment of 7, and hence the category C7,, is a subcategory of Cr,, with an
embedding

,L'a,u
P
CTon CTau

preserving the arithmetic pretopos structure, it turns out that ga\u satisfies

—

Eau = 1oy 5

pn

From [CV98] we know that 6/’(; as well as Spn are exact functors. Here we check that they
preserve also finite coproducts and, respectively, list objects and the natural numbers
object:

6.2. LEMMA. The functor 5/,; . Ain — Cr,,, preserves the arithmetic pretopos structure
as well as the functor Eu, @ Ay — Cr,, preserves the list-arithmetic pretopos structure.

30

PROOF. For simplicity, we just show that é; preserves finite disjoint coproducts and
list objects. The proof that &£,, is an arithmetic pretopos functor can be seen a special
case of the above, given that these functors are defined in the same way and that natural
numbers are lists of the terminal type.

Moreover we use the abbreviations X¢ and R for &,,(X) and &,,(R) respectively.

Clearly, 6/}; preserves the initial object. Indeed, given that &, is regular and preserves the
initial object, then &, ((Lpred;® =1, ., ©)) ~ L/(x =,) which is in turn isomorphic
to L. -

Now we prove that &,, preserves the binary coproduct structure. The binary coproduct of
Eau((X,R)) and &E,,((Y,S)) is X¢/RE +Y¢/S¢ with the coproduct structure described
in lemma 5.2 for Cr,,. Since &,, is regular and preserves coproducts, for simplicity we just
suppose 5;((X+Y,R+5)) = X¢ +Y¢/RE + S¢. Then, injections in (X +Y, R+ S)
induce an isomorphism

—

Eaulim) @ Eanlievs)) Eanl (X, R)) + Eau((V,8)) — Euu (X + Y, R+ S))

whose inverse Q(In,,) is defined as the unique map induced on the quotient X¢ + Y¢/R¢ + S¢
by amap In, : X¢+Y¢ — X¢/RE+Y¥¢/S¢ defined by elimination on the sum as follows:
for w € X¢ +Y¢

inl([z]xe/pe) if w=inl(x) for z € X¢
inr([ylye/pe) if w=inr(y) fory e Y¢

Ing(w) = {

Now we prove that Ea\u preserves the list object structure. The list object on g;L(X ,R) =
X¢/RE is List(X¢/R¢) with the list structure described in lemma 5.2 for Cr,. Since &,,
is regular and preserves list objects, for simplicity we suppose a((List(X), List(R)) =
List(X¢)/List(Rf). Now, by induction on the list structure of List(X¢/R¢) we can
define an isomorphism

Uniisy : List(Egu(X, R)) — Eau((List(X), List(R)))
as follows: for z € List(X¢/R¢)

U () [E]L/ if z=c¢€
Nyst\2) =
st Q(cons)(Unyise(l) , ¢) if w=cons(l,c) for I € List(X¢/RE), c € XE/RE

where L' = List(X¢)/List(R®) and in turn
Q(cons) : List(X®)/List(R®) x X¢/R® — List(X%)/List(R%)
is the unique map induced on the quotients List(X¢)/List(Rf) and X¢/R¢ such that

Q(cons)([s]r, [7]xe/re) = [cons(s,)]s

31

for s € List(X¢) and z € X°.

The inverse of Uny;g, called Q(Inys), can be defined as the unique map induced on the
quotient List(X¢)/List(Rf) by a map Ins : List(X€) — List(X¢/R®) preserving
the relation List(R) and defined by induction on List(X)¢ as follows: for w € List(X¢)

€ ifw=ce
Ings(w) =) : £ £
cons(Inyisi(s) , [x]xe/re) if w = cons(s,z) for s € List(X?), r € X
In order to show that I7y,; preserves the relation List(R®), namely that if List(RE)(w,w')
holds then Ingu(w) =ps(xe/rey Inuis(w') holds, too, we prove by induction on natural
numbers that I (part,(w)) =ris(xe/re) Inuis(parta(w’)) holds. =

Now, we are ready to prove:
6.3. THEOREM. Both the syntactic categories Cr,, and Cr,, are equivalent to Aj,.

PROOF. Since by proposition 4.10 we know that A;, is a list-arithmetic pretopos, after fix-
ing a choice of its structure (e.g. by using an enumeration of the representatives of arrows
in A;, to fix the structure involving morphisms or at most by using the axiom of choice in
the meta-theory) by the initiality of C7,, and of Cr,,, as stated in theorem 3.5, there exist
an arithmetic pretopos functor 7, : Ct,, — A, and a list-arithmetic pretopos functor
Jau : C1,, — Ain defined on objects and morphisms through the interpretation of 7,,
and of T, in A;,, respectively, as described in [Mai05a).

Then, note that J,, - &y and T,y - €qu are both naturally isomorphic to V. Indeed,
since the interpretation of a predicate P in the initial Skolem category turns out to be
isomorphic to Y(P) thinking of P as a morphism, eq(P, 1) =s, P holds and) preserves
finite limits (see [CV98]), then the interpretation of &,,(P) is still isomorphic to Y(P)
and the same happens for morphisms. .

Hence, we get YV ~ Tpn - Epn = Ton - (Epn - V) = (Tpn - Epn) - Y and by the uniqueness
property of the exact completion we conclude that 7, - E},;l is naturally isomorphic to the

identity functor. The same argument lets us conclude that 7,, - £, is also isomorphic to
the identity:.
Moreover, being Cr,, the initial up to iso arithmetic pretopos and Cr,, the initial up to

iso list-arithmetic pretopos, thanks to theorem 3.5 we also get that &, - J,,, is naturally

isomorphic to the identity functor as well as (5/’(; -+ Jau- Therefore, we conclude that both
Cr., and Cr,, are equivalent to Aj,. m

6.4. COROLLARY. The initial arithmetic pretopos Cr,, is equivalent to the initial list-
arithmetic pretopos Cr,,, .

From this corollary we deduce that parameterized list objects are definable in the
initial arithmetic pretopos via the equivalences in theorem 6.3. But it is worth noticing
also here, as after corollary 5.4, that, since such equivalences make use of interpretation
functors defined by induction on type and term constructors, we can not directly deduce
that any arithmetic pretopos is list-arithmetic.

32

This is not an exceptional fact: consider for example that the initial finite product category
and the initial finite limit category coincide with the trivial category with one object and
one arrow.

We end by leaving as an open problem whether a generic arithmetic pretopos is also
list-arithmetic.

7. Free internal categories and diagrams in a list-arithmetic pretopos

In this section we show how to define free internal categories and diagrams within a list-
arithmetic pretopos by means of its internal language (first shown in [Mai99b]). Recall
that any list-arithmetic pretopos U is equivalent to the syntactic category Cry built out
of its internal type theory T'({/). This type theory is obtained from 7, by adding specific
axioms regarding the proper dependent types and terms of U and their corresponding
equalities valid in U, as described in [Mai05a].

The use of the internal language is helpful here to perform proofs by induction. In

particular, in building free internal categories and diagrams a key difficulty is to define
operations on proper subtypes of list types with no specific recursion principle available.
We overcome this difficulty by defining such operations by recursion on natural numbers
through iteration of suitable operations. And here the use of a logical/type theoretic
language in which to perform inductions as usual is more helpful than the categorical
reasoning via universal properties.
This technique has already been applied to prove that the slice categories of a locos enjoy
list objects in section 3.8. Moreover, it is also the same technique that one can adopt to
prove that in a Skolem category the natural numbers object N is a list object over itself
as stated in proposition 4.4.

7.1. FREE INTERNAL CATEGORIES. Given a graph G = (G, G1,dmg, cdg) internal to a
list-arithmetic pretopos U

we build the free internal category generated from it. For a general account on these
concepts about internal category theory we refer to [Joh77] or [MM92] or [Joh02a].

7.2. DEFINITION. Given a graph G = (G, Gi,dmg,cdg) internal to U, we define the
category CY as a candidate to be the free internal category generated from G as follows.
The objects of CY are defined as the graph objects CY9) = Gj.

The morphisms of CY are defined as the coproduct of the graph objects /g\o representing
the identity maps with lists of composable graph arrows represented by CY:

Y = go@@:

where Eg\l is formally defined as the equalizer of the set of non-empty lists of com-
posable arrows, namely lists of arrows |fi,..., f,] such that [dmg(f2),...,dmg(fn)],

33

that is frt - Lst(dmg)([f1, ..., fa]), is equal to the list |cdg(f1),...,cdg(fn_1)], that is
bek - Lst(cdg) (| f1,-- -, fn]) (see the definition of such operations in the appendix):

frt-Lst(dmg)
€S, List*(G1) List(Go)
bck-Lst(cdg)

where

—_

C9 = Suerist(q) frt-Lst(dmg)(w) =rist(gy) bek - Lst(cdg)(w)

The domain morphism dmge : C9; — CY, is defined as the coproduct morphism of the
identity with the domain of the first morphism of the list

dmes = id @ (dmg - (fst - 7))

while the codomain morphism cdeg : C9; — CY is defined as the coproduct morphism
of the identity with the codomain of the last morphism of the list

cdes = 1d @ (cdg - (las - my))
The unit eco : C9 — CY; is defined as the first injection
eco(z) = inl(x) for z € CY%

It follows immediately that

dmeo - ecs = id cdes - eco = 1id
The composition of morphisms

Cmpes(w) € CY) [w € €Y, X9, CY]
where C9; x g, C9 is the vertex of the pullback of dmeg along cdeg

Cgl X9, Cgl = ZfECgl Egecgl Cdcg(f) =cY, dmcg(g)

is defined by cases after noting that by distributivity of coproducts with respect to pull-
backs we have

(Go ® C91) Xcs,, (Go CY) R
= (Go Xco, Go) ® (Go Xco, C91) ® (Cf Xeo, Go) @ (C91 Xca, C91)

In the next we simply write < 2 ,co, 22 > for < 21, < 29, eq >> given 21,29 € cY%,
such that cdes(21) =co, dmee (22) holds.

34

In detail the composition is defined by cases as follows

(inl(x) if z; =inl(z) = 29
for z € Gy
inr(s) if z; = inl(x) and 2z, = inr(s)

forxegoandsegg\l
Cmpc9<< R1,C9 %2 >) = 3. . . .
inr(s) if zo = inl(y) and z; = inr(s)
for y € Gy and s € CY,
inr(< |mi(s1),m(s2)],eq>) if 2y = inr(s;) and 25 = inr(ss)

\ for s; € CY; and s9 € CY;

It is easy to check that this is well defined and that the composed morphism has the right
domain and codomain:

dmeg -) = dmeg - Cmpgg cdes - 5 = cdeg - Cmppg,

where 7] and 7, are respectively the first and second projection of the pullback of dmeg
along cdge.

Moreover, given that the operation of appending a list to another is associative, it follows
that the composition is associative, too

Cmpee - (Cmpeg X id) - 0 = Cmpgg - (id X Cmpgg)

where ¢ is isomorphism from CY%; X g, (Cgl X g, cY,) to (Cgl X g, cY%) X, cY,.
Finally it is easy to show that the defined composition admits the morphism eqg as
identity:

Cmpeo - (eco X id) = 7 Cmpes - (id X epg) =)

Then, we are ready to prove:

7.3. PROPOSITION. Internally to any list-arithmetic pretopos U, given a graph G =
(g07 g17 dmg7 Cdg)

dmg

g1 Go
cdg

then the category CY = (CY%,, CY91, dmeg, cdeg, eco, Cmpes) defined above in definition 7.2

dm
c9
Cgl €cg Cgo Cmpcg : Cgl X9, Cgl — Cgl
cd
c9

1s the free internal category generated by it.

35

PROOF. Let CY% and CY, be defined as above. Then we define the injection from the
graph into its claimed free internal category as follows: jy : Gy — CY, is the identity
map, that is jo = idg, in U, and j; : G; — CY is defined as j,(f) = inr(< [f], eq >)
for f € G;. Then, (jo,j1) is a graph morphism from G to CY9 since it satisfies

dmee - j1 = Jjo - dmg cdeg - j1 = Jo - cdg

Now, we prove that (jo, j1) has the universal property of lifting a graph morphism (g, 11)
from G to an internal category D to a unique internal functor (¢, ¥!f) from CY to D

such that {f - jo = ¥ and ¥ - j; =9y

g (]07]1) Cg

If If
(o,11) (Yo, 917

D
Given an internal category D = (Dy, D;, dmp, cdp, ep, Cmpyp)
dmp

D, €p DO CmpD : Dy XDy D, — Dy

CdD

and a graph morphism (g, 11) where ¥y : Go — Dy and ¥ : G — D; are maps in U
satisfying
dmp -1 =t -dmg cdp - 91 = ¢ - cdg

we define an internal functor
(I)ficgo—>po I1ficg1—>'Dl
such that {f - jo = ¥y and ¥!f - j; = 9 as follows. Being Cy = Gy, we obviously define
%f = o

Then, in order to define ¢'1f : CY, — Dy, recall that CY9, = G, @ Eg\l Hence we define @D'lf
as a coproduct morphism of the action on identity morphisms and on lists of composable
graph morphisms. To identity morphisms we associate the corresponding identity ones by
using 1. Instead to a list of composable G-graph morphisms we associate the composition
of their values as D-morphisms via ;. Hence, we define

¥ = (ep 1) @ (app-C(t1))

where - -
C(@bl) :CY9 — CPy

36
is just the lifting of ¢; between the corresponding list parts defined as follows: for z € Eg\l

C(tn)(2) =< Lst(yy)(21), eq >€ CP,

where z; = m(2) and
app : CP?;, — D,

is a map sending a list of composable morphisms of D; into their composition. At this
point note that we can not define app by using an inductive elimination rule on CPy as
for List*(Gy) in proposition A.4 of the appendiz. But we define app by iteration: we first

fix a list s obtained by first projection from CP;, then we compose the first element of
the list with the second and so on, namely to define the value of app(s) we iterate the
described operation for a number of times equal to the length of s minus one (we start to

apply from zero!). Formally, we define app as follows: for s € Ep\l

app(s) = app(s, th(s1) —1)

by using the operation

app(s, n) €Dy [s€CPi,ne N
defined in turn by induction on natural numbers as follows:

__ __ Cmpp(< app(s, n),p, p s1) > ifn+2<Ih(s
app(s, 0) = pi(s1) app(s, n+l) = {555(5(”) () Do Pnt2(s1) >) o Ihgsi;

where s; = m(s).

Actually, in order to guarantee that app is well-defined we need to know that app(s, n)
has the same codomain as the domain of p,;2(s;) and we have to add this information
when defining it by induction. Therefore, formally app is obtained by applying the first
projection on the corresponding term of type

Yiep, ((cdp(x) =p, dmp(pnia(s1)) An+2 <Ih(s;)) V n+2 >1lh(sy)) [s € C/D\l,n € N|

defined by induction on natural numbers essentially as app together with a proof of the
needed extra information.

Clearly, it follows that ¢! - j; = ;. Moreover, we can prove that ! is functorial, i.e. it
satisfies the following equations:

If_ o If I If
dmp - 9] =1y - dmeg cdp - Y} =y - cdeg

If If
1 €co = ep -y

Cmpp - (¥ x ¢f) = ¥ - Cmpes

37

In order to prove the first two equations, we show that the following equations hold, for
S € CD1,

dmp(app(s, 1)) =p, dmp(p1(s1)) cdp(app(s,n)) =p, cdp(Pata(s1))

by induction on n € N.

—_

The third equation follows easily. Instead in order to prove the last equation, for z € CP;4

and w € CP; such that cden(inr(2)) =p, dmeo(inr(w)) we derive the validity of the
following: for n <lh(z;) — 1

5—55(< |_217wljveq >, n):D1 555(217 n)
and for n < Ih(w;) — 1

Cmpp(app(z, L), apP(w, n)) =p, app (< 21, wi], eq >, h+n+1)

where [; = Ih(z;) — 1 and 2y = m(2) and w; = 7 (w). The actual proof is derived by
induction on n € N towards the type obtained by enriching the above equations with the
constrain on n in disjunctive form, as done to derive app.

Now we end by proving the uniqueness of (¥l , 1!). Suppose that there exists an internal
functor given by pg : C9% — Dy and p; : C9; — D; such that pg - jo = Vg and py - j; = 1.
Then, since jo = id we get that py = ¥ follows trivially. It remains to prove t}ﬂ also
p1 = YIf. To this purpose we prove by induction on n € N the following: for z € C9; and
n>1

pa(inr(parta(2)) =, ¥f (inr(party(2)))

where party(z) =< parta(z1), eq > and 2, = m(2).

Then, by elimination on the sum type C¥; and knowing that partine)(S) =rList+(g,) s holds,
we get that ¢!f(2) =p, p1(2) holds for z € CY;.

Therefore, we conclude that (¢{f , ¥) is the unique internal functor obtained by lifting
(10, %1). This ends the proof that CY is the free category internally to a list-arithmetic

pretopos. m

7.4. FREE INTERNAL DIAGRAMS. Applying the same technique adopted to build free
internal categories, we can also prove that in any list-arithmetic pretopos free internal
categorical diagrams exist. Also here, the key point is to show the universal property of
the free internal diagram by defining an operation on a proper subtype of a list type by
iteration on natural numbers.

7.5. PROPOSITION. In any list-arithmetic pretopos U, given the internal graph G =
(g07 g17 dmga Cdg)

38

and the internal diagram my : F — Gy with the action
e Fxg, G — F

such that the following diagram commutes

F xg, G ——=G,

N

F Go

o

where F' xg, Gy is the vertex of the pullback of dmg along

F xg,Gi = Xper Y.eg mo(f) =g, dmg(z)

and Ty its second projection,
we can lift u to an unique action on CY,

p o F xeo, C9 — F
where F' X¢a, C91 is the vertex of the pullback of dmea along mo
I X, co = Yrer X.eco, mo(f) =g, dmea(2)
that is u'f is an internal diagram on the underlying graph of the free category
CY = (CY, CY4, dmeg, cdea, eco, Cmpeg) such that

71./
F Xgo Cgl — Cgl

lulf cdcg l

F CY%,

™0

If /
o - b = cdeg - Ty

where © and 7l are respectively the first and the second projections of the pullback of
dmee along my, and in addition also the following diagrams commute

idxe G (}Lleid)'U
F xeg, CY% = F xegq, CcY, F xeq, (CY, X9, C9,) F xegq, CY,
o u'fL idxCmp,g l Lulf
F F X, Y, If F
n
where

F Xcgo (Cgl Xcgo Cgl)
= Yjer Yieco, Yiecd, To(f) =g, dmea(z1) A cdeg(21) =g, dmee(22)

is the vertex of the pullback along 7 of the first projection of the pullback of dmeg along
cdes and o is the isomorphism from F xca, (C91 x¢g, C91) to (F Xeo, C91) Xeg, CY.

39

PROOF. In order to define the action u'f, note that by distributivity of coproducts with
respect to pullbacks we get

F x¢o, C9 = F x¢o, (Go & C91) ~ (F xg, Go) & (F xg, C91)

Hence, by the elimination rule on the sum type we define u'f : F'xcg,C% — F as follows:
for f € F, z € CY9; such that < f o, 2 >€ F X¢g, C91

f if z =inl(z) for z € Gy

P (< foeo, 2 >) = ;'?(f, s, Ih(sy) —1) if z=inr(s) for s € 9,
such that mo(f) =g, dmeg (inr(s))

where s; = m(s) and in turn
/:'?(f, s,n)eF [feFl se Eg\l, d € mo(f) =g, dmeg (inr(s))]

is defined as follows:

lf;l?(fu S, 0) = N(< f7go pl(‘Sl) >)
— (< W (f.5, 1) gy Pasal(s)) >) ifn+2 < Ih(s)
2 (fa S, n+1) = —

wt(f, s, n) if n 42 > lh(sy)

But in order to assure the well definedness of the above definition we need to know the
validity of mo(u'f(f,s, n)) =g, dmg(pnia(s1)). Therefore, pf is formally obtained by
applying the first projection on the corresponding term of type

Seer ((7o(x) =g, dMg(pasa(s1)) A n+2 < Ih(sy)) V n+2 > Ih(sy)) [s € C9y, n € N]

defined by induction on natural numbers essentially as app in the previous section together
with a proof of the needed extra information.
It follows that 4/f is an internal diagram, namely that

o - 1" = cdeg - 7h p e (id x ege) =) p - (id x Cmpgpg) = pf - (pf xid) - o

and that p'f is unique with arguments similar to those used for ¢ in theorem 7.3. [

8. Conclusions

As promised we have shown here the following facts:

e arithmetic universes built by Joyal are list-arithmetic pretopoi;

40

e the initial arithmetic universe among Joyal’s constructions is equivalent to the initial
list-arithmetic pretopos;

e any list-arithmetic pretopos enjoys free categories and diagrams generated from
graphs.

We think that these three facts provide the claimed justification for the identification of
the general notion of arithmetic universe with that of list-arithmetic pretopos:

8.1. DEFINITION. An arithmetic universe is a list-arithmetic pretopos.

We leave as an open problem whether the notion of arithmetic pretopos, namely
a pretopos with a parameterized natural numbers object, can be taken as a notion of
arithmetic universe. This suspicion is supported by the fact that the initial arithmetic
pretopos is equivalent to the initial arithmetic universe built by Joyal. However we doubt
that any arithmetic pretopos supports free internal categories and diagrams or is list-
arithmetic.

Finally, our general definition of arithmetic universe as list-arithmetic pretopos is
equivalent to that used in a recent talk by Andre Joyal [Joy05].

Acknowledgements My acknowledgements go first to Martin Hyland, who proposed
me to work on arithmetic universes and helped me with many fruitful discussions during
my staying in Cambridge. Many thanks also to Steve Vickers for providing me Gavin
Wraith’s unpublished notes [Wra85] with the master’s thesis of his student [Mor96] and
to Robin Cockett for sending Roland’s master’s thesis [Rol76]. Then, I wish also to
thank Pino Rosolini, Giovanni Sambin, Paul Taylor and Silvio Valentini for their generous
promptness in discussing my research work. Finally, I am very grateful to Andre Joyal for
his interest in this work and for letting me know his draft about Godel incompleteness.

References

[BCRS98] L. Birkedal, A. Carboni, G. Rosolini, and D. Scott. Type theory via exact
categories (extended abstract). In Thirteenth Annual IEEE Symposium on
Logic in Computer Science (Indianapolis, IN, 1998), IEEE Computer Soc.,
pages 188-198, 1998.

[Car95| A. Carboni. Some free constructions in realizability and proof theory. J.
Pure Appl. Algebra, 103:117-148, 1995.

[CLW93] A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and
distributive category. Journal of Pure and Applied Algebra, 84:145-158,
1993.

[Coc90] J.R.B. Cockett. List-arithmetic distributive categories: locoi. Journal of
Pure and Applied Algebra, 66:1-29, 1990.

[CV98]

[dB9Y1]

[Hof95)

[Hyl182]

[IMO5]

[Joh77]

[Joh02a]

[Joh02b]

[Joy05]

[LRO3]

[Mai99a]

[Maig9b)]

41

A. Carboni and E.M. Vitale. Regular and exact completions. Journal of
Pure and Applied Algebra, 125:79-116, 1998.

N.G. de Bruijn. Telescopic mapping in typed lambda calculus. Information
and Computation, 91:189-204, 1991.

M. Hofmann. On the interpretation of type theory in locally cartesian closed
categories. In Computer science logic (Kazimierz, 1994), volume 933 of
Lecture Notes in Comput. Sci., pages 427-441, 1995.

J. M. E. Hyland. The effective topos. In The L.E.J. Brouwer Centenary
Symposium (Noordwigkerhout, 1981), volume 110 of Stud. Logic Foundations
Math., pages 165-216. North-Holland, Amsterdam-New York,, 1982.

A. Joyal and 1. Moerdijk. Algebraic set theory., volume 220 of Lecture Note
Series. Cambridge University Press, 1995.

P. Johnstone. Topos theory. Academic Press, 1977.

P. T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol.
1., volume 43 of Ozford Logic Guides. The Clarendon Press, Oxford Uni-
versity Press, New York,, 2002.

P. T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol.
2., volume 44 of Ozford Logic Guides. The Clarendon Press, Oxford Uni-
versity Press, New York,, 2002.

A. Joyal. The Godel incompleteness theorem, a categorical approach.
Cahiers de topologie et geometrie differentielle categoriques, 16(3), 2005.
Short abstract of the talk given at the International conference Charles
Ehresmann: 100 ans, Amiens, 7-9 October, 2005.

F. W. Lawvere and R. Rosebrugh. Sets for mathematics. Cambridge Uni-
versity Press, 2003.

M.E. Maietti. About effective quotients in constructive type theory. In
W. Naraschewski T. Altenkirch and B. Reus, editors, Types for proofs and
programs. International workshop, TYPES ’98. Kloster Irsee, Germany,
March 27-31. 1999, volume 1657 of Lectures Notes in Computer Science,
pages 164-178. Springer Verlag, 1999.

M.E. Maietti. The typed calculus of arithmetic universes. Technical re-
port, University of Birmingham, CSR-~99-14, December 1999. also Technical
Report-University of Padova n.5 Dec. 1999.

[Mai03]

[Mai05a]

[Mai05b)

[Mar84]

[MMO92]

[MMdPRO5)

[Mor96]

IMR77]

INPS90]

[0di89)]

[Pit00]

[Rol76]

[See84]

42

M.E. Maietti. Joyal’s arithmetic universes via type theory. In Category The-
ory in Computer Science, 2002, volume 69 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2003.

M.E. Maietti. Modular correspondence between dependent type theories
and categories including pretopoi and topoi. Mathematical Structures in
Computer Science, 15(6), 2005.

M.E. Maietti. Reflection into models of finite decidable fp-sketches in an
arithmetic universe. In Category Theory in Computer Science, 2004, volume
122 of Electronic Notes in Theoretical Computer Science, pages 105-126.
Elsevier, 2005.

P. Martin-Lof. Intuitionistic Type Theory, notes by G. Sambin of a series
of lectures given in Padua, June 1980. Bibliopolis, Naples, 1984.

S. MacLane and 1. Moerdijk. Sheaves in Geometry and Logic. A first intro-
duction to Topos theory. Springer Verlag, 1992.

M.E. Maietti, P. Maneggia, V. de Paiva, and E. Ritter. Relating categori-
cal semantics for intuitionistic linear logic. Applied Categorical Structures,
13(1):1-36, 2005.

A. Morrison. Reasoning in arithmetic universes. Master’s thesis, University
of London - Imperial College of Science, Technology and Medicine, Advisor:
S. Vickers, September 1996.

M. Makkai and G. Reyes. First order categorical logic., volume 611 of Lecture
Notes in Mathematics. Springer Verlag, 1977.

B. Nordstrom, K. Peterson, and J. Smith. Programming in Martin Lof’s
Type Theory. Clarendon Press, Oxford, 1990.

P. Odifreddi. Classical recursion theory., volume 125 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co., 1989.

A.M. Pitts. Categorical logic. In Oxford University Press, editor, Handbook
of Logic in Computer Science, volume 5 of Ozxford Sci. Publ., pages 39-128,
2000.

S. Roland. Essai sur les mathematiques algorithmiques. Master’s thesis,
L’Universite du Quebec, Montreal - Maitrise es sciences (mathematiques),
Advisor: A. Joyal, January 1976.

R. Seely. Locally cartesian closed categories and type theory. Math. Proc.
Cambr. Phyl. Soc., 95:33-48, 1984.

43

[Smi88] J. Smith. The independence of Peano’s fourth axiom from Martin Lof’s type
theory without universes. Journal of Symbolic Logic, 53, 1988.

[Stro1] Th. Streicher. Semantics of type theory. Birkhauser, 1991.

[Tay05] P. Taylor. Inside every model of abstract stone duality lies an arithmetic

universe. In Category Theory in Computer Science, 2004, volume 122 of
Electronic Notes in Theoretical Computer Science, pages 247-296. Elsevier,
2005.

[Wra85] G. C. Wraith. Notes on arithmetic universes and Goédel incompleteness
theorems. Unpublished manuscript., 1985.

A. Appendix: Useful operations on list types

Here, we describe some very useful operations on list types following the notation in
remark 3.3.

We warn the reader that when defining an operation by elimination on the list type we
simply write the base and inductive steps necessary to define it instead of writing the
whole resulting proof-term.

A.1. DEFINITION. We define the length of a list |h(s) € List(A) [s € List(A)] by the
elimination rule on the list type as follows

lh(e) =0 lh(|s,a]) = Ih(s)+1
A.2. DEFINITION. Given a term ¢(z) € B [x € A] we lift this term on lists by defining
Lst(¢)(s) € List(B) [s € List(A)]
by elimination on the list type as follows
Lst(¢)(e) = € Lst(¢)([s, a]) = [Lst(9)(s), ¢(a)]
Now, we define the type of non-empty lists which also enjoys a specific induction.

A.3. DEFINITION. The type of non-empty lists is defined as

LZSt*(A) = EtEList(A) |h<t) Z 1
where n > m may be defined as Jyey n =y m+y.

In the next, given a non-empty list [€ List(A) such that p € lh(l) > 1 we simply write
[* € List*(A) instead of < [,p >€ List*(A)

Observe that we can think of List*(A) as the inductive type with the following construc-
tors:

44

- the basic constructors of List*(A) are the one element lists of A: for a € A

la]* € List*(A)
- the list constructor cons of List(A) produces a constructor

consy;si+(2,a) € List*(A) [z € List"(A),a € A]
defined as consp;g+(2,a) = cons(z1,a)* where z; = m(2).

In order to define operations on the type List*(A) of non-empty lists, we can use an
elimination rule analogous to that one for List(A). This elimination says that in order to
define an operation on the type List*(A) we first define the operation on the one element
lists, which is the base case, and then we specify how to define it on the lists obtained by
adding a new element to a list on which the operation is supposed to be already defined,
which is the inductive case.

A.4. PROPOSITION. [Induction on non-empty lists| Given the type B(s) [s € List*(A)]

and the following terms

(base case) di(z) € B(|z]*) [z € A]
(inductive case) do(s,y, w) € B(conspis(S,y)) [s € List*(A),y € A,w € B(s)]

there exists a term Elpq+(z) € B(z) [z € List*(A)] such that for s € List*(A), x € A,
ye A

Elpise-([2]*) = di(z)

Elpisi-(conspise(s,y)) = da(s, y, Elpise-(s))

PRrOOF. By using the hypothesis of our statement we can derive a proof of the type

Sueristay (B(2) X w=rigu) m(2)) + w=risa) €

by induction on w € List(A). Then, observe that for z € List*(A), since m(2) =pis(a) €
is false by sum disjointness (with a proof similar to that of proposition 5.1), and since
z = 2 € List*(A) if m(2) =rist(a) m1(2') holds, we then conclude a proof of B(z) as
claimed. -

A.5. REMARK. In order to facilitate the definition of operations on non-empty lists, here
and in the main body of this paper we simply write

[€ List*(A) if [e List(A) with a proof of h(l) > 1

and conversely also simply

[€ List(A) if [€ List*(A)

45

A.6. DEFINITION. On List*(A) we define the operation frt(s) € List(A) [s € List*(A)]
taking the front of a non-empty list: for s € List*(A) and a € A

frit(la]) =€ fri(s,a]) = [frt(s),a]

and the operation bck(s) € List(A) [s € List*(A)] taking the back of a non-empty list:
for s € List*(A) and a € A

bck(|a]) = € bek(]s,al) = s

Moreover, we define the operation fst(s) € A [s € List*(A)] selecting the first element of
a list as follows: for s € List*(A) and a € A

fst(la]) = a fst(|s,a]) = fst(s)

and the operation las(s) € A [s € List*(A)] selecting the last element of a list as follows:
for s € List*(A) and a € A

las(|a]) = a las(|s,a]) = a

Then, we define projections on a non-empty list. For every n € N we define the n-th
projection p,(s) € A [s € List*(A),n € N| by the elimination rule on non-empty lists as
follows
a if s = |a]
Pa(s) = ¢ pn(s) if s = |5, a] and n < lh(s)
a if s = |¢,a] and n > Ih(s')

Finally, we use projections to define the n-th part of a list
part,(s) € List(A) [s € List(A), n € N|

by induction on natural numbers as follows: given a list s € List(A)

parto(s) = e part,,1(s) = { |part,(s), pnr1(s)] ifn+1<Ih(s)

part,(s) if n4+1 > Ih(s)

