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Abstract

Triposes were introduced as presentations of toposes by J.M.E. Hy-
land, P.T. Johnstone and A.M. Pitts. They introduced a construction
that, from a tripos P : C op // Pos, produces an elementary topos TP in
such a way that the fibration of the subobjects of the topos TP is freely ob-
tained from P . One can also construct the “smallest” elementary doctrine
made of subobjects which fully extends P , more precisely the free full com-
prehensive doctrine with comprehensive diagonals Pcx : PrdP

op // Pos on
P . The base category has finite limits and embeds into the topos TP via
a functor K: PrdP

// TP determined by the universal property of Pcx

and which preserves finite limits. Hence it extends to an exact functor
Kex: (PrdP )ex/lex

// TP from the exact completion of PrdP .
We characterize the triposes P for which the functor Kex is an equival-

ence as those P equipped with a so-called ε-operator. We also show that
the tripos-to-topos construction need not preserve ε-operators by produ-
cing counterexamples from localic triposes constructed from well-ordered
sets.

A characterization of the tripos-to-topos construction as a completion
to an exact category is instrumental for the results in the paper and we
derived it as a consequence of a more general characterization of an exact
completion related to Lawvere’s hyperdoctrines.

1 Introduction

The topic of completing a given structure with quotients to get a richer one has
been widely employed in logic in order to obtain relative consistency results, and
its categorical aspects have been studied extensively. The calculus of Partial
Equivalence Relations has many applications in the semantics of programming
languages. In Type Theory, models of abstract quotients, known as setoid
models, are very useful to formalize mathematical proofs. In category theory
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one finds various notions of completing a category to an exact category initiated
by P.J. Freyd’s exact completion of a regular category and they include also
the exact completion of a category with certain weak finite limits, e.g. see
[FS91, Car95, CV98].

In recent work [MR15], two of the authors generalized these exact comple-
tions by relativizing the basic data to a doctrine equipped with just the structure
sufficient to present the notion of an equivalence relation. In particular, they
determined the exact completion of an elementary existential doctrine P with
(weak) full comprehensions and comprehensive diagonals, see loc.cit.. The ex-
act completion of a regular category R coincides with the exact completion on
the existential doctrine of the subobjects of R . The exact completion of a cat-
egory with finite limits C is the exact completion of the doctrine of the weak
subobjects on C .

But there is also another way of completing an elementary existential doc-
trine P to an exact category which consists essentially in the tripos-to-topos
construction of J.M.E. Hyland, P.T. Johnstone and A.M. Pitts, see [HJP80]
and which made apparent the abstract construction behind Higg’s complete
Heyting valued toposes and toposes obtained from Kleene’s realizability like the
effective topos, see [Hyl82]. In [MR15, Pas15b] it was shown that the tripos-
to-topos construction TP of a given tripos P : C op // Heyt can be obtained as
the exact completion of the doctrine Pcx : PrdP

op // Heyt obtained by freely
completing the original tripos with full comprehensions and comprehensive di-
agonals. In particular, the base category PrdP has finite limits and the functor
K: PrdP // TP , obtained by the universal property, is an embedding into the
topos TP .

In this paper we address the question of characterizing those triposes P for
which the exact estension Kex: (PrdP )ex/lex

// TP of K is an equivalence. We
show that this happens if and only if each object in the base of the tripos P is
equipped with the logical constructors called ε-operator, see [HB01a, HB01b].

This characterization follows from the following facts.

• the starting tripos P is equipped with ε-operators if and only if the free
full comprehensive doctrine Pcx with comprehensive diagonals satisfies the
Rule of Choice;

• the doctrine with full comprehensions and comprehensive diagonals Pcx of
P satisfies the Rule of Choice if and only if a certain “comprehension func-
tor” from the doctrine Pcx to the doctrine ΨPrdP of the weak subobjects
of PrdP is part of an equivalence.

These two facts together with the decomposition results of exact completions in
terms of the free full comprehensive completion doctrine Pcx with comprehensive
diagonals in [MR15] allow us to conclude that, given a tripos P , the exact functor
Kex: (PrdP )ex/lex

// TP , extending K: PrdP // TP to the exact completion, is
an equivalence if and only if P is equipped with ε-operators.

Examples of toposes coming from a tripos equipped with ε-operators include
toposes of complete Heyting valued sets whose algebra of values is (the opposite
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of) a well-order. Most notably these toposes are not necessarily boolean even if
they satisfy a weak law of excluded middle, see [Bel93a]. This allows to conclude
that the tripos-to-topos construction does not preserve ε-operators because from
[Bel93b] we know that toposes with ε-operators satisfy the axiom of choice and
hence, by Diaconescu’s theorem, are necessarily boolean.

2 Doctrines of weak subobjects

The notion of elementary doctrine is a variation of the notion of hyperdoctrine
introduced in a series of seminal papers by F.W. Lawvere to synthetize the
structural properties of logical systems, see [Law69a, Law69b, Law70], and also
[LR03] for a unified survey.

Lawvere’s crucial intuition was to consider logical languages and theories as
fibrations to study their 2-categorical properties, e.g. connectives, quantifiers
and equality are determined by structural adjunctions. That approach proved
extremely fruitful, see [MR77, Car82, LS86, Jac99, Tay99, vO08] and references
therein.

Taking advantage of the category-theoretical presentation of logic by doc-
trines, we review from [MR13b, MR15] a general notion of elementary doctrine
appropriate to analyse the notion of quotient of an equivalence relation. Let
InfSL be the locally ordered 2-category of inf-semilattice, i.e. posets with fi-
nite infima, and functions between them which preserves finite infima, with the
pointwise order between those.

2.1 Definition. Let C be a category with a terminal object T and with a binary
product

C1 C1 × C2

pr1oo
pr2 //C2

for every pair of objects C1 and C2 in C . An elementary doctrine on C is
an indexed inf-semilattice P : C op // InfSL such that, for every object A in C ,
there is an object δA in P (A×A) such that

(i) the assignment

E

〈idA,idA〉(α) := Ppr1
(α) ∧A×A δA

for α in P (A) determines a left adjoint to

P〈idA,idA〉:P (A×A) // P (A); 1

(ii) for every arrow e of the form 〈pr1,pr2,pr2〉:X × A // X × A × A in C ,
the assignment

E

e(α) := P〈pr1,pr2〉(α) ∧X×A×A P〈pr2,pr3〉(δA)

for α in P (X ×A) determines a left adjoint to

Pe:P (X ×A×A) // P (X ×A).
1Here and in the following we write Pf for the value of the indexing functor P on an arrow

f .
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2.2 Remark. (a) Condition (i) determines δA uniquely for each object A in C .
The object δA will be referred to as the fibered equality on A.
(b) Since 〈pr2,pr1〉 ◦ 〈idA, idA〉 = 〈idA, idA〉, from (a) it follows that we can use
the second projection in the definition of the left adjoint in (i) in this way

E

〈idA,idA〉(α) = Ppr2
(α) ∧A×A δA

for every α in P (A), by uniqueness of left adjoints.
(c) It follows from the fact that C has a terminal object that condition (ii)
entails condition (i).2

(d) One has that >A ≤A P〈idA,idA〉(δA) and δA ≤A×A Pf×f (δB) when f :A // B.

To express precisely the relationships between the examples one must con-
sider the 2-category ED of elementary doctrines:

the 1-arrows are pairs (F, b) where F : C // D is a functor and b:P . // R◦F op

is a natural transformation as in the diagram

C op
P

))
F

op

��

InfSL

Dop R

55b ·
��

where the functor F preserves products and, for every object A in C ,
the homomorphism bA:P (A) // R(F (A)) of inf-semilattices is such that
bA×A(δA) = R〈F (pr1),F (pr2)〉(δF (A))—hence it commutes with all the left
adjoints

E

f ;

the 2-arrows are natural transformations θ:F . // G such that bA(α) ≤F (A)

RθA(cA(α)) for every A in C and α in P (A).

2.3 Examples. The first three examples below are discussed in [Law69a, Law70].
(a) The standard categorical examples of indexed posets are the fibrations of
subobjects. For a category C with finite limits, the functor SubC : C op // InfSL
assigns to an object A in C the poset SubC (A) of the subobjects of A in C
and, for an arrow f :B // A, the homomorphism SubC (f): SubC (A) // SubC (B)
is given by pulling a subobject back along f . The fibered equalities are the
diagonal arrows.
(b) Another example is provided by any category D with finite products and
weak pullbacks: the doctrine is given by the functor of weak subobjects ΨD : Dop //

InfSL where ΨD(A) is the poset reflection of the slice category D/A and, for
an arrow f :B // A, the homomorphism (ΨD)f : ΨD(A) // ΨD(B) is given by
a(ny) weak pullback of an arrow g:X // A with f . This doctrine is studied in
[Gra00] where weak subobjects are called variations and subobjects become
monic variations.

2Nonetheless we preferred to state condition (i) explicitly in the definition.
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The previous two examples are equivalent in case the categories are the same
C = D if and only if every arrow in C can be factored as a retraction followed by
a mono — for instance, for C = Set the category of sets and functions, thanks
to the Axiom of Choice.
(c) An example directly from first order logic is the Lindenbaum-Tarski algebras
of well-formed formulas of a theory T with equality. The base category is
the category V of lists of distinct variables and term substitutions, and the
elementary doctrine LT : V op // InfSL on V is given on a list of typed variables
~x by taking LT (~x) as the Lindenbaum-Tarski algebra of well-formed formulas
with free variables in ~x, see [MR13a] for more details.

A set-theoretic model for a first order theory T with equality determines
an 1-arrow from LT : V op // InfSL to SubSet : Set op // InfSL in ED. And a
homomorphism between two set-theoretic models of T determines a 2-arrow.
(d) Let St be a full subcategory of the category Set of sets and functions, closed
under finite products—for instance, St can be chosen as the category Set∗ on the
non-empty sets, or as the category FinSet on the finite sets, or more generally
as the category Set<λ on the sets of cardinality less than λ, for λ a limit ordinal,
or even Set<λ∗ on non-empty sets of cardinality less than λ.

Let B be a poset with a bottom element ⊥, least upper bounds
∨I

: BI // B
for every indexing set I in St , and greatest lower bounds of finite subsets which
distribute over

∨
. Consider the indexed inf-semilattice B(−): St op // InfSL on

the category St . It maps a set I to the power inf-semilattice BI and a function
f : I // J to the homomorphism

BJ
− ◦ f

// BI

given by pre-composition with f . For I in St , let

δI(i1, i2) :=
{> if i1 = i2
⊥ otherwise

It is straightforward to see that B(−) is an elementary doctrine.

The doctrines which are relevant for the present paper are of a special kind.

2.4 Definition. An elementary doctrine P : C op // InfSL is existential when,
for A1 and A2 in C , for a(ny) projection pri:A1×A2

// Ai, i = 1, 2, the functor
Ppri :P (Ai) // P (A1 × A2) has a left adjoint

E

pri—we shall call such a left
adjoint existential—, and those left adjoints satisfy the

Beck-Chevalley Condition: for any pullback diagram

X ′
pr′
//

f ′
��

A′

f
��

X
pr
// A

with pr a projection (hence also pr′ a projection), for any β in P (X), the
natural inequality

E

pr′Pf ′(β) ≤ Pf

E

pr(β) in P (A′) is an identity;
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Frobenius Reciprocity : for pr:X // A a projection, α in P (A), β in P (X),
the natural inequality

E

pr(Ppr(α) ∧X β) ≤ α ∧A

E

pr(β) in P (A) is an
identity.

2.5 Examples. Among the examples in 2.3, the doctrine in (a) is existential if
and only if C has images. The doctrines in the other examples are existential.
For the doctrine in (b) the existential left adjoints are given by post-composition.
For the doctrine in (c) the existential left adjoints are constructed with existen-
tial quantifier. For the doctrine in (d) the existential left adjoint is computed
by
∨

, e.g.

E

pr2
(α)(j) =

∨
i∈I

α(i, j)

for α ∈ BI×J and pr2: I × J // J .

We should remark that the original analysis of existential elementary doc-
trine in [Law70] was much finer than the one we offer here, yet like in loc.cit. a
general functor Pf may fail to have a left adjoint. We need only the following
result, see [Law70, Jac99].

2.6 Proposition. If P : C op // InfSL is an elementary existential doctrine,
then for every f :A // B in C the functor Pf :P (B) // P (A) has a left adjoint
which is defined for f :A // B in C and α in P (A) as follows

E
f (α) :=

E
pr1

(Ppr2
(α) ∧B×A P〈pr1,fpr2〉(δB))

Moreover, these left adjoints satisfy the Frobenius Reciprocity, i.e.

E

f (α ∧
Pf (β)) = β ∧

E

f (α) holds for every β in P (B) and α in P (A).

We write EED for 2-full subcategoy of ED on the existential elementary
doctrines with those 1-arrows that commute with the existential left adjoints.

The careful reader will have noticed that 2.6 does not mention any sort of
Beck-Chevalley Condition. The crux of the matter is that the fibres of P have
very little to do with the constructions in the base category C , in particular
pullbacks or equalizers. The technical tool for such a connection are compre-
hensions.

2.7 Definition. Given an elementary doctrine P : C op // InfSL, and an object
α in P (A), a weak comprehension of α is an arrow {|α|}:X // A in C such
that >X ≤X P{|α|}(α), and, for every f :Z // A such that >Z ≤Z Pf (α), there
is an arrow f ′:Z // X such that f = {|α|} ◦ f ′.
We say that an elementary doctrine P has weak comprehensions if every α
has a weak comprehension, and that P has full weak comprehensions if,
moreover, α ≤ β in P (A) whenever {|α|} factors through {|β|}.

For a given α in P (A), the arrow {|α|}:X // A is monic if and only if,
for every f , the representation f ′ is unique. In such a situation, usually one
drops the adjective “weak” from “weak comprehension”, possibly emphasizing
the result with the adjective “strong”. We shall align with the standard use and
speak of (strong) comprehension for a monic weak comprehension.
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2.8 Remark. Note that a weak comprehension, as any weak universal arrow, is
not determined up to iso. Two weak comprehensions k:X // A and h:Y // A
of the same object α of P (A) are connected by arrows f :X // Y and g: y // X
which need not be inverse of each other, but they do make the following triangles
commute

X
f
//

k
  

Y
g
//

h
��

X

k
~~

A.

Note that that is all is needed to ensure that fullness does not depend on the
choice of a particular weak comprehension.

2.9 Remark. Recall from [Law70] that the notion of (strong) comprehension
connects an abstract elementary doctrine with that of the subobjects of the base
when this has finite limits—see also [Jac99] where a more abstract, elegant view
of comprehensions as right adjoint is considered.

Note also that, for α, β ∈ P (A) with weak comprehension, one has that
{|α ∧A β|} is a weak pullback of {|α|} and {|β|}. So, assuming C has weak equal-
izers, the assignment {|−|}:P (A) // ΨD(A) is a natural homomorphism from
P to ΨD . But it may fail to be a 1-arrow in ED because it need not preserve
fibered equalities, see 2.10 and 2.15 though.

2.10 Remark. Suppose that, in the elementary existential doctrine P : Dop //

InfSL, the category D has all pullbacks. Suppose also that all left adjoints to
the action of P on arrows in D satisfy the Beck-Chevalley Condition for all
pullbacks, i.e. given any pullback diagram

X ′
g′
//

f ′
��

A′

f
��

X
g
// A

in D, for any β in P (X), the natural inequality

E

g′Pf ′(β) ≤ Pf

E

g(β) in P (A′)
is an identity. The function

ΨD(A)

E

−>A
// P (A)

[f :A→ B] � //

E

f>A

extends to a homomorphism in InfSL which is left adjoint to {|−|}:P (A) //

ΨD(A). Clearly it provides a 1-arrow in ED

Dop

Idop
D
��

ΨD
**
InfSL

Dop P

44

E

−> ·
��
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from ΨD to P .

A special case of comprehensions are the diagonal arrows and the following
definition considers just that possibility.

2.11 Definition. An elementary doctrine P : C op // InfSL has comprehens-
ive diagonals if every diagonal arrow 〈idA, idA〉:A // A×A is the (necessarily
strong) comprehension of δA.

2.12 Proposition. Let P : C op // InfSL be an elementary doctrine. The fol-
lowing are equivalent:

(i) P has comprehensive diagonals.

(ii) For any two arrows f, g:A // B in C , it is

f = g iff >A ≤A P〈f,g〉(δB).

Proof. Notice that f = g if and only if 〈f, g〉:A // B × B factors through the
diagonal.

Thanks to proposition 2.12, there is a 2-reflection of elementary doctrines
from ED into the full 2-subcategory CED of elementary doctrines with compre-
hensive diagonals once one notices that the condition

>A ≤A P〈f,g〉(δB)

ensures that Pf = Pg. So the reflection takes an elementary doctrine P : C op //

InfSL to the elementary doctrine Px : X op
P

// InfSL, induced by P on the quo-
tient category XP of C with respect to the equivalence relation where f ∼ g
when

>A ≤A P〈f,g〉(δB).

We may refer to the doctrine Px as the extensional reflection of P , see
[MR13a] for the details.

It is easy to see that the extensional reflection of an elementary exist-
ential doctrine is existential since the further structure does not involve the
base category. Also recall from [MR13b] that, when an elementary doctrine
P : C op // InfSL has full comprehensions and comprehensive diagonals, then
the base category C has equalizers, hence all finite limits.

2.13 Proposition. Let P be an elementary doctrine P : C op // InfSL with
comprehensive diagonals. If P has weak comprehensions then C has weak equal-
izers, and if P has comprehensions then C has equalizers.

Proof. A weak equalizer of A
f
//

g
// B is computed as {|P〈f,g〉(δB)|}:E // A.

And this becomes an equalizer as soon as it is monic, see 2.7.
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2.14 Remark. In an elementary doctrine P : C op // InfSL with comprehens-
ive diagonals and full comprehensions, the pullback of f along g in C can be
computed as

X
{|Pg×f (δB)|}

&&

//

��

A

f

��

Y ×A
pr2

88

pr1xx
Y g

// B.

As a follow-up to 2.9, the presence of comprehensive diagonals in an ele-
mentay doctrine makes comprehension a 1-arrow in the 2-category ED.

2.15 Theorem. Suppose P : C op // InfSL is an elementary doctrine with weak
comprehensions and comprehensive diagonals. The assignment of weak compre-
hensions extends to a 1-arrow

C op

Idop
C
��

P
**
InfSL

C op ΨC

44{|−|} ·
��

from P to the doctrine of the weak subobjects in ED. Moreover, if the weak com-
prehensions are full, then the functors (aka order-preserving functions) P (A) //

ΨC (A) are full.

Proof. First observe that thanks to proposition 2.13 the base category C has
weak equalizers. Also, by 2.9 {|−|}:P (A) // ΨC (A) preserves finite meets. Fi-
nally note that the natural transformation {|−|} preserves the fibered equality
because diagonals are comprehensive.

So 2.15 provides a representation of an elementary doctrine with weak full
comprehension and comprehensive diagonals P : C op // InfSL as a subdoctrine
of the doctrine of the weak subobjects ΨC : C op // InfSL on C .

Since this can also be strengthened to yield a representation of an ele-
mentary doctrine with full (strong) comprehension and comprehensive diag-
onals P : C op // InfSL as a subdoctrine of the doctrine of the subobjects
SubC : C op // InfSL, we introduce the following definitions, inspired by 2.3(b).

2.16 Definition. Let P : C op // InfSL be an elementary doctrine. We say that
P is a variational doctrine if it has weak full comprehensions and compre-
hensive diagonals. And we say that P is an m-variational doctrine if it has
full comprehensions and comprehensive diagonals.

Recall from [Jac99] that the Grothendieck category GP of points of the in-
dexed category P : C op // InfSL provides the free addition of comprehensions.
In the posetal case of interest, the category GP has objects which are pairs (A,α)
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where A is in C and α is in P (A). An arrow f : (A,α) // (B, β) in GP is an arrow
f :A // B in C such that α ≤ Pf (β). The indexed poset Pc : GP

op // InfSL
takes an object (A,α) of GP to

Pc(A,α) := {γ ∈ P (A) | γ ≤ α}

and an arrow f : (A,α) // (B, β) to

(Pc)f (φ) = Pf (φ) ∧ α.

If P is an elementary doctrine, Pc is an elementary doctrine with comprehen-
sions, and it is the free one on P . The comprehensions in Pc are actually full,
see [MR13b, Pas15b] for the details in the posetal case.

Let SD be the 2-full 2-subcategory of ED on the m-variational doctrines
whose 1-arrows preserve comprehensions.

2.17 Theorem. The association to an elementary doctrine P : C op // InfSL of
the doctrine Pcx : XPc

op // InfSL determines a left bi-adjoint to the inclusion of
SD into ED. If the doctrine P is existential, then Pc and Px are also existential.

Proof. See [MR13b] for a proof of the first statement, and [MR15] for the second
part.

Inspired by the construction of the category of predicates in Joyal’s arith-
metic universes, see [Mai10], we shall refer to the category XPc

as the category
of predicates of the elementary doctrine P and write it as PrdP , because it
is the base of the m-variational doctrine generated by P . Recall from proposi-
tion 2.13 that PrdP has finite products.

2.18 Example. Consider the functor DS that maps each object of a Skolem
category S to the poset of its decidable predicates, see [Mai10]. The category
PrdDS is the second stage of the construction of Joyal’s arithmetic universes in
loc.cit..

2.19 Proposition. Let P : C op // InfSL be an existential variational doctrine.
The left adjoint functors

E

f satisfy the Beck-Chevalley condition with respect
to weak pullbacks.

Proof. Let f :A // B and g:Y // B be arrows in C . Consider first the weak
pullback of f and g obtained as follows

X
{|Pg×f (δB)|}

&&

g′
//

f ′

��

A

f

��

Y ×A
pr2

88

pr1xx
Y g

// B
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as in 2.14. Let η := {|Pg×f (δB)|}. So, by the hypothesis of full weak comprehen-
sions,

E

η(>X) = Pg×f (δB). Also, by 2.6, applying Frobenius Reciprocity one
has that

E

ηPη(Ppr2
(α)) =

E

η(>X) ∧ Ppr2
(α).

Hence, for pr1
′ and pr2

′ the projections from B ×A,

Pg

E

f (α) = Pg(

E

pr1
′(Ppr2

′(α) ∧ P〈pr1
′,fpr2

′〉(δB)))
=

E

pr1
(Pg×idA(Ppr2

′(α) ∧ P〈pr1
′,fpr2

′〉(δB)))
=

E

pr1
(Ppr2

(α) ∧ Pf×g(δB))
=

E

pr1
(Ppr2

(α) ∧

E

η(>X))
=

E

pr1

E

η(PηPpr2
(α)) =

E

f ′(Pg′(α))

Consider now an arbitrary weak pullback

Z
h //

k
��

A

f
��

Y g
// B.

By weak universality, there is t:X // Z such that kt = f ′ and ht = g′. Hence

Pg
E

f (α) =
E

f ′Pg′(α) =
E
k

E
tPtPh(α) ≤

E
kPh(α).

2.20 Corollary. If P : C op // InfSL is an elementary existential doctrine, then
Pcx : PrdP

op // InfSL is an existential m-variational doctrine, and the left ad-
joint functors

E

f satisfy the Beck-Chevalley Condition.

2.21 Remark. Existential m-variational doctrines P : C op // InfSL are related
to proper factorizations systems, see [HJ03]. Every such a doctrine determines
a proper factorization system (E,M) in C , see [FK72], where the monos in M
are the comprehensions in C and the epis in E are surjective with respect to
P , namely those arrows f :A // B in C such that

E

f (>A) = >B .

2.22 Proposition. For an existential m-variational doctrine P : C op // InfSL,
the unit of the adjunction in 2.17 (N, n):P // Pcx has a retraction (M,m):Pcx

//

P which is also right adjoint to the 1-arrow (N, n) in ED.

Proof. By 2.17 the 1-arrow N :P // Pcx maps an object A in C to (A,>A),
an arrow f :A // B in C to [f ] : (A,>A) // (B,>B); nA is the identity on the
fibre P (A) since Pcx(A,>A) = P (A). For the retraction, consider an arrow
[g] : (A,α) // (B, β) in PrdP , so that α ≤ Pg(β) and [h] = [g] when α ≤
P〈g,h〉(δB). Let {|α|}:X // A and {|β|}:Y // B. Hence

>X ≤ P{|α|}(α) ≤ P{|α|}(Pg(β))

ensures that g{|α|} factors as {|β|}g′. Similarly, for [h] = [g], we obtain that
h{|α|} = g{|α|}. In other words, the arrow g′:X // Y is uniquely determined by
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the class [g]. It is easy to see that assignment, mapping [g] : (A,α) // (B, β)
to g′:X // Y , gives rise to a functor M : PrdP // C which preserves products.
Since P is an existential m-variational doctrine, the fibre Pcx(A,α) = Pc(A,α)
is isomorphic to P (X) via the functors

Pc(A,α)
P{|α|}

// P (X)

E

{|α|}
// Pc(A,α)

as γ =

E

{|α|}(P{|α|}(γ)) by 2.20. As for the adjunction, it is immediate to see
that A is isomorphic to N(M(A)) in C . On the other hand, for (A,α) in PrdP ,
the comprehnsion of α provides an arrow [{|α|}] : (X,>X) // (A,α) in Pcx . It is
easy to see that they form an adjunction between C and PrdP . The conclusion
follows since the fibres are isomorphic.

2.23 Remark. The result in 2.22 can be read as a property of existential m-
variational doctrines: they are 2-algebras for a 2-monad on ED.

Note that the arrow {|α|}: (X,>X) // (A,α) for (A,α) in Pcx is such that

E

[{|α|}](>(X,>X)) = α = >(A,α).

So it is monic and surjective with respect to Pcx , but may fail to have an inverse
in Pcx .

In addition, consider that the 2-monad on ED is KZ as is the case for any
completion, and the unit Pcx

// (Pcx)cx is left adjoint (in ED) to the multiplic-
ation (Pcx)cx

// Pcx which maps an object ((A,α), β) with β ≤ α in P (A) to
the object (A, β).

3 Categories of entire functional relations

As pointed out in [Kel92], the notion of elementary existential doctrine con-
tains the logical data which allow describe relational composition as well as
functionality and entirety.

3.1 Definition. Let P : C op // InfSL be an elementary existential doctrine.
Let φ be in P (A×B) and ψ in P (B ×C). The relational composition of φ
and ψ is

E

〈pr1,pr3〉(P〈pr1,pr2〉(φ) ∧ P〈pr2,pr3〉(ψ))

where pri are the projections from A × B × C. Also one says that φ is entire
from A to B if >A ≤

E

pr1
(φ), and that φ is functional from A to B when

P〈pr1,pr2〉(φ)∧P〈pr1,pr3〉(φ) ≤ P〈pr2,pr3〉(δB) in P (A×B×B). The category EFP

of entire functional relations of P has objects those of C ; an arrow φ:A // B is a
entire functional relation from A to B. They compose by relational composition
with the δA as identities.

Note that, given an arrow f :A // B in C , its graph Pf×idB (δB) is a entire
functional relation from A to B and this defines a graph functor from G: C //

EFP .
As a simple extension of a result in [Kel92] we have the following.
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3.2 Theorem. Let P : C op // InfSL be an elementary existential doctrine.

(i) The category EFP has products.

(ii) EFP ≡ EFPx

(iii) The graph functor G: C // EFP preserves products. It is faithful exactly
when P has comprehensive diagonals.

(iv) If P is an m-variational doctrine, the category EFP is regular.

Proof. (i) is a direct calculation which we leave to the reader.
(ii) is immediate since the definition of the category EFP involves only projec-
tion arrows.
(iii) is obvious.
(iv) As an equalizer of φ, ψ:A // B in EFP , one considers the graph in EFP

of the comprehension {|

E

pr1
(φ ∧ ψ)|}:X // A in C . The image of φ:A // B in

EFP is computed taking the graph in EFP of the comprehension

{|

E

pr2
(φ)|}:Y // B.

By the results in [Kel92] we know that the construction in 3.2 produces
the regular completion of an elementary existential doctrine in the following
sense.

3.3 Theorem. The inclusion of the 2-category Reg of regular categories with
regular functors and natural transformations into EED has a left biadjoint is
computed as EFPcx

on an elementary existential doctrine P .

3.4 Example. The regular completion Dreg/lex of a category D with finite
product and weak equalizers in [CV98] is equivalent to the regular completion
EF(ΨD )cx

of the doctrine ΨD : Dop // InfSL of the weak subobjects of D.

3.5 Proposition. If P is a m-variational doctrine then EFP ≡ EFPcx
.

Proof. Applying EF to the retraction in 2.22, we obtain a retraction between
EFP and EFPcx

. But in EFPcx
the arrow given by the graph of [{|α|}] : (X,>X) //

(A,α) is iso. So applying EF to the retraction produces an equivalence of cat-
egories.

4 The construction from tripos to topos

The construction from tripos to topos, together with the notion of entire func-
tional relation, involves also the notion of quotient. We review them briefly
from [MR13b] and [Pit02].

4.1 Definition. Let P : C op // InfSL be an elementary doctrine, an object A
in C and ρ in P (A×A), one says that ρ is a P -equivalence relation on A if
it satisfies

reflexivity : δA ≤ ρ;
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symmetry : ρ ≤ P〈pr2,pr1〉(ρ), for pr1,pr2:A × A // A the first and second
projection, respectively;

transitivity : P〈pr1,pr2〉(ρ)∧P〈pr2,pr3〉(ρ) ≤ P〈pr1,pr3〉(ρ), for pr1,pr2,pr3:A×A×
A // A the projections to the first, second and third factor, respectively.

4.2 Examples. (a) Given an elementary doctrine P : C op // InfSL and an
object A in C , the object δA is a P -equivalence relation on A.
(b) Given a first order theory T with equality predicate, consider the element-
ary doctrine LT : V op // InfSL. An LT -equivalence relation is a T -provable
equivalence relation.
(c) For a category D with products and pullbacks, consider the elementary
doctrine SubD : Dop // InfSL of the subobjects of D. A SubD -equivalence
relation is an equivalence relation in D.
(d) For a cartesian category C with products and weak equalizers, consider
the elementary doctrine ΨC : C op // InfSL of the weak subobjects. A ΨC -
equivalence relation is a pseudo-equivalence relation in C , see [CC82].

4.3 Definition. For an elementary doctrine P : C op // InfSL, the elementary
quotient completion P is the doctrine P̂ : Q op

P
// InfSL where the category

QP is determined as follows.

Objects: a pair (A, ρ) such that ρ is a P -equivalence relation on A.

Arrows: an arrow [f ] : (A, ρ) // (B, σ) is an equivalence class of arrows f :A //

B in C such that ρ ≤ Pf×f (σ) in P (A × A) with respect to the relation
determined by the condition that ρ ≤ Pf×g(σ).

Composition is given by that of C on representatives, and identities are repres-
ented by identities of C .

The doctrine P̂ : Q op
P

// InfSL is defined as

P̂ (A, ρ) := {α ∈ P (A) | Ppr1
(α) ∧ ρ ≤ Ppr2

(α)}

where pr1,pr2:A×A // A are the projections.

The elementary doctrine P̂ is the completion with respect to quotients of P .
There are several details that one must check in order to verify the statements
above, and we refer the interested reader to [MR13b].

4.4 Examples. The category of enumerated sets in [Erš73] is the category
QP for P : Recop // InfSL the doctrine on the category of finite powers of the
natural numbers with recursive functions where P (Nk) is the powerset of Nk
and Pf is given by inverse image for f a recursive function.

A similar example is the category Equ of equilogical spaces, see [BBS04,
Ros15]. The doctrine P : Topop

0
// InfSL is given on the category of T0-spaces

and continuous functions by taking P (X, τ) as the powerset of X and Pf is
inverse image along f for f a continuous function.
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Many other examples are provided by the construction of a category of
“partial equivalence relations” on a partial combinatory algebra, see [Sco76].
They are obtained as categories of quotients QD from doctrines which are of
the form D = Pcx . We should warn the reader that, although the name, these
are a different categorical construction from TP introduced by [Pit02], which
we recall below.

We collect in the following statements a few properties of a elementary quo-
tient completion from [MR13b].

4.5 Proposition. For an elementary doctrine P : C op // InfSL, the indexed
poset P̂ : Q op

P
// InfSL is an elementary doctrine. Moreover

(i) If P is existential, then P̂ is existential and QP is regular.

(ii) If P is a variational doctrine, then P̂ is an m-variational doctrine.

Recall from [Pit02] the construction of a category from a tripos. We state it
in the case of an elementary existential doctrine P : C op // InfSL as the further
structure is irrelevant for our discussion (and for the construction). We refer
the reader to [MR15, Pas15a] for an analysis of that.

Given an elementary existential doctrine P : C op // InfSL the category TP
consists of

objects: pairs (A, ρ) such that ρ is in P (A × A) and satisfies symmetry and
transitivity as in 4.1;

arrows: an arrow φ: (A, ρ) // (B, σ) is an object φ in P (A×B) such that

(i) φ ≤ P〈pr1,pr1〉(ρ) ∧ P〈pr2,pr2〉(σ);

(ii) P〈pr1,pr2〉(ρ) ∧ P〈pr2,pr3〉(φ) ≤ P〈pr1,pr3〉(φ) in P (A×A×B)
where the pri’s are the projections from A×A×B;

(iii) P〈pr1,pr2〉(φ) ∧ P〈pr2,pr3〉(σ) ≤ P〈pr1,pr3〉(φ) in P (A×B ×B)
where the pri’s are the projections from A×B ×B;

(iv) P〈pr1,pr2〉(φ) ∧ P〈pr1,pr3〉(φ) ≤ P〈pr2,pr3〉(σ) in P (A×B ×B)
where the pri’s are as in (iii);

(v) P〈idA,idA〉(ρ) ≤

E

pr1
(φ) in P (A)

where the pri’s are the projections from A×B.

Composition (A, ρ)
φ
//(B, σ)

ψ
//(C, τ) is defined as

E

〈pr1,pr3〉(P〈pr1,pr2〉(φ) ∧ P〈pr2,pr3〉(ψ))

and identity is (A, ρ)
ρ
//(A, ρ).

This constructions was called the exact completion of the elementary ex-
istential doctrine P in [MR15] for reasons which will become apparent in 4.9.
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4.6 Examples. The main examples of this construction are localic toposes and
realizability toposes obtained from a tripos, see [HJP80, Pit02, vO08].

It is immediate to check that

4.7 Theorem. Given an elementary existential doctrine P : C op // InfSL, the
category TP is equivalent to EF

P̂cx
.

The construction of the exact completion Aex/reg of a regular category A was
produced by Freyd in a way that resembled logic, see [FS91]. Indeed it can be
obtained as EF

ŜubA
, see [MR15] where the operation EF

(̂−)
is written as E(−).

This is indeed an exact completion when performed on existential m-variational
doctrines and we recall here its explicit description.

Given an elementary existential doctrine P : C op // InfSL, the category
Ex P = EFP̂ consists of

objects: pairs (A, ρ) such that ρ is in P (A× A) and satisfies reflexivity, sym-
metry and transitivity as in 4.1;

arrows: φ: (A, ρ) // (B, σ) are objects φ in P (A×B) such that

(i) P〈pr1,pr2〉(ρ) ∧ P〈pr2,pr3〉(φ) ≤ P〈pr1,pr3〉(φ) in P (A×A×B)
where the pri’s are the projections from A×A×B;

(ii) P〈pr1,pr2〉(φ) ∧ P〈pr2,pr3〉(σ) ≤ P〈pr1,pr3〉(φ) in P (A×B ×B)
where the pri’s are the projections from A×B ×B;

(iii) P〈pr1,pr2〉(φ) ∧ P〈pr1,pr3〉(φ) ≤ P〈pr2,pr3〉(σ) in P (A×B ×B)
where the pri’s are as in (iii);

(iv) >A ≤

E

pr1
(φ).

Composition (A, ρ)
φ
//(B, σ)

ψ
//(C, τ) is defined as

E

〈pr1,pr3〉(P〈pr1,pr2〉(φ) ∧ P〈pr2,pr3〉(ψ))

and identity is (A, ρ)
ρ
//(A, ρ).

For reasons which will become apparent in 4.9 we refer to the construction
Ex P as the exact completion of the existential m-variational doctrine P .

4.8 Examples. As already stated, the leading example of the above con-
struction Ex P is the exact completion Aex/reg of a regular category A , see
[FS91, Car95, CV98]. It coincides with Ex SubA

for the doctrine SubA : Aop //

InfSL of the subobjects of A .
It follows from 3.4 that also the exact completion Dex/lex of a category

D with finite products and weak equalizers is an example, since Dex/lex ≡
(Dreg/lex)ex/reg, see [CV98]. Explicitly, the exact completion (D)ex/lex of the
category D is Ex ΨD

.
Other examples come from theories used in the formalization of constructive

mathematics: the category of total setoids à la Bishop and functional relations
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based on the Minimalist Type Theory in [Mai09], which coincides with the exact
completion Ex Gmtt where the doctrine Gmtt is defined as in [MR13b], or the
category of total setoids à la Bishop and functional relations based on the Calcu-
lus of Constructions [Coq90], which coincides with the exact completion Ex GCoC

where the doctrine GCoC is constructed from the Calculus of Constructions as
Gmtt in [MR13b], and it forms a topos as mentioned in [BCP03].

Applying EF to the 1-arrow Px
// Pcx , we see that the exact completion

Ex P is a full subcategory of TP , as one can also see directly comparing the two
explicit constructions. Considering also the embedding PrdP // QPcx

, part of

the 1-arrow from Pcx to P̂cx , we obtain the following diagram of embeddings of
categories

PrdP �
�

full
// QPcx� _

G
��

EFP
� �

full
// Ex P �

�

full
// TP .

The difference between the two constructions Ex P and TP is subtle; from
[MR15] we know the following, where composing the left adjoint in 4.9 (i) and
that in 2.17 produces that in 4.9 (ii). Let ESD be the 2-full 2-subcategory of
EED on the existential m-variational doctrines whose 1-arrows preserve com-
prehensions.

4.9 Theorem. (i) The 2-functor Xct // ESD that takes an exact category
C to the doctrine SubC of its subobjects has a left biadjoint which asso-
ciates the exact category Ex P to an existential m-variational doctrine P
in ESD.

(ii) The 2-functor Xct // EED that takes an exact category to the elementary
existential doctrine of its subobjects has a left biadjoint which associates
the exact category TP to an elementary existential doctrine P .

It is clear that the difference depends on the way comprehensions are handled.
Indeed, from [MR15] we know that:

4.10 Theorem. For an existential variational doctrine P : C op // InfSL, the
inclusion of Ex P into TP is an equivalence of categories. Hence Ex P is equival-
ent to Ex Pcx .

Now, to strengthen our analysis of such exact completions, recall from [MR15]
the following.

4.11 Theorem. Let P be an existential m-variational doctrine. The exact
completion Ex P is equivalent to (EFP )ex/reg.

Now from theorem 4.10 and theorem 4.11 we conclude

4.12 Theorem. Let P be an existential variational doctrine. The exact com-
pletion Ex P is equivalent to (EFPcx

)ex/reg.
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5 Choice principles

In this section we review rules of choice which are instrumental to prove the
main theorems of this paper.

The Rule of Unique Choice

The rule of unique choice allows to characterize those doctrines which coincide
with the doctrine of the subobjects of a regular category.

5.1 Definition. An elementary existential doctrine P : C op // InfSL satisfies
the Rule of Unique Choice (RUC) if, for every pair of objects A and B in C ,
and every entire functional relation φ from A to B, there is an arrow f :A // B
in C such that

>A ≤ P〈idA,f〉(φ).

5.2 Example. The doctrine SubA : Aop // InfSL of the subobjects of a regular
category A satisfies (RUC).

Actually the example of the doctrine of the subobjects of any regular cat-
egory is the main example of m-variational doctrines satisfying (RUC). Indeed
from 4.4.4 and 4.9.4 of [Jac99] one can derive the following result.

5.3 Proposition. Given an elementary existential doctrine P : C op // InfSL,
the following are equivalent:

(i) C is a regular category and P is the doctrine of its subobjects.

(ii) P has full comprehensions, comprehensive diagonals and satisfies (RUC).

This agrees with the fact that the regular completion of an m-variational
doctrine P adds exactly what is needed to satisfy (RUC). In particular if P
already satisfies (RUC), the regular completion coincides with P itself.

5.4 Corollary. Given a regular category A , the regular completion EFSubA of
the doctrine SubA of the subobjects of A is equivalent to A .

The Rule of Choice

The rule of choice allows to characterize the doctrines of the weak subobjects
of categories with finite products and weak equalizers.

5.5 Definition. For an elementary existential doctrine P : C op // InfSL, we
say that P satisfies the Rule of Choice (RC) if, for every φ ∈ P (A × B)
such that

>A ≤

E

pr1
(φ)

there is an arrow f :A // B in C such that

>A ≤ P〈idA,f〉(φ).

18



5.6 Examples. (a) The doctrine ΨC based on a category C with finite limits
in 2.3(b) satisfies (RC). For [φ] in ΨC (A × B), where φ:Z // A × B in C , the
condition >A ≤

E

pr1
φ in ΨC (A) means that there is a commutative diagram

A

idX
��

g
// Z
φ��

A×B
pr1��

A

in C . In other words, there is an arrow f := pr2φg such that, for some W and
h:A //W ,

A

idX ��

g

++

h
// W //

��

Z

φ
��

w.pb.

A
〈idA, f〉

// A×B

where the square is a weak pullback which ensures the existence of h.
(b) The doctrine SubA : Aop // InfSL of the subobjects on a regular category
A satisfies (RC) if and only if regular epis split in A .

5.7 Definition. For an elementary existential doctrine P : C op // InfSL we say
that P satisfies the Extended Rule of Choice (ERC) if, for every φ ∈ P (B)
and for every g:B // A such that

>A ≤

E

g(φ).

there is an arrow f :A // B in C such that gf = idA and

>A ≤ Pf (φ).

5.8 Lemma. Let P : C op // InfSL be an elementary existential doctrine with
comprehensive diagonals. If P satisfies (RC), then it satisfies (ERC).

Proof. Suppose φ ∈ P (B) and g:B // A is such that >A ≤

E

g(φ). By proposi-
tion 2.6

E

g(φ) =

E

pr1
(Ppr2

(φ) ∧ P〈pr1,gpr2〉(δA))

where pr1 and pr2 are the projections from A × B. So, by (RC), there is
f :A // B in C such that

>A ≤ P〈idA,f〉(Ppr2
(φ) ∧ P〈pr1,gpr2〉(δA))

= Pf (φ) ∧ P〈idA,gf〉(δA)

So >A ≤ Pf (φ), and >A ≤ P〈idA,gf〉(δA). Since P has comprehensive diagonals,
the second inequality is equivalent to idA = gf as required.
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The Rule of Choice was used in [MR16] to characterize those doctrines whose
elementary quotient completion is the doctrine of the subobjects of an exact
category. Here we use the Rule of Choice to characterize those m-variational
doctrines which coincide with the doctrine of the weak subobjects of their base.

5.9 Theorem. Let P : C op // InfSL be an existential variational doctrine. The
following are equivalent:

(i) P satisfies (RC).

(ii) The fibered adjunction

C op
P

++
idop

C
��

InfSL

C op ΨC

33

E

−> ·
EE

· {|−|}
��

a

is an equivalence in ED.

Proof. First of all, note that, for every β in P (B), it is

E

{|β|}(>X) = β where
{|β|}:X // B since weak comprehensions are full. Note also that the hypothesis
on P ensure that both {|−|} and

E

−> define arrows in ED (2.19, 2.10 and 2.15).
(ii)⇒(i) follows from 5.6(a).
(i)⇒(ii) Suppose P satisfies (RC). Consider h:Z // B; in the doctrine P , one
has that >Z ≤ Ph(

E

h(>Z)). So h factors through a(ny) weak comprehension
{|

E

h(>Z)|}:X // B with respect to P . Consider now

E

h(>Z); let the following
diagram be a weak pullback of h along {|

E

h(>Z)|}.

Y
g

//

k
��

Z

h
��

X
{|

E

h(>B)|}
// B

By 2.19 it is

>X ≤X P{| E

h(>Z)|}(

E

h(>Z)) =

E

kPg(>Z) =

E

k(>Y ).

By 5.8, (ERC) yields that there exists f :X // Y such that kf = idX Hence

hgf = {|

E

h(>Z)|}kf = {|

E

h(>Z)|}.

So {|

E

h(>Z)|} factors through h. Thus {|

E

h(>Z)|} and h represent the same
object in ΨC (B). It follows that the composition {|−|}(

E

−>) is the identity
natural transformation.
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The ε-operator

Here we introduce yet another rule connected with the epsilon operator intro-
duced by Hilbert in classical logic, see [HB01a, HB01b]. It allows to characterize
when the free full comprehensive doctrine Pcx with comprehensive diagonals of a
given existential elementary doctrine P coincides with the doctrine of the weak
subobjects of the base PrdP of Pcx .

5.10 Definition. Let P : C op // InfSL be an elementary existential doctrine.
An object B in C is equipped with an ε-operator if, for any object A in C and
any α in P (A×B) there exists an arrow εα:A // B such that

E

pr1
(α) = P〈idA,εα〉(α)

holds in P (A), where pr1:A×B // A is the first projection.

The definition is motivated by the fact that arrows of the form εα behave
like Hilbert’s epsilon terms [Bel93b, HB01a, HB01b].

Recall that, in a category C with terminal object 1, an object B is well
pointed if there exists an arrow 1 // B.

5.11 Lemma. In an elementary existential doctrine P : C op // InfSL, if B is
equipped with an ε-operator, then B is well pointed.

Proof. Take α := >1×B . Then εα: 1 // B.

5.12 Definition. We say that an elementary existential doctrine P : C op //

InfSL is equipped with ε-operators if every object in C is equipped with an
ε-operator.

5.13 Example. The doctrine LT presented in the examples 2.3 is equipped
with ε-operators if and only if T is Hilbert’s epsilon calculus [Pas17].

5.14 Example. Let ξ be an ordinal with a greatest element. Then H = (ξ,≥)
is a frame. Consider the doctrine H (−): Set op

∗
// InfSL on the category of

non-empty sets as in 2.3(d). For a function α in H X×Y and a in X consider
the set

I(a) =
{
b ∈ Y

∣∣∣α(a, b) =
∨
y∈Y α(a, y)

}
⊆ Y.

Clearly I(a) is not empty. Thus, by the Axiom of Choice, there is a function
εα:X // Y with εα(a) ∈ I(a). That function is such that, for every a in X

α(a, εα(a)) =
∨
y∈Y

α(a, y)

proving that H satisfies the epsilon rule.
Other examples of elementary existential doctrine equipped with ε-operators

are in [Pas16].

The Rule of Choice and ε-operators are related through the comprehension
completion Pc of an elementary existential doctrine.
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5.15 Theorem. Let P : C op // InfSL be an elementary existential doctrine.
The following are equivalent:

(i) P is equipped with ε-operators.

(ii) The free completion doctrine Pc : GP
op // InfSL of P with full compre-

hensions satisfies (RC).

(iii) The doctrine Pcx : PrdP
op // InfSL of P satisfies (RC).

Proof. (i)⇒(ii): Let (A,α) and (B, β) be objects of GP . Consider φ in Pc((A,α)×
(B, β)) such that

>(A,α) ≤

E

pr1
(φ)

holds in Pc((A,α)). The two conditions in the doctrine Pc are translated in the
doctrine P as

φ ≤ Ppr1
(α) ∧ Ppr2

(β) and α ≤

E

pr1
(φ).

So α =

E

pr1
(φ). Also, since A is equipped with an ε-operator, there is an arrow

εφ:A // B such that

E

pr1
(φ) = P〈idA,εφ〉(φ) holds in P (A). But εφ determines

an arrow in GP from (A,α) to (B, β) since

α =

E

pr1
(φ) = P〈idA,εφ〉(φ) ≤ P〈idA,εφ〉(Ppr1

(α) ∧ Ppr2
(β)) = α ∧ Pεφ(β).

Thus α ≤ Pεφ(β) and >(A,α) ≤ (Pc)〈idA,εφ〉(φ).
(ii)⇒(i): Suppose φ is in P (A×B). Since φ ≤ Ppr1

(

E

pr1
(φ)), one has that φ is

in Pc((A,

E

pr1
(φ))× (B,>B)). Note that trivially

>(A,

E

pr1
(φ)) =

E

pr1
(φ)

in Pc((A,

E

pr1
(φ))). Since Pc satisfies (RC) there is an arrow f : (A,

E

pr1
(φ)) //

(B,>B) in GP such that >(A,

E

pr1
(φ)) ≤ (Pc)〈idA,f〉(φ) holds in Pc((A,

E

pr1
(φ))).

Since (Pc)〈idA,f〉(φ) = P〈idA,f〉(φ) it follows that

E

pr1
(φ) = P〈idA,f〉(φ)

holds in P (A).
(ii)⇔(iii): Immediate because the condition required to satisfy (RC) does

not involve commutative diagrams in the base category.

6 Applications

By combining 5.9 and 5.15 we get the main technical result.

6.1 Theorem. Let P : C op // InfSL be an elementary existential doctrine. The
following are equivalent:

(i) P is equipped with ε-operators.
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(ii) The fibered adjunction

PrdP
op

Pcx

,,idop
PrdP

��

InfSL

PrdP
op ΨPrdP

22

E

−(>) ·
EE

· {|−|}
��

a

is an equivalence in ED.

In preparation to 6.2 we review some of the canonical functors which connect
the various completions. For the rest of the section let P : C op // InfSL be an
elementary existential doctrine.

Since TP is equivalent to EF
P̂cx

, consider the composite

PrdP
K

��

η1

//

G
��

QPcx

G′

��

EFPcx EF(η1,h)

// EF
P̂cx J

TP

where (η1, h) is the universal arrow into the elementary quotient completion in
[MR13a] (under a different name) and the natural family of functors G was
introduced in 3.2. The functor K maps an object (A,α) to an object (A, δA ∧
Ppr1

(α)), and an arrow f : (A,α) // (B, β) in PrdP to the graph

Pf×idB (δB) ∧ Ppr1
(α) = (Pcx)f×id(B,β)

(δ(B,β)).

By the universal properties of the functors involved, the composition preserves
finite limits. So one obtains the exact functor Kex

PrdP �
�

//

K
%%

(PrdP )ex/lex

Kex

��

TP

by the universal property of the exact completion.
Also note that the functor EF(η1,h): EFPcx

// EF
P̂cx

is regular. So G can

be extended to the regular completion PrdP reg/lex and the diagram

PrdP �
�

//

K

))

G
""

(PrdP )reg/lex
� � //

Greg

��

(PrdP )ex/lex

Kex

��

EFPcx JEF(η1,h)

// TP

(1)
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commute up to a natural iso.
We are ready to state the main result.

6.2 Theorem. Let P : C op // InfSL be an elementary existential doctrine. The
following are equivalent:

(i) P is equipped with ε-operators.

(ii) Greg: (PrdP )reg/lex // EFPcx is an equivalence.

(iii) Kex: (PrdP )ex/lex // TP is an equivalence.

Proof. (i)⇔(ii) Consider the left-hand triangle in (1) and replace the regular
completion (PrdP )reg/lex with its equivalent presentation via the other completions—
squeezing it down.

EF(ΨPrdP )cx

EF(

E

−(>))

��

PrdP
. �

==

G
// EFPcx

From 6.1, (i) holds if and only if the above diagram becomes part of a naturality
diagram of equivalences in ESD

Pcx
� � //

{|−|}

��

SubEFPcx

SubEF{|−|}

��

ΨPrdP
� � //

E

−(>)

JJ

a

SubEF(ΨPrdP
)cx

SubEF(

E

−(>))

KK

a

since the adjunction on the left is an equivalence if and only if adjunction on
the right exists (observe that EF− can only be applied if {|−|} is existential!)
and is an equivalence.

(ii)⇔(iii): Similar to the previous part, this time consider the right-hand
triangle in (1) and replace the exact completion (PrdP )ex/lex and TP with their
equivalent presentations via the other completions

EFPcx

� �
EF(η1,h)

//

EF{|−|}

��

EF
P̂cx

EF {̂|−|}

��

EF(ΨPrdP )cx EF(η1,h)

//

EF(

E

−(>))

KK

a

EF ̂(ΨPrdP )cx

EF ̂(

E

−(>))

KK

a

where we applied 4.10. The conclusion follows immediately.
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The above theorem applied to the tripos-to-topos construction yields the
following.

6.3 Corollary. Let P : C op // Heyt be a tripos. The following are equivalent:

(i) P is equipped with ε-operators.

(ii) the functor Kex: (PrdP )ex/lex // TP is part of an equivalence between the
exact on lex completion (PrdP )ex/lex and the tripos-to-topos TP of P .

6.4 Examples. An application of 6.3 is the localic topos obtained from the
tripos H (−): (Set∗)op // InfSL in example 5.14.

An application of 6.3 with relevance in logic is provided by the doctrine
introduced in 2.3 where the theory T is exactly Peano Arithmetic together
with Hilbert’s ε-operator, already studied in [Tai10], and which inspired the
ε-operators in the present paper.

From most triposes P on C we can easily obtain a tripos whose base has
only pointed objects in such a way that the two corresponding toposes are
equivalent. To this purpose the following lemma might be useful. Given an
elementary existential doctrine P : C op // InfSL, let C∗ be the full subcategory
of C on the pointed objects and P∗: C op

∗ // InfSL the restriction of P .

6.5 Lemma. If P : C op // Heyt is a tripos, then P∗: C op
∗ // InfSL is also a

tripos.

Proof. Immediate.

We conclude our paper by observing that the ε-operators are not preserved
by the tripos-to-topos construction.

6.6 Theorem. The topos built from the tripos H (−): Set op∗ // InfSL in ex-
ample 5.14 is not equipped with ε-operators while the doctrine H (−) is.

Proof. Suppose the doctrine of the subobjecs of the topos TH (−) is equipped
with ε-operators. It follows from [Bel93b] that it satisfies also (AC). Therefore
the topos is boolean by Diaconescu’s theorem, see [MM92]. But the global
sections of the subobject classifier are H which is not boolean.

6.7 Remark. From [Bel93a] it follows that any tripos equipped with ε-operators
satisfies a weak form of excluded middle, whilst it does not necessarily satisfies
the full form.

7 Concluding remarks

We have characterized the triposes P for which the universal arrow from the
exact completion of their category of predicates PrdP to TP is an equivalence
as those equipped with ε-operators. An example of a non-boolean topos whose
tripos is equipped with ε-operators is given as a localic topos.
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These results constitute an application to the study of the tripos-to-topos
construction of the investigations on exact completions relativized to suitable
doctrines performed in [MR15] and generalized to other quotient completions in
[MR13a]. A major benefit of relativizing exact completions to suitable doctrines
is the possibility of viewing various notions of exact completion as instances of
a single, more general completion. This reveals that it is indeed the choice of
the doctrine that yields different regular completions, hence different notions of
exact completion.

In particular, inspired by results in [MR16] about the notion of elementary
quotient completion, in this paper we observed how common choice principles
in proof theory, when expressed in the language of doctrines, correspond to
categorical equivalences between appropriate completions.

In future work we intend to apply these results to study models of Heyt-
ing arithmetics. In particular, examples of triposes equipped with ε-operators
should provide models witnessing that the underlying logic of Heying arithmet-
ics with Hilbert’s ε-operator is not necessarily classical.
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