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Abstract

Here we present a predicative variant of a realizability tripos validating the
intensional level of the Minimalist Foundation extended with Formal Church
thesis, for short CT.

The original concept of tripos was introduced in the 80s by J.M.E.Hyland,
P.T. Johnstone and A.M.Pitts in order to build various kinds of toposes includ-
ing realizability ones.

Our categorical structure provides the key ingredient to build a predicative
variant of a realizability topos satisfying CT, like Hyland’s Effective topos,
where to validate the extensional level of the Minimalist Foundation.

The adjective predicative refers to the fact that our categorical structure is
formalized in Feferman’s theory of inductive definitions ÎD1.

1 Introduction

Constructive mathematics is mathematics developed with constructive proofs, that
is proofs enjoying a computational method to construct witnesses of their existential
statements. As a consequence constructively definable number theoretic functions
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are all computable. It is indeed often said that constructive mathematics is abstract
mathematics which is implicitely computable.

To give evidence of such a claim it is convenient to call “constructive” those
proofs that can be formalized in a foundation enjoying a so called “realizability model”
where one may extract the computational contents of its proofs by interpreting its
sets as data types and its functions as programs. The most basic example of such a
constructive foundation, at least for constructive arithmetics, is Intuitionistic Arith-
metic HA in [40]. Its realizability semantics is the well-known Kleene realizability
interpretation (see for example [40]) which makes HA consistent with the so called
Formal Church thesis, for short CT, expressing that from a total number-theoretic
relation we can extract a computable function. Actually, most constructive foun-
dations in the literature are consistent with CT and this is the case also for the
Minimalist Foundation.

The Minimalist Foundation, for short MF, was conceived by the first author
in joint work with G. Sambin in [28] as a common core among the most relevant
constructive and classical foundations, introduced both in type theory, in category
theory and in axiomatic set theory. In [28] MF is also required to be a two-level
system equipped with an intensional level suitable for extraction of computational
contents from its proofs, an extensional level formulated in a language as close as
possible to that of ordinary mathematics and an interpretation of the latter in the
former showing that the extensional level has been obtained by abstraction from the
intensional one according to Sambin’s forget-restore principle in [35].

A two-level formal system of this kind for MF was completed in [23]. Both
intensional and extensional levels of MF consist of type systems based on versions
of Martin-Löf’s type theory with the addition of a primitive notion of propositions
and some related constructors: the intensional one, called mTT, is based on [31]
and the extensional one, called emTT, on [30]. Actually, mTT can be considered a
predicative version of Coquand’s Calculus of Constructions [13].

The two-level structure of MF has various kinds of benefits.
First of all it provides a framework for computer-aided formalization of its

constructive proofs. Indeed the intensional level of MF has enough decidable
properties to be a base for a proof-assistant in which to formalize the constructive
proofs done at the extensional level via the interpretation provided in [23].

Moreover, the presence of two levels is crucial to easily show the compatibility of
MF with the other foundations at the “right” level: the intensional level of MF can
be easily interpreted in intensional theories such as those formulated in type theory,
for example Martin-Löf’s type theory [31] or Coquand’s Calculus of Constructions,
while its extensional level can be easily interpreted in extensional theories such
as those formulated in axiomatic set theory, for example Aczel’s constructive set
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theory [4], or those formulated in category theory, for example the internal languages
of topoi or pretopoi [21, 22].

Finally, the two levels of MF and their link resemble a well-known construction
in category theory, namely the tripos-to-topos construction of a realizability topos
in [18]. This is because the interpretation of the extensional level of MF in [23] is
done in a quotient completion built on the intensional level of MF. Such a quotient
completion had been studied categorically in [26], [25] under the name of “elementary
quotient completion” and related to the well known notion of exact completion on a
lex or regular category in [27]. Then, an analogy between MF and the tripos-to-topos
construction of a realizability topos can be described as follows: the categorical
structure of the intensional level of MF plays the role of a tripos, its elementary
quotient completion plays the role of the realizability topos construction, while the
extensional level of MF plays the role of the internal language of a generic elementary
topos.

In this paper we strengthen this analogy by building a realizability categorical
structure for the intensional level mTT of MF in Feferman’s classical predicative
theory of inductive definitions ÎD1 (see e. g. [15]). This is obtained by extracting the
categorical structure behind the realizability interpretation in [24] for mTT in ÎD1.
As an advantage we get an easier proof of validity for mTT by defining a partial
typed interpretation as in [38].

Our categorical semantics for mTT is called “effective” since it validates the
formal Church thesis and constitutes the key ingredient to build a predicative variant
of Hyland’s “Effective Topos” [17] in ÎD1, where to interpret the extensional level of
MF extended with CT.

A predicative study of the Effective Topos, and more generally of realizability
toposes, had been already developed in the context of algebraic set theory by B.
van den Berg and I. Moerdijk, in particular in [41], by taking Aczel’s Constructive
Zermelo-Fraenkel set theory (for short CZF) in [4] as the predicative constructive set
theory to be realized in their categorical structure.

A precise comparison between our work and that in [41] is expected to mirror
the relationship between MF and CZF described in [23] and it is left to future work.
We just recall that mTT, and the whole MF, is a much weaker theory than CZF
concerning the proof-theoretic strength, because it can be interpreted in a strictly
predicative theory as Feferman’s ÎD1 as [24] shows, while CZF is known not to be a
predicative theory in Feferman’s sense (see [16], [1], [11]).
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2 The Minimalist Foundation

A peculiarity of constructive mathematics with respect to classical mathematics is
the absence of a commonly accepted standard foundation as Zermelo-Fraenkel set
theory for classical mathematics.

Various logical systems are available in the literature to formalize constructive
mathematics: they range from axiomatic set theories à la Zermelo-Fraenkel, such as
Aczel’s CZF [4, 1, 2, 3] or Friedman’s IZF [8], to the internal set theory of categorical
universes such as topoi or pretopoi [21, 19, 22], to type theories such as Martin-Löf’s
type theory [31] or Coquand’s Calculus of Inductive Constructions [13, 14]. No
existing constructive foundation has yet superseded the others as the standard one.

The Minimalist Foundation, for short MF, was conceived in [28] to serve as a
common core among the most relevant constructive and classical foundations. A
key novelty of MF required in [28] is to be a two-level formal system equipped
with an intensional level suitable for extraction of computational contents from its
proofs, an extensional level formulated in a language as close as possible to that of
ordinary mathematics and an interpretation of the latter in the former showing that
the extensional level is obtained by abstraction from the intensional one according
to Sambin’s forget-restore principle in [35].

The two-level formal system of MF was completed in [23] with an interpretation
of the extensional level into a quotient model of the intensional level analyzed
categorically in [26, 25, 27].

The two-level structure of MF has at least two main advantages. On one
hand the compatibility of MF with the most relevant constructive and classical
foundations can be done at the most suitable level, namely the intensional level
with intensional foundations, mostly designed as type theories, and the extensional
one with usual extensional foundations, mostly designed as axiomatic set theories.
On the other hand the two-level structure of MF has the advantage to meet the
usual practice of developing mathematics in an extensional set theory, represented by
the extensional level of MF, whose equalities are undecidable, with the practice of
formalizing mathematical proofs in a computer-aided way by means of an interactive
proof-assistant based on intensional type theory with decidable properties, including
decidable type-checking of proofs and equalities, such as for example Agda [10] (on
Martin-Löf’s type theory [31]), or Coq [12, 9] or Matita [6, 5] (on the Calculus of
Inductive Constructions).
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2.1 Distinct features of MF

Here we present the main distinct conceptual features of both levels of MF. Their
design is certainly influenced by the need of building a foundation for constructive
mathematics which is compatible with the most relevant constructive and classical
foundations at the appropriate level. An immediate consequence is that both levels
of MF must be predicative theories to be compatible with well-known predicative
theories, such as Martin-Löf’s type theory or Aczel’s CZF.

To meet this goal one could think of using Heyting arithmetic, possibly extended
with finite types, as the extensional level for MF. However, in order to formalize
most of constructive mathematics, and in particular constructive topology, in an
extensional language close to that used in common practice, it would be good to
have a theory with a more expressive language including quotient sets and the power
of any set. On the other hand, it is worth noting that the power of a non-empty
set inherits an impredicative nature as soon as it is considered a set and hence in
a predicative set theory it must be considered an entity greater than a set, like a
collection or a class. This fact led to introduce the notion of collection beside that of
set at both levels of MF.

Concerning the intensional level of MF, the authors in [28] thought of designing
it as an intensional dependent type theory à la Martin-Löf like that in [31]. Then,
to make the extensional level interpretable in the intensional one easily and in a
modular way, in [23] also the extensional level was designed as a dependent theory à
la Martin-Löf like that in [30].

The final outcome in [23] was to design the intensional level of MF, called mTT,
as a predicative version of Coquand’s Calculus of Constructions in [13], for short
CoC, which is essentially the basic system behind the proof-assistants Coq [12, 9]
and Matita [6, 5].

The main features of CoC and of its extension in Coq that are strictly connected
with the design of mTT are the following:

- sets include sets in first-order intensional Martin-Löf’s type theory (i.e. the
fragment of Martin-Löf’s type theory in [31] corresponding to first-order logic
with list types but without universes or well-founded sets) and there is a
primitive notion of propositions, closed under intuitionistic connectives and
quantifiers and equipped with proof-terms; hence propositions are though of as
sets of their proofs;

- there is a universe of propositions, which is a set in CoC.

It is worth noting that only the second feature makes CoC impredicative. This
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feature allows one to represent the power of a set in a suitable model of quotients,
called the setoid model (see [7]).

It is also important to recall that the CoC-universe of propositions is inconsistent
with an identification of sets as propositions typical of Martin-Löf’s type theory (see
[13]), for short MLtt. As a consequence, the existential quantifier of CoC can not be
that in MLtt and it does not yield choice principles, like the axiom of choice (see
[31, 30]), as shown in [39].

In particular, a relevant consequence of the above features of CoC, which is
a peculiar feature of MF discussed in [29, 34], is the possibility of distinguishing
between the notion of a type theoretic function between sets A,B

f ∈ A→ B

called operation in MF (see [29]), and the notion of functional relation determined
by a relation R(x, y) prop [ x ∈ A, y ∈ B ] for which we can prove

∀x ∈ A ∃! y ∈ B R(x, y)

Indeed in CoC, as well as in MF, the so called axiom of unique choice

( AC! ) ∀x ∈ A ∃! y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

which allows one to extract a type theoretic function from a functional relation, is
not valid (see [39] for a proof). This distinction between type-theoretic functions and
functional relations, beside the non-validity of AC!, is also a property of Feferman’s
theories in [15].

The design of mTT in [23] proposes a way to turn the mentioned features of
CoC in a predicative form by extending first-order Martin-Löf’s intensional type
theory in [31] with

- a notion of collection beside that of set: collections include sets but also certain
types that can not be considered sets predicatively;

- a primitive notion of proposition closed under intuitionistic connectives and
quantifiers over both sets and collections;

- a notion of small proposition denoting propositions closed under intuitionistic
connectives and quantifiers restricted to sets;

- proof-terms for all propositions: small propositions are defined as sets of their
proofs, while generic propositions are defined as collections of their proofs;
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- a collection of small propositions and a collection of propositional functions on
any set;

The last feature is what in the quotient model in [23] allows to define a power-
collection of a set A as a suitable quotient on the collection of propositional functions
on A.

Accordingly, the extensional level of MF in [23], called emTT, is an extension
of the extensional version of first-order Martin-Löf’s type theory in [30] with the
following distinct features:

- a notion of collection beside that of set as in the intensional level of MF;

- a primitive notion of proposition, closed under intuitionistic connectives and
quantifiers over collections and a notion of small proposition denoting propo-
sitions closed under intuitionistic connectives and quantifiers restricted to
sets;

- proof-irrelevance of all propositions, namely all propositions are equipped with
at most a canonical proof-term to denote when they are true;

- a power-collection for each set where subsets are equivalence classes of small
propositions depending on the set and quotiented under equiprovability;

- effective quotient sets of equivalence relations defined by small propositions.

An important consequence of MF-design is the compatibility of MF with classical
predicative theories as Feferman’s predicative theories [15]. Indeed it is well known
that the addition of the principle of excluded middle can turn a predicative theory
where functional relations between sets form a set, as Aczel’s CZF or Martin-Löf’s
type theory, into an impredicative one where power-collections become sets.

In the next we are going to describe in more details the type theory mTT of the
intensional level and we refer to [23] for the description of the type theory emTT of
the extensional level and of its interpretation in mTT.

2.2 The intensional level of the Minimalist Foundation

Here we describe the type theory mTT representing the intensional level of MF in
[23], which extends that presented in [28]. mTT is a dependent type theory written
in the style of Martin-Löf’s type theory [31] by means of the following four kinds of
judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]
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that is the type judgement (expressing that something is a specific type), the type
equality judgement (expressing that two types are equal), the term judgement
(expressing that something is a term of a certain type) and the term equality
judgement (expressing the definitional equality between terms of the same type),
respectively, all under a context Γ.

The word type is used as a meta-variable to indicate four kinds of entities:
collections, sets, propositions and small propositions, namely

type ∈ {col, set, prop, props }

Therefore, in mTT types are actually formed by using the following judgements:

A set [Γ] B col [Γ] φ prop [Γ] ψ props [Γ]

saying that A is a set, that B is a collection, that φ is a proposition and that ψ is a
small proposition.

Here as in [24], and contrary to [23] where we use only capital latin letters as
meta-variables for types, we use greek letters ψ, φ as meta-variables for propositions
and capital latin letters A,B as meta-variables for sets or collections.

As in the intensional version of Martin-Löf’s type theory, in mTT there are two
kinds of equality concerning terms: one is the definitional equality of terms of the
same type given by the judgement

a = b ∈ A [Γ]

which is decidable, and the other is the propositional equality written

Id(A, a, b) prop [Γ]

which is not necessarily decidable.
We now proceed by briefly describing the various kinds of types in mTT, start-

ing from small propositions and propositions and then passing to sets and finally
collections.

Small propositions in mTT include all the logical constructors of intuitionistic
predicate logic with equality and quantifications restricted to sets:

φ props ≡ ⊥ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | (∀x ∈ A)φ | (∃x ∈ A)φ | Id(A, a, b)

provided that A is a set.
Then, propositions in mTT include all the logical constructors of intuitionistic

predicate logic with equality and quantifications on all kinds of types, i. e. sets and
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collections. Of course, small propositions are also propositions. Propositions can be
generated as follows:

φ prop ≡ φ props | φ ∧ ψ | φ ∨ ψ | φ→ ψ | (∀x ∈ D)φ | (∃x ∈ D)φ | Id(D, d, b)

In order to close sets under comprehension, for example to include the set of
positive natural numbers {x ∈ N | x ≥ 1}, and to define operations on such sets, we
need to think of propositions as types of their proofs: small propositions are seen as
sets of their proofs while generic propositions are seen as collections of their proofs.
That is, we add to mTT the following rules

props-into-set)
φ props
φ set

prop-into-col) φ prop

φ col

Before explaining the differences between the notion of set and that of collection we
describe their constructors in mTT.

Sets in mTT are characterized as inductively generated types and they include
the following:

A set ≡ φ props | N0 | N1 | N | List(A) | (Σx ∈ A)B | A+B | (Πx ∈ A)B

where the notation N0 stands for the empty set, N1 for the singleton set, N for
the set of natural numbers, List(A) for the set of lists on the set A, (Σx ∈ A)B
for the strong indexed sum, called here also dependent sum, of the family of sets
B set [x ∈ A] indexed on the set A, A+B for the disjoint sum of the set A with the
set B, (Πx ∈ A)B for the dependent product set of the family of sets B set [x ∈ A]
indexed on the set A.

It is worth noting that the set N of natural numbers is not present in a primitive
way in mTT since its rules can be derived by putting N ≡ List(N1). Here, as in [24],
we add it to the syntax of mTT because it plays a prominent role in the realizability
interpretation in ÎD1 and we want to avoid complications due to list encodings.

Finally, collections in mTT include the following types:

D col ≡ A set | φ prop | props | A→ props | (Σx ∈ D)E

where props stands for the collection of small propositions and A → props for the
collection of propositional functions of the set A, while (Σx ∈ D)E stands for the
dependent sum of the collection family E col [x ∈ D] indexed on the collection D.
Collection constructors here are kept to a minimum in order to interpret power-
collections of sets and contexts with dependent types which will be present in the
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extensional level of MF.
All sets are collections thanks to the following rule:

set-into-col) A set

A col

We end by mentioning the following relevant technical peculiarities of mTT:

- elimination rules of propositions act only toward propositions, as in CoC, to
avoid the validity of choice principles contrary to what happens in Martin-Löf’s
type theory 1.

- in mTT we add explicitly substitution term equality rules of the form

sub)

c ∈ C [ x1 ∈ A1, . . . , xn ∈ An ]
a1 = b1 ∈ A1 . . . an = bn ∈ An[a1/x1, . . . , an−1/xn−1]

c[a1/x1, . . . , an/xn] = c[b1/x1, . . . , bn/xn] ∈ C[a1/x1, . . . , an/xn]

in place of the usual term equality rules preserving term constructions typical
of Martin-Löf’s type theory MLtt in [31]. This choice yields a restriction of the
valid equality rules in mTT with respect to those valid in MLtt. In particular
in mTT the so called ξ-rule of lambda-terms

ξ
c = c′ ∈ C [x ∈ B]

(λx)c = (λx)c′ ∈ (Πx ∈ B)C

is not derivable.

It is worth recalling from [23] that the term equality rules of mTT are enough to
interpret an extensional level including extensional equality of functions, as that
represented by emTT, by means of the quotient model described in [23] and studied
abstractly in [26, 25, 27].

mTT can be essentially viewed as a fragment of CoC by identifying collections
with sets.

Moreover, mTT can be easily interpreted in intensional Martin-Löf’s type theory
MLtt in [31] by interpreting sets as MLtt-sets in the first universe and collections
simply as MLtt-sets, propositions as sets according to the well-known isomorphism
in [30] and the universe of small propositions as the first universe of MLtt.

1If you allow an elimination of existential quantifiers towards any type, you could build a function
mapping a proof of an existential quantification p ∈ (∃x ∈ A)φ towards the corresponding indexed
sums (Σx ∈ A)φ and by means of the first indexed sum projection you can extract a choice function
whose value f(p) ∈ A is a witness of the existential quantification.
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2.3 The auxiliary type theory mTTa

Here we describe an auxiliary type theory, called mTTa, which is essentially an
extension of mTT which we will validate in our categorical structure. The reason
for interpreting mTTa, instead of simply mTT, is that the rules of mTTa enjoy an
easier proof of validity in our predicative variant of a realizability tripos.

First of all, in mTTa, as well as in the version of mTT interpreted in [24], the
collection of small propositions props is defined with codes à la Tarski as in [31],
contrary to the version in [23], to make the interpretation easier to understand. Its
rules are the following.
Elements of the collection of small propositions are generated as follows:

Pr1) ⊥̂ ∈ props Pr2)
p ∈ props q ∈ props

p ∨̂ q ∈ props

Pr3)
p ∈ props q ∈ props

p →̂ q ∈ props
Pr4)

p ∈ props q ∈ props

p ∧̂ q ∈ props

Pr5)
A set a ∈ A b ∈ A
Êq(A, a, b) ∈ props

Pr6)
p ∈ props [x ∈ A] A set

̂(∃x ∈ A) p ∈ props

Pr7)
p ∈ props [x ∈ A] A set

̂(∀x ∈ A) p ∈ props

Elements of the collection of small propositions can be decoded as small proposi-
tions via an operator as follows

τ -Pr) p ∈ props
τ(p) props

and this operator satisfies the following definitional equalities:

eq-Pr1) τ(⊥̂) = ⊥ props eq-Pr2)
p ∈ props q ∈ props

τ(p ∨̂ q) = τ(p) ∨ τ(q) props

eq-Pr3)
p ∈ props q ∈ props

τ(p →̂ q) = τ(p)→ τ(q) props
eq-Pr4)

p ∈ props q ∈ props

τ(p ∧̂ q) = τ(p) ∧ τ(q) props

eq-Pr5)
A set a ∈ A b ∈ A

τ( Êq(A, a, b) ) = Eq(A, a, b) props

eq-Pr6)
p ∈ props [x ∈ A] A set

τ( ̂(∃x ∈ A) p) = (∃x ∈ A) τ(p) props

eq-Pr7)
p ∈ props [x ∈ A] A set

τ( ̂(∀x ∈ A) p) = (∀x ∈ A) τ(p) props
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Moreover, for the same reasons explained in [24] and essentially due to the need
of interpreting the universe of small propositions in a clear way, even in mTTa we
add the collection Set of set codes whose related rules are the following. We do not
add corresponding elimination and conversion rules as those of universes à la Tarski
in [31] since they are not needed to prove the validity of mTT-rules.
Collection of sets
F-Se) Set col

Elements of the collection of sets are generated as follows:

sp-i-p) p ∈ props
σ(p) ∈ Set See) N̂0 ∈ Set

Ses) N̂1 ∈ Set Sen) N̂ ∈ Set

Sel)
a ∈ Set

L̂ist(a) ∈ Set
Seu)

a ∈ Set b ∈ Set
a +̂ b ∈ Set

SeΣ)
b ∈ Set [x ∈ A] A set

̂(Σx ∈ A) b ∈ Set
SeΠ)

b ∈ Set [x ∈ A] A set

̂(Πx ∈ A) b ∈ Set
Set codes will be used to easily interpret the code of quantified small propositions.
Finally to further simplify the definition of the realizability interpretation, in

mTTa the elimination rules of some types, including disjoint sums, lists and natural
numbers, are restricted to act toward non-dependent types and they are equipped
with an extra equality rule expressing the uniqueness of the eliminator constructor
as follows

2.3.1 Rules of disjoint sum

+-f)
Aset B set

A+B set

+-i1)
a ∈ A Aset B set

inl(a) ∈ A+B
+-i2)

b ∈ B Aset B set

inr(b) ∈ A+B

+-e)
c ∈ A+B C col d ∈ C [x ∈ A] e ∈ C [y ∈ B]

El+(c, (x) d, (y) e) ∈ C

+-c1)
a ∈ A C col d ∈ C [x ∈ A] e ∈ C [y ∈ B]

El+(inl(a), (x) d, (y) e) = d[a/x] ∈ C
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+-c2)
b ∈ B C col d ∈ C [x ∈ A] e ∈ C [y ∈ B]

El+(inr(b), (x) d, (y) e) = e[b/y] ∈ C

+-η)
p ∈ C +D t ∈ A [z ∈ C +D]

El+( p, (x) t[inl(x)/z] , (y) t[inr(y)/z] ) = t[p/z] ∈ A

2.3.2 Rules of lists

List-f)
Aset

List(A) set

List-i1)
Aset

ε ∈ List(A) List-i2)
Aset b ∈ List(A) a ∈ A

cons(b, a) ∈ List(A)

List-e)
c ∈ List(A) B col d ∈ B e ∈ B [x ∈ B, y ∈ A]

ElList(c, d, (x, y) e) ∈ C

List-c1)
B col d ∈ B e ∈ B [x ∈ B, y ∈ A]

ElList(ε, d, (x, y) e) = d ∈ C

List-c2)
b ∈ List(A) a ∈ A B col d ∈ B e ∈ B [x ∈ B, y ∈ A]

ElList(cons(b, a), d, (x, y) e) = e[ElList(b, d, (x, y) e)/x, a/y] ∈ C

List-η)

B col d ∈ B e ∈ B [x ∈ B, y ∈ A] t ∈ B [z ∈ List(A)]
c ∈ List(A) t[ε/z] = a ∈ B
t[cons(u, y)/z] = e[t[u/z]/x] ∈ B [u ∈ List(A), y ∈ A]

ElList(c, d, (x, y)e) = t[c/z] ∈ L

2.3.3 Rules of natural numbers set

N-f) N set N-i1) 0 ∈ N N-i2)
a ∈ N

succ(a) ∈ N

N-e)
a ∈ N Acol d ∈ A e ∈ A [x ∈ A]

ElN(a, d, (x) e) ∈ A N-c1)
Acol d ∈ A e ∈ A [x ∈ A]

ElN(0, d, (x) e) = d ∈ A
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N-c2)
a ∈ N Acol d ∈ A e ∈ A [x ∈ A]

ElN(succ(a), d, (x) e) = e[ElN(a, d, (x) e)/x] ∈ A

N-η)

c ∈ N Acol t ∈ A [z ∈ N] d ∈ A e ∈ A [x ∈ A]
t[0/z] = d ∈ A t[succ(y)/z] = e[t[y/z]/x] ∈ A [y ∈ N]

ElN(c, d, (x)e) = t[c/z] ∈ A

These rules do not change the expressive power of disjoint sums, lists and natural
numbers. The reason is that, as first shown in [22], the above kinds of elimination
rules with related equality rules are equivalent to the original ones of mTT provided
that we add to mTTa the following rules of extensional propositional equality of
Martin-Löf’s type theory in [30], which we also adopt in the extensional level of MF
instead of those of the propositional identity Id:

Eq-f)
Acol a ∈ A b ∈ A

Eq(A, a, b) prop Eq-fs)
Aset a ∈ A b ∈ A

Eq(A, a, b) props

Eq-i)
a ∈ A

eq(a) ∈ Eq(A, a, a) Eq-e)
p ∈ Eq(A, a, b)
a = b ∈ A

Eq-η)
d ∈ Eq(A, a, b)

d = eq(a) ∈ Eq(A, a, b)

and we add the usual equality rules preserving each type constructor as in [31, 30]
or as those present in the extensional level of MF in [23].

Then we can equivalently define (see [31]) the strong indexed sums with the
following rules

2.3.4 Rules of strong indexed sums

Σ-f)
Aset B set [x ∈ A]

(Σx ∈ A)B set Σ-fcol)
Acol B col [x ∈ A]

(Σx ∈ A)B col

Σ-i)
B col [x ∈ A] a ∈ A b ∈ B[a/x]

〈a, b〉 ∈ (Σx ∈ A)B

Σ-e1)
c ∈ (Σx ∈ A)B
π1(c) ∈ A Σ-e2)

c ∈ (Σx ∈ A)B
π2(c) ∈ B[π1(c)/x]

Σ-c1)
B col [x ∈ A] a ∈ A b ∈ B[a/x]

π1(〈a, b〉) = a ∈ A
;
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Σ-c2)
B col [x ∈ A] a ∈ A b ∈ B[a/x]

π2(〈a, b〉) = b ∈ B[a/x]

Σ-η)
c ∈ (Σx ∈ A)B

〈π1(c), π2(c)〉 = c ∈ (Σx ∈ A)B

Therefore we can easily show:

Proposition 2.1. We can interpret mTT into mTTa as the identity on all con-
structors except for those of the propositional equality Id which are interpreted as
those of the extensional one Eq, and except for the strong indexed sum elimination
constructor which is interpreted via projections.

Proof. We briefly describe how to interpret the rules of mTT-strong indexed sums.
Given d ∈ (Σx ∈ B)C, M col [ z ∈ (Σx ∈ B)C ] and m ∈M [〈x, y〉/z] [ x ∈ B, y ∈ C ]
then

ElΣ(d,m) ≡def m[π1(d)/x, π2(d)/y]
is of type M [〈π1(d), π2(d)〉/z] by definition. But by the substitution rules and the
rule conv) 2 (see the rules of mTT in [23]) and the above Σ-η of mTTa we conclude
that it is of type M(d) as well, as required.

Concerning the propositional equality: the constructor idA(a) of mTT is inter-
preted as eq(a) of mTTa and the elimination constructor El Id(p, (x)c) as c[a/x],
given that its type C(a, a, eq(a)) happens to be equal to C(a, b, p) by the rules
subT) and conv) in [23] since from p ∈ Eq(A, a, b) we get a = b ∈ A and also
p = eq(a) ∈ Eq(A, a, b) by the rules of Eq.

3 Feferman’s theory of inductive definitions ÎD1

The system ÎD1 is a predicative fragment of second-order arithmetic, more precisely
it is the predicative fragment of second-order arithmetic extending Peano arithmetic
with some (not necessarily least) fixpoints for each positive arithmetical operator.
Its number terms are number variables (or simply variables) ξ1, ..., ξn..., the constant
0 and the terms built by applying the unary successor functional symbol succ and
the binary sum and product functional symbols + and ∗ to number terms. Set terms
are only set variables X,Y, Z.... The arithmetical formulas are obtained starting
from t = s and t εX with t, s number terms and X a set variable, by applying the
connectives ∧ , ∨ ,¬,→ and the number quantifiers ∀x, ∃x. Moreover let us give the
following two definitions.

2We just recall that this rule says that from a ∈ A and A = B type we get a ∈ B.
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Definition 3.1. An occurrence of a set variable X in an arithmetical formula ϕ is
positive or negative according to the following conditions.

1. the occurrence of X in t εX, where t is a number term, is positive;

2. a positive (negative) occurrence of X in ψ, is positive (negative) in ψ∧φ, φ∧ψ,
φ ∨ ψ, ψ ∨ φ, φ→ ψ, ∃xψ and ∀xψ;

3. a positive (negative) occurrence of X in ψ, is negative (positive) in ψ → φ and
¬ψ.

Definition 3.2. An arithmetical formula ϕ with exactly one free number variable
x and one free set variable X which occurs only positively is called an admissible
formula.

In order to define the system ÎD1 we add to the language of second-order
arithmetic a unary predicate symbol Pϕ for every admissible formula ϕ . The atomic
formulas of ÎD1 are

1. t = s with t and s number terms;

2. t εX with t a number term and X a set variable;

3. Pϕ(t) with t a number term and ϕ an admissible formula.

All formulas of ÎD1 are obtained from atomic formulas by applying connectives,
number quantifiers and set quantifiers.

The axioms of ÎD1 are the axioms of Peano Arithmetic plus the following three
axiom schemata:

1. Comprehension schema: for all formulas ϕ(x) of ÎD1 without set quantifiers

∃X ∀x (x εX ↔ ϕ(x))

provided that X is not free in ϕ(x)

2. Induction schema: for all formulas ϕ(x) of ÎD1 without set quantifiers

(ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(succ(x))))→ ∀xϕ(x)

3. Fixpoint schema: for all admissible formulas ϕ with x and X free

ϕ[Pϕ/X]↔ Pϕ(x)

where ϕ[Pϕ/X] is the result of substituting in ϕ every atomic subformula t εX
with Pϕ(t).

16



The system ÎD1 allows us to define predicates as fixpoints, by using axiom schema
3, if they are presented in an appropriate way (i. e. using admissible formulas).

3.1 Notations of recursive functions in ÎD1

A numeral is a term of the form succ(succ...succ(0)). As usual we denote numerals
with boldface lower case letters n.

In ÎD1 one can certainly represent a Gödelian coding of recursive functions by
means of the Kleene predicate T (x, y, z) and the primitive recursive (meta)function
U . First of all we define applicative terms as follows (notice that these terms are not
part of the syntax of ÎD1, but are auxiliary terms):

1. every number variable is an applicative term;

2. every numeral is an applicative term;

3. if t and s are applicative terms, then {t}(s) is an applicative term.

We use the abbreviation {s}(t1, ..., tn) for applicative terms s, t1, ..., tn, ... as follows

1. {s}() is s;

2. {s}(t1, ..., tn+1) is {{s}(t1, ..., tn)}(tn+1).

If ϕ(x, x) is a formula of ÎD1 and t is an applicative term, then we define ϕ(x, t) by
induction on the definition of applicative terms t for all formulas as follows:

1. ϕ(x, y) is itself;

2. if n is a numeral, ϕ(x,n) is itself;

3. ϕ(x, {t}(s)) is ∃x(T (t, s, x) ∧ ϕ(x, U(x))).

Notice that if {t}(s) is an applicative term, the formula {t}(s) = {t}(s) turns out
to be equivalent to what is usually denoted with {t}(s) ↓ i. e. the formula ∃xT (t, s, x).
In particular, for a generic applicative term t it can be proved that the formula t = t
is provable when the applicative term t converges. Hence it makes sense to introduce
the formula t ' s as an abbreviation for t = t ∨ s = s → t = s for every pair of
generic applicative terms t and s.

If t is an applicative term with all variables among x1, ..., xn, then there is a
numeral Λx1...Λxn.t for which

ÎD1 ` ∀x1...∀xn({Λx1...Λxn.t}(x1, ..., xn) ' t)

17
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For 1 ≤ j ≤ n we define a numeral πnj as Λx1....Λxn.xj . These numerals obviously
satisfy the following

ÎD1 ` {πnj }(x1, ..., xn) = xj

Any n-ary primitive recursive (meta)function f can be represented by a numeral
f through the Gödelian coding in such a way that

ÎD1 ` {f}(x1, ..., xn) = f(x1, ..., xn)

In particular there exist numerals p,p1,p2 and s representing a primitive recursive
pairing function p with primitive recursive projections p1, p2 and the successor
function.

We define for 1 ≤ j ≤ n, numerals pn and pnj , representing the encoding of
n-tuples of natural numbers and the relative jth projections as follows:

1. p1 and p1
1 are both π1

1;

2. pn+1 is Λx1...Λxn+1.{p}({pn}(x1, ..., xn), xn+1);

3. pn+1
j is Λx.{pnj }({p1}(x)) if 1 ≤ j ≤ n;

4. pn+1
n+1 is p2.

We have that for n ≥ 1

1. ÎD1 ` {pn}({pn1}(x), ..., {pnn}(x)) = x

2. ÎD1 ` {pnj }({pn}(x1, ..., xn)) = xj for every 1 ≤ j ≤ n.

We can bijectively encode finite lists of natural numbers [n0, ..., nk] with natural
numbers in such a way that the component functions ( )j , the length function
lh( ) and the concatenation function cnc of lists with natural numbers are primitive
recursive and that the empty list is coded by 0. In particular there exists a numeral
cnc for which ÎD1 ` {cnc}(x, y) = cnc(x, y).

Moreover there exists a list recursor, i.e. a numeral listrec for which

1. ÎD1 ` {listrec}(0, y, z) ' y

2. ÎD1 ` {listrec}({cnc}(x, x′), y, z) ' {z}({listrec}(x, y, z), x′)

18



4 The effective pretripos for mTT

In this section we are going to define in ÎD1 a predicative categorical structure, called
effective pretripos for mTT, which represents a predicative variant of a realizability
tripos validating mTT. In a broad sense it can be considered a predicative variant
of the effective tripos giving rise to Hyland’s effective topos Eff in [17]. Indeed,
our ultimate goal is to use our effective pretripos to build a predicative variant of a
realizability topos like Eff .

Recall from [18, 33] that a tripos is an indexed category

P : Cop −→ Cat

which is a Lawvere-first order hyperdoctrine in the category of Heyting algebras
enriched with a weak subobject classifier, called a generic predicate in [18], capable
of producing power-sets in the category obtained by applying the so called tripos-to-
topos construction. This weak classifier is of an impredicative nature and it must be
necessarily so.

Here we are going to define a predicative variant of a tripos with the idea of getting
just power-collections and not power-sets in the corresponding predicative variant
of the tripos-to-topos construction. These will be structured in a fully analogous
way to the two-level structure of MF where the universes of small propositions and
of propositional functions on any set at the intensional level of MF are enough to
model power-collections of sets at the extensional level of MF by means of a quotient
model (see [23]).

We now briefly outline the categorical structure of our predicative variant of a
realizability tripos by describing what we are going to include in it:

- We define an indexed category of “realized” propositions

Prop : Contop → Cat

on a category Cont of “realized contexts” and realized morphisms between
them, equipped with the structure of a Lawvere’s first order hyperdoctrine
but in the category of Heyting prealgebras 3. The category Cont will host a
realizability interpretation of mTTa-contexts as that in [24]. This category
is also equivalent to its full subcategory C of realized collections, which are
defined as subsets of natural numbers in ÎD1 equipped with an equivalence
relation, whose morphisms turn out to be suitable recursive operations. Each

3A Heyting prealgebra is a preorder whose posetal reflection is a Heyting algebra.
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fibre of Prop represents the category of realized propositions defined in a
proof-irrelevant way as subsets of a singleton.
We use the category of contexts Cont instead of C as the base of our categorical
structure, because the realizability interpretation ofmTTa-contexts and generic
mTTa-judgements becomes simpler.
It is worth noting that the category Cont has also an indexed structure of
families of realized collections

Col : Contop → Cat

whose fibre on the empty context [ ] is equivalent to Cont. Moreover, it contains
Prop as a sub-indexed category

Prop �
� // Col

- We define a realized collection US via a fixpoint formula of ÎD1, which will
host the realizability interpretation of the collection of mTTa-sets. This is
defined as in [24] following a technique due to Beeson [8].
US is crucial to define the (indexed) category of families of realized sets

Set : Contop → Cat

which is a sub-indexed structure of Col

Set �
� // Col

Namely families of realized sets are families of realized collections classified by
the non-dependent realized collection US, in the sense that US represents the
indexed functor Set via a natural bijection

Set(Γ) ' Cont(Γ,US)

for objects Γ in Cont.

- We define a realized collection USP as a sub-collection of US, which will host
the realizability interpretation of the collection of mTTa-small propositions.
This is also defined as in [24].
The construction of USP is crucial to define the first-order hyperdoctrine of
realized small propositions

Props : Contop → Cat
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which is a subindexed category both of Prop and of Set

Set �
� // Col

Props
� � //?�

OO

Prop
?�

OO

and is classified by USP in the sense that USP represents the indexed functor
Props via a natural bijection for objects Γ in Cont

Props(Γ) ' Cont(Γ,USP)

This classification property provides an intensional predicative version of the
original weak subobject classifier property of a tripos.

In the next sections we will often include lemmas and theorems without proofs
because their proofs just involve straightforward verifications.

4.1 The category of realized collections in ÎD1

Here we are going to define the category of realized collections. We will denote such
a category as C.

A realized collection will denote a quotient of a subset of natural numbers acting
as realizers. It is represented in ÎD1 by a first-order formula defining the realizers
together with an equivalence relation x ∼ y. Morphisms between realized collections
will be defined as recursive functions between them preserving the corresponding
equivalence relations and called recursive operations.

We start by giving the notion of dependent realized collection, namely a family
of realized collections depending on a finite number of variables. From this notion
we will deduce that of realized collection.

Definition 4.1. Let x be a (possibly empty) list of distinct variables of the language
of ÎD1. A realized collection of ÎD1 depending on x (or simply a dependent realized
collection) is a pair A(x) := (|A(x)|, x ∼A(x) y) where

1. |A(x)| is a first-order definable class of ÎD1, i. e. it is a formal expression

{x |φA(x, x)}

where x is a variable different from those in x and φA(x, x) is a first-order
formula of ÎD1, namely a formula without set variables and set quantifiers, but
possibly with fixpoint predicates Pϕ, with all free variables among those in x
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and x. We will write x εA(x) as an abbreviation for φA(x, x), since we may
think of A(x) as a subset |A(x)| of natural numbers, called realizers, equipped
with a relation ∼A(x).

2. x ∼A(x) y is a first-order definable equivalence relation on |A(x)|, i. e. it is a
first-order formula of ÎD1, where x and y are distinct variables and they are
different from those in x, with all free variables among those in x, x or y for
which:

(a) x ∼A(x) y `ÎD1
x εA(x) ∧ y εA(x)

(b) x εA(x) `
ÎD1

x ∼A(x) x

(c) x ∼A(x) y `ÎD1
y ∼A(x) x

(d) x ∼A(x) y ∧ y ∼A(x) z `ÎD1
x ∼A(x) z

We identify dependent realized collections A(x) and B(x) for which

ÎD1 ` x ∼A(x) y ↔ x ∼B(x) y

(this automatically ensures that ÎD1 ` x εA(x) ↔ x εB(x), namely the validity of
subset extensional equality).
Definition 4.2. A realized collection of ÎD1 is a realized collection depending on
the empty list.
Definition 4.3. Given two realized collections A and B, a recursive operation (or
simply an operation) from A to B is an equivalence class [n]≈A,B of numerals for
which

x ∼A y `ÎD1
{n}(x) ∼B {n}(y)

with respect to the equivalence relation given by

n ≈A,B m if and only if x εA `
ÎD1

{n}(x) ∼B {m}(x)

Definition 4.4. We call C the category of realized collections of ÎD1 and recursive
operations between them where the composition of morphisms and identities are
defined as follows.

If [n]≈A,B is an operation from a realized collection A to a realized collection B
and [m]≈B,C is an operation from a realized collection B to a realized collection C,
then their composition is the operation

[m]≈B,C ◦ [n]≈A,B := [ Λx.{m}({n}(x)) ]≈A,C

If A is a realized collection, then its identity idA is defined as [π1
1]≈A,A.
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4.2 The category of realized contexts in ÎD1

Here we are going to define the category Cont of realized contexts and realized
morphisms between them. This category will be used to interpret the telescopic
contexts of dependent types of mTTa. We will deduce the categorical properties
which are necessary to validatemTTa from those of the category of realized collections
C, being Cont equivalent to C. Indeed the categorical structure of C will be easier
to describe.

We start by giving some abbreviations on list of variables.
Fix two countable sequences of variables x1, ..., xn... and y1, ..., yn... in such a way

that all these variables are distinct. We denote by x|j the empty list if j = 0 or the
list x1, ..., xj otherwise. Similarly we define y|j .

Then, we use the abbreviation Λx|j for Λx1...Λxj if j > 0, while Λx|0 means no
Λ-quantification. In case of an empty list of variables A( ) means A.

If k is a finite list of numerals with length n, then for j ≤ n, we use the abbreviation
{k|j}(t) for the empty list if j = 0, while {k|j}(t) is the list {k1}(t), ..., {kj}(t)
otherwise; we write {k}(t) as an abbreviation for {k|n}(t).

Definition 4.5. A realized context (or simply a context) of ÎD1 is a (possibly empty)
finite list

Γ = [A1, ..., Aj(x|j−1), ..., An(x|n−1)]

where Aj(x|j−1) is a collection of ÎD1 depending on x|j−1 for 1 ≤ j ≤ n, which
satisfies the following conditions:

1. xj+1 ∼Aj+1(x|j ) yj+1 `ÎD1
x1 εA1 ∧ ... ∧ xj εAj(x|j−1)

2. x1 ∼A1 y1 ∧ ... ∧ xj ∼Aj(x|j−1 ) yj `ÎD1

xj+1 ∼Aj+1(x|j ) yj+1 ↔ xj+1 ∼Aj+1(y|j ) yj+1

for every 1 ≤ j ≤ n− 1.
Moreover, for a realized context Γ of ÎD1, the length `(Γ) of Γ is the length of Γ

as a list.
Finally, if Γ = [A1, ..., An(x|n−1)] is a realized context of ÎD1 with positive length

n, then

1. x|n εΓ is an abbreviation for x1 εA1 ∧ ... ∧ xn εAn(x|n−1)

2. x|n ∼Γ y|n is an abbreviation for x1 ∼A1 y1 ∧ ... ∧ xn ∼An(x|n−1 ) yn
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If Γ is the empty list, then x|0 εΓ and y|0 ∼Γ y|0 are both the true constant >.

Definition 4.6. If Γ and Γ′ are contexts of ÎD1, then a realized morphism from
Γ to Γ′ is an equivalence class [k]≈Γ,Γ′ of lists of numerals with length equal to the
length of Γ′ satisfying the following requirements: if Γ′ = [B1, ..., Bn(x|n−1)] with
n > 0, then for all 1 ≤ j ≤ n:

x|`(Γ) ∼Γ y|`(Γ)
`
ÎD1

{kj}(x|`(Γ)) ∼Bj({k|j−1}(x|`(Γ)
)) {kj}(y|`(Γ)

)

with respect to the equivalence relation ≈Γ,Γ′ defined by k ≈Γ,Γ′ k′ if and only if

x|`(Γ) εΓ `
ÎD1

{kj}(x|`(Γ)) ∼Bj({k|j−1}(x|`(Γ)
)) {k

′
j}(x|`(Γ))

for every 1 ≤ j ≤ n.
In the case in which Γ′ = [ ], then the unique realized morphism is the class

!Γ,[ ] := [ ]≈Γ,[ ] containing only the empty list.

Definition 4.7. If k and h are lists of numerals and n is a natural (meta)number,
then

h ◦n k := [ Λx|n .{h1}({k}(x|n)), ...,Λx|n .{h`(h)}({k}(x|n)) ]

Definition 4.8. If [k]≈Γ,Γ′ : Γ→ Γ′ and [h]≈Γ′,Γ′′ : Γ′ → Γ′′ are realized morphisms
between contexts of ÎD1, then we define their composition as the realized morphism

[h]≈Γ′,Γ′′ ◦ [k]≈Γ,Γ′ := [ h ◦`(Γ) k ]≈Γ,Γ′′ : Γ→ Γ′′

If Γ is a context of ÎD1, then its identity is defined as the realized morphism

[ π`(Γ)
1 , ..., π

`(Γ)
`(Γ) ]≈Γ,Γ : Γ→ Γ

if `(Γ) > 0, while it is the realized morphism

[ ]≈[ ],[ ] : [ ]→ [ ]

if Γ = [ ].

Theorem 4.9. Realized contexts of ÎD1 and realized morphisms between them with
their compositions and identities form a category denoted by Cont.

As it happens in dependent type theory contexts can be equivalently represented
as the indexed sums of their components. To this purpose we define the following
realized morphisms which will act as projections to extract the components of a
context:
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Definition 4.10. If Γ is a context of ÎD1 and n is a natural (meta)number, we
define the realized morphisms prΓ and pr(n)

Γ in Cont as follows:

• pr[ ] is id[ ] and pr[A] is [ ]≈ : [A]→ [ ];4

pr[Γ,A] is [π`(Γ)+1
1 , ..., π

`(Γ)+1
`(Γ) ]≈ : [Γ, A]→ Γ if `(Γ) > 0;

• pr0
Γ is idΓ and pr(i+1)

Γ is prcod(pr(i)
Γ ) ◦ pr(i)

Γ

where cod(pr(i)
Γ ) denotes the codomain of pr(i)

Γ .

Now we define the indexed sum of the last two components of a context:

Definition 4.11. Suppose [Γ, A(x|`(Γ)), B(x|`(Γ)+1)] is a realized context of ÎD1. We
define the indexed sum collection

ΣΓ(A(x|`(Γ)), B(x|`(Γ)+1) )

as a collection depending on x|`(Γ) determined by the following conditions:5

x εΣΓ(A(x|`(Γ)), B(x|`(Γ)+1) ) ≡def p1(x) εA(x|`(Γ)) ∧ p2(x) εB(x|`(Γ) , p1(x))

x ∼ΣΓ(A(x|`(Γ)
), B(x|`(Γ)+1

) ) y ≡def p1(x) ∼A(x|`(Γ)
) p1(y) ∧ p2(x) ∼B(x|`(Γ)

, p1(x)) p2(y)

Clearly, the indexed sum collection allows to represent a context in an equivalent
way as follows:

Lemma 4.12. Suppose [Γ, A(x|`(Γ)), B(x|`(Γ)+1)] is a realized context of ÎD1. Then,
[Γ, A(x|`(Γ)), B(x|`(Γ)+1)] is isomorphic to [Γ,ΣΓ(A(x|`(Γ)), B(x|`(Γ)+1))] in Cont.

Proof. If Γ is not empty, just take the realized morphism from [Γ, A(x|`(Γ)), B(x|`(Γ)+1)]
to [Γ,ΣΓ(A(x|`(Γ)), B(x|`(Γ)+1) )] determined by the list

[ π`(Γ)+2
1 , ..., π

`(Γ)+2
`(Γ) ,Λx|`(Γ) .Λx.Λy.{p}(x, y) ]

Its inverse from [Γ,ΣΓ(A(x|`(Γ)), B(x|`(Γ)+1) )] to [Γ, A(x|`(Γ)), B(x|`(Γ)+1)] is the real-
ized morphism determined by the list

[ π`(Γ)+1
1 , ..., π

`(Γ)+1
`(Γ) ,Λx|`(Γ) .Λx.{p1}(x),Λx|`(Γ) .Λx.{p2}(x) ]

Instead, if Γ is empty, we can consider the realized isomorphism determined by [p]
and [p1,p2].

4The subscripts on ≈ will be omitted when they will be clear from the context
5Here as usual x and y are fresh distinct variables
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Theorem 4.13. Cont is equivalent to C.

Proof. From C to Cont take the functor F sending any collection A of C to [A] and
every realized morphism [n]≈A,B to [n]≈[A],[B] . Then, define a functor E from Cont
to C as follows:

1. E([ ]) is ( {x |x = 0} , x = y ∧ x = 0 ),

E([A]) is A,

E([Γ, A]) is Σ[ ]( E(Γ) , A({p`(Γ)
1 }(x1), ..., {p`(Γ)

`(Γ)}(x1)) );

2. if `(Γ) > 0 and `(Γ′) > 0, then [k]≈Γ,Γ′ : Γ→ Γ′ is sent to[
Λx.{p`(Γ′)}({k}({p`(Γ)

1 }(x), ..., {p`(Γ)
`(Γ)}(x)))

]
≈E(Γ),E(Γ′)

if Γ = [ ] and `(Γ′) > 0, then [k]≈[ ],Γ′ : [ ]→ Γ′ is sent to

[ Λx.{p`(Γ′)}(k) ]≈E([ ]),E(Γ′)

and !Γ,[ ] : Γ→ [ ] is sent to [ Λx.0 ]≈E(Γ),E([ ]) .

4.3 Families of realized collections as an indexed category

Here we are going to define an indexed category on the category of realized contexts

Col : Contop → Cat

whose fibre on a context Γ will be defined as a presentation of the slice category
Cont/Γ in terms of families of realized collections depending on the context Γ.

Definition 4.14. If Γ is a context of ÎD1 (i. e. an object of Cont), then A is a
family of realized collections on Γ (or a realized collection depending on Γ) if and
only if [Γ, A] is a context of ÎD1.

Definition 4.15. Let Col(Γ) be the category whose objects are families of realized
collections on Γ and a morphism from a family of realized collections A to another
family B is a realized morphism from pr[Γ,A] to pr[Γ,B] in the slice category Cont/Γ.
Composition and identities are inherited from those of Cont/Γ.
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Lemma 4.16. Let Γ be an object of Cont with `(Γ) > 0 and A, B be objects of
Col(Γ). If n is a numeral for which

x|`(Γ)+1 ∼[Γ,A] y|`(Γ)+1
`
ÎD1

{n}(x|`(Γ)+1) ∼B {n}(y|`(Γ)+1
)

then
γA,Bn,Γ := [ π`(Γ)+1

1 , ..., π
`(Γ)+1
`(Γ) ,n ]≈[Γ,A],[Γ,B]

is a well defined realized morphism from A to B in Col(Γ).
Conversely, for every f : A→ B in Col(Γ) there exists a numeral n for which

f = γA,Bn,Γ , and in this case we say that f is represented by n.

If [n]≈ is an arrow from A to B in Col([ ]), then we will denote it also by γA,Bn,[ ] .
We will omit A,B and Γ in the notation γA,Bn,Γ , when they will be clear from the

context.

Lemma 4.17. Suppose f = [k]≈Γ′,Γ : Γ′ → Γ in Cont.

1. If A(x|`(Γ)) is an object of Col(Γ), then the conditions

(a) x εColf (A(x|`(Γ))) ≡
def x|`(Γ′)

εΓ′ ∧ x εA({k}(x|`(Γ′)
))

(b) x ∼Colf (A(x|`(Γ)
)) y ≡def x|`(Γ′)

εΓ′ ∧ x ∼A({k}(x|`(Γ′)
)) y

determine an object Colf (A(x|`(Γ))) of Col(Γ′).

2. If g = γn is an arrow in Col(Γ) from A to B, then the numeral

n′ := Λx|`(Γ′)+1
.{n}({k}(x|`(Γ′)

), x`(Γ′)+1)

determines an arrow Colf (g) := γn′ in Col(Γ′) from Colf (A) to Colf (B).

Moreover, Colf (h ◦ g) = Colf (h) ◦ Colf (g) if g : A → B and h : B → C are
arrows in Col(Γ) and Colf (idA) = idColf (A) if A is an object of Col(Γ), i. e. Colf
is a functor from Col(Γ) to Col(Γ′).

Moreover we have the following property.

Lemma 4.18. If f : Γ′ → Γ′′ and g : Γ′′ → Γ′′′ are arrows in Cont and Γ is an
object of Cont, then

1. Colg◦f = Colf ◦Colg
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2. ColidΓ = idColf (Γ)

Now we are ready to define the indexed category of families of realized collections
as follows:

Definition 4.19. Let Col : Contop → Cat be the functor defined by the pair of
assignment Γ 7→ Col(Γ), f 7→ Colf .

Colf is called the substitution functor along f .

In the following lemma we introduce the notation of pullback projections which
will be used later to characterize the interpretation of the substitution of terms in
types and the interpretation of the context operation of weakening:

Lemma 4.20. If Γ and Γ′ are objects of Cont, f : Γ′ → Γ in Cont and A is an
object in Col(Γ), then Colf (A) fits into a pullback in Cont as follows

[Γ′,Colf (A)]
q(f,[Γ,A]) //

pr
��

[Γ, A]

pr
��

Γ′ f // Γ

where, if f is represented by the list [k1, ...,k`(Γ)], then q(f, [Γ, A]) is represented by
the list

[ Λx|`(Γ′)+1
.{k1}(x|`(Γ′)

), ...,Λx|`(Γ′)+1
.{k`(Γ)}(x|`(Γ′)

), π`(Γ
′)+1

`(Γ′)+1 ]

Now, we are going to describe the categorical structure of each fibre Col(Γ) for a
fixed context Γ.

Hence, in all the following lemmas Γ is an object of Cont with `(Γ) = n.
We start by showing that each fibre Col(Γ) is closed under finite products.

Lemma 4.21. The object

1Γ := ( {x|x|n εΓ ∧ x = 0}, x|n εΓ ∧ x = 0 ∧ x = y )

is a terminal object in Col(Γ), i. e. for every A in Col(Γ), there exists a unique
arrow !A,1Γ : A→ 1Γ in Col(Γ).

Lemma 4.22. If A and B are objects of Col(Γ), then the object A×Γ B defined by
the following conditions:

1. x εA×Γ B ≡def p1(x) εA ∧ p2(x) εB

2. x ∼A×ΓB y ≡def p1(x) ∼A p1(y) ∧ p2(x) ∼B p2(y)

28



with pΓ
i := Λx|n+1 .{pi}(xn+1) for i = 1, 2 yields the following binary product diagram

in Col(Γ)
A A×Γ B

πA,B
1 := γpΓ

1

oo
πA,B

2 := γpΓ
2

// B

i. e. for every f : C → A and g : C → B in Col(Γ), there exists a unique arrow
〈f, g〉 : C → A×Γ B in Col(Γ) for which the following diagram commutes

A A×Γ B
πA,B

1oo
πA,B

2 // B

C

f

gg

〈f,g〉

OO

g

77

Now we are going to show how to form equalizers in Col(Γ).

Lemma 4.23. If A is an object of Col(Γ) and f, g : 1Γ → A are arrows in Col(Γ)
represented by numerals nf and ng respectively, then EqΓ(A, f, g) given by the
following conditions

1. x εEqΓ(A, f, g) ≡def {nf}(x|n , 0) ∼A {ng}(x|n , 0)

2. x ∼EqΓ(A,f,g) y ≡def x εEqΓ(A, f, g) ∧ y εEqΓ(A, f, g)

is a well defined object of Col(Γ).

Lemma 4.24. Suppose f1, f2 : A → B in Col(Γ) and fi = γni for i = 1, 2. If
for i = 1, 2 we define f ′i to be γn′i : 1[Γ,A] → Colpr[Γ,A](B) in Col([Γ, A]) with
n′i := Λx|n+2 .{ni}(x|n+1), then

E(f1, f2) := ΣΓ(A, Eq[Γ,A](Colpr[Γ,A](B), f ′1, f ′2) )

e(f1, f2) := γpΓ
1

: E(f1, f2)→ A

define an equalizer for f1 and f2 in Col(Γ), i. e. for every e′ : E′ → A for which
f1 ◦ e′ = f2 ◦ e′, there exists a unique arrow g : E′ → E(f1, f2) in Col(Γ) for which
the following diagram commutes.

E(f1, f2)
e(f1,f2)// A

E′

e′

OO

g

dd
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Here we are going to show that each fibre Col(Γ) is closed under finite coproducts.

Lemma 4.25. The object 0Γ := ( {x| ⊥}, ⊥ ) is an initial object of Col(Γ), i. e. for
every A in Col(Γ) there exists a unique arrow !0Γ,A : 0Γ → A in Col(Γ).

Lemma 4.26. If A and B are objects of Col(Γ), then the object A+Γ B of Col(Γ)
defined by the following conditions:

1. x εA+Γ B ≡def ( p1(x) = 0 ∧ p2(x) εA ) ∨ ( p1(x) = 1 ∧ p2(x) εB )

2. x ∼A+ΓB y ≡def p1(x) = p1(y)∧

( ( p1(x) = 0 ∧ p2(x) ∼A p2(y) ) ∨ ( p1(x) = 1 ∧ p2(x) ∼B p2(y) ) )

with jΓ
1 := Λx|n+1 .{p}(0, xn+1) and jΓ

2 := Λx|n+1 .{p}(1, xn+1) yields the following
binary coproduct diagram in Col(Γ)

A
jA,B
1 := γjΓ1 // A+Γ B B

jA,B
2 := γjΓ2oo

i. e. for every object C of Col(Γ) and every pair of arrows f : A→ C and g : B → C,
there is a unique arrow case(f, g) : A+Γ B → C in Col(Γ) for which the following
diagram commutes

A
jA,B
1 //

f
''

A+Γ B

case(f,g)
��

B
jA,B
2oo

g
ww

C

Now we are going to show how Col(Γ) is closed under exponential objects, namely
under function spaces:

Lemma 4.27. If A and B are objects of Col(Γ), then the object A⇒Γ B defined by

1. x εA⇒Γ B ≡def x|n εΓ ∧ ∀t∀s ( t ∼A s → {x}(t) ∼B {x}(s) )

2. x ∼A⇒ΓB y ≡def x εA⇒Γ B ∧ y εA⇒Γ B ∧ ∀t ( t εA→ {x}(t) ∼B {y}(t) )

together with the arrow

evA,B := γevΓ : (A⇒Γ B)×Γ A→ B

where evΓ is Λx|n+1 .{{p1}(xn+1)}({p2}(xn+1)) defines an exponential of A and B
in Col(Γ) i. e. for every object C of Col(Γ) and every arrow f : C ×Γ A → B in
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Col(Γ), there exists a unique arrow Cur(f) : C → A⇒Γ B for which the following
diagram commutes in Col(Γ)6

C ×Γ A
f //

Cur(f)×ΓidA

��

B

(A⇒Γ B)×Γ A

evA,B

88

Col(Γ) has also list objects (see for instance [22] for a categorical definition)

Lemma 4.28. If A is an object of Col(Γ), then the object ListΓ(A) defined by

1. x εListΓ(A) ≡def x|n εΓ ∧ ∀j ( j < lh(x) → (x)j εA )

2. x ∼ListΓ(A) y ≡
def x|n εΓ ∧ lh(x) = lh(y) ∧ ∀j ( j < lh(x) → (x)j ∼A (y)j )

together with the arrows

εA := γΛx|n+1 .0 : 1Γ → ListΓ(A)

consA := γcncΓ : ListΓ(A)×Γ A→ ListΓ(A)

where cncΓ is Λx|n+1 .{cnc}({p1}(xn+1), {p2}(xn+1)), defines a list object on A in
Col(Γ), i. e. for every object B of Col(Γ) and every pair of arrows f : 1Γ → B and
g : B ×Γ A→ B in Col(Γ), there exists a unique arrow

listrec(f, g) : ListΓ(A)→ B

for which the following diagram commutes in Col(Γ)

1Γ εA //

f
##

ListΓ(A)

listrec(f,g)
��

ListΓ(A)×Γ A

listrec(f,g)×ΓidA
��

consA
oo

B B ×Γ Ag
oo

Theorem 4.29. For every Γ in Cont, Col(Γ) is a finitely complete cartesian closed
category with finite coproducts and list objects and for every morphism f in Cont
the functors Colf preserve this structure.

6For f : A → C and g : B → D in Col(Γ), we use the notation f ×Γ g for the arrow
〈f ◦ πA,B

1 , g ◦ πA,B
2 〉 : A×Γ B → C ×Γ D.
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Proof. This is a consequence of the previous lemmas (see [20]) and it is an immediate
verification to see that all these structures are preserved by the functors Colf .

Remark 4.30. The object NΓ of Col(Γ) defined by the following:

1. x εNΓ ≡def x|`(Γ) εΓ ∧ x = x

2. x ∼NΓ y ≡def x|`(Γ) εΓ ∧ x = y

together with the arrows

zΓ := γΛx|`(Γ)+1
.0 : 1Γ → NΓ sΓ := γΛx|`(Γ)+1

.{s}(x`(Γ)+1) : NΓ → NΓ.

defines a natural numbers object in Col(Γ), i. e. for every A in Col(Γ) and for every
pair of arrows f : 1Γ → A and g : A → A in Col(Γ), there exists a unique arrow
rec(f, g) : NΓ → A for which the following diagram commutes.

1Γ

f !!

zΓ
// NΓ sΓ

//

rec(f,g)
��

NΓ

rec(f,g)
��

A g
// A

It is immediate to see that this natural numbers object is preserved by the sub-
stitution functors Colf . A natural numbers object can be defined also as ListΓ(1Γ),
but it is convenient to consider the representation NΓ to simplify the realizability
interpretation of mTTa.

Corollary 4.31. Cont is a finitely complete cartesian closed category with finite
coproducts and list objects.

Proof. This is an immediate consequence of theorem 4.29 and 4.13 as C is clearly
isomorphic to Col([ ]).

Definition 4.32. If f : [Γ,1Γ] → [Γ, A] is an arrow in Cont, then we define
f̃ : Γ→ [Γ, A] as f ◦ j where j : Γ→ [Γ,1Γ] is the isomorphism in Cont defined by
the list

[ π`(Γ)
1 , ..., π

`(Γ)
`(Γ),Λx|`(Γ) .0 ]

Now, we are going to show that, for any realized collection A in Col(Γ) there
are left adjoints to substitution functors of the kind Colpr[Γ,A] which will be used to
interpret the operation of weakening the context Γ to [Γ, A]. These left adjoints will
be used to interpret the strong indexed sum collections of mTTa.
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Lemma 4.33. Suppose Γ is an object in Cont and A is an object in Col(Γ). Then
the functor sending each B in Col([Γ, A]) to ΣΓ(A,B) and each arrow
f := γn : B → C in Col([Γ, A]) to the arrow ΣΓ(A, f) from ΣΓ(A,B) to ΣΓ(A,C) in
Col([Γ]) represented by Λx|`(Γ) .Λx.{p}({p1}(x), {n}(x|`(Γ) , {p1}(x), {p2}(x))), in the
sense of lemma 4.16, is left adjoint to the functor Colpr[Γ,A] , i. e. there is a bijection
(see [20])

HomCol(Γ)(ΣΓ(A,B), D) ∼= HomCol([Γ,A])(B,Colpr[Γ,A](D))

natural in every B in Col([Γ, A]) and D in Col(Γ).

We also give the following lemma which will be useful for the interpretation.

Lemma 4.34. For every Γ in Cont and for every A in Col(Γ) and B in Col([Γ, A]),
the object ΣΓ(A,B) satisfies the following properties. If pΣ

1 := γpΓ
1

: ΣΓ(A,B)→ A

(see lemma 4.22) in Col(Γ), for every f : 1 → A in Col(Γ) and g : 1 → Col
f̃
(B)

in Col(Γ), there is a unique arrow 〈f, g〉Σ : 1→ ΣΓ(A,B) in Col(Γ) for which the
following diagrams commute (the first in Col(Γ), the second in Cont)

1
〈f,g〉Σ //

f

��

ΣΓ(A,B)

pΣ
1{{

[Γ,1]
〈f,g〉Σ //

g

��

[Γ,ΣΓ(A,B)]

'
��

A [Γ,Col
f̃
(B)]

q( f̃ , [Γ,A,B]) // [Γ, A,B]

where ' is the isomorphism from [Γ,ΣΓ(A,B)] to [Γ, A,B] defined in lemma 4.12.
Conversely, for every h : 1→ ΣΓ(A,B) in Col(Γ), there is a unique arrow

pΣ
2 (h) : 1→ Col

p̃Σ
1 ◦h

(B)

in Col(Γ) for which the following diagram commutes in Cont

[Γ,1] h //

pΣ
2 (h)
��

[Γ,ΣΓ(A,B)]

'
��

[Γ,Col
p̃Σ

1 ◦h
(B)]

q(p̃Σ
1 ◦h, [Γ,A,B])

// [Γ, A,B]

where f̃ and p̃Σ
1 ◦ h are as in definition 4.32.
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Now, we are going to show that, for any realized collection A in Col(Γ) there
are right adjoints to substitution functors of the kind Colpr[Γ,A] . These right adjoints
will be used to interpret the dependent product sets of mTTa.

Definition 4.35. Let Γ be an object of Cont with `(Γ) = n, A(x|n) an object of
Col(Γ) and B(x|n+1) an object of Col([Γ, A(x|n)]). We define ΠΓ(A(x|n), B(x|n+1))
as follows:

1. x εΠΓ(A(x|n), B(x|n+1)) ≡def

x|n εΓ ∧ ∀t∀s (t ∼A(x|n ) s→ {x}(t) ∼B(x|n ,t) {x}(s));

2. x ∼ΠΓ(A(x|n ),B(x|n+1)) y ≡def x εΠΓ(A(x|n), B(x|n+1))∧

y εΠΓ(A(x|n), B(x|n+1)) ∧ ∀t (t εA(x|n)→ {x}(t) ∼B(x|n ,t) {y}(t)).

Lemma 4.36. Suppose Γ is an object in Cont and A is an object in Col(Γ).
Then the functor sending each object B in Col([Γ, A]) to ΠΓ(A,B) and each arrow
f := γn : B → C in Col([Γ, A]) to the arrow ΠΓ(A, f) from ΠΓ(A,B) to ΠΓ(A,C)
in Col([Γ]) represented by Λx|`(Γ) .Λx.Λy.{n}(x|`(Γ) , y, {x}(y)), in the sense of lemma
4.16, is right adjoint to the functor Colpr[Γ,A], i. e. there is a bijection (see [20])

HomCol(Γ)(D,ΠΓ(A,B)) ∼= HomCol([Γ,A])(Colpr[Γ,A](D), B)

natural in every B in Col([Γ, A]) and D in Col(Γ).

Corollary 4.37. For every Γ in Cont, for every A and C in Col(Γ) and for every
B in Col([Γ, A]), the object ΠΓ(A,B) satisfies the following universal property: there
is an arrow evΓ

Π from Colpr[Γ,A](Π
Γ(A,B)) to B in Col([Γ, A]) such that for every

f : Colpr[Γ,A](C)→ B in Col([Γ, A]), there exists a unique arrow

CurΠ(f) : C → ΠΓ(A,B)

in Col(Γ) for which the following diagram commutes in Col([Γ, A]):

Colpr[Γ,A](C) f //

Colpr[Γ,A] (CurΠ(f))
��

B

Colpr[Γ,A](Π
Γ(A,B))

evΓ
Π

88
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Observe that the substitution functor Colf along any morphism f of Cont
preserves left and right adjoints described above as follows:

Lemma 4.38. Suppose f : Γ′ → Γ in Cont, A is an object of Col(Γ),
f ′ := q(f, [Γ, A]) and B is an object of Col([Γ, A]). Then

1. Colf (ΣΓ(A,B)) = ΣΓ′(Colf (A),Colf ′(B))

2. Colf (ΠΓ(A,B)) = ΠΓ′(Colf (A),Colf ′(B))

Note here that left adjoints and right adjoints to substitution functors of the kind
Colpr[Γ,A] provide respectively binary products and exponentials as follows:

Lemma 4.39. If Γ is an object of Cont and A,B are objects of Col(Γ), then

ΣΓ(A,Colpr[Γ,A](B))) = A×Γ B ΠΓ(A,Colpr[Γ,A](B))) = A⇒Γ B

The following lemma will be useful in the interpretation of mTTa-eliminators
for disjoint sums, natural numbers and lists.

Lemma 4.40. If Γ is an object of Cont, A1, ..., An, B are objects of Col(Γ) and

1. Ã1 := A1

2. Ãi+1 := Colpr(i)
[Γ,Ã1,...,Ãi]

(Ai+1) for i = 1, .., n− 1

3. B̃ := Colpr(n)

[Γ,Ã1,...,Ãn]

(B)

and f := γn : 1→ B̃ in Col([Γ, Ã1, ..., Ãn]), then

fΓ
\ := γn′ : ((A1 ×Γ A2)× ....×Γ An)→ B

where n′ is defined as

Λx|`(Γ) .Λx.{n}(x|`(Γ) , {p
n
1}(x), ..., {pnn}(x), 0)

is a well defined morphism in Col(Γ).

The left and right adjoints to the substitution functors of the kind Colpr[Γ,A] are
enough to provide left and right adjoints to substitution functors along any arrow in
Cont (see for example [26] and loc.cit. for a proof):

Corollary 4.41. For any arrow f in Cont, the substitution functor Colf enjoys
left and right adjoints satisfying Beck-Chevalley conditions.

Moreover, the category Cont is locally cartesian closed (see for instance [36] for
a definition).
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4.4 Families of realized propositions as an indexed category

Here we are going to define an indexed category of realized propositions equipped
with the structure of a first-order Lawvere hyperdoctrine

Prop : Contop → Cat

on the category of realized contexts. This will be used to interpret generic propositions
of mTTa.

We start by giving a lemma characterizing a proof-irrelevant dependent realized
collection, namely a realized collection with at most one element:

Lemma 4.42. Let Γ be an object of Cont and let P be an object of Col(Γ). Then
the following conditions are equivalent:

1. for every object A in Col(Γ), if f, g : A→ P are arrows in Col(Γ), then f = g;

2. πP,P1 = πP,P2 : P ×Γ P → P ;

3. P is proof-irrelevant, i.e. x εP ∧ y εP `
ÎD1

x ∼P y.

Now we define the notion of a family of realized propositions as a proof-irrelevant
dependent realized collection:

Definition 4.43. Let Γ be an object of Cont. A family of realized propositions on
Γ (or a realized proposition depending on Γ) is a proof-irrelevant object of Col(Γ)
as in lemma 4.42.

Definition 4.44. Let Prop(Γ) be the full subcategory of Col(Γ) whose objects are
families of realized propositions on Γ.

Observe that Prop(Γ) is a preorder, as a consequence of point 1. in lemma 4.42.
Hence we put:

Definition 4.45. If Γ is an object of Cont and P and Q are in Prop(Γ), we write

P vΓ Q

if there is an arrow in Prop(Γ) from P to Q. Moreover, if the existing arrow is
called f then we may write

f : P vΓ Q

36



Moreover, observe also that, contrary to what happens in mTT, in our indexed
category of dependent realized collections it is possible to transform any dependent
realized collection into a dependent realized proposition by quotienting it under the
trivial relation:

Definition 4.46. If Γ is an object of Cont and A is an object of Col(Γ), then
the proof-irrelevant quotient Pir(A) of A is the object of Prop(Γ) defined by the
following conditions:

1. x εPir(A) ≡def x εA

2. x ∼Pir(A) y ≡def x εA ∧ y εA

Actually, the above operation defines a reflector (see [20] for a definition) from
realized collections to propositions:

Lemma 4.47. For every object Γ of Cont

Pir : Col(Γ) −→ Prop(Γ)

defined as Pir(A) for any object A of Col(Γ) and as γn : Pir(A)→ Pir(B) for every
f := γn : A→ B in Col(Γ), is a reflector of the embedding functor of Prop(Γ) into
Col(Γ). This means that there is a bijection

HomProp(Γ)(Pir(A), P ) ∼= HomCol(Γ)(A,P )

natural in every object A in Col(Γ) and object P in Prop(Γ).

As a consequence, we get that each category of dependent propositions is an
Heyting prealgebra:

Corollary 4.48. Prop(Γ) is an Heyting prealgebra, i. e. it is a preorder with all
binary infima and suprema, bottom and top elements and all Heyting implications
i. e. it is a cartesian closed preorder category with finite coproducts.

Proof. In order to show that Prop(Γ) is an Heyting prealgebra it is sufficient to
show that it has binary infima and suprema, a bottom element, a top element and
Heyting implications. A bottom element is given by ⊥Γ := 0Γ, a top element is
given by >Γ := 1Γ, a binary supremum, a binary infimum and a Heyting implication
for P and Q in Prop(Γ) are P uΓ Q := P ×Γ Q, P tΓ Q := Pir(P +Γ Q) and
P →Γ Q := P ⇒Γ Q respectively.

Observe that a substitution functor Propf along any arrow f in Cont is inherited
from that of Col:
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Lemma 4.49. Suppose f : Γ → Γ′ in Cont and suppose P is in Prop(Γ′), then
Colf (P ) is in Prop(Γ). Moreover, Colf |Prop(Γ′) is a morphism of Heyting prealge-
bras, i. e. it preserves ⊥, >, u, t and →.

Hence we are ready to define Prop as a sub-indexed category of Col:

Definition 4.50. We call Prop : Contop → Cat the indexed category defined by
the assignments A 7→ Prop(A) and f 7→ Propf := Colf |Prop(cod(f)) where cod(f)
denotes the codomain of f .

Now we describe left and right adjoints to substitution functors which are necessary
to interpret existential and universal quantifiers of mTTa respectively:

Definition 4.51. Suppose Γ is an object of Cont, A is an object of Col(Γ) and P
is an object of Prop([Γ, A]), then

1. ∃Γ(A,P ) := Pir(ΣΓ(A,P ))

2. ∀Γ(A,P ) := Pir(ΠΓ(A,P ))

Observe that in Prop(Γ) there are also the propositional equalities of Col(Γ)
and these are preserved by substitution functors:

Lemma 4.52. If Γ is an object of Cont and f, g : 1Γ → A in Col(Γ), then
EqΓ(A, f, g) is an object of Prop(Γ). Morerover, if >Γ vΓ EqΓ(A, f, g), then f is
equal to g in Col(Γ).

Lemma 4.53. Suppose f : Γ′ → Γ is an arrow of Cont, A is an object of Col(Γ)
and g, g′ : 1Γ → A in Col(Γ). Then

Colf (EqΓ(A, g, g′)) = EqΓ′(Colf (A),Colf (g),Colf (g′))

Finally, observe that there exist left and right adjoints to substitution functors
and that Beck-Chevalley conditions hold for them:

Lemma 4.54. For every f : Γ → Γ′ in Cont, Propf : Prop(Γ′) → Prop(Γ) has
a left and right adjoint ∃f : Prop(Γ) → Prop(Γ′) and ∀f : Prop(Γ) → Prop(Γ′)
respectively, i. e. ∃f and ∀f are preorder morphims for which for every P ∈ Prop(Γ′)
and Q ∈ Prop(Γ):

1. Q vΓ Propf (P ) if and only if ∃f (Q) vΓ′ P ,

2. Propf (P ) vΓ Q if and only if P vΓ′ ∀f (Q).
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Moreover these adjoints satisfy the Beck-Chevalley condition: for every pullback
square in Cont

Γ′ f ′ //

g′

��

∆′

g

��
Γ f // ∆

and for every P in Prop(∆′) the following conditions hold7:

1. ∃g′(Propf ′(P )) vΓ Propf (∃g(P )) and Propf (∃g(P )) vΓ ∃g′(Propf ′(P ));

2. ∀g′(Propf ′(P )) vΓ Propf (∀g(P )) and Propf (∀g(P )) vΓ ∀g′(Propf ′(P ));

Proof. Note that if A is an object of Col(Γ) and P is an object of Prop([Γ, A]),
then we can define ∃pr[Γ,A](P ) and ∀pr[Γ,A](P ) as the objects ∃Γ(A,P ) and ∀Γ(A,P )
defined in 4.51 respectively.

From lemmas 4.47, 4.49 and 4.54 we conclude

Corollary 4.55. Prop is a hyperdoctrine in the sense of [37] and its posetal reflection
is a first-order hyperdoctrine in the sense of [32].

4.5 Realized sets and small realized propositions

Here we are going to define a notion of realized set and of small realized proposition
in order to define a sub-indexed category Set of Col

Set : Contop → Cat

and a sub-indexed category of Prop

Props : Contop → Cat

which will be used to interpretmTTa-sets andmTTa-small propositions respectively.
In order to interpret the mTTa-collection of small propositions and that of sets of
section 2.3 following the interpretation in [24], both indexed categories will need
to enjoy a classifier: the fibres of Set will need to be classified by an object US of
Col([ ]) via a natural bijection in Γ

Set(Γ) ' Cont(Γ,US)

7It is sufficient that one of the two conditions holds as the other follows by adjunction.
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and the fibres of Props will need to be classified by an object USP of Col([ ]) via a
natural bijection in Γ

Props(Γ) ' Cont(Γ,USP)

Actually, we will define both indexed categories by using their classifiers: a realized
set depending on Γ will be defined as the dependent realized collection made of
elements of a code in US over Γ and, analogously, a small realized proposition will
be defined as the proof-irrelevant dependent realized collection of elements of a code
in USP over Γ. In turn the objects US and USP will be defined as those used in [24]
to interpret the collection of sets and the collection of small propositions respectively.
Both objects are realized collections according to the terminology used here.

We describe now the construction of US and USP which will make use of fixpoint
formulas of ÎD1 as in [24]. To this purpose, we start by recalling the definition of
Kleene realizability for Heyting Arithmetic since it will be used to define the notion
of element both of a set and of a proposition.

Definition 4.56. For every formula ϕ of HA the formula x k ϕ (x realizes ϕ) is
defined according to the following clauses by external induction on the formation of
formulas (x is a variable which is not free in ϕ).

1. x k t = s is t = s

2. x k (ϕ ∧ ϕ′) is p1(x) k ϕ ∧ p2(x) k ϕ′

3. x k (ϕ ∨ ϕ′) is (p1(x) = 0 ∧ p2(x) k ϕ) ∨ (p1(x) = 1 ∧ p2(x) k ϕ′)

4. x k (ϕ→ ϕ′) is ∀t (t k ϕ→ {x}(t) k ϕ′)

5. x k ∀y ϕ is ∀y ({x}(y) k ϕ)

6. x k ∃y ϕ is p2(x) k ϕ[p1(x)/y]

Then, we define the following formulas in ÎD1 as fixpoints:

1. Set(x) intended to state that x is a code for a set of mTTa;

2. x ε y intended to state that x is an element of the set of mTTa coded by y;

3. x 6 ε y intended to state that x is not an element of the set of mTTa coded by y;

4. x ≡z y intended to state that x and y are equal elements in the set of mTTa

coded by z;

5. x 6≡z y intended to state that x and y are not equal elements of the set of
mTTa coded by z.
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We will use such formulas to encode with natural numbers a realizability interpretation
of mTTa-sets in ÎD1: we use natural numbers to represent both realizers and (codes
for) sets and we introduce a membership relation x ε z between natural numbers
(which extends the notion of Kleene realizability) and an equivalence relation x ≡z y
between numbers (realizers) of a (code of a) set z, which will represent the equality
between its elements. These clauses are similar to those presented in Beeson’s
book ([8]) for the first-order fragment of Martin-Löf type theory with one universe,
except that here we need to deal with mTTa-sets which include an extra notion
of proposition, that of small proposition, defined primitively. As in Beeson’s book
we define also the formal negations x 6 ε z and x 6≡z y in order to give admissible
clauses defining the properties of our new formulas. Then, we will encode the set
constructors N0, N1, N, Σ, Π, +, List, ⊥, ∧, ∨, →, ∃, ∀, Eq. In order to mimic the
dependency, we define a family of sets on a given set as (a code for) a recursive
function defined on the elements of a (code for a) set and producing codes for sets
as outputs provided that some coherence requirements are fulfilled. Formally, we
introduce the formula Fam(y, x) (y is a family of sets on the set x) in order to
capture this idea:

Fam(y, x) ≡def Set(x)∧∀t (t 6 ε x∨Set({y}(t)))∧∀t∀s (t 6≡x s∨{y}(t) =ext# {y}(s))

where x =ext# y is defined as

∀t ((t ε x ∨ t 6 ε y) ∧ (t ε y ∨ t 6 ε x)) ∧ ∀t∀s ((t ≡x s ∨ t 6≡y s) ∧ (t ≡y s ∨ t 6≡x s))

We then declare that y is a family of small propositions with the abbreviation
Famp(y, x) defined formally as

Fam(y, x) ∧ ∀t (t 6 ε x ∨ p1({y}(t)) > 5)

where the last condition means that {y}(t) is a small proposition (see later explana-
tions).

For every constructor κ the clauses for the definitions of the fixpoint formulas
are described by using extra new formulas as follows

1. Set(κ#) if Cond(κ)

2. x ε κ# if Cond(κ) ∧ P κε (x)

3. x 6 ε κ# if Cond(κ) ∧ P κε (x)

4. x ≡κ# y if Cond(κ) ∧ P κε (x) ∧ P κε (y) ∧ P κ≡(x, y)
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5. x 6≡κ# y if Cond(κ) ∧ (P κε (x) ∨ P κε (y) ∨ P κ≡(x, y))

where for formulas ϕ in the language of Peano arithmetic enriched with predicate
symbols ε, 6 ε, ≡ and 6≡ and without any occurrence of →, the formula ϕ represents
the negation of φ and is defined according to the following clauses:

1. for primitive formulas ψ of Peano arithmetic ψ := ¬ψ

2. t ε u is t 6 ε u, t 6 ε u is t ε u, t ≡u s is t 6≡u s and t 6≡u s is t ≡u s

3. ϕ ∧ ϕ′ is ϕ ∨ ϕ′ and ϕ ∨ ϕ′ is ϕ ∧ ϕ′

4. ∃xϕ is ∀xϕ and ∀xϕ is ∃xϕ

Finally, the extra formulas κ#, Cond(κ), P κε and P κ≡ are defined in the following
tables. κ# makes explicit the encoding of sets built using the constructor κ. Cond(κ)
is intended to give the constraints which must be respected to define a set through
the constructor κ and finally P κε and P κ≡ give the clauses for membership and equality
in a set obtained through the constructor κ, respectively.

κ κ# Cond(κ) Pκε (x)

N0 p(1, 0) > ⊥
⊥ p(6, 0)

N1 p(1, 1) > x = 0

N p(1, 2) > x = x

List p(5, a) Set(a) ∀i (i ≥ lh(x) ∨ (x)i ε a)

∧ p(7, p(a, b)) Set(a) ∧ Set(b)∧ p1(x) ε a ∧ p2(x) ε b
p1(a) > 5 ∧ p1(b) > 5

Σ p(2, p(a, b)) Fam(b, a) p1(x) ε a ∧ p2(x) ε {b}(p1(x))
∃ p(10, p(a, b)) Famp(b, a)
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κ κ# Cond(κ) Pκε (x)

→ p(9,p(a,b)) Set(a) ∧ Set(b)∧ ∀t (t 6 ε a ∨ {x}(t) ε b)
p1(a) > 5 ∧ p1(b) > 5

Π p(3, p(a, b)) Fam(b, a) ∀t (t 6 ε a ∨ {x}(t) ε {b}(t))∧
∀ p(11, p(a, b)) Famp(b, a) ∀t∀s(t 6≡a s ∨ {x}(t) ≡{b}(t) {x}(s))

+ p(4, p(a, b)) Set(a) ∧ Set(b) (p1(x) = 0 ∧ p2(x) ε a)∨
∨ p(8, p(a, b)) Set(a) ∧ Set(b)∧ (p1(x) = 1 ∧ p2(x) ε b)

p1(a) > 5 ∧ p1(b) > 5

Eq p(12, p(a, p(b, c))) Set(a) ∧ b ε a ∧ c ε a b ≡a c

κ Pκ≡(x)

N0 ⊥

N1, N x = y

List lh(x) = lh(y) ∧ ∀i (i ≥ lh(x) ∨ (x)i ≡a (y)i)

Σ p1(x) ≡a p1(y) ∧ p2(x) ≡{b}(p1(x)) p2(y)

Π ∀t (t 6 ε a ∨ {x}(t) ≡{b}(t) {y}(t))

+ p1(x) = p1(y)∧
((p1(x) = 0 ∧ p2(x) ≡a p2(y)) ∨ (p1(x) = 1 ∧ p2(x) ≡b p2(y)))

⊥,∧,
∨,→, >
∃,∀,Eq
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Note that, as already anticipated, families x of small propositions are characterized
as those families of sets satisfying the condition p1(x) > 5.

To be more precise, first we define an admissible formula ϕ(x,X) as follows

ϕ(x,X) ≡def
∨
κ ∃a ∃b∃c (

(x = p(20, κ) ∧Cond(κ))∨
∃y (x = p(21, p(y, κ#)) ∧Cond(κ) ∧Pκ

ε (y))∨
∃y (x = p(22, p(y, κ#)) ∧Cond(κ) ∧Pκ

ε (y))∨
∃y ∃z (x = p(23, p(κ#, p(y, z))) ∧Cond(κ) ∧Pκ

ε (y) ∧Pκ
ε (z) ∧Pκ

≡(y, z))∨
∃y ∃z (x = p(24, p(κ#, p(y, z)))∧Cond(κ)∧ (Pκ

ε (y)∨Pκ
ε (z)∨Pκ

≡(y, z))))

where the disjunction
∨
κ is the finite disjunction indexed by the constructors κ in

the previous tables and where the boldface versions of Cond(κ), P κε (x) and P κ≡(y, z)
are obtained by substituting Set(u), t ε u, t 6 ε u, s ≡u t and s 6≡u t with p(20, u) εX,
p(21, p(t, u)) εX, p(22, p(t, u)) εX, p(23, p(u, p(s, t))) εX and p(24, p(u, p(s, t))) εX
respectively in the original formulas.

For the sake of example let us show what is the subformula of ϕ(x,X) corre-
sponding to κ equal to N:

∃a ∃b∃c ((x = p(20, p(1, 2)) ∧ >)∨

∃y (x = p(21, p(y, p(1, 2))) ∧ > ∧ y = y)∨

∃y (x = p(22, p(y, p(1, 2))) ∧ > ∧ ¬ y = y)∨

∃y ∃z (x = p(23, p(p(1, 2), p(y, z))) ∧ > ∧ y = y ∧ z = z ∧ y = z)∨

∃y ∃z (x = p(24, p(p(1, 2), p(y, z))) ∧ > ∧ (¬ y = y ∨ ¬ z = z ∨ ¬ y = z)))

Then we consider the fixpoint formula Pϕ(x) corresponding to ϕ(x,X) and we
define

1. Set(x) ≡def Pϕ(p(20, x))

2. x ε y ≡def Pϕ(p(21, p(x, y)))

3. x 6 ε y ≡def Pϕ(p(22, p(x, y)))

4. x ≡z y ≡def Pϕ(p(23, p(z, p(x, y))))

5. x 6≡z y ≡def Pϕ(p(24, p(z, p(x, y))))
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In this framework we can define the following formulas:

• Coh(x) ≡def ∀t (t ε x ↔ ¬(t 6 ε x)) ∧ ∀t ∀s (t ≡x s ↔ ¬(t 6≡x s)) stating that
the formulas t 6 ε x and t 6≡x s defined by fixpoint behave really like negations
of t ε x and t ≡x s respectively;

• Wd(x) ≡def ∀t∀s (t ≡x s → t ε x ∧ s ε x) stating that the relation t ≡x s is
well defined on x;

• Ref(x) ≡def ∀t (t ε x↔ t ≡x t) stating that the relation t ≡x s is reflexive on
x;

• Sym(x) ≡def ∀t∀s (t ≡x s → s ≡x t) stating that the relation t ≡x s is
symmetric;

• Tra(x) ≡def ∀t∀s∀u (t ≡x s ∧ s ≡x u → t ≡x u) stating that the relation
t ≡x s is transitive;

• EqR(x) ≡def Ref(x) ∧ Sym(x) ∧ Tra(x) stating that the relation t ≡x s is
an equivalence relation on x;

• PrIrr(x) ≡def ∀t∀s (t ε x ∧ s ε x↔ t ≡x s) stating that the relation t ≡x s is
trivial on x (i. e. x is proof-irrelevant);

• x =ext y ≡def ∀t∀s (t ≡x s ↔ t ≡y s) stating that two sets are defined
extensionally equal if they share the same equivalent (equal) elements.

Notice that the following hold:

• ÎD1 ` Ref(x) ∧ Ref(y) ∧ x =ext y → ∀t (t ε x↔ t ε y) namely, two reflexive
sets are extensionally equal if and only if they share the same elements;

• ÎD1 ` PrIrr(x)→ EqR(x)

• ÎD1 ` EqR(x)→Wd(x)

4.5.1 The classifier of realized sets and that of small realized proposi-
tions

Definition 4.57. We define the collection US as the universe of codes for sets with
extensional equality:

• |US| := {x |Set(x) ∧ Coh(x) ∧ EqR(x)}
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• x ∼US y is x εUS ∧ y εUS ∧ x =ext y

Definition 4.58. We define the collection USP as the universe of codes for small
propositions:

• |USP| := {x |Set(x) ∧ p1(x) > 5 ∧ Coh(x) ∧ PrIrr(x)}

• x ∼USP y is x εUSP ∧ y εUSP ∧ x =ext y

Definition 4.59. For every object Γ in Cont we define the following families of
collections in Col(Γ):

USΓ := Col!Γ,[ ](US) USPΓ := Col!Γ,[ ](USP)

Definition 4.60. For any object Γ of Cont we define τΓ as the collection depending
on x`(Γ)+1 determined by the following conditions:

• x ε τΓ is x ε x`(Γ)+1 ∧ x|`(Γ) εΓ ∧ x`(Γ)+1 εUS

• x ∼τΓ y is x ≡x`(Γ)+1 y ∧ x|`(Γ) εΓ ∧ x`(Γ)+1 εUS

Lemma 4.61. Suppose Γ is an object of Cont. Then τΓ is an object of Col([Γ,USΓ])
and the following are well defined arrows in Col(Γ):

• N̂0
Γ

:= γΛx|`(Γ)
.Λx.{p}(1,0) and N̂1

Γ
:= γΛx|`(Γ)

.Λx.{p}(1,1) and

N̂Γ := γΛx|`(Γ)
.Λx.{p}(1,2) from 1Γ to USΓ

• Σ̂Γ := γΛx|`(Γ)
.Λx.{p}(2,x) and Π̂Γ := γΛx|`(Γ)

.Λx.{p}(3,x)

from ΣΓ(USΓ, τΓ ⇒[Γ,USΓ] US[Γ,USΓ]) to USΓ

• +̂Γ := γΛx|`(Γ)
.Λx.{p}(4,x) from USΓ ×Γ USΓ to USΓ

• L̂ist
Γ

:= γΛx|`(Γ)
.Λx.{p}(5,x) from USΓ to USΓ

• ⊥̂Γ := γΛx|`(Γ)
.Λx.{p}(6,0) : 1Γ → USPΓ

• ∧̂ Γ := γΛx|`(Γ)
.Λx.{p}(7,x) and ∨̂ Γ := γΛx|`(Γ)

.Λx.{p}(8,x)

and →̂Γ := γΛx|`(Γ)
.Λx.{p}(9,x) from USPΓ ×Γ USPΓ to USPΓ
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• ∃̂Γ := γΛx|`(Γ)
.Λx.{p}(10,x) and ∀̂Γ := γΛx|`(Γ)

.Λx.{p}(11,x)

from ΣΓ(USΓ, τΓ ⇒[Γ,USΓ] USP[Γ,USΓ]) to USPΓ

• Êq
Γ

:= γΛx|`(Γ)
.Λx.{p}(12,x)

from ΣΓ(USΓ, τΓ ×[Γ,USΓ] τΓ) to USPΓ

• σΓ := γΛx|`(Γ)
.Λx.x from USPΓ to USΓ

4.6 Dependent realized sets and small realized propositions and
their indexed categories

Here we finally give the definitions of realized sets and of small realized propositions
by using their classifiers.

Note that, for any context Γ, any generalized element of US over Γ (i. e. an arrow
from Γ to US) in Cont, or equivalently any global element of USΓ in Col(Γ) gives
rise to a realized collection in Col(Γ):

Lemma 4.62. Let Γ be an object of Cont with `(Γ) = n.
Suppose f = γnf

: 1Γ → USΓ (recall the notation in lemma 4.16) in Col(Γ).
Then the collection τΓ

s (f) of ÎD1 depending on x|n defined by

1. x ε τΓ
s (f) ≡def x|n εΓ ∧ x ε {nf}(x|n , 0)

2. x ∼τΓ
s (f) y ≡def x|n εΓ ∧ x ≡{nf}(x|n ,0) y

is a well defined object of Col(Γ). Moreover, for arrows f, g : 1Γ → USΓ in Col(Γ),
if τΓ

s (f) is equal to τΓ
s (g), then f and g are equal arrows in Col(Γ).

Note that any global element of USPΓ in Col(Γ), or equivalently any generalized
element of USP over Γ in Cont, gives rise to a realized proposition in Prop(Γ):

Lemma 4.63. Let Γ be an object of Cont with `(Γ) = n.
Suppose f = γnf

: 1Γ → USPΓ, then the collection τΓ
sp(f) of ÎD1 depending on

x|n defined by

1. x ε τΓ
sp(f) ≡def x|n εΓ ∧ x ε {nf}(x|n , 0)

2. x ∼τΓ
sp(f) y ≡def x|n εΓ ∧ x ≡{nf}(x|n ,0) y

is a well defined object of Prop(Γ). Moreover, for arrows f, g : 1Γ → USPΓ in
Col(Γ), if τΓ

sp(f) is equal to τΓ
sp(g), then f and g are equal arrows in Col(Γ).
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Finally, we define a realized set depending on a context Γ as the collection of
elements of a global element of USΓ in Col(Γ) or, equivalently, of a generalized
element of US over Γ in Cont:
Definition 4.64. If Γ is an object of Cont, a realized set depending on Γ (or a
family of realized sets on Γ) is a realized collection of the form τΓ

s (f) for an arrow
f : 1Γ → USΓ in Col(Γ).

Analogously, we define a small realized proposition depending on a context Γ as
the collection of elements of a global element of USPΓ in Col(Γ) or, equivalently, of
a generalized element of USP over Γ in Cont:
Definition 4.65. If Γ is an object of Cont, a small realized proposition depending
on Γ (or a family of realized small propositions on Γ) is a realized collection of the
form τΓ

sp(f) for an arrow f : 1Γ → USPΓ in Col(Γ).
Now we are ready to define the indexed category of realized sets and that of small

realized propositions. We start by defining their fibres as follows:
Definition 4.66. If Γ is an object of Cont, we define Set(Γ) as the full subcategory
of Col(Γ) whose objects are realized sets depending on Γ.

Moreover, if A is an object of Set(Γ), we write enΓ
s (A) for the arrow satisfying

A = τΓ
s (enΓ

s (A)).
Definition 4.67. If Γ is an object of Cont, we define Props(Γ) as the full subcate-
gory of Col(Γ) whose objects are small realized propositions depending on Γ.

The substitution functors for Set and Props will be both inherited from those
of Col:
Lemma 4.68. If f : Γ′ → Γ in Cont and A is an object of Set(Γ) (resp. of
Props(Γ)), then Colf (A) is an object of Set(Γ′) (resp. of Props(Γ′)).
Definition 4.69. The pair of assignments

Γ 7→ Set(Γ) f 7→ Setf := Colf |Set(cod(f))

where cod(f) is the codomain of f , defines an indexed category,

Set : Contop → Cat

Definition 4.70. The pair of assignments

Γ 7→ Props(Γ) f 7→ Props,f := Colf |Props(cod(f))

where cod(f) is the codomain of f , defines an indexed category

Props : Contop → Cat
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The indexed category of small realized propositions is a sub-indexed category of
that of realized sets:

Lemma 4.71. If Γ is an object of Cont, every object in Props(Γ) is also in Set(Γ).

The following lemma is instrumental to show that the fibres of Set and of Props
are closed under finite limits, finite coproducts, function spaces and under left and
right adjoints to substitution functors along morphisms of the kind pr[Γ,A] for any A
in Set(Γ) (they are not closed under left and right adjoints to substitution functors
along any morphism of Cont for predicativity reasons!). Moreover, from this lemma
it also follows that each fibre of Set is closed under list objects and contains the
natural numbers object of the corresponding fibre of Col.

Lemma 4.72. Let Γ be an object of Cont. Then

1. ⊥Γ is in Props(Γ);

2. 0Γ, 1Γ and NΓ are in Set(Γ);

3. if A and B are in Set(Γ), then A×Γ B, A+Γ B and A⇒Γ B are in Set(Γ);

4. if A is in Set(Γ), then ListΓ(A) is in Set(Γ);

5. if A is in Set(Γ) and B is in Set([Γ, A]), then ΠΓ(A,B) and ΣΓ(A,B) are in
Set(Γ);

6. if P and Q are in Props(Γ), then P tΓ Q, P uΓ Q and P →Γ Q are in
Props(Γ);

7. if A is in Set(Γ) and P is in Props([Γ, A]), then ∀Γ(A,P ) and ∃Γ(A,P ) are
in Props(Γ);

8. if A is in Set(Γ), for arrows f, g : 1Γ → A in Col(Γ), then EqΓ(A, f, g) is in
Props(Γ).

The following lemma will be useful to validate the equality rules of the collection
of small propositions in mTTa.

Lemma 4.73. Let Γ be an object of Cont, let f : 1→ USΓ, p, p′ : 1→ USPΓ and
g, g′ : 1 → τΓ

s (f) be arrows in Col(Γ) and let h : 1 → USP[Γ,τΓ
s (f)] be an arrow in

Col([Γ, τΓ
s (f)]). Then in Props(Γ) (recall the notation in lemma 4.40):

1. τΓ
sp(⊥̂Γ) coincides with ⊥Γ;
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2. τΓ
sp( ∧̂

Γ ◦ 〈p, p′〉) coincides with τΓ
sp(p) uΓ τΓ

sp(p′);

3. τΓ
sp( ∨̂

Γ ◦ 〈p, p′〉) coincides with τΓ
sp(p) tΓ τΓ

sp(p′);

4. τΓ
sp(→̂Γ ◦ 〈p, p′〉) coincides with τΓ

sp(p)→Γ τΓ
sp(p′);

5. τΓ
sp(∃̂Γ ◦ 〈f,Cur(hΓ

\ ◦ π
1,τΓ

s (f)
2 )〉Σ) coincides with ∃Γ(τΓ

s (f), τ [Γ,τΓ
s (f)]

sp (h));

6. τΓ
sp(∀̂Γ ◦ 〈f,Cur(hΓ

\ ◦ π
1,τΓ

s (f)
2 )〉Σ) coincides with ∀Γ(τΓ

s (f), τ [Γ,τΓ
s (f)]

sp (h));

7. τΓ
sp(Êq

Γ
◦ 〈f, 〈g, g′〉〉Σ) coincides with Eq(τΓ

s (f), g, g′);

4.7 Structure of the effective pretripos

What shown so far, together with well known results in categorical logic (see [32],
[37], [26]), allows to prove the following:

Theorem 4.74. The functor

Col : Contop → Cat

is an indexed category whose fibres Col(Γ) for any Γ in Cont are finitely complete
cartesian closed categories with finite coproducts and list objects. Moreover, for any
morphism f in Cont the substitution functor Colf preserves the mentioned fibre
structure and it has both left and right adjoints satisfying Beck-Chevalley conditions.
Finally, the fibre on the terminal object Col([ ]) is equivalent to Cont itself making
it a locally cartesian closed category.

The functor
Prop : Contop → Cat

is an indexed full subcategory of Col which is also a hyperdoctrine according to the
notion defined in [37], and its posetal reflection it is a first order hyperdoctrine in
the sense of [32].

The functor
Set : Contop → Cat

is an indexed full subcategory of Col whose fibres are also finitely complete cartesian
closed categories with finite coproducts and list objects. Moreover, for any morphism
f in Cont, the substitution functor Setf preserves the mentioned fibre structure and,
for any f = pr[Γ,A] with A in Set(Γ), it has both left and right adjoints satisfying
Beck-Chevalley conditions.
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The functor
Props : Contop → Cat

is an indexed full subcategory both of Prop and of Set whose fibres are Heyting pre-
algebras. Moreover, for any morphism f in Cont, the substitution functor (Props)f
preserves the mentioned fibre structure and for any f = pr[Γ,A] with A in Set(Γ) it
has both left and right adjoints satisfying Beck-Chevalley conditions.

Furthermore, for every object Γ in Cont the object US allows to represent the
functor Set in the sense that there is a bijection

Cont(Γ,US) ' Set(Γ)

natural in Γ and the object USP allows to represent Props in the sense that there is
a bijection

Cont(Γ,USP) ' Props(Γ)

natural in Γ.
Finally all the embeddings in the below diagram preserve the relevant mentioned

structures of each indexed category:

Set �
� // Col

Props
� � //?�

OO

Prop
?�

OO

Definition 4.75. The 5-tuple (Cont,Col,Set,Prop,Props) is called the effective
pretripos for mTT.

We will see later that the principle of formal Church thesis will be validated in
the effective pretripos for mTT.

5 The interpretation of the Minimalist Foundation

Here we give a partial interpretation I of precontexts and of types and terms in
precontext of the fully annotated syntax of mTTa in our effective pretripos for mTT
following Streicher’s technique in [38]. We call the resulting model R.

Definition 5.1. The validity of judgements in the model (R � J) is defined as
follows:
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R � if
Γ context I(Γ) is well defined and is an object of Cont
B col [Γ] R � Γ context

and I(B [Γ]) is a well defined object of Col(I(Γ))
Aset [Γ] R � Acol [Γ]

and I(A [Γ]) is an object of Set(I(Γ))
φ prop [Γ] R � φ col [Γ]

and I(φ [Γ]) is an object of Prop(I(Γ))
φ props [Γ] R � φ col [Γ]

and I(φ [Γ]) is an object of Props(I(Γ))
A = B type [Γ] R � A type and R � B type

type ∈ and I(A[Γ]) and I(B[Γ])
{col, set, prop, props} are equal objects of Col(I(Γ))

a ∈ A [Γ] R � Acol [Γ] and I(a[Γ]) is well defined
and I(a[Γ]) : 1I(Γ) → I(A[Γ]) is in Col(I(Γ))

a = b ∈ A [Γ] R � a ∈ A and R � b ∈ A
and I(a[Γ]) and I(b[Γ]) are equal arrows of Col(I(Γ))

Definition 5.2. If mTTa ` φ prop [Γ] we will say that R validates φ in context Γ,
also written R � φ [Γ], if we have that R � φ prop [Γ] and >I(Γ) vI(Γ) I(φ[Γ]) in
Prop(I(Γ)).

In the next subsections we will omit superscripts and subscripts in the categorical
notation when they will be clear from the context.

5.1 Precontexts

We interpret precontexts as objects of Cont as follows:

I([ ]) := [ ] ∈ Ob(Cont);

I([Γ, x ∈ A]) := [I(Γ), I(A[Γ])] provided that I(Γ) is a well defined object of
Cont and I(A[Γ]) is a well defined object of Col(Γ).

5.2 Variables
If Γ := [x1 ∈ A1, ..., xn ∈ An], then variables in context are defined as arrows in
Col(Γ) as follows
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1
I(x1∈A1[Γ]):=γ

π
n+1
1 // Colpr(n)

I(Γ)
(I(A1[ ]))

1
I(xi+1∈Ai+1[Γ]):=γ

π
n+1
i+1 // Colpr(n−i)I(Γ)

(I(Ai+1[x1 ∈ A1, ..., xi ∈ Ai]))

if 1 ≤ i ≤ n− 1.

provided that I(Γ) is a well defined object of Cont.

5.3 Basic sets

We interpret the emptyset, the singleton and the natural numbers type as follows:

I(N0[Γ]) := 0I(Γ) I(N1[Γ]) := 1I(Γ) I(N[Γ]) := NI(Γ)

provided that I(Γ) is a well defined object of Cont.
The interpretation of the emptyset eliminator empA0 (a)[Γ] is defined as the com-

posed arrow in the following commuting diagram in Col(I(Γ))

1
I(a[Γ]) //

I(empA
0 (a)[Γ]) ##

0
!0,I(A[Γ])
��

I(A[Γ])

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(a[Γ]) is a well defined arrow from 1 to 0 in Col(I(Γ)).

The interpretation of the singleton constant ?[Γ] is I(?[Γ]) := id1 : 1 → 1 in
Col(I(Γ)), provided that I(Γ) is a well defined object of Cont.

The interpretation of the singleton eliminator ElAN1(b, a)[Γ] is defined as the
composed arrow in the following commuting diagram in Col(I(Γ))

1
I(b[Γ]) //

I(ElAN1
(b,a)[Γ]) ##

1

I(a[Γ])
��

I(A[Γ])

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)), I(b[Γ]) is a well defined arrow from 1 to 1 in Col(I(Γ)) and I(a[Γ])
is a well defined arrow from 1 to I(A[Γ]) in Col(I(Γ)).

The interpretation of the constant 0[Γ] is defined as I(0[Γ]) := z : 1 → N in
Col(I(Γ)), provided that I(Γ) is a well defined object of Cont.
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The interpretation of the successor constructor succ(a)[Γ] is defined as

I(succ(a)[Γ]) := s ◦ I(a[Γ]) : 1→ N

in Col(I(Γ)) according with the notation in remark 4.30, provided that I(Γ) is a well
defined object of Cont and I(a[Γ]) is a well defined arrow from 1 to N in Col(I(Γ)).

The interpretation of the natural numbers eliminator ElAN(a, b, (x) c)[Γ] is defined
as

I(ElAN(a, b, (x) c)[Γ]) := rec( I(b[Γ]), I(c[Γ, x ∈ A])I(Γ)
\ ) ◦ I(a[Γ]) : 1→ I(A[Γ])

in Col(I(Γ)) according with the notation in remark 4.30 and lemma 4.40, provided
that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object of
Col(I(Γ)), I(a[Γ]) is a well defined arrow from 1 to N in Col(I([Γ])), I(b[Γ]) is
a well defined arrow from 1 to I(A[Γ]) in Col(I([Γ])) and I(c[Γ, x ∈ A]) is a well
defined arrow from 1 to Colpr(I(A[Γ])) in Col(I([Γ, x ∈ A])).

5.4 Dependent sums

We interpret the dependent sum as follows:

I((Σx ∈ A)B[Γ]) := ΣI(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(B[Γ, x ∈ A]) is a well defined object of Col(I([Γ, x ∈ A])). The
interpretation of the pairing of the dependent sum 〈a, b〉A,(x)B[Γ] is defined as

I(〈a, b〉A,(x)B[Γ]) := 〈I(a[Γ]), I(b[Γ])〉Σ : 1→ ΣI(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

with reference to lemma 4.34 provided that I(Γ) is a well defined object of Cont,
I(A[Γ]) is a well defined object of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined
object of Col(I([Γ, x ∈ A])), I(a[Γ]) is a well defined arrow from 1 to I(A[Γ]) in
Col(I([Γ])) and I(b[Γ]) is a well defined arrow from 1 to Col

Ĩ(a[Γ])
( I(B[Γ, x ∈ A]) )

in Col(I([Γ])).
The interpretations of the projections of the dependent sum π

A,(x)B
1 (c)[Γ] and

π
A,(x)B
2 (c)[Γ] are defined as follows

I(πA,(x)B
1 (c)[Γ]) := pΣ

1 ◦ I(c[Γ]) : 1→ I(A[Γ])

I(πA,(x)B
2 (c)[Γ]) := pΣ

2 (I(c[Γ])) : 1→ Col ˜pΣ
1 ◦I(c[Γ])

(I(B[Γ]))

with reference to lemma 4.34 provided that I(Γ) is a well defined object of Cont,
I(A[Γ]) is a well defined object of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined object
of Col(I([Γ, x ∈ A])) and I(c[Γ]) is a well defined arrow in Col(I(Γ)) from 1 to
ΣI(Γ)(I(A[Γ]), I(B[Γ, x ∈ A])).
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5.5 Dependent products

We interpret the dependent product as follows:

I((Πx ∈ A)B[Γ]) := ΠI(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(B[Γ, x ∈ A]) is a well defined object of Col(I([Γ, x ∈ A])).

The interpretation of the lambda-abstraction (λx)A,Bb[Γ] is defined as

I((λx)A,Bb[Γ]) := CurΠ(I(b[Γ, x ∈ A])) : 1→ ΠI(Γ)(I(A), I(B[Γ, x ∈ A]))

in Col(I(Γ)) where CurΠ(I(b[Γ, x ∈ A])) is the arrow (see corollary 4.37) making
the following diagram commute in Col([I(Γ), I(A[Γ])])

1
I(b[Γ,x∈A]) //

Colpr(CurΠ(I(b[Γ,x∈A])))
��

I(B[Γ, x ∈ A])

Colpr(ΠI(Γ)(I(A), I(B[Γ, x ∈ A])))
evΓ

Π

44

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined object of Col(I([Γ, x ∈ A])) and
I(b[Γ, x ∈ A]) is a well defined arrow from 1 to I(B[Γ, x ∈ A]) in Col(I([Γ, x ∈ A])).

The interpretation of the application ApA,(x)B(c, a)[Γ] is defined as the unique
arrow directed towards the pullback of Ĩ(a[Γ]) along pr[I(Γ), I(A[Γ]), I(B[Γ,x∈A])] (which
is the middle rectangle in the following diagram defined as in lemma 4.20) making
the following diagram in Cont commute (with the notation of lemma 4.40)

[I(Γ), 1]

id

��

I(ApA,(x)B(c,a)[Γ])

**

I(a[Γ])×I(c[Γ])//
[I(Γ), I(A[Γ])× Π(I(A[Γ]), I(B[Γ, x ∈ A]))]

evΠ◦'1

++
[I(Γ), Col

Ĩ(a[Γ])
(I(B[Γ, x ∈ A]))] //

pr

��

[I(Γ), I(A[Γ]), I(B[Γ, x ∈ A])]

pr

��
I(Γ)

Ĩ(a[Γ]) //

'2

��

[I(Γ), I(A[Γ])]

[I(Γ), 1]

I(a[Γ])

33

where '1 is the isomorphism from [I(Γ), I(A[Γ]) × Π(I(A[Γ]), I(B[Γ, x ∈ A]))]
to [I(Γ), I(A[Γ]),Colpr[Γ,I(A[Γ])]Π(I(A[Γ]), I(B[Γ, x ∈ A]))] in Cont defined as in
lemma 4.12 thanks to lemma 4.39 and '2 is the inverse of the isomorphism pr[Γ,1].
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This arrow exists thanks to corollary 4.37, provided that I(Γ) is a well defined
object of Cont, I(A[Γ]) is a well defined object of Col(I(Γ)), I(B[Γ, x ∈ A]) is
a well defined object of Col(I([Γ, x ∈ A])), I(a[Γ]) is a well defined arrow from
1 to I(A[Γ]) in Col(I([Γ])) and, finally, I(c[Γ]) is a well defined arrow from 1 to
Π(I(A[Γ]), I(B[Γ, x ∈ A])) in Col(I([Γ])).

5.6 Disjoint sums

We interpret the disjoint sum as follows:

I(A+B[Γ]) := I(A[Γ]) +I(Γ) I(B[Γ])

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and I(B[Γ]) are
well defined objects of Col(I(Γ)).

The interpretation of the first injection of the disjoint sum inlA,B(a)[Γ] is defined
as the composed arrow making the following diagram commute in Col(I(Γ))

1
I(a[Γ]) //

I(inlA,B(a)[Γ]) &&

I(A[Γ])

j1
��

I(A[Γ]) + I(B[Γ])

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and I(B[Γ]) are well
defined objects of Col(I(Γ)) and I(a[Γ]) is a well defined arrow from 1 to I(A[Γ])
in Col(I(Γ)).

The interpretation of the second injection of the disjoint sum inrA,B(b)[Γ] is
defined as the composed arrow making the following diagram commute in Col(I(Γ))

1
I(b[Γ]) //

I(inrA,B(b)[Γ]) &&

I(B[Γ])

j2
��

I(A[Γ]) + I(B[Γ])

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and I(B[Γ]) are well
defined objects of Col(I(Γ)) and I(b[Γ]) is a well defined arrow from 1 to I(B[Γ])
in Col(I(Γ)).

The interpretation of the eliminator of the disjoint sum ElA,B,C+ (c, (x) d, (y) e)[Γ]
is defined as f ◦ I(c[Γ]) in the following commuting diagram in Col(I(Γ)) (with the
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notation of lemma 4.40)

1

I(c[Γ])

��

I(ElA,B,C
+ (c,(x) d,(y) e)[Γ])

��

I(A[Γ]) j1 //

I(d[Γ, x∈A])I(Γ)
\ **

I(A[Γ]) + I(B[Γ])

f

��

I(B[Γ])j2oo

I(e[Γ, y∈B])I(Γ)
\tt

I(C[Γ])

where the existence and uniqueness of f is guaranteed by lemma 4.26, provided that
I(Γ) is a well defined object of Cont, I(A[Γ]), I(B[Γ]) and I(C[Γ]) are well defined
objects of Col(I(Γ)), I(c[Γ]) is a well defined arrow from 1 to I(A[Γ]) + I(B[Γ])
in Col(I(Γ)), I(d[Γ, x ∈ A]) is a well defined arrow from 1 to Colpr(I(C[Γ])) in
Col(I([Γ, x ∈ A])) and, finally, I(e[Γ, y ∈ B]) is a well defined arrow from 1 to
Colpr(I(C[Γ])) in Col(I([Γ, y ∈ B])).

5.7 Lists

We interpret the type of lists on a type as follows:

I(List(A)[Γ]) := ListI(Γ)(I(A[Γ]))

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) is a well defined
object of Col(I(Γ)).

The interpretation of the empty list εA[Γ] is defined as

I(εA[Γ]) := ε : 1→ List(I(A[Γ]))

in Col(I(Γ)) provided that I(Γ) is a well defined object of Cont and I(A[Γ]) is a
well defined object of Col(I(Γ)).

The interpretation of the list constructor consA(b, a)[Γ] is defined as the composed
arrow making the following diagram commute in Col(I(Γ))

1
〈I(b[Γ]), I(a[Γ])〉 //

I(consA(b,a)[Γ]) ++

List(I(A[Γ]))× I(A[Γ])

cons
��

List(I(A[Γ]))
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provided that I(Γ) is a well defined object of Cont and I(A[Γ]) is a well defined
object of Col(I(Γ)) and I(b[Γ]) is a well defined arrow from 1 to List(I(A[Γ])) in
Col(I(Γ)) while I(a[Γ]) is a well defined arrow from 1 to I(A[Γ]).

The interpretation of the list eliminator ElA,BList (a, b, (x, y) c)[Γ] is defined as the
composed arrow f ◦ I(a[Γ]) making the following diagram commute in Col(I(Γ))
(with notation as in lemma 4.40)

1

I(a[Γ])

��

I(ElA,BList (a,b,(x,y) c)[Γ])

��

1
ε
//

I(b[Γ]) %%

List(I(A[Γ]))

f

��

List(I(A[Γ]))× I(A[Γ])cons
oo

f×id
��

I(B[Γ]) I(B[Γ])× I(A[Γ])
I(c[Γ,x∈B,y∈A])I(Γ)

\

oo

where the existence and uniqueness of f is guaranteed by lemma 4.28, provided
that I(Γ) is a well defined object of Cont, I(A[Γ]) and I(B[Γ]) are well defined
objects of Col(I(Γ)), I(a[Γ]) is a well defined arrow from 1 to List(I(A[Γ])) in
Col(I(Γ)) and I(b[Γ]) is a well defined arrow from 1 to I(B[Γ]) in Col(I(Γ))
and I(c[Γ, x ∈ B, y ∈ A]) is a well defined arrow from 1 to Colpr(2)(I(B[Γ])) in
Col([I(Γ), I(B[Γ]),Colpr(I(A[Γ]))]).

5.8 Collection of small propositions

The collection of small propositions is interpreted as follows:

I(Props[Γ]) := USPI(Γ)

provided that I(Γ) is a well defined object of Cont.
Recalling lemma 4.61, we define the interpretation of terms as follows.
The interpretation of the falsum code ⊥̂[Γ] is defined as

I(⊥̂[Γ]) := ⊥̂ : 1→ USPI(Γ)

provided that I(Γ) is a well defined object of Cont.
The interpretations of the conjunction code a ∧̂ b [Γ], the disjunction code a ∨̂ b [Γ]

and the implication code a→̂b [Γ] are defined as the composed arrows making the
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following diagrams commute in Col(I(Γ))

USPI(Γ) × USPI(Γ) ∧̂ // USPI(Γ) USPI(Γ) × USPI(Γ) ∨̂ // USPI(Γ)

1
I(a ∧̂ b[Γ])

66

〈I(a[Γ]), I(b[Γ])〉

OO

1
I(a ∨̂ b[Γ])

66

〈I(a[Γ]), I(b[Γ])〉

OO

USPI(Γ) × USPI(Γ) →̂ // USPI(Γ)

1
I(a→̂b[Γ])

66

〈I(a[Γ]), I(b[Γ])〉

OO

provided that I(Γ) is a well defined object of Cont and I(a[Γ]) and I(b[Γ]) are well
defined arrows from 1 to USPI(Γ) in Col(I(Γ)).

The interpretations of the existential quantification code ̂(∃x ∈ A)b[Γ] and the
universal quantification code ̂(∀x ∈ A)b[Γ] are defined as the composed arrows making
the following diagrams commute in Col(I(Γ))

1

I( ̂(∃x∈A)b[Γ])
--

famp(I(b[Γ, x∈A])) // Σ(USI(Γ), τI(Γ) ⇒ USP[I(Γ),USI(Γ)])

∃̂
��

USP

1

I( ̂(∀x∈A)b[Γ])
--

famp(I(b[Γ, x∈A])) // Σ(USI(Γ), τI(Γ) ⇒ USP[I(Γ),USI(Γ)])

∀̂
��

USP

where famp(I(b[Γ, x ∈ A])) is defined using the notation in definition 4.66 and
lemma 4.40 as

〈enI(Γ)
s (I(A[Γ])),Cur(I(b[Γ, x ∈ A])I(Γ)

\ ◦ π1,I(A[Γ])
2 )〉Σ

provided that I(Γ) is a well defined object in Cont, I(A[Γ]) is a well defined object
of Set(I(Γ)) and I(b[Γ, x ∈ A]) is a well defined arrow from 1 to USPI([Γ,x∈A]) in
Col(I([Γ, x ∈ A])).
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The interpretations of the propositional equality code Êq(A, a, b)[Γ] is defined as
the composed arrow making the following diagram commute in Col(I(Γ))

1

I(Êq(A,a,b)[Γ])
,,

〈 enI(Γ)
s (I(A[Γ])) , 〈I(a[Γ]), I(b[Γ])〉 〉Σ // Σ(USI(Γ), τI(Γ) × τI(Γ))

Êq
��

USPI(Γ)

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is well defined object
of Set(I(Γ)) and I(a[Γ]) and I(b[Γ]) are well defined arrows from 1 to I(A[Γ]) in
Col(I(Γ)).

5.9 Collection of sets

We interpret the collection of sets as follows

I(Set[Γ]) := USI(Γ)

provided that I(Γ) is a well defined object of Cont.
Recalling lemma 4.61, we define the interpretation of terms as follows.
The interpretation of the empty set code N̂0, the singleton code N̂1 and the

natural numbers set code N̂ are defined as follows: I(N̂0[Γ]) := N̂0 : 1 → USI(Γ),
I(N̂1[Γ]) := N̂1 : 1 → USI(Γ) and I(N̂[Γ]) := N̂ : 1 → USI(Γ) in Col(I(Γ)), all
provided that I(Γ) is a well defined object of Cont.

The interpretation of the disjoint sum code a +̂ b[Γ] is defined as the composed
arrow making the following diagram commute in Col(I(Γ))

USI(Γ) × USI(Γ) +̂ // USI(Γ)

1
I(a +̂ b[Γ])

77

〈I(a[Γ]), I(b[Γ])〉

OO

provided that I(Γ) is a well defined object of Cont and I(a[Γ]) and I(b[Γ]) are well
defined arrows from 1 to USI(Γ) in Col(I(Γ)).

The interpretation of the list set code L̂ist(a)[Γ] is defined as the composed arrow
making the following diagram commute in Col(I(Γ))

USI(Γ) L̂ist // USI(Γ)

1
I(L̂ist(a)[Γ])

99

I(a[Γ])

OO
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provided that I(Γ) is a well defined object of Cont and I(a[Γ]) is a well defined
arrow from 1 to USI(Γ) in Col(I(Γ)).

The interpretation of the dependent sum code ̂(Σx ∈ A)b[Γ] and the dependent
product code ̂(Πx ∈ A)b[Γ] are defined as the composed arrows making the following
diagrams commute in Col(I(Γ))

1

I( ̂(Σx∈A)b[Γ])
,,

fam(I(b[Γ,x∈A])) // Σ(USI(Γ), τI(Γ) ⇒ US[I(Γ),USI(Γ)])

Σ̂
��

USI(Γ)

1

I( ̂(Πx∈A)b[Γ])
,,

fam(I(b[Γ,x∈A])) // Σ(USI(Γ), τI(Γ) ⇒ US[I(Γ),USI(Γ)])

Π̂
��

USI(Γ)

where fam(I(b[Γ, x ∈ A])) is defined using the notation in definition 4.66 and
lemma 4.40 as

〈enI(Γ)
s (I(A[Γ])),Cur(I(b[Γ, x ∈ A])I(Γ)

\ ◦ π1,I(A[Γ])
2 )〉Σ

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is well defined object
of Set(I(Γ)) and I(b[Γ, x ∈ A]) is a well defined arrow from 1 to USI([Γ,x∈A]) in
Col(I([Γ, x ∈ A])).

The interpretation of the small proposition code σ(a)[Γ] is defined as the composed
arrow making the following diagram commute in Col(I(Γ))

1

I(σ(a)[Γ])
,,

I(a[Γ]) // USPI(Γ)

σ

��
USI(Γ)

provided that I(Γ) is a well defined object of Cont and I(a[Γ]) is a well defined
arrow from 1 to USPI(Γ) in Col(I(Γ)).

5.10 Collection of propositional functions

We interpret the collection of propositional functions as follows:

I(A⇒ Props[Γ]) := I(A[Γ])⇒I(Γ) USPI(Γ)
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provided that I(Γ) is a well defined object of Cont and I(A[Γ]) is a well defined
object of Col(I(Γ)).

The interpretation of the propositional function lambda-abstraction (λx)A⇒b[Γ] is
defined as the unique arrow (see lemma 4.27) making the following diagram commute
in Col(I(Γ)) (with notation in lemma 4.40)

I(A[Γ])

〈!,id〉
��

I(b[Γ,x∈A])I(Γ)
\ // USPI(Γ)

1× I(A[Γ])
I((λx)A

⇒b[Γ])×id // (I(A[Γ])⇒ USPI(Γ))× I(A[Γ])

ev

OO

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(b[Γ, x ∈ A]) is a well defined arrow from 1 to USPI([Γ,x∈A]) in
Col(I([Γ, x ∈ A])).

The interpretation of the propositional function application ApA⇒(c, a)[Γ] is defined
as the composed arrow making the following diagram commute in Col(I(Γ))

1
〈I(c[Γ]), I(a[Γ])〉 //

I(ApA
⇒(c,a)[Γ])

++

(I(A[Γ])⇒ USPI(Γ))× I(A[Γ])
ev
��

USPI(Γ)

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(c[Γ]) is a well defined arrow from 1 to I(A[Γ]) ⇒ USPI(Γ) in
Col(I(Γ)) and I(a[Γ]) is a well defined arrow from 1 to I(A[Γ]) in Col(I(Γ)).

5.11 Falsum

We interpret falsum as follows:

I(⊥[Γ]) := ⊥I(Γ)

provided that I(Γ) is a well defined object of Cont.
The interpretation of the falsum eliminator rA0 (a)[Γ] is given by

I(rA0 (a)[Γ]) : > v I(A[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object in Cont, I(A[Γ]) is a well
defined object of Prop(I(Γ)) and I(a[Γ]) : > v ⊥ is well defined in Prop(I(Γ)).
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5.12 Conjunction

We interpret the conjunction as follows:

I(A ∧ B[Γ]) := I(A[Γ]) uI(Γ) I(B[Γ])

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and I(B[Γ]) are
well defined objects of Prop(I(Γ)).

The interpretation of the conjunction pairing 〈a, b〉A,B∧ [Γ] is defined as

I(〈a, b〉A,B∧ [Γ]) : > v I(A[Γ]) u I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont and I(A[Γ])
and I(B[Γ]) are well defined objects of Prop(I(Γ)) and I(a[Γ]) : > v I(A[Γ]) and
I(b[Γ]) : > v I(B[Γ]) are well defined in Prop(I(Γ)).

The interpretations of the conjunction projections πA,B∧ ,1 (c)[Γ] and πA,B∧ ,2 (c)[Γ] are
defined as

I(πA,B∧ ,1 (c)[Γ]) : > v I(A[Γ]) I(πA,B∧ ,2 (c)[Γ]) : > v I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and
I(B[Γ]) are well defined objects of Prop(I(Γ)) and I(c[Γ]) : > v I(A[Γ]) u I(B[Γ])
is well defined in Prop(I(Γ)).

5.13 Disjunction

We interpret the disjunction as follows:

I(A ∨ B[Γ]) := I(A[Γ]) tI(Γ) I(B[Γ])

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and I(B[Γ]) are
well defined objects of Prop(I(Γ)).

The interpretations of disjunction injections inlA,B∨ (a)[Γ] and inrA,B∨ (b)[Γ] are
defined as

I(inlA,B∨ (a)[Γ]) : > v I(A[Γ]) t I(B[Γ]) I(inrA,B∨ (b)[Γ]) : > v I(A[Γ]) t I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and
I(B[Γ]) are both well defined objects of Prop(I(Γ)) and finally, when interpreting the
first injection I(a[Γ]) : > v I(A[Γ]) is also assumed to be well defined in Prop(I(Γ)),
and when interpreting the second injection I(b[Γ]) : > v I(B[Γ]) is also assumed to
be well defined in Prop(I(Γ)).
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The interpretation of the disjunction eliminator ElA,B,C∨ (c, (x) d, (y) e)[Γ] is defined
as

I(ElA,B,C∨ (c, (x) d, (y) e)[Γ]) : > v I(C[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and
I(B[Γ]) are well defined objects of Prop(I(Γ)) and I(c[Γ]) : > v I(A[Γ]) t I(B[Γ])
is well defined in Prop(I(Γ)) and I(d[Γ, x ∈ A]) : > v Proppr(I(C[Γ])) is well
defined in Prop(I([Γ, x ∈ A])) and I(e[Γ, y ∈ B]) : > v Proppr(I(C[Γ])) is well
defined in Prop(I([Γ, y ∈ B])).

5.14 Implication

We interpret implication as follows:

I(A→ B[Γ]) := I(A[Γ])→I(Γ) I(B[Γ])

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and I(B[Γ]) are
well defined objects of Prop(I(Γ)).

The interpretation of the implication lambda-abstraction (λx)A,B→ (b)[Γ] is defined
as

I((λx)A,B→ (b)[Γ]) : > v I(A[Γ])→ I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and
I(B[Γ]) are well defined objects of Prop(I(Γ)) and

I(b[Γ, x ∈ A]) : > v Proppr(I(B[Γ]))

is well defined in Prop(I([Γ, x ∈ A])).
The interpretation of the implication application ApA,B→ (c, a)[Γ] is defined as

I(ApA,B→ (c, a)[Γ]) : > v I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and
I(B[Γ]) are well defined objects of Prop(I(Γ)) and I(c[Γ]) : > v I(A[Γ])→ I(B[Γ])
and I(a[Γ]) : > v I(A[Γ]) are well defined in Prop(I([Γ])).

5.15 Existential quantifier

We interpret the existential quantifier as follows:

I((∃x ∈ A)B[Γ]) := ∃I(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))
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provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(B[Γ, x ∈ A]) is a well defined object of Prop(I([Γ, x ∈ A])).

The interpretation of the existential quantifier pairing 〈a, b〉A,(x)B
∃ [Γ] is defined as

I(〈a, b〉A,(x)B
∃ [Γ]) : >I(Γ) vI(Γ) ∃I(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is
a well defined objects of Col(Γ) and I(B[Γ, x ∈ A]) is a well defined object of
Prop(I([Γ, x ∈ A])) and furthermore, I(a[Γ]) is a well defined arrow from 1 to
I(A[Γ]) in Col(I([Γ])) and I(b[Γ]) : > v Prop

Ĩ(a[Γ])
(I(B[Γ, x ∈ A])) is well defined

in Prop(I([Γ])) (see 4.32 for notation).
The interpretation of the existential quantifier eliminator ElA,(x)B,C

∃ (a, (x, y) b)[Γ]
is defined as

I(ElA,(x)B,C
∃ (a, (x, y) b)[Γ]) : >I(Γ) vI(Γ) I(C[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a
well defined object of Col(Γ), I(C[Γ]) is a well defined object of Prop(Γ) and
I(B[Γ, x ∈ A]) is a well defined object of Prop(I([Γ, x ∈ A])) and furthermore

I(a[Γ]) : > v ∃(I(A[Γ]), I(B[Γ, x ∈ A]))

is well defined in Prop(I([Γ])) and

I(b[Γ, x ∈ A, y ∈ B]) : > v Proppr(2)(I(C[Γ]))

is well defined in Prop(I([Γ, x ∈ A, y ∈ B])).

5.16 Universal quantifier

We interpret the universal quantifier as follows:

I((∀x ∈ A)B[Γ]) := ∀I(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(B[Γ, x ∈ A]) is a well defined object of Prop(I([Γ, x ∈ A])).

The interpretation of the universal quantifier lambda-abstraction (λx)A,B∀ b[Γ] is
defined as

I((λx)A,B∀ b[Γ]) : >I(Γ) vI(Γ) ∀I(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is
a well defined object of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined object of
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Prop(I([Γ, x ∈ A])) and I(b[Γ, x ∈ A]) : > v I(B[Γ, x ∈ A]) is well defined in
Prop(I([Γ, x ∈ A])).

The interpretation of the universal quantifier application ApA,(x)B
∀ (c, a)[Γ] is

defined in Prop(I(Γ)) with the notation in 4.32 as

I(ApA,(x)B
∀ (c, a)[Γ]) : >I(Γ) vI(Γ) Prop

Ĩ(a[Γ])
(I(B[Γ, x ∈ A]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined object of Prop(I([Γ, x ∈ A])) and,
furthermore,

I(c[Γ]) : > v ∀(I(A[Γ]), I(B[Γ, x ∈ A]))

is well defined in Prop(I(Γ)) and I(a[Γ]) : 1→ I(A[Γ]) is well defined in Col(I([Γ])).

5.17 Equality proposition

We interpret the propositional equality as follows:

I(Eq(A, a, b)[Γ]) := EqI(Γ)(I(A[Γ]), I(a[Γ]), I(b[Γ]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and both I(a[Γ]) and I(b[Γ]) are well defined arrows from 1 to I(A[Γ])
in Col(I(Γ)).

The interpretation of the propositional equality term eqA(a)[Γ] is defined as

I(eqA(a)[Γ]) : >I(Γ) vI(Γ) EqI(Γ)(I(A[Γ]), I(a[Γ]), I(a[Γ]))

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well
defined object of Col(I(Γ)) and I(a[Γ]) is a well defined arrow from 1 to I(A[Γ]) in
Col(I(Γ)).

5.18 Decoding

I(τ(a)[Γ]) := τI(Γ)
sp (I(a[Γ]))

provided that I(Γ) is a well defined object of Cont and I(a[Γ]) is a well defined
arrow from 1 to USPI(Γ) in Col(I(Γ)).
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6 Validity theorem

We start with defining a list of arrows useful to interpret telescopic substitutions of
dependent type theory in realized contexts Γ of ÎD1.

Definition 6.1. Suppose Γ and Γ′ are objects of Cont. We define simultaneously
by induction on the length of the realized context Γ

1. a list of arrows a = [a1, ..., a`(Γ)] in Col(Γ′) with domain 1Γ′ called instance of
substitution for Γ in context Γ′

2. an arrow sub(a, Γ′, Γ) : Γ′ → Γ for every instance of substitution a

as follows:

1. the empty list [ ] is an instance of substitution for [ ] in context Γ′ and
sub([ ], Γ′, [ ]) :=!Γ′,[ ] : Γ′ → [ ]

2. if [Γ, B] is an object of Cont, then [a, b] is an instance of substitution for [Γ, B]
in context Γ′ if and only if a is an instance of substitution for Γ in context Γ′
and b is an arrow from 1 to Colsub(a,Γ′,Γ)(B) in Col(Γ′).

In this case sub([a, b], Γ′, [Γ, B]) is defined as q(sub(a, Γ′, Γ), [Γ, B]) ◦ b̃ with
the notation in 4.32:

Γ′

b̃
��

sub([a,b],Γ′, [Γ,B])

++[Γ′,Colsub(a,Γ′,Γ)(B)]
q(sub(a,Γ′,Γ), [Γ,B])

//

pr
��

[Γ, B]
pr
��

Γ′
sub(a,Γ′ Γ)

// Γ

Remark 6.2. Notice that there is a bijection between lists of arrows which are
instances of substitution for Γ in context Γ′ and arrows in Cont from Γ′ to Γ.

The following lemma, which can be proved by induction on the definition of the
syntax in precontext, shows that weakening is interpreted as one could expect.

Lemma 6.3 (weakening). Suppose [Γ,Γ′,Γ′′] is a precontext such that both [Γ,Γ′]
and [Γ,Γ′′] are precontexts. Suppose that the length of Γ, Γ′ and Γ′′ are n, n′, n′′
respectively and that I([Γ,Γ′]) and I([Γ,Γ′′]) are well defined. Then I([Γ,Γ′,Γ′′]) is
well defined and if [Γ,Γ′,Γ′′] is [y1 ∈ A1, ..., yn+n′+n′′ ∈ An+n′+n′′ ], then
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1. the list weak defined by

[I(y1[Γ,Γ′,Γ′′]), ..., I(yn[Γ,Γ′,Γ′′]), I(yn+n′+1[Γ,Γ′,Γ′′]), ..., I(yn+n′+n′′ [Γ,Γ′,Γ′′])]

is an instance of substitution for I([Γ,Γ′′]) in context I([Γ,Γ′,Γ′′])

2. if I(A[Γ,Γ′′]) is well defined, then I(A[Γ,Γ′,Γ′′]) is well defined and it coincides
with

Colsub(weak, I([Γ,Γ′,Γ′′]), I([Γ,Γ′′]))(I(A[Γ,Γ′′]))

3. if I(a[Γ,Γ′′]) is well defined, then I(a[Γ,Γ′,Γ′′]) is well defined and it coincides
with

Colsub(weak, I([Γ,Γ′,Γ′′]), I([Γ,Γ′′]))(I(a[Γ,Γ′′]))

The next lemma can be proved by induction on the definition of the syntax in
precontext and it shows that substitution commutes with the interpretation I, i. e.
that one can first perform a substitution in mTTa and then interpret the resulting
type or term or, equivalently, first interpret terms and types of mTTa and then
perform the substitution of the interpreted terms.

Lemma 6.4 (Substitution Lemma). Let Γ = [x1 ∈ A1, ..., xn ∈ An] be a precontext
with n > 0 and let Γ′ be a precontext. Let I(Γ) and I(Γ′) be well defined and suppose
that I(a1[Γ′]),...., I(an[Γ′]) are well defined and constitute an instance of subtitution
for I(Γ) in context I(Γ′). Then

1. if I(B[Γ]) is well defined in Col(I(Γ)), then I(B[a1/x1, ..., an/xn][Γ′]) is well
defined and it coincides with

Colsub(I(a[Γ′]), I(Γ′), I(Γ))(I(B[Γ]))

2. if I(b[Γ]) is well defined in Col(I(Γ)), then I(b[a1/x1, ..., an/xn][Γ′]) is well
defined and it coincides with

Colsub(I(a[Γ′]), I(Γ′), I(Γ))(I(b[Γ]))

where we denote by I(a[Γ′]) the list of the interpretations I(ai[Γ′]).

What shown so far helps to prove our main theorem:

Theorem 6.5. The effective pretripos (Cont,Col,Set,Prop,Props) validates all
judgements of mTTa in the sense that:

for every judgement J of mTTa, if mTTa ` J , then R � J .
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Thanks to proposition 2.1 we also deduce

Corollary 6.6. The effective pretripos (Cont,Col,Set,Prop,Props) validates all
judgements of mTT in the sense that:

for every judgement J of mTT, if mTT ` J , then R � J .

6.1 The validity of CT

Proposition 6.7. The effective pretripos validates CT, i.e. R � CT, where CT is
the formula

(∀x ∈ N) (∃y ∈ N)R(x, y)→ (∃e ∈ N) (∀x ∈ N) (∃z ∈ N) (T (e, x, z) ∧R(x, U(z)))

where T and U are respectively the Kleene predicate and the primitive recursive
function representing Kleene application in mTTa respectively.

Proof. The validity in R of CT can be obtained as a consequence of the validity in
R of the following principles:
Formal Church thesis for type-theoretic functions CTλ defined as:

(∀f ∈ (Πx ∈ N)N) (∃e ∈ N) (∀x ∈ N) (∃y ∈ N)
(T (e, x, y) ∧ Eq(N, U(y),Ap(f, x)))

and the axiom of countable choice ACN,N defined for mTTa ` Rprop [x ∈ N, y ∈ N]
as

(∀x ∈ N) (∃y ∈ N)R(x, y)→ (∃f ∈ (Πx ∈ N) N) (∀x ∈ N)R(x,Ap(f, x))

One can easily show that in Prop([ ]):

1 v I(CTλ[ ]).

In fact we know by general results on Kleene realizability that there exists a numeral
r for which

HA ` ∃uT (f, x, u)→ ({r}(f, x) k ∃uT (f, x, u))

Using this remark and proof irrelevance we can show that the interpretation of CTλ[ ]
has a global element determined by the numeral

Λz.Λf. {p} (f, Λx. {p} ({p1} ({r}(f, x)), {p}({p2} ({r} (f, x)), 0)))

where the first variable z belongs to 1. Moreover R � ACN,N as equality in N is
interpreted as numerical equality.
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It is worth noting that theorem 6.6 shows that ÎD1 is an upper bound of the
proof-theoretic strength of mTT. Actually, this is a direct proof of it because in
[23] it was observed that mTT can be interpreted in first-order Martin-Löf’s type
theory with one universe, for short MLtt1, whose proof-theoretic strength is known
to be equal to that of ÎD1(see [8]). Even more our interpretation of mTT in ÎD1 is
a modification of that in [8] used to establish that ÎD1 is an upper bound of MLtt1.
The main difference between our proof and that for MLtt1 is that ours validates CT
while that in [8] falsifies CT.

It is left to future work to establish whether the proof-theoretic strength of mTT
and hence of MF coincides with that of ÎD1 as it happens to MLtt1.

7 Conclusions

We have built here an effective predicative categorical structure, called effective
pretripos for the intensional level mTT of MF extended with the formal Church
thesis CT, in Feferman’s predicative classical theory ÎD1.

This is intended to be a basic categorical structure of realizers for mTT useful
to build a predicative variant of Hyland’s Effective Topos. A predicative effective
topos will be obtained by completing our effective pretripos with quotients by means
of the elementary quotient completion introduced and studied in [26, 25, 27]. Indeed,
such an elementary quotient completion axiomatizes the quotient model used in [23]
to interpret the extensional level of MF into mTT and generalizes the notion of
the exact completion on a lex category. Therefore, it appears to be a starting point
to generalize the tripos-to-topos construction in [18] predicatively and to validate
the extensional level emTT of MF extended with CT when applied to our effective
pretripos.

Another goal of our future work will be to make a precise comparison between our
categorical structures of realizers for MF and the categorical approach to predicative
effective models for Aczel’s CZF in [41].
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