
Under consideration for publication in Math. Struct. in Comp. Science

Modular correspondence between dependent
type theories and categories including
pretopoi and topoi.

Maria Emilia Maietti

Dipartimento di Matematica Pura ed Applicata, Università di Padova

via G. Belzoni n.7, I–35131 Padova, Italy

e-mail: maietti@math.unipd.it

Received 26th January 2004, revised 3rd May 2005

We present a modular correspondence between various categorical structures and their

internal languages in terms of extensional dependent type theories à la Martin-Löf.

Starting from lex categories, through regular ones we provide internal languages of

pretopoi and topoi and some variations of them, like for example Heyting pretopoi.

With respect to the internal languages already known for some of these categories like

topoi, the novelty of these calculi is that formulas corresponding to subobjects can be

regained as particular types equipped with proof-terms according to the isomorphism

“propositions as mono types”, invisible in the previous languages.

MSC 2000: 03G30 03B15 18C50

Keywords: Categorical logic, topoi, Higher-order logic and type theory, Categorical

semantics of formal languages.

1. Introduction

In order to develop constructive mathematics we can choose among different frameworks

available in the literature, all sharing intuitionistic logic as the underlying logical rea-

soning. We can choose among theories formulated in the style of axiomatic set theory

ZFC, such as the predicative Aczel-Myhill CZF (Aczel and Rathjen 2001) or the im-

predicative IZF (Scedrov 1985); or we can choose among theories formulated as a type

theory where sets are considered as data types, such as the predicative Constructive

Type Theory (Martin-Löf 1975; Martin-Löf 1998; Nordström et al. 1990) by Martin-Löf

or the impredicative Calculus of Constructions (Coquand and Huet 1988) by Coquand;

or we can develop mathematics inside a categorical universe such as a pretopos (whose

underlying logic is predicative) or a topos (whose underlying logic is impredicative).

Topoi or pretopoi can be thought as universes where to develop mathematics because

they provide models for certain kinds of set theory. The concept of elementary topos

was introduced by Lawvere and Tierney to provide an axiomatization of a Grothendieck

M.E. Maietti 2

topos free of set-theoretic assumptions. Then, it was shown that suitable topoi model

fragments of classical set theory, like bounded Zermelo set theory (Cole 1973; Mitchell

1972; Mac Lane and Moerdijk 1992). Later Joyal and Moerdijk in (Joyal and Moerdijk

1995) proved that suitable pretopoi, namely Heyting pretopoi with a natural numbers

object, are enough to provide a setting where to model the full Zermelo-Fraenkel set

theory. More recently, in (Moerdijk and Palmgren 2000; Moerdijk and Palmgren 2002)

Moerdijk and Palmgren studied the categorical correspondence of suitable type-theoretic

constructions to be able to provide categorical models of Aczel-Myhill CZF (Aczel and

Rathjen 2001) within a locally cartesian closed pretopos.

Suitable pretopoi, called arithmetic universes, were also used to give a categorical

proof of Gödel incompleteness theorems by Andrè Joyal, already in the seventies (Wraith

1985). Andrè Joyal built arithmetic universes in three stages, from a cartesian category

with a parameterized natural numbers object, through a regular category, to a pretopos

with parameterized list objects. In (Maietti 2003) we argued that a general definition

of arithmetic universes can be taken to be a pretopos with parameterized list objects

after showing that an initial arithmetic universe is equivalent to an initial pretopos with

parameterized list objects.

What makes more evident that all these categorical universes are suitable frameworks

where to develop mathematics is that they can be viewed directly as universe of sets by

means of their internal language.

The concept of internal language was first used to view a generic elementary topos as

a universe of sets with the so called Mitchell-Benabou language (see (Lambek and Scott

1986),(Bell 1988)) formulated in terms of a many-sorted logic.

In this paper we can see that not only topoi but also pretopoi and many other categor-

ical structures enjoy internal languages formulated in terms of a dependent type theory

in the style of Martin-Löf’s extensional type theory in (Martin-Löf 1984).

In the literature connections between categorical universes and logic was explored also

for other categories than topoi, but always in terms of a many-sorted logic. Makkai and

Reyes found that pretopoi provide a sort of completeness, called “conceptual complete-

ness”, with respect to many-sorted coherent logic (Makkai and Reyes 1977; Johnstone

2002). But, as far as we know, no explicit internal calculus for pretopoi has been proposed

before ours.

Internal languages formulated as a dependent type theory differ from those formulated

as a many-sorted logic mainly because the first include only types (possibly dependent)

with their terms and equalities, while the latter includes two syntactic entities: sorts (or

simple types) with their terms and formulas depending on sorts.

For example, the many-sorted Mitchell-Benabou internal language is formulated in

such a way that categorical objects correspond to types, morphisms to typed terms and

subobjects to many-sorted formulas, which are terms of the subobject classifier (Mac

Lane and Moerdijk 1992; Lambek and Scott 1986). There is no constructor turning

formulas into types, namely no isomorphism of the sort “proposition as types” is visible:

propositions are not equipped with proof-terms.

Instead, in the internal language à la Martin-Löf we provide here for topoi, all the

Modular correspondence 3

categorical structure is described by means of dependent types, since simple types, like

those used in the Mitchell-Benabou language, do not suffice.

As a consequence with a dependent type theory we can build a syntactic category

by taking closed types as objects and terms as morphisms. In contrast, with a many

sorted logic, for example with the Mitchell-Benabou language, a syntactic topos is built

by taking formulas as objects, and functional relations as morphisms.

The interpretation of a dependent type theory in a fixed category C is more complex

than that of a many sorted logic, or obviously that of a simple typed calculus where types

are interpreted as objects of C and terms as morphisms of C. The idea is to interpret

a dependent type under a context as a sequence of morphisms of C and a dependent

term as a morphism of a suitable slice category of C. The notion of model we adopt

combines the categorical semantics based on display maps (Seely 1984; Hyland and Pitts

1989) together with the tools provided by contextual categories to interpret substitution

correctly (Cartmell 1986) by making use of the codomain fibration. Here, we require that

the category must be at least lex since we want to interpret substitution via pullback.

Then, to overcome the well known coherence problems due to the lack of a general

functorial choice of pullbacks, we use the split fibration associated to the codomain

fibration of the category (Benabou 1985; Hofmann 1995; Blackwell et al. 1989; Power

1989).

Actually, also the interpretation of formulas in an internal many-sorted logic, like that

of topoi, can be equivalently given by making use of a fibration, namely the subobject

fibration associated to the category. We can then conclude that describing the internal

dependent type theory of a category means to capture the type-theoretic properties of

the codomain fibration while describing the internal many-sorted logic of a category -

considering the sorts as types - means to capture the properties of the subobject fibration

together with the one dimensional structure of the category under consideration.

Having in mind the above categorical semantics we can recognize how a dependent

type theory à la Martin-Löf can describe the structure of subobjects avoiding the use of

formulas and sequents. Indeed, it turns out that a mono type, which is defined as a type

with at most one proof, i.e. formally a type B(x) [Γ] for which we can derive

y = z ∈ B(x) [Γ, y ∈ B(x), z ∈ B(x)]

gets interpreted by a sequence of morphisms the last one of which (interpreting the type

itself, whilst the rest interprets the context) is monic. Hence, mono types correspond to

monomorphisms as one can see by looking at the syntactic category built out from a

dependent type theory. This is crucial to capture the subobject classifier of a topos or

the quotients restricted to monic equivalence relations of a pretopos, or in other terms

to capture the structure of the subobject fibration only speaking about types. Therefore,

we deduce that interpreting formulas as subobjects yields the isomorphism propositions

as mono types, i.e. types with at most one proof or more generally formulas as mono

dependent types. As a consequence of these isomorphisms in the internal dependent type

theories propositions, or more generally formulas, become proof-relevant, whilst with a

unique proof-term. This is in contrast with many-sorted logic, where we are interested

only in the provability of a formula and not in the shape of its proofs.

M.E. Maietti 4

In extracting internal languages of categorical structures in terms of type theories à

la Martin-Löf we are facilitated by the fact that the correspondence between dependent

type theories and the categories considered is modular in the sense that we can single

out a precise correspondence between universal categorical properties and type-theoretic

constructors.

Hence, it is possible to get internal languages of various categories, from lex to regular

categories, pretopoi, arithmetic universes, topoi and variations of them.

In more detail, universal categorical properties correspond to already known type con-

structors of Martin-Löf’s extensional type theory or new ones as follows:

- Finite limits correspond to the terminal type, indexed sum types, extensional equality

types in (Martin-Löf 1984). These types describing the type theory of lex categories

form the basic module of an extensional dependent type theory internal to a category,

since this category must be at least lex.

- The right adjoint to the pullback functor between slice categories corresponds to the

dependent product type in (Martin-Löf 1984; Nordström et al. 1990).

- The left adjoint to the pullback functor between subobjects (or stable images) corre-

sponds to the indexed sum type made mono and restricted to mono types.

- Stable quotients of monic equivalence relations correspond to extensional quotient

types based only on mono equivalence relations with the addition of an axiom ex-

pressing effectiveness.

- The stable initial object corresponds to the false type in (Martin-Löf 1984; Nordström

et al. 1990).

- Stable binary disjoint coproducts correspond to the disjoint sum types in (Martin-Löf

1984; Nordström et al. 1990) with the addition of an axiom expressing disjointness.

- The parameterized natural numbers object corresponds to the natural numbers type

in (Martin-Löf 1984; Nordström et al. 1990) and parameterized list objects to list

types in (Martin-Löf 1984; Nordström et al. 1990).

- Finally, the subobject classifier corresponds to an extensional universe type encoding

mono types up to equiprovability.

The established link between dependent type theories and categories is stronger than

the link established by a soundness and completeness theorem between a calculus and

its models. Indeed, for any dependent typed calculus corresponding to a certain class

of categorical structures we can prove not only soundness and completeness but also a

sort of equivalence between the category of theories of the calculus and the category of

categorical structures. It is this sort of equivalence that lets us conclude that the typed

calculus provides the internal language of the corresponding categorical structures. And

this sort of equivalence does not generally hold for any class of complete models of the

given typed calculus.

Knowing internal languages à la Martin-Löf allows us to compare the considered cat-

egorical universes with Martin-Löf’s type theory from a type theoretic point of view. Of

course, we could also compare Martin-Löf’s type theory with the categorical universes by

looking at the categorical semantics of Martin-Löf’s type theory. But we do not have yet

a complete categorical semantics for the intensional version of Martin-Löf’s type theory

Modular correspondence 5

in (Martin-Löf 1975; Martin-Löf 1998; Nordström et al. 1990). We do have it only for its

extensional version in (Martin-Löf 1984). For sake of clearness, we must say that only the

intensional version in (Nordström et al. 1990; Martin-Löf 1975) is nowadays considered

the correct type theory. The reason is that only the intensional version can be really

thought of a functional programming language because it is strongly normalizing and its

definitional equality between terms is decidable. Instead, the extensional version can not

be considered a functional programming language since it does not enjoy such properties

as its definitional equality between terms is undecidable and it is also inconsistent with

the formal Church Thesis (see (Hofmann 1997; Maietti and Sambin 2005) for more on

the topic intensionality versus extensionality). Then, the intensional version of type the-

ory, not even enjoying extensionality of functions, is not suitable to develop mathematics

as it is. The actual development of mathematics in type theory is instead done inside

an intermediate theory of extensional concepts, as that in (Sambin and Valentini 1998).

This is a many sorted logic built upon the intensional type theory and equipped with

set-theoretic notations as those commonly used in every day mathematics, and hence

with proof-irrelevant propositions. Similarly, we can view the many-sorted logic internal

to a category as obtained by abstraction from the internal dependent type theory in the

same spirit of how the many-sorted logic in (Sambin and Valentini 1998) is built over

Martin-Löf’s type theory.

If we compare the internal type theory of a topos with Martin-Löf’s one only from the

“type perspective”, one of the main differences is that all the internal dependent type

theories of the categories considered so far are extensional according to the extensional

version of Martin-Löf’s type theory in (Martin-Löf 1984). These internal languages are

necessarily extensional if we interpret the definitional equality as equality of morphisms

in the category and the propositional equality as an equalizer. According to this type

perspective the internal dependent type theory of a topos includes the fragment without

universes of the type theory in (Martin-Löf 1984) as a subsystem and hence it is an

extension of first order Martin-Löf’s extensional type theory.

If we want to compare Martin-Löf’s type theory with the internal type theory of

a topos from the “proposition perspective” things go very differently. First of all in

Martin-Löf’s type theory propositions are built by interpreting them as types (where

here with “type” we mean what nowadays is called set in (Nordström et al. 1990))

according to the isomorphism proposition as types. Instead, in the categorical universes

considered, like topoi, propositions as mono types holds, as observed. One big consequence

is immediately visible: Martin-Löf thinking of propositions as types conceives a strong

existential quantifier that yields the validity of the propositional axiom of choice, since

this turns out to correspond to a distributivity property between the dependent product

type and the indexed sum type. Instead, topoi, being governed by propositions as mono

types, admits only the usual existential quantifier of intuitionistic logic with no internal

existence property, and hence no propositional axiom of choice. However, in topoi we can

derive the axiom of unique choice and by our internal dependent language we can see

why: in this case the existential quantifier becomes equivalent to the strong one.

Moreover, there are also constructions that in the presence of proposition as mono types

do preserve constructivity and that do not in general with propositions as types and that

M.E. Maietti 6

make Martin-Löf’s type theory and the internal theory of a generic topos constructively

incompatible. For example, extensional powersets, or effective quotients can not be added

to Martin-Löf’s type theory in the presence of the uniqueness of identity proofs (see

(Maietti and Valentini 1999; Maietti 1998b; Maietti 1999)) if we follow propositions as

types, since they are not constructively compatible with the axiom of choice. Indeed, by

mimicking the well-known Diaconescu’s argument (Diaconescu 1975) we can prove that

even in the intensional type theory the choice function does not preserve constructively

the extensionality reproduced in type theory by allowing the above constructions.

In conclusion from the proposition perspective it is no longer true that the internal

theory of a generic topos is an extension of first order Martin-Löf’s type theory.

A careful analysis of pros and cons of the two frameworks could also reveal some com-

promises to weaken a topos to be constructively compatible with the axiom of choice (for

example by allowing some intensional impredicative universe with no effective quotients)

or to extend Martin-Löf’s Constructive Type Theory with stronger constructors closer

to those of a topos as much as possible. In (Maietti and Sambin 2005) we singled out a

type theoretic kernel common to both frameworks in terms of a predicative calculus of

constructions.

So far we have discussed how the internal languages à la Martin-Löf prepare the

grounds for a type-theoretic comparison between categories and type theories. We also

recall that an obvious use of the internal type theory of a category is to perform categori-

cal proofs in a logical way and to transfer techniques from type theory to category theory

and the other way around. For example, in (Maietti 2003; Maietti 2005) we performed

constructions inside an arithmetic universe by employing the internal type theory of an

arithmetic universe. Having the internal type theory available allowed an extensive use

of proofs by induction. And this is a clear advantage since it would have been much more

difficult to perform such proofs with categorical diagram chasing.

Another application of the internal language of an arithmetic universe could be to

provide a type-theoretic version of the proof of Gödel’s incompleteness done categorically

by André Joyal within an initial arithmetic universe.

Finally, having dependent typed calculi available as internal languages of categorical

universes lets us analyze their computational contents, for example by investigating the

validity of canonical normal form theorems.

The work reported here is mostly based on the PhD-thesis (Maietti 1998b). The inter-

nal language of Heyting pretopoi also appeared in (Maietti 1998a).

2. Categorical structures

We proceed by recalling the definitions of the categorical structures we consider, starting

with lex categories to end with topoi.

Def. 2.1. A lex category is a category with finite limits (or finitely complete category),

i.e. with a terminal object, binary products and equalizers (Mac Lane 1971).

We recall that for a category having a terminal object and pullbacks is equivalent to being

Modular correspondence 7

finitely complete, and that having finite products is equivalent to having a terminal object

and binary products.

Def. 2.2. A lex category is said to be arithmetic if it has a parameterized natural

numbers object.

where

Def. 2.3. A parameterized natural numbers object in a category with finite prod-

ucts is an object N together with morphisms 0 : 1 → N and s : N → N such that

for every b : B → Y and g : Y → Y there is an unique rec(b, g) making the following

diagrams commute

B
⟨id,0·!B⟩ //

b
''

B×N

rec(b,g)

��

B×N
id×soo

rec(b,g)

��
Y Y

g
oo

with !B : B → 1 the unique map towards the terminal object.

It is worth to recall here that in presence of function spaces (or exponentials), like in a

cartesian closed category (see (Mac Lane and Moerdijk 1992; Lambek and Scott 1986)

for a definition), this parameterized version of natural numbers object is equivalent to

the usual natural numbers object.

Def. 2.4. A regular category is a finitely complete category with stable images (Jacobs

1999; Taylor 1997).

Def. 2.5. A lextensive category is a finitely complete category with stable finite

disjoint coproducts (Carboni et al. 1993). †.

Def. 2.6. A locos is a lextensive category with parameterized list objects (Cockett

1990).

where parameterized list objects are defined as follows:

Def. 2.7. A finitely complete category C has parameterized list objects if for any

object A ∈ ObC, there is an object List(A) equipped with morphisms rAo : 1→ List(A)

and rA1 : List(A)×A→ List(A) such that for every b : B → Y and g : Y ×A→ Y there

is an unique recl(b, g) making the following diagrams commute

B
⟨id,rAo ·!B⟩//

b
((

B×List(A)

recl(b,g)

��

B×(List(A)×A)
id×rA1oo

(recl(b,g)×idA)·σ
��

Y Y×A
g

oo

† In previous versions of this paper or in (Maietti 2001) we used the term “distributive” as in (Cockett

1990) for what most of the authors call “lextensive” to reserve the word “distributive” for a more

general concept (see (Carboni et al. 1993)).

M.E. Maietti 8

where σ : B × (List(A) × A) → (B × List(A)) × A is the associative isomorphism

⟨⟨π1, π1 · π2⟩, π2 · π2⟩.

In (Cockett 1990) there is an equivalent definition of finitely complete categories with

list objects (also called list-arithmetic lex categories) in terms of recursive objects and

preservation of recursive objects by the pullback functor !∗D : C → C/D sending an object

B to π1 : D ×B → D.

Finally, we recall the categorical definition of pretopos, locally cartesian closed cate-

gory, topos and variations of them:

Def. 2.8. A pretopos is a category equipped with finite limits, stable finite disjoint

sums and stable effective quotients of monic equivalence relations (Makkai and Reyes

1977; Joyal and Moerdijk 1995).

Def. 2.9. AnHeyting pretopos is a pretopos where the pullback functor on subobjects

has a right adjoint (Joyal and Moerdijk 1995).

Def. 2.10. An arithmetic universe is a pretopos with parameterized list objects (see

(Maietti 2003) for a justification of such a definition).

Def. 2.11. A locally cartesian closed category is a category equipped with finite

limits and right adjoints to pullback functors (Jacobs 1999; Taylor 1997).

Def. 2.12. A topos is a category equipped with finite limits, exponentials and a sub-

object classifier (Makkai and Reyes 1977; Mac Lane and Moerdijk 1992).

Since the aim of this paper is to describe internal dependent type theories of the categories

mentioned so far, we list necessary conditions that a category C has to satisfy in order

to enjoy a dependent typed internal language:

1 C has to be finitely complete. This is because we want to interpret substitution of

terms by means of pullbacks.

2 The structure of C necessary to interpret the type constructors on closed types has

to be local, i.e. for every object A ∈ ObC the slice category C/A (see (Mac Lane

1971) for its definition) must enjoy the same structure of C (for example, if C is a

topos then C/A should be a topos for every A ∈ ObC). This is because a dependent

type is interpreted in a suitable slice category and hence any slice category has to

be equipped with all the structure to interpret the type constructors under a certain

dependency.

3 The structure of C has to be preserved by the pullback functor f∗ : C/A → C/B
for every morphism f : B → A of C. This is because, if we interpret substitution

via pullback, then the structure needs to be preserved under pullbacks to make the

interpretation of a type constructor closed under substitution.

The categories mentioned so far satisfy the necessary conditions to enjoy an internal

dependent type theory:

Proposition 2.13. Lex, arithmetic lex, regular, lextensive categories, locoi, pretopoi,

Modular correspondence 9

arithmetic universes, Heyting pretopoi, locally cartesian closed categories and topoi are

local and their structures are preserved by pullbacks in the above sense.

Proof. The proof of this statement is modular on the universal categorical properties

such categories enjoy. The local property of a finitely complete category follows from the

fact that in C/A the identity on A is a terminal object and that the forgetful functor

U : C/A→ C creates pullbacks.

To show that regular categories and pretopoi are local is enough to note that the

above forgetful functor U creates colimits and that given in C/D an equivalence relation

R
ρ //

r
A×DA

a·π1
yy

D

then ⟨π1 ·ρ, π2 ·ρ⟩ : R→ A×A is also an equivalence relation in C, where

πi : A×D A→ A for i : 1, 2 are the projections of the pullback of a : A→ D along itself

in C.
The proof that the natural numbers object is local follows easily: for every object

A of a category C with products, a parameterized natural numbers object in C/A is

π1 : A×N → A, where N is a natural numbers object of C.
An Heyting pretopos P is local because the subobjects in the slice category correspond

to subobjects in P. Then, to check that right adjoints are stable under pullbacks means

that Beck-Chevalley conditions are satisfied, which also follows.

The proof that list objects are local is more delicate. We can prove locality of list objects

in a locos (the locality of a locos is also stated in (Cockett 1990)) as follows. First, we

assume to know the internal dependent type theory of a lextensive category. Then, we get

the internal type theory of a locos by simply adding list types restricted to closed types,

which are interpreted as parameterized list objects. By means of this internal language

we can show how to build list types on arbitrary dependent types, corresponding to

list-objects in a slice category, and that in the suitable slice syntactic category they are

stable under pullbacks.

A locally cartesian closed category C can be easily proved to be local considering its

equivalent characterization (for example in (Seely 1984)) saying that for every object B

the slice category C/B is cartesian closed, and knowing that for every f : B → A in C
the slice category (C/A)/f is equivalent to C/B.

Finally, the proof that a topos is local can be found in (Mac Lane and Moerdijk 1992)

or (Johnstone 1977).

We anticipate here that, in order to interpret a typed calculus in the corresponding

categorical structure, a given choice of the categorical structure needs to be made given

that the categorical structure is usually defined up to isomorphism. However, this is not

enough to make the interpretation. Indeed, to interpret substitution we need to find

a canonical choice of pullbacks that is functorial, and that is strictly preserved by the

categorical structure. But even in the category Set of ZFC sets and functions we do not

know any canonical functorial choice of pullbacks. To overcome this difficulty we will

make use of the machinery of fibred functors (Jacobs 1999; Hofmann 1997).

M.E. Maietti 10

3. Extensional dependent type theories

For each categorical structure described in the previous section we give here the descrip-

tion of the corresponding typed calculus meant to provide its internal language in the

style of Martin-Löf’s extensional dependent type theory (Martin-Löf 1984).

Any typed system is equipped with types, which should be thought of as sets or data
types, and with typed terms which represent proofs (or elements) of the types to which
they belong. In order to describe them in the style of Martin-Löf’s type theory, we have
four kinds of judgements (Nordström et al. 1990):

A type [Γ] A = B [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the judgements about type formation and their terms, the equality between types

and the equality between terms of the same type (called definitional equality of terms in

contrast to the propositional equality of terms that is a type).

The contexts of these judgements are telescopic (de Bruijn 1991), since types are

allowed to depend on variables of other types. The contexts are generated by the following

rules

∅ cont
1c)

Γ cont A type [Γ]

Γ, x ∈ A cont
2c) (x ∈ A ̸∈ Γ)

plus the rules of equality between contexts (Streicher 1991), (Pitts 2000). Then, we need

to add all the inference rules that express reflexivity, symmetry and transitivity of the

equality between types and terms together with the type equality rules conv) and conv-eq)

and the assumption of variables

a ∈ A [Γ] A = B [Γ]

a ∈ B [Γ]
conv)

a = b ∈ A [Γ] A = B [Γ]

a = b ∈ B [Γ]
conv-eq)

Γ, x ∈ A,∆ cont

x ∈ A [Γ, x ∈ A,∆]
var)

The structural rules of weakening, substitution and of a suitable exchange are not added

since they are derivable.

We also adopt the usual definitions of bound and free occurrences of variables and

we identify two terms under α-conversion. Moreover, we use the expression (x)b(x) to

mean the equivalence class of b(x) ∈ B(x) [x ∈ A] under renaming of variables, and we

also write b for (x)b(x). Actually, such expressions belong to the type theory with higher

ariety in (Nordström et al. 1990), with the warning that what is called a type here is

called a set in (Nordström et al. 1990). Indeed, by adding the so called function type,

from b(x) ∈ B(x) [x ∈ A] we can form the abstraction, that is (x)b(x) ∈ (x ∈ A)B(x),

and the corresponding application that satisfy β and η conversions.

Now, we give the formation rule for types specific to the various calculi with the intro-

duction, elimination and conversion rules of their terms. Beside them we should add the

corresponding formation equality rules for types with the introduction and elimination

equality rules for their terms as in (Martin-Löf 1984), but to be short we omit them. Note

that the piece of context common to all judgements involved in a rule will be omitted.

The typed variables appearing in a context are meant to be added to the implicit context

as the last one.

Modular correspondence 11

For example, we simply write

C(x) type [x ∈ B]

Σx∈BC(x) type

instead of

C(x) type [Γ, x ∈ B]

Σx∈BC(x) type [Γ]

The calculus for lex categories Tlex

=

Terminal type

⊤ type
Tr

⋆ ∈ ⊤ I-Tr
t ∈ ⊤

t = ⋆ ∈ ⊤ C-Tr

Indexed Sum type

C(x) type [x ∈ B]

Σx∈BC(x) type
Σ

b ∈ B c ∈ C(b) Σx∈BC(x) type

⟨b, c⟩ ∈ Σx∈BC(x)
I-Σ

M(z) type [z ∈ Σx∈BC(x)]

d ∈ Σx∈BC(x) m(x, y) ∈ M(⟨x, y⟩) [x ∈ B, y ∈ C(x)]

ElΣ(d,m) ∈ M(d)
E-Σ

M(z) type [z ∈ Σx∈BC(x)]

b ∈ B c ∈ C(b) m(x, y) ∈ M(⟨x, y⟩) [x ∈ B, y ∈ C(x)]

ElΣ(⟨b, c⟩,m) = m(b, c) ∈ M(⟨b, c⟩) C-Σ

Extensional Equality type

C type c ∈ C d ∈ C

Eq(C, c, d) type
Eq

c ∈ C

eqC(c) ∈ Eq(C, c, c)
I-Eq

p ∈ Eq(C, c, d)

c = d ∈ C
E-Eq

p ∈ Eq(C, c, d)

p = eqC(c) ∈ Eq(C, c, d)
C-Eq

M.E. Maietti 12

The calculus of regular categories Treg

=

Lex calculus +

Mono Existential type

C(x) type [x ∈ B]

y = z ∈ C(x) [x ∈ B, y ∈ C(x), z ∈ C(x)]

∃x∈BC(x) type
∃

b ∈ B c ∈ C(b) ∃x∈BC(x) type

(b, c) ∈ ∃x∈BC(x)
I-∃

∃x∈BC(x) type

b ∈ B c ∈ C(b) d ∈ B t ∈ C(d)

(b, c) = (d, t) ∈ ∃x∈BC(x)
eq-∃

M(z) type [z ∈ ∃x∈BC(x)] y = z ∈ M(w) [w ∈ ∃x∈BC(x), y ∈ M(w), z ∈ M(w)]

d ∈ ∃x∈BC(x) m(x, y) ∈ M((x, y)) [x ∈ B, y ∈ C(x)]

Ex(d,m) ∈ M(d)
E-∃

The calculus of arithmetic lex categories Talex

=

Lex calculus +

Natural Numbers type

N type
nat

0 ∈ N
I1-nat

n ∈ N

s(n) ∈ N
I2-nat

L(z) type [z ∈ N]

n ∈ N a ∈ L(0) l(x, y) ∈ L(s(x)) [x ∈ N, y ∈ L(x)]

ElN (a, l, n) ∈ L(n)
E-nat

L(z) type [z ∈ N]

a ∈ L(0) l(x, y) ∈ L(s(x)) [x ∈ N, y ∈ L(x)]

ElN (a, l, 0) = a ∈ L(0)
C1-nat

L(z) type [z ∈ N]

n ∈ N a ∈ L(0) l(x, y) ∈ L(s(x)) [x ∈ N, y ∈ L(x)]

ElN (a, l, s(n)) = l(n,ElN (a, l, n)) ∈ L(s(n))
C2-nat

Modular correspondence 13

The calculus of lextensive categories Text

=

Lex calculus +

Disjoint Sum type

C type D type

C +D type
+

c ∈ C C +D type

inl(c) ∈ C +D
I1-+

d ∈ D C +D type

inr(d) ∈ C +D
I2-+

A(z) type [z ∈ C +D]

p ∈ C +D aC(x) ∈ A(inl(x)) [x ∈ C] aD(y) ∈ A(inr(y)) [y ∈ D]

El+(p, aC , aD) ∈ A(p)
E-+

A(z) type [z ∈ C +D]

c ∈ C aC(x) ∈ A(inl(x)) [x ∈ C] aD(y) ∈ A(inr(y)) [y ∈ D]

El+(inl(c), aC , aD) = aC(c) ∈ A(inl(c))
C1-+

A(z) type [z ∈ C +D]

d ∈ D aC(x) ∈ A(inl(x)) [x ∈ C] aD(y) ∈ A(inr(y)) [y ∈ D]

El+(inr(d), aC , aD) = aD(d) ∈ A(inr(d))
C2-+

False type Disjointness

⊥ type
Fs

a ∈ ⊥ A type

r⊥(a) ∈ A
E-Fs

c ∈ C d ∈ D inl(c) = inr(d) ∈ C +D

dsj(c, d) ∈ ⊥

M.E. Maietti 14

The calculus of locoi Tloc

=

Lextensive calculus +

List type

C type

List(C) type
list

List(C) type

ϵ ∈ List(C)
I1-list

s ∈ List(C) c ∈ C

cons(s, c) ∈ List(C)
I2-list

L(z) type [z ∈ List(C)]

s ∈ List(C) a ∈ L(ϵ) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, s) ∈ L(s)
E-list

L(z) type [z ∈ List(C)]

a ∈ L(ϵ) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, ϵ) = a ∈ L(ϵ)
C1-list

L(z) type [z ∈ List(C)]

s ∈ List(C) c ∈ C a ∈ L(ϵ) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, cons(s, c)) = l(s, c,ElList(a, l, s)) ∈ L(cons(s, c))
C2-list

Modular correspondence 15

The calculus of pretopoi Tptop

=

Lextensive calculus +

Extensional Quotient type

R(x, y) type [x ∈ A, y ∈ A] z = w ∈ R(x, y) [x ∈ A, y ∈ A, z ∈ R(x, y), w ∈ R(x, y)]

c1 ∈ R(x, x) [x ∈ A] c2 ∈ R(y, x) [x ∈ A, y ∈ A, z ∈ R(x, y)]

c3 ∈ R(x, z) [x ∈ A, y ∈ A, z ∈ A,w ∈ R(x, y), w′ ∈ R(y, z)]

A/R type
Q

a ∈ A A/R type

[a] ∈ A/R
I-Q

a ∈ A b ∈ A d ∈ R(a, b) A/R type

[a] = [b] ∈ A/R type
eq-Q

L(z) type [z ∈ A/R]

p ∈ A/R l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQ(l, p) ∈ L(p)
E-Q

L(z) type [z ∈ A/R]

a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQ(l, [a]) = l(a) ∈ L([a])
C-Q

Effectiveness

a ∈ A b ∈ A [a] = [b] ∈ A/R

eff(a, b) ∈ R(a, b)

The calculus of Heyting pretopoi Thptop

=

Pretopos calculus +

Forall type

C(x) type [x ∈ B] y = z ∈ C(x) [x ∈ B, y ∈ C(x), z ∈ C(x)]

∀x∈BC(x) type
∀

c ∈ C(x) [x ∈ B] y = z ∈ C(x) [x ∈ B, y ∈ C(x), z ∈ C(x)]

λxB .c ∈ ∀x∈BC(x)
I-∀

b ∈ B f ∈ ∀x∈BC(x)

Ap(f, b) ∈ C(b)
E-∀

f ∈ ∀x∈BC(x)

λxB .Ap(f, x) = f ∈ ∀x∈BC(x)
ηC-∀ (x not free in f)

M.E. Maietti 16

The calculus of arithmetic universes Tau

=

Pretopos calculus +

List types

The calculus of locally cartesian closed categories Tlcc
=

The first order fragment of Martin-Löf ’s extensional type theory

=

Lex calculus +

Extensional Dependent Product type

C(x) type [x ∈ B]

Πx∈BC(x) type
F-Π

c ∈ C(x) [x ∈ B]

λxB .c ∈ Πx∈BC(x)
I-Π

b ∈ B f ∈ Πx∈BC(x)

Ap(f, b) ∈ C(b)
E-Π

b ∈ B c ∈ C(x) [x ∈ B]

Ap(λxB .c, b) = c(b) ∈ C(b)
βC-Π

f ∈ Πx∈BC(x)

λxB .Ap(f, x) = f ∈ Πx∈BC(x)
ηC-Π (x not free in f)

The calculus of topoi Ttop
=

Locally cartesian closed calculus +

Omega type

Ω type
Ω

B type y = z ∈ B [y ∈ B, z ∈ B]

{B} ∈ Ω
I-Ω

B type y = z ∈ B [y ∈ B, z ∈ B]

C type y = z ∈ C [y ∈ C, z ∈ C]

f ∈ B ↔ C

{B} = {C} ∈ Ω
eq-Ω

{B} = {⊤} ∈ Ω

ch(B) ∈ B
βC-Ω

q ∈ Ω

{Eq(Ω, q, {⊤})} = q ∈ Ω
ηC-Ω

where B ↔ C ≡ B → C × C → B

Modular correspondence 17

From now on we shall often omit the word type in the type judgements.

In the dependent typed calculi presented so far, the types and corresponding terms

coming from extensional Martin-Löf’s type theory (Martin-Löf 1984) are those in the

calculus for locally cartesian closed categories together with the disjoint sum types (but

without the disjointness axiom). The extensional quotient types on any (equivalence)

relation - hence not restricted to mono equivalence relations as presented here - and

without the effectiveness axiom, appeared in Nuprl (Constable 1986).

Why categories correspond to extensional type theories.

We recall that the extensional type theory is characterized by the presence of the ex-

tensional equality type. Instead, the intensional type theory (Nordström et al. 1990) is

characterized by the fact that all the type constructors have only β-conversions and the

equality type is intensional:

Intensional Equality type

A type a ∈ A b ∈ A

Id(A, a, b) type
Id

a ∈ A

id(a) ∈ Id(A, a, a)
I-Id

C(x, y, z) [x ∈ A, y ∈ A, z ∈ Id(A, x, y)]

d ∈ Id(A, a, b) c(x) ∈ C(x, x, id(x))) [x : A]

idpeel(d, c) ∈ C(a, b, d)
E-Id

C(x, y, z) [x ∈ A, y ∈ A, z ∈ Id(A, x, y)]

a ∈ A c(x) ∈ C(x, x, id(x)) [x : A]

idpeel(id(a), c) = c(a) ∈ C(a, a, id(a))
C-Id

A big difference between intensional and extensional versions of type theory is that in

the intensional version the definitional equality a = b ∈ A is decidable, while this is no

longer true for the extensional version (see for example (Hofmann 1997) for discussions

about this).

In our correspondence between categories and dependent typed languages the internal

dependent type theories are all extensional. The reason is that the propositional

equality must be extensional if we interpret the definitional equality between terms as

the equality between morphisms of the category and the propositional equality as an

equalizer.

Equivalent formulation for the indexed sum type.

Actually, from now on, we will refer to an equivalent formulation of the lex calculus where

the elimination and conversion rules for the indexed sum type are replaced by projections

satisfying β and η conversions. This formulation with projections is equivalent to that

M.E. Maietti 18

of the indexed sum type given previously only thanks to the presence of the extensional

equality type (see (Martin-Löf 1984) for a proof of the equivalence), that is the equivalence

does not hold in the intensional version of Martin-Löf’s type theory in (Martin-Löf

1975; Martin-Löf 1998; Nordström et al. 1990) and this is why we add the adjective

“extensional” to this new formulation of indexed sum type.

The calculus for lex categories Tlex

=

Terminal type + Extensional Equality type

+

Extensional Indexed Sum type (with projections)

C(x) type [x ∈ B]

Σx∈BC(x) type
Σ

b ∈ B c ∈ C(b) Σx∈BC(x) type

⟨b, c⟩ ∈ Σx∈BC(x)
I-Σ

d ∈ Σx∈BC(x)

πB
1 (d) ∈ B

E1-Σ
d ∈ Σx∈BC(x)

π
C(π1(d))
2 (d) ∈ C(π1(d))

E2-Σ

b ∈ B c ∈ C(b)

πB
1 (⟨b, c⟩) = b ∈ B

β1 C-Σ
b ∈ B c ∈ C(b)

π
C(b)
2 (⟨b, c⟩) = c ∈ C(b)

β2 C-Σ

d ∈ Σx∈BC(x)

⟨πB
1 (d), π

C(π1(d))
2 (d)⟩ = d ∈ Σx∈BC(x)

η C-Σ

The two existential quantifiers: strong and weak.

One of the main points of Martin-Löf’s type theory is the validity of the isomorphism

propositions as types. As a consequence the existential quantifier is put in correspondence

with the indexed sum type as presented in the lex calculus. This means that we can

define the two projections as just seen (and this holds in the intensional version, too ‡),

with the consequence of having the existence property internalized in the calculus. This

is stronger than the usual formalization of the intuitionistic existential quantifier, like

that present in a topos, which instead corresponds to Howard’s weak indexed sum type

according to the isomorphism propositions as types:

‡ In the intensional version of Martin-Löf’s type theory (Nordström et al. 1990) we can define pro-
jections that satisfy β conversions but η conversion only at the propositional level, i.e. in the form

Id(Σx∈B C(x), ⟨πB
1 (d), π

C(π1(d))
2 (d)⟩ , d).

Modular correspondence 19

Howard’s Weak Indexed Sum type

C(x) type [x ∈ B]

Σw
x∈BC(x) type

wΣ
b ∈ B c ∈ C(b) Σw

x∈BC(x) type

⟨b, c⟩ ∈ Σw
x∈BC(x)

I-wΣ

M type

d ∈ Σw
x∈BC(x) m(x, y) ∈ M [x ∈ B, y ∈ C(x)]

ElΣw(d,m) ∈ M
E-wΣ

M type

b ∈ B c ∈ C(b) m(x, y) ∈ M [x ∈ B, y ∈ C(x)]

ElΣw(⟨b, c⟩,m) = m(b, c) ∈ M
C-wΣ

The main difference between the rules of the indexed sum and those of the weak one is

that in the elimination rule of the weak one the type M must not depend on Σwx∈BC(x).

As a relevant consequence, in the presence of the product type while the indexed sum type

allows to derive a proof of the following type, read as the axiom of choice in (Martin-Löf

1984)

(Πx ∈ A)(Σy ∈ B) C(x, y)→ (Σf ∈ A→ B)(Πx ∈ A) C(x, f(x))
the weak indexed sum does not (see (Swaen 1991; Swaen 1992)).

Mono types.

We call mono every type for which we can prove

B(x) type [x ∈ A]
y = z ∈ B(x) [x ∈ A, y ∈ B(x), z ∈ B(x)]

also called proof-irrelevant, for example in (Hofmann 1997). These are dependent types

that can be inhabitated by at most one proof. This is the central concept to characterize

the structure of subobjects of a category, like stable images of a regular category captured

by the mono existential types, or the right adjoints restricted to subobjects of an Heyting

pretopos captured by the forall types, or the quotient of a monic equivalence relation in

a pretopos captured by the quotient type restricted to mono equivalence relations, or the

subobject classifier of a topos captured by the Omega type classifying only mono types.

Observe that we can prove that the mono existential type and the forall type are

mono respectively in Treg and in Thptop. Moreover, we did not add the β conversion rule

for the mono existential type and the forall type since they are derivable because they

are equalities between terms of a mono type.

Remark on how to weaken the elimination rules on dependent types.

In the presence of indexed sum types and extensional equality types, the usual dependent

elimination rule of a type A, which is toward types, like M(z) [z ∈ A], depending on A

itself is equivalent to an elimination rule toward types not depending on A, provided that

we also add an extra η conversion rule stating uniqueness of the weakened elimination

M.E. Maietti 20

constructor. This added η conversion rule can be proved to be valid by turning it into a

propositional equality, which can be derived by using the dependent (!) elimination rule

on the type A. The weakened elimination constructor can be proved to be as much as

expressive as the starting one, by using it on the type Σz∈AM(z) and then recovering

the original dependent elimination constructor by means of the second projection of the

indexed sum and the help of the added η conversion.

We pay attention to these weakened elimination rules since these are the rules that more

directly correspond to the universal properties of the categorical constructors interpreting

the corresponding type constructors. Instead, the dependent elimination rule corresponds

to a universal property of the categorical constructor which concerns various fibres.

Now, we make explicit the weakened elimination rules for the quotient type, the list

type and the disjoint sum type, by sketching the proof of the equivalence only for the

quotient type.
In Tptop the elimination and conversion rules of the quotient type are equivalent to a

valid restricted elimination rule toward types not depending on A/R,

M type

d ∈ A/R m(x) ∈ M [x ∈ A] m(x) = m(y) ∈ M [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQs(m, d) ∈ M
Es-Q

together with the following two conversion rules, also derivable in Tptop: one is the
β-conversion

M type

a ∈ A m(x) ∈ M [x ∈ A] m(x) = m(y) ∈ M [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQs(m, [a]) = m(a) ∈ M
βsC-Q

and the other one is the η conversion stating the uniqueness of ElQs:

p ∈ A/R t(z) ∈ M [z ∈ A/R]

ElQs((x) t([x]), p) = t(p) ∈ M
ηsC-Q

Indeed, in order to derive the dependent elimination rule from the weakened one, given

l(x) ∈ L([x]) [x ∈ C] and l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)], we use the Es-

Q rule on ⟨[x], l(x)⟩ ∈ Σz∈A/R L(z) [x ∈ A] and we define ElQ(l, p) ∈ L(p) for p ∈ A/R as

the second projection of the indexed sum type applied to ElQs((x)⟨[x], l(x)⟩, p). It turns
out to be well defined since by βs and ηs conversion rules we can prove that

π1(ElQs((x)⟨[x], l(x)⟩, z)) = z ∈ A/R [z ∈ A/R]

Analogously, in Tloc the elimination and conversion rules of the list type can be proved

equivalent to the following:

L type

s ∈ List(C) a ∈ L l(z, x) ∈ L [z ∈ L, x ∈ C]

ElLists(a, l, s) ∈ L
Es-list

L type

a ∈ L l(z, x) ∈ L [z ∈ L, x ∈ C]

ElLists (a, l, 0) = a ∈ L
βsC1-list

Modular correspondence 21

L type

s ∈ List(C) c ∈ C a ∈ L l(z, y) ∈ L [z ∈ L, y ∈ C]

ElLists (a, l, cons(s, c)) = l(ElLists (a, l, s), c) ∈ L
βsC2-list

L type a ∈ L l(z, y) ∈ L [z ∈ L, y ∈ C] t(z) ∈ L [z ∈ List(C)]

s ∈ List(C) t(ϵ) = a ∈ L t(cons(x, y)) = l(t(x), y) ∈ L [x ∈ List(C), y ∈ C]

ElLists(a, l, s) = t(s) ∈ L
ηsC-list

Similarly, in Talex we can replace the elimination and the conversion rules of the natural

numbers type with the weakened elimination rule and corresponding conversions since

the natural numbers type can be represented as List(⊤).
Finally, also in Text the elimination and conversion rules of the disjoint sum type can be
proved equivalent to the following

A type

p ∈ C +D aC(x) ∈ A [x ∈ C] aD(y) ∈ A [y ∈ D]

El+s(p, aC , aD) ∈ A
Es-+

A type

c ∈ C aC(x) ∈ A [x ∈ C] aD(y) ∈ A [y ∈ D]

El+s(inl(c), aC , aD) = aC(c) ∈ A
C1s-+

A type

d ∈ D aC(x) ∈ A [x ∈ C] aD(y) ∈ A [y ∈ D]

El+s(inr(d), aC , aD) = aD(d) ∈ A
C2s-+

p ∈ C +D t(z) ∈ A [z ∈ C +D]

El+s(p, (x) t(inl(x)) , (y) t(inr(x))) = t(p) ∈ A
η-+

About the calculus of regular categories.

In order to interpret the rules of the mono existential type in Treg into a regular category
it is useful to note first that the mono existential type is actually mono, by using the elim-
ination rule on the mono type Eq(∃x∈BC(x), z, w) for z ∈ ∃x∈BC(x) and w ∈ ∃x∈BC(x).
Then, to see that mono existential types correspond to stable images, i.e. to left ad-
joints of pullback functors on subobjects, it is convenient to prove that the rules of the
mono existential type as formulated in Treg are equivalent to the following ones where
we weaken the elimination rule to act on mono types not depending on the existential
type as explained in the previous paragraph. For the mono existential type we do not
need to add the β conversion since this is derivable, because it equates terms of a mono
type. Moreover, instead of adding an η conversion rule, we put the stronger condition
that ∃x∈BC(x) is mono, otherwise this would not be derivable:

C(x) type [x ∈ B] y = z ∈ C(x) [x ∈ B, y ∈ C(x), z ∈ C(x)]

∃x∈BC(x) type
m∃

b ∈ B c ∈ C(b) ∃x∈BC(x) type

(b, c) ∈ ∃x∈BC(x)
I-m∃

e ∈ ∃x∈BC(x) d ∈ ∃x∈BC(x)

e = d ∈ ∃x∈BC(x)
eq-m∃

M.E. Maietti 22

M type y = z ∈ M [w ∈ ∃x∈BC(x), y ∈ M, z ∈ M]

d ∈ ∃x∈BC(x) m(x, y) ∈ M [x ∈ B, y ∈ C(x)]

Exm(d,m) ∈ M
E-m∃

Of course, the above rules are valid for the formulation of the mono existential type in

Treg. To prove that from them we can derive the elimination rule on a mono dependent

type M(z) [z ∈ ∃x∈BC(x)] with m(x, y) ∈ M((x, y)) [x ∈ A, y ∈ C(x)], as in the

previous paragraph, we apply the elimination rule E-m∃ on Σz∈∃x∈BC(x)M(z), which is

mono since both ∃x∈BC(x) and M(z) are mono. Then, we use the second projection to

define Ex(z,m) ∈M(z). This is well defined as π1(Exm(z , (x)(y)⟨(x, y) , m(x, y)⟩)) = z

for z ∈ ∃x∈BC(x) holds being ∃x∈BC(x) mono.

The equivalence in the definition of regular categories between stable images and sta-

ble quotients of kernel pairs suggests another equivalent internal language of regular

categories:

The calculus of regular categories Treg

=

Lex calculus +

Quotient types on the terminal type

A type

A/⊤ type
Qtr

a ∈ A

[a] ∈ A/⊤
I-Qtr

a ∈ A b ∈ A

[a] = [b] ∈ A/⊤
eq-Qtr

L(z) type [z ∈ A/⊤]

p ∈ A/⊤ l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A]

ElQ(l, p) ∈ L(p)
E-Qtr

L(z) type [z ∈ A/⊤]

a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A]

ElQ(l, [a]) = l(a) ∈ L([a])
C-Qtr

Indeed, we can prove that the quotient types on the terminal type are equivalent to the
mono existential types in the typed calculus for lex categories. For this purpose, first note
that from mono existential types we can derive the following stronger elimination rule
for general (not necessarily mono) types and corresponding β-conversion. They express
the fact that ∃x∈BC(x) is a quotient of Σx∈BC(x) making all the proofs equal, that is
∃x∈BC(x) ≡ Σx∈BC(x)/⊤:

M(z) type [z ∈ ∃x∈BC(x)] m(x, y) ∈ M((x, y)) [x ∈ B, y ∈ C(x)]

d ∈ ∃x∈BC(x) m(x, y) = m(z, w) ∈ M((x, y)) [x ∈ B, z ∈ B, y ∈ C(x), w ∈ C(z)]

Exg(d,m) ∈ M(d)
E-g∃

Modular correspondence 23

M(z) type [z ∈ ∃x∈BC(x)] m(x, y) ∈ M((x, y)) [x ∈ B, y ∈ C(x)]

b ∈ B c ∈ C(b) m(x, y) = m(z, w) ∈ M((x, y)) [x ∈ B, z ∈ B, y ∈ C(x), w ∈ C(z)]

Exg((b, c),m) = m(b, c) ∈ M((b, c))
C-g∃

To prove that the elimination rule E-g∃ is valid, we apply the elimination rule E-∃ of
Treg on the following mono type

Σw∈M(z) ∃x∈B∃y∈C(x) Eq(M(z), w,m(x, y))

for z ∈ ∃x∈BC(x). Then, we use the first projection of the indexed sum type to define

the elimination constructor.

Thanks to the validity of the rules E-g∃ and C-g∃ it is immediate to prove that by

means of the mono existential type we can define the quotient on the terminal type by

putting

A/⊤ ≡ ∃x∈A⊤
Viceversa, from the quotient type A/⊤ we can define the existential type by putting

∃x∈BC(x) ≡ (Σx∈BC(x))/⊤

Finally, observe that in Treg the quotient of a kernel pair, which we would define as

the quotient type A/Eq(B, f(x), f(y)) for f(x) ∈ B [x ∈ A], can be defined as

A/Eq(B, f(x), f(y)) ≡ Σy∈B (∃x∈AEq(B, f(x), y))

On the other hand, from the existence of the quotient type of a kernel pair we can

prove the existence of the mono existential type because, by what has just been said, its

existence follows from the existence of the quotient type on the terminal type, which is

a particular quotient on the kernel pair of the unique term of the terminal type.

In (Awodey and Bauer 2004) there is an equivalent formulation of the calculus for

regular categories with bracket types [A] for a type A corresponding to our quotients on

terminal type, i.e. [A] ≡ A/⊤ (or [A] ≡ ∃x∈A⊤). There, the elimination rule for bracket

types, which acts on not dependent types, can be enforced to act on dependent types

and -once this has been done- the equality rule between terms of [A] can be weakened

to the equality rule only on introductory elements, as in our equivalent formulations of

the rules for ∃x∈A⊤.

About disjointness.

Observe that in the calculi for lextensive categories, locoi, pretopoi, Heyting pretopoi

and arithmetic universes, the disjointness axiom is not derivable from the other rules.

Indeed, for each calculus we can obtain a model that falsifies disjointness by using a

domain with only one element (see (Smith 1988)), where the quotient type A/R is

interpreted simply as A.

Comparison with the many-sorted language of topoi.

The many sorted internal language of topoi in (Lambek and Scott 1986) (also called

higher order logic) has two kinds of syntactic entities: sorts which are represented by

M.E. Maietti 24

simple types with corresponding terms

A type a : A [Γ]

and formulas which are terms of the subobject classifier Ω not equipped with proof-terms

and depending on sorts

ϕ(x) ∈ Ω [x ∈ A]
Instead, in our calculus Ttop for topoi there is only one kind of syntactic entities, namely

dependent types B(x1, ..., xn) type [x1 ∈ A1, ..., xn ∈ An] with corresponding terms and

equalities organized in the four kinds of judgements

A type [Γ] A = B [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

Categorically, the internal language as a many-sorted logic captures the one dimensional

properties of a topos in terms of a simple type theory and the properties of the subobject

fibration in terms of logical formulas (and hence two interpretations are necessary: one

for types and corresponding terms as objects and morphisms of the category, and the

other one for formulas as terms of the subobject classifier, or equivalently as subobjects).

Instead, as we will see in section 5, our internal dependent typed language of topoi

captures the properties of the codomain fibration by regaining the properties of the

subobject fibration via mono types, since these are interpreted by monomorphisms.

If we look at the typed calculus Ttop only from the type perspective, Ttop is an extension

of first order Martin-Löf’s extensional type theory in (Martin-Löf 1984), this being the

calculus Tlcc for locally cartesian closed categories.

But if we consider that in a topos propositions corresponds to subobjects, then in

Ttop we need to interpret the logic according to formulas as mono types. Following this

isomorphism, the universal quantification is represented by the forall type, like in the

calculus for Heyting pretopoi (we recall that a topos is an Heyting pretopos (Mac Lane

and Moerdijk 1992)!), which can be defined in Ttop as the dependent product type, since

the dependent product of a mono type remains mono. Analogously, the existential quan-

tifier corresponds to the mono existential type, as in the calculus for regular categories,

and it can be defined by means of the quantification on the Omega type as follows:

∃y ∈ B C(y) ≡ Πp∈Ω (Πy∈B(C(y)→ Eq(Ω, {⊤}, p))) → Eq(Ω, {⊤}, p)

Hence, the existential quantifier does not coincide with the indexed sum type as in

Martin-Löf’s type theory. Indeed, as in Treg, we can prove that it is a quotient of the

indexed sum type over the terminal type:

∃y ∈ B C(y) ≡ (Σy ∈ B C(y))/⊤

where the quotient type on the terminal type can be defined as A/⊤ ≡ ∃x ∈ A ⊤.
As a consequence, for example, we can realize why in any topos only the axiom of

unique choice holds while the full one does not (see below). Hence, from the logic point

of view we can not think of Ttop as an extension of Martin-Löf’s type theory.

Axiom of choice in the typed calculus for topoi.

In the calculus for locally cartesian closed categories Tlcc, and hence in that for topoi,

Modular correspondence 25

we can easily derive the distributivity property of the dependent product type with the

indexed sum type as in Martin-Löf’s extensional type theory (Martin-Löf 1984):

(Πx ∈ A)(Σy ∈ B) C(x, y)→ (Σf ∈ A→ B)(Πx ∈ A) C(x, f(x))

where we recall that A→ B ≡ (Πx ∈ A)B.

According to the isomorphism formulas as types by Martin-Löf the above distribu-

tivity property is recognized as the propositional axiom of choice. However, this is not

recognized as such if we follow formulas as mono types as in the logic of a topos. In

fact, in topoi or Heyting pretopoi, the propositional axiom of choice should be instead

expressed with the forall type and the mono existential type acting only on a mono type

C(x, y):

(∀x ∈ A)(∃y ∈ B) C(x, y)→ (∃f ∈ A→ B)(∀x ∈ A) C(x, f(x))

Now, recalling that the mono existential type is a quotient of the indexed sum type, that

is ∃y ∈ B C(x, y) ≡ (Σy ∈ B C(x, y))/⊤, then the propositional axiom of choice can be

rewritten as

(∀x ∈ A) (Σy ∈ B C(x, y))/⊤ → ((Σf ∈ A→ B)(∀x ∈ A) C(x, f(x)))/⊤

It is well known, as proved by Diaconescu (Diaconescu 1975) (see also (Lambek and

Scott 1986; Mac Lane and Moerdijk 1992)), that the above propositional axiom of choice

can not be generally derived in a topos because it makes the logic classical. From the

above formulation in the dependent typed calculus of topoi we can perceive why this is so:

indeed, to prove the axiom of choice we would need to access to a proof of Σy ∈ B C(x, y)

from (Σy ∈ B C(x, y))/⊤, but we can not unless we have a choice operator from the

quotient A/⊤ to A.

Instead, in a topos (and also in a Heyting pretopos) we can derive the axiom of unique

choice written as

(∀x ∈ A) (Σy ∈ B C(x, y))/⊤ ∧ ∀y ∈ B ∀z ∈ B C(x, y) ∧ C(x, z)→ Eq(B, y, z)

→ ((Σf ∈ A→ B)(∀x ∈ A) C(x, f(x)))/⊤

where A∧B ≡ A×B with A,B mono types. Indeed, in this case Σy ∈ B C(x, y) [x ∈ A]
is a mono type and becomes isomorphic to its quotient on the terminal type

(Σy ∈ B C(x, y))/⊤ ≃ Σy ∈ B C(x, y)

Therefore, we can prove the axiom of unique choice as we prove the axiom of choice in

Martin-Löf’s type theory.

The Omega type seen as a quotient type.

The Omega type corresponds to the subobject classifier. Given that monomorphisms

correspond to mono types, then the Omega type encodes mono types, which represent

propositions, up to isomorphisms. Hence, the impredicativity of a topos is restricted to

mono types and the Omega type is not necessarily itself mono to avoid inconsistencies.

In the Omega type mono types are encoded up to equiprovability. Indeed, the Omega

type can be seen as the quotient of an intensional classifier of mono types over the

M.E. Maietti 26

equiprovability relation. But before showing this, we explain why in the formulation of

the Omega type an elimination rule is not present and where the β and η conversion

rules come from. For this purpose we consider the following alternative formulation of

the rules for the Omega type: recall that B ↔ C ≡ B → C × C → B

Alternative formulation of the Omega type

Ω type
F

B type y = z ∈ B [y ∈ B, z ∈ B]

{B} ∈ Ω
I

B type y = z ∈ B [y ∈ B, z ∈ B]

C type y = z ∈ C [y ∈ C, z ∈ C]

f ∈ B ↔ C

{B} = {C} ∈ Ω
eq

q ∈ Ω

T (q) type
E

q ∈ Ω c ∈ T (q) d ∈ T (q)

c = d ∈ T (q)
eq-E

B type y = z ∈ B [y ∈ B, z ∈ B]

⟨rB , r−1
B ⟩ ∈ T ({B}) ↔ B

β-C
q ∈ Ω

{T (q)} = q ∈ Ω
η-C

In the above alternative formulation of the Omega type its elimination rule is explicit.

Now, if we add the above rules to Tlcc, then for every q ∈ Ω we can derive a proof term

of T (q)↔ Eq(Ω, q, {⊤}) because q = {⊤} ∈ Ω is provable if and only if T (q) is provable.

Hence, we can put

T (q) ≡ Eq(Ω, q, {⊤})

Then, we can simply keep only the corresponding β and η conversion rules which are

equivalent to those in the original formulation of the Omega type. In particular, the

βC-Ω rule follows from the β-C rule by putting ch(B) ≡ rB(eq). Viceversa, the β-C rule

follows from the βC-Ω rule since for any mono type B we can derive

λx.ch(B) ∈ Eq(Ω, {B}, {⊤})→ B

whose inverse is λz.eq ∈ B → Eq(Ω, {B}, {⊤}).
Now, we show that the Omega type is a quotient of an intensional Omega type whose rules

are the intensional version of those in the above alternative formulation of the Omega

type. More precisely, we show that the rules of Ttop can be derived in an extension of

Tlcc with extensional effective quotients restricted to mono equivalence relations, as in

the type theory of pretopoi Tptop, and with an intensional Omega type encoding mono

Modular correspondence 27

types as follows:

The intensional Omega type

Ωi type
F

B type y = z ∈ B [y ∈ B, z ∈ B]

c(B) ∈ Ωi I

B type y = z ∈ B [y ∈ B, z ∈ B]

C type y = z ∈ C [y ∈ C, z ∈ C]

B = C

c(B) = c(C) ∈ Ωi
eq

p ∈ Ωi

D(p) type
E

p ∈ Ωi e ∈ D(p) d ∈ D(p)

e = d ∈ D(p)
eq-E

B type y = z ∈ B [y ∈ B, z ∈ B]

D(c(B)) = B
βC-Ωi

p ∈ Ωi

c(D(p)) = p ∈ Ωi ηC-Ωi

In this extension we can show that the Omega type is the quotient of the intensional

Omega type Ωi under the relation of equiprovability between elements of Ωi:

Ω ≡ Ωi/↔

where for d1 ∈ Ωi and d2 ∈ Ωi we define d1 ↔ d2 ≡ D(d1)↔ D(d2).

Indeed, we can see that the equality rule of the Omega type corresponds to the usual

rule of equality for canonical terms of a quotient type and that the βC-Ω rule is equivalent

to the following rule expressing effectiveness of the Omega type seen as a quotient:

{B} = {C} ∈ Ω

eff(B,C) ∈ B ↔ C
eff-Ω

Finally, the ηC-Ω rule can be proved by finding a proof of the corresponding propositional

equality by means of the elimination rule of the quotient type Ωi/↔ since we can derive

B ↔ Eq(Ω, {B}, {⊤}) for any mono type B (for more details see (Maietti 1998b)).

4. The modular correspondence categorical property/type constructor

Here, we describe the correspondence between universal categorical properties and type

constructors.

Observe that from the fact that such a correspondence is modular on lex categories,

beside the calculi presented previously, we can then deduce the dependent type theory

of other lex categories enjoying a combination of the categorical properties in the table

below by combining the corresponding type constructors. For example, the type theory

of locally cartesian closed pretopoi is the calculus of pretopoi with extensional dependent

product types, and the type theory of locally cartesian closed categories with stable finite

M.E. Maietti 28

coproducts is the calculus of locally cartesian closed categories with the false type and

disjoint sum types.

Categorical properties Type-theoretic constructors

Finite limits
terminal type
extensional equality type
indexed sum types

+

stable coproducts
stable initial object
+ coproduct disjointness

disjoint sum types
false type
+ disjointness axiom

stable images mono existential type

stable quotients of kernel pairs
extensional quotient types
on the terminal type

stable quotients
of monic equivalence relations
+ quotient effectiveness

extensional quotient types
on mono equivalence relations
+ effectiveness axiom

parameterized natural numbers object natural numbers type

parameterized list objects list types

right adjoints to pullback functors
extensional dependent
product types

right adjoints to pullback functors
restricted to subobjects

forall types

subobject classifier omega type

5. The categorical semantics

The seminal idea of the semantics goes back to (Seely 1984; Lawvere 1969; Lawvere

1970) and consists in interpreting a dependent typed calculus by means of the codomain

fibration (Jacobs 1999). There is a readable informal account of the interpretation of

the typed calculus for locally cartesian closed categories in (Johnstone 2002). A reader

acquainted with that treatment will more readily understand what we do here.

Making sound the interpretation for dependent type theories requires one to deal

with issues of coherence. In principle this can be dealt with using the general result

of Power (Power 1989) based on the setting of Blackwell-Kelly-Power (Blackwell et al.

1989). But that is indirect and uses very heavy machinery; it seems good to have a simple

direct treatment.

Modular correspondence 29

Our notion of model for a dependent typed calculus, first presented in (Maietti 1998b),

combines the semantics based on display maps (Seely 1984; Hyland and Pitts 1989) to-

gether with the tools provided by contextual categories to interpret substitution correctly

(Cartmell 1986). In particular, our models can be organized into contextual categories by

means of the split fibration associated to the codomain fibration. As treated in (Hofmann

1995), the use of a split fibration is required to interpret substitution correctly, since the

natural use of the codomain fibration as in (Seely 1984) gives rise to coherence problems.

While the validity and completeness theorem is straightforward for contextual cate-

gories in general, the same theorem with respect to our particular contextual categories

requires more care. However, we want to point out that it holds, hence in order to prove

the validity and completeness theorem between a dependent type theory and correspond-

ing categories C it is sufficient to use models based on the split fibration of the codomain

fibration of a category C. Moreover, we will prove a stronger link than the validity and

completeness theorem, namely that the calculi considered in this paper provide internal

languages of the corresponding categorical structures they are supposed to describe. Fi-

nally, we can also build free categorical structures by means of their internal dependent

type theory.

5.1. The interpretation and the validity

Before defining the details of the interpretation of a typed calculus in the corresponding

category, that is supposed to model it, we explain the general idea of the interpretation

and the coherence problem encountered to interpret substitution.

Let us suppose that we want to interpret the dependent typed calculus Tlex in a lex

category C. The idea is to interpret the type judgement B [Γ] as a suitable sequence of

morphisms of C to the terminal object 1 and the judgement b ∈ B[Γ] as a section of the

last morphism of the sequence interpreting the dependent type B under a context.

In particular, a closed type A [] will be interpreted as the unique morphism AI =

!AΣ
from an object AΣ of C (interpreting A only) toward the terminal object 1 of C

(interpreting the empty context):

AΣ

AI~~
1

Then, a dependent type B(x) [x ∈ A] will be interpreted as the sequence of two arrows

BΣ

BI||
1 AΣ

AI

oo

while in general a term b ∈ B(x1, ..., xn) [x ∈ A1, .., xn ∈ An] will be interpreted as a

M.E. Maietti 30

section of BI

AΣn

bI //
id

$$

BΣ

BI{{
1 AΣ1

AI
1

oo AΣn
AI

n

oo

provided that B(x1, ..., xn) [x ∈ A1, .., xn ∈ An] is interpreted as

BΣ

BI{{
1 AΣ1

AI
1

oo AΣn
AI

n

oo

For example, supposing that b ∈ B [x ∈ A] and c ∈ B [x ∈ A] are interpreted as

AΣ

bI //
id

""

BΣ

BI||
1 AΣ

AI

oo

AΣ

cI //
id

""

BΣ

BI||
1 AΣ

AI

oo

the idea is to interpret the extensional equality type Eq(B, b, c) [x ∈ A] as

EΣ

Eq(bI ,cI)||
1 AΣ

AI

oo

where Eq(bI , cI) is the equalizer of bI and cI .

To place the interpretation into a category we define the following category of path-

graphs of C:

Def. 5.1. Given a category C with terminal object 1, the objects of the category Pgr(C)
are finite sequences a1, a2, ..., an of morphisms of C

1 A1a1
oo A2a2

oo Anan
oo

and a morphism from a1, a2, ..., an to b1, b2, ..., bm is a morphism b of C such that bn·b = an

An

b //
an

##

Bn

bn{{
1 A1

!A1

oo An−1an−1

oo

provided n = m and ai = bi for i = 1, ..., n− 1.

Then, in order to interpret substitution we want to use pullbacks as follows. Given a

dependent type B(x1, x2) [x1 ∈ A1, x2 ∈ A2] and a term a ∈ A2 [x1 ∈ A1] interpreted as

BΣ

BI||
1 AΣ1

AI
1

oo AΣ2
AI

2

oo

AΣ1

aI //
id

##

AΣ2

AI
2{{

1 AΣ1
AI

1

oo

Modular correspondence 31

then the idea is to interpret B(x1, x2)[x2/a] ≡ B(x1, a) [x1 ∈ A1] as

B(a)Σ

B(a)Izz
1 AΣ1

AI
1

oo

where B(a)I is the first projection of the pullback

B(a)Σ
//

B(a)I

��

BΣ

BI

��
AΣ1

aI
// AΣ2

Analogously, given a term b(x1, x2) ∈ B(x1, x2) [x1 ∈ A1, x2 ∈ A2] interpreted as

AΣ2

bI //
id

##

BΣ

BI{{
1 AΣ1

AI
1

oo AΣ2
AI

2

oo

the idea is to interpret b(x1, a) ∈ B(x1, a) [x1 ∈ A1] as

AΣ2

b(a)I //
id

##

B(a)Σ

B(a)Izz
1 AΣ1

AI
1oo

where b(a)I is the unique morphism induced by idAΣ1
and bI · aI toward the vertex of

the pullback of BI along aI

AΣ1

b(a)I

**

idAΣ1

((

aI // AΣ2 bI

""
B(a)Σ

//

B(a)I

�� idAΣ2 ��

BΣ

BI

��
AΣ1

aI
// AΣ2

However we can immediately realize a coherence problem: not for all choices of pullback

the pullback of BI with the identity has the identity as first projection. This property

is needed to validate B(x)[x/x] = B(x). Moreover, we need a functorial choice of pull-

back in order to validate (B(y)[y/a(x)])[x/c]) = B(y)[y/a(c)] and hence to interpret the

substitution of a term both in types and in terms correctly.

Abstractly, the situation can be rephrased by saying that we wanted to interpret the

calculus by using the codomain fibration associated to the category C. But we encountered
the problem that the reindexing pullback pseudofunctor associated to the codomain

fibration - and used to interpret substitution of term into types (and terms) - is not a

functor. However, there is a way out (for a general solution to coherence problems see

(Power 1989)). One solution (following (Hofmann 1995)) is to use the reindexing functor

S : COP −→ Cat associated to the split fibration of the codomain fibration (for more

M.E. Maietti 32

details see (Benabou 1985; Jacobs 1999)). Since the fibres of S are equivalent to those

of the pullback pseudofunctor we can consider the functor S as the correction of the

pullback pseudofunctor into a functor! This reindexing functor associates to any object

A in C the category S(A) ≡ Fib(C/A, C→) of fibred functors and natural transformations.

Before proceeding with the definition of the category of fibred functors, we first recall

the definition of the arrow category C→ of a given category C: the objects of C→ are the

C-morphisms X
ϕ // A and the morphisms of C→ from X

ϕ // A to X
ψ // A are pairs

of C-morphisms f : X → Y and u : A→ B such that the following diagram commutes:

X

ϕ

��

f // Y

ψ

��
A

u
// B

Then we give the definition of fibred functor indexed on an object in a lex category:

Def. 5.2. Given a lex category C, and an objectA in C, a fibred functor σ : C/A→ C→ is a

functor from the slice category C/A to the category C→ which sends cartesian morphisms

of the domain fibration domC to cartesian morphisms of the codomain fibration codC ,

(see (Jacobs 1999) for corresponding definitions), i.e. σ associates to every commutative

triangle C
t //

b′

B

b~~
A

a pullback diagram C′
q(t,σ(b)) //

σ(b·t)
��

B′

σ(b)

��
C

t
// B

Then, we define the category of fibred functors related to an object of a lex category C:

Def. 5.3. For every object A of a lex category C, we call Fib(C/A, C→) the category of

fibred functors σ : C/A→ C→ whose morphisms from σ to τ are natural transformations

ρ such that for every b : B → A the second member of ρ(b) is the identity (recall that

ρ(b) is a morphism of C→), that is the triangle
ρ1(b) //

σ(b) τ(b)~~
B

commutes.

In the following when we speak of a fibred functor σ in Fib(C/A, C→) we call i(σ) = A

the object indexing σ.

Note that we can specify the definition of a fibred functor only on objects of C/A, since
its action on C/A-morphisms is determined by the pullback property, once we know that

the defined object part fits well into a pullback. Therefore, in the following to define a

fibred functor we will only specify its action on objects.

Moreover, observe also that any component ρ(b) of a morphism ρ of Fib(C/A, C→) is

determined by ρ(idA) thanks to naturality of ρ and the properties of pullbacks. Indeed,

if we consider B
b //

b

A

id~~
A

, we get that ρ(b) from σ(b) to τ(b) is equal to the unique

morphism to the pullback of τ(id) along b, according to the functorial choice of pull-

Modular correspondence 33

backs of τ , induced by σ(b) and ρ(idA) · q(b, σ(id)), which we indicate with the notation

⟨σ(b),A ρ(idA)·q(b, σ(id))⟩. Therefore, in the following to define a natural transformation

between fibred functors indexed on A we will only specify its action on the identity of A.

Now, how can fibred functors help to interpret the calculus? To answer this question, we

show how the category of fibred functors Fib(C/A, C→) is equivalent to the slice category

C/A (that is the fibres of S are equivalent to the fibres of the pullback pseudofunctor).

The functor

(̂−) : C/A→ Fib(C/A, C→)

establishes one side of the equivalence, by associating to an object b : B → A of C/A the

fibred functor b̂, defined as b̂(t) ≡ t∗(b), namely the first projection of the pullback of b

along t Bt

b∗(t) //

t∗(b)
��

B

b
��

D
t
// A

for every t : D → A. Then, (̂−) is extended to morphisms by the

universal property of pullback. For every a : C → A and b : B → A, the morphism part

of (̂−) associates to every C
g //

a

B

b~~
A

the natural transformation g : â → b̂ defined

in this way: for every t : D → A, we put g(t) ≡ ⟨â(t),A g · a∗(t)⟩) which is the unique

morphism to the pullback of b along t induced by â(t) and g · a∗(t).
The other side of the equivalence is established by the functor

(−)(id) : Fib(C/A, C→)→ C/A

which is defined exactly as the evaluation of a fibred functor and of a natural transfor-

mation on the identity on A.

The above equivalence suggests that instead of interpreting a type B(x) [x ∈ A] directly
into the slice category C/AΣ - supposing to simplify the interpretation of a closed type

A into an object AΣ of C - we can preinterpret it into a fibred functor β : C/AΣ → C→.

The idea is that the evaluation of β on the identity, that is β(idAΣ
), represents its

interpretation with the advantage that the fibred functor provides also how to interpret

B(x) [x ∈ A] after any possible substitution:

B(a)Σ(
q(aI ,β(id)) //

B(a)I=β(a)

��

BΣ

BI=β(id)

��
CΣ

aI
// AΣ

More in general a type B(x1, ..., xn) [x ∈ A1, .., xn ∈ An] will be preinterpreted in a

sequence of fibred functors

α1 , α2 , ..., αn , β

with 1 = i(α1) and AΣi−1 = i(αi) for i = 2, ..., n and i(β) = AΣn, and then interpreted

as

1 AΣ1
α1(id)
oo AΣn

αn(id)
oo BΣ

β(id)
oo

M.E. Maietti 34

This idea suggests to define a category of path-graphs of fibred functors analogously

to Pgr(C) provided that their evaluation on the identity gives an object of Pgr(C):

Def. 5.4. Given a lex category C, the objects of the category Pgf(C) are finite sequences
σ1, σ2, ..., σn of fibred functors σi : ObFib(C/Ai, C→) with 1 = i(σ1) and Ai−1 ≡ i(σi)

for i = 2, ..., n such that σ1(id1), σ2(idA1
), ..., σn(idAn−1

) is an object of Pgr(C). The
morphisms of Pgf(C) from σ1, σ2, ..., σn to τ1, τ2, ..., τm are defined only if n = m and

σi = τi for i = 1, ..., n − 1 and σn, τn ∈ ObFib(C/An−1, C→) and they are natural

transformations ρ from the fibred functor σn to τn.

Then, we will use morphisms of Pgf(C) to preinterpret dependent terms. Before giving

the precise idea of the preinterpretation we define the fibred functor iA : C/A → C→ on

the objects as follows: for any t : D → A

iA(t) ≡ idD

A term b ∈ B(x1, ..., xn) [x ∈ A1, .., xn ∈ An] will be preinterpreted as a natural trans-

formation bĨ from iAΣn
to β, that is a morphism from from α1 , α2 , ..., αn , iAΣn

to

α1 , α2 , ..., αn , β in Pgf(C), and hence interpreted as bĨ(id), that is a section of β(id)

AΣn

bĨ(id) //
id

##

BΣ

β(id)||
1 AΣ1

!AΣ1

oo AΣn
αn(id)
oo

provided that the type judgement B(x1, ..., xn) [Γn] is interpreted as

1 AΣ1
α1(id)
oo AΣn

αn(id)
oo BΣ

β(id)
oo . Also for the terms, the idea is that the natural

transformation bĨ interprets the term under all the possible substitutions.

In practice we pass from the preinterpretation of a type or of a term in Pgf(C) to its

interpretation by the functor (−)(id) in Pgr(C).
For example, given b ∈ B [x ∈ A] and c ∈ B [x ∈ A] preinterpreted by the natural

transformation aĨ and bĨ and interpreted as

AΣ

bĨ(id) //
id

""

BΣ

BĨ(id)
||

1 AΣ

AĨ(id)

oo

AΣ

cĨ(id) //
id

""

BΣ

BĨ(id)
||

1 AΣ

AĨ(id)

oo

the idea is to preinterpret the extensional equality type Eq(B, b, c) [x ∈ A] as the sequence
AĨ , Eq(bĨ , cĨ) in Pgf(C) and to interpret it as

EΣ

Eq(bĨ ,cĨ)(id)}}
1 AΣ

AĨ(id)

oo

where Eq(bĨ , cĨ) : C/AΣ → C→ is the fibred functor defined on objects as follows (recall

Modular correspondence 35

that a fibred functor is determined by its action on objects): for any t : D → AΣ

Eq(cĨ , dĨ)(t) ≡ eq(cĨ(t) , dĨ(t))

that is the chosen equalizer in C of cĨ(t) and dĨ(t). This is a well defined fibred functor

since equalizers are stable under pullbacks.

Moreover, to preinterpret basic types and their terms, we will make use of the functor

(̂−). For example, we will preinterpret the False type into the fibred functor (̂!0) where

!0 : 0→ 1 is the unique morphism from the initial object 0 of C to the terminal object 1.

To preinterpret weakening and substitution we will make use of the morphism part

of the reindexing functor S : COP −→ Cat, which is defined as follows: for a morphism

f : B → A of C, the functor S(f) : Fib(C/A, C→) → Fib(C/B, C→) associates to every

fibred functor σ a fibred functor σ[f] defined as σ[f](t) ≡ σ(f · t) for every morphism t :

C → B. And S(f) associates to any natural transformation ρ the natural transformation

S(f)(ρ) ≡ ρ[f] defined as ρ[f](t) ≡ ρ(f · t) for every t : C → B. Observe that S is the

reindexing functor with respect to the Grothendieck fibration p : Gr(S) → C, which is

the projection of the Grothendieck completion of the functor S (see (Jacobs 1999) for

definitions) and is equivalent to the codomain fibration.

In more detail, we define a preinterpretation ĨC : T −→ Pgf(C) for each typed calculus

T presented in section 3 into the category Pgf(C), where C is a categorical structure that

the calculus is supposed to describe. For example for Ttop we suppose that C is a topos.

Since the preinterpretation essentially says how to interpret a dependent type and a

typed term after any possible substitution, then, we define the interpretation of type and

term judgements as the evaluation of their preinterpretations on the identical substitution

by means of V : Pgf(C) −→ Pgr(C) defined in this manner:

V(σ1, σ2, ..., σn) ≡ σ1(id1), σ2(idA1
), ..., σn(idAn−1

) V(ρ) ≡ ρ(idAn−1
)

for every Pgf(C)-object σ1, σ2, ..., σn with 1 = i(σ1) and Ai−1 = i(σi) for i = 2, ..., n and

for every Pgf(C)-morphism ρ from σ1, σ2, ..., σn to τ1, τ2, ..., τn. Hence, the interpretation

IC : T −→ Pgr(C)

is defined as IC ≡ V · ĨC .

T
IC //

ĨC
##

Pgr(C)

Pgf(C)
V

88

In defining the preinterpretation we need to overcome a difficulty, namely that we can

not define it by induction on the derivations of type formation and of term introduction

and elimination as we do with simple type theory. Indeed, in the presence of type depen-

dencies some typing rules require the validity of equality judgements, like for example the

type equality rule conv) or the elimination rule of the extensional propositional equality

type, or the formation rule of the forall type or the introduction rule of the Omega type.

We overcome this difficulty following the approach in (Streicher 1991) by defining an a

priori partial preinterpretation

ĨC : pseudo(T) −→ Pgf(C)

M.E. Maietti 36

on the pseudo-judgements of a dependent typed calculus T - that are raw types, raw

equal types, raw terms and raw equal terms (under a context) obtained from the sig-

nature associated to each dependent typed calculus in section 3 - by induction on their

complexity (Pitts 2000; Streicher 1991). Only when we prove the validity theorem we

also prove that the preinterpretation is well defined on the type and term judgements

derivable in the theory (see (Maietti 1998b) for more details).

Def. 5.5 ((Pre)interpretation). A dependent type (pseudo)judgement

B(x1, ..., xn) [x1 ∈ A1, ..., xn ∈ An−1(x1, ..., xn−1)]

is preinterpreted as an object of Pgf(C)

α1 , α2 , ..., αn , β

and then interpreted as 1 AΣ1
α1(id)
oo AΣn

αn(id)
oo BΣ

β(id)
oo .

The equality between types is preinterpreted as equality between objects of Pgf(C) and

hence interpreted as the equality between objects of Pgr(C).
A term (pseudo)judgement b ∈ B(x1, ..., xn) [Γn] is preinterpreted as a natural transfor-

mation bĨ from α1 , α2 , ..., αn , iAΣn to α1 , α2 , ..., αn , β, and then interpreted as

bĨ(id), that is a section of β(id)

AΣn

bĨ(id) //
id

##

BΣ

β(id)||
1 AΣ1

!AΣ1

oo AΣn
αn(id)
oo

provided that the type judgement B(x1, ..., xn) [Γn] is interpreted as

1 AΣ1
α1(id)
oo AΣn

αn(id)
oo BΣ

β(id)
oo .

The equality between terms is preinterpreted as equality between natural transformations

and hence interpreted as the equality between morphisms of Pgr(C).
In the following we give the interpretation of type and term (pseudo)judgements, speci-

fying only for types their preinterpretation as sequences of fibred functors. Indeed, recall-

ing that a natural transformation between fibred functors is determined by its evaluation

on the identity and being a term preinterpreted into a natural transformation and inter-

preted into its evaluation on the identity, we conclude that the interpretation of a term

determines its preinterpretation.

The partial (pre)interpretation of the various dependent typed calculi of section 3

follows the correspondence in the table of section 4 and hence, we assume that each

time we interpret a type constructor then the category C has the corresponding property

according to the table. In defining such a (pre)interpretation of type and term construc-

tors under a (pseudo)context, we assume that Γ ≡ x1 ∈ A1, ..., xn ∈ An(x1, ..., xn−1)

and σ⃗(id) ≡ α1(id) , α2(id) , ..., αn(id) and that dom(αn(id)) = AΣn.

Note also that, when we interpret a term constructor, like for example ⟨b, c⟩, we also

Modular correspondence 37

assume to know the interpretation of the terms b and c, but we omit the corresponding

details for simplicity.

Assumption of variable:

IC(x ∈ B(x1, ..., xn) [Γ, x ∈ B(x1, ..., xn)])(id) ≡ △BΣ

IC(x ∈ B(x1, ..., xn) [Γ, x ∈ B(x1, ..., xn) , y ∈ C(x1, ..., xn, x)])(id) ≡ γ(id)∗(△BΣ
)

where △BΣ is the diagonal with respect to β(id) in C/AΣn with BΣ ≡ dom(β(id))

provided that IC(B(x1, ..., xn) [Γ]) ≡ σ⃗(id) , β(id)

and IC(C(x1, ..., xn, x) [Γ, x ∈ B(x1, ..., xn)) ≡ σ⃗(id) , β(id) , γ(id)
and that the interpretations IC(B(x1, ..., xn) [Γ, x ∈ B(x1, ..., xn) , y ∈ C(x1, ..., xn, x)])
and IC(B(x1, ..., xn) [Γ, x ∈ B(x1, ..., xn)]) are defined by means of the semantic op-

eration of weakening according to lemma 5.6.

The assumption of variable when the context ∆ is made of more than one typed

variable (see the rule in section 3) is interpreted by repeating the semantic operation of

weakening according to lemma 5.6.

Terminal type:

IC(⊤ []) ≡ îd1(id1) and IC(⊤ [Γn]) ≡ σ⃗(id) , îd1(!AΣn
)

where 1 is the terminal object in C and !AΣn is the unique morphism from AΣn to 1.

IC(⋆ ∈ ⊤ []) ≡ ⟨id1 ,1 id1⟩ and IC(⋆ ∈ ⊤ [Γn]) ≡ ⟨idAΣn
,1 !AΣn

⟩
which are the unique morphisms toward the pullback respectively of id1 along id1 and

of id1 along !AΣn
.

False type:

IC(⊥ []) ≡ !̂0(id1) IC(⊥ [Γn]) ≡ σ⃗(id) , !̂0(!AΣn
)

where 0 is the initial object in C.

IC(r⊥(a) ∈ A [Γn]) ≡ ?AΣ
· (aĨ(id))

where ?AΣ is the unique morphism from !̂0(!AΣn) to α(id) in C/AΣn provided that

IC(A [Γn]) ≡ σ⃗(id) , α(id).

Indexed Sum type:

IC(Σy∈BC(y) [Γn]) ≡ σ⃗(id) , Σβ(γ)(id)

where Σβ(γ)(t) ≡ β(t) · γ(q(t, β(id))) for t : D → AΣn provided that

IC(B [Γn]) ≡ σ⃗(id) , β(id) and IC(C [Γn, z ∈ B]]) ≡ σ⃗(id) , β(id) , γ(id).

IC(⟨b, c⟩ ∈ Σy∈BC(y)) [Γn]) ≡ q(bĨ(id), γ(id)) · (cĨ(id))

M.E. Maietti 38

IC(π1(d) ∈ B [Γn]) ≡ γ(id) · (dĨ(id))

IC(π2(d) ∈ C(π1(d)) [Γn]) ≡ ⟨idAΣn
,BΣ

dĨ(id)⟩
which is the unique morphism to the pullback of γ(id) along γ(id) · (dĨ(id)).

Extensional Propositional Equality type:

IC(Eq(C, c, d) [Γn]) ≡ σ⃗(id) , Eq(cĨ , dĨ)(id)

where Eq(cĨ , dĨ)(t) ≡ eq(cĨ(t) , dĨ(t)) which is the equalizer of cĨ(t) and dĨ(t) in C
for t : D → AΣn.

IC(eqC(c) ∈ Eq(C, c, c) [Γn]) ≡ t

which is the unique morphism in C/AΣn toward the equalizer eq(cĨ(id) , cĨ(id)) induced

by idAΣn
(which equalizes cĨ(id) with itself!).

Disjoint Sum type:

IC(C +D [Γn]) ≡ σ⃗(id) , (γ ⊕ δ)(id)
where for t : D → AΣn we put (γ⊕ δ)(t) ≡ γ(t)⊕ δ(t) which is the coproduct in C/AΣn

provided that IC(C [Γn]) ≡ σ⃗(id) , γ(id) and IC(D [Γn]) ≡ σ⃗(id) , δ(id).

IC(inl(c) ∈ C +D [Γn]) ≡ ϵ1(c
Ĩ(id)) and IC(inr(d) ∈ C +D [Γn]) ≡ ϵ2(d

Ĩ(id))

where ϵ1, ϵ2 are the injections of the coproduct γ(id)⊕ δ(id) in C/AΣn.

IC(El+(p, aC , aD) ∈ A(p) [Γn]) ≡ ⟨idAΣn
,AΣn

((q1 · aĨC(id)) ⊕ q2 · aĨD(id)) · pĨ(id)⟩
which is the unique morphism toward the pullback of α(id) along pĨ(id)

where q1 ≡ q(ϵ1, α(id)) and q2 ≡ q(ϵ2, α(id)) and (q1 · aĨC(id)) ⊕ q2 · aĨD(id))
is the codiagonal morphism of q1 · aĨC(id) and q2 · aĨD(id)) provided that

IC(A(w) [Γn, w ∈ C +D]) ≡ σ⃗ , (γ ⊕ δ)(id) , α(id).

IC(dsj(c, d) ∈ ⊥ [Γn]) ≡ ⟨cĨ(id) ,!̂0(!AΣn
) d

Ĩ(id)⟩
which is the unique morphism to !̂0(!AΣn

) which is vertex of the pullback of ϵ1 along ϵ2
in C/AΣn by disjointness of γ(id)⊕ δ(id).

The mono existential type: it is interpreted as (Σx∈BC(x))/⊤ and hence we refer to

the interpretation of quotient types and indexed sum types.

Forall type:

IC(∀y∈BC(y) [Γn]) ≡ σ⃗(id) , ∀β γ(id)
where ∀β γ(t) ≡ ∀β(t) γ(q(t, β(id))) for t : D → AΣn and ∀β(t) is the right adjoint of the

pullback functor β(t)∗ on subobjects provided that IC(B [Γn]) ≡ σ⃗(id) , β(id) and

Modular correspondence 39

IC(C [Γn, z ∈ B]]) ≡ σ⃗(id) , β(id) , γ(id) with γ(id) monomorphism.

IC(λyB .c ∈ ∀y∈BC(y) [Γn]) ≡ ψ(cĨ(id))

where ψ : C/BΣ(idBΣn
, γ(id)) → C/AΣn(idAΣn

, ∀β(id)(γ(id))) is the adjunction

bijection considering that β(id)∗(idAΣn) is isomorphic to idBΣn .

IC(Ap(f, b) ∈ C(b) [Γn]) ≡ ⟨idAΣn ,BΣ ψ
−1(f Ĩ(id)) · bĨ(id)⟩

which is the morphism toward the pullback of γ(id) along bĨ(id) and ψ−1 is the inverse

of ψ.

Quotient type: (with weakened elimination rule)

IC(A/R [Γn]) ≡ σ⃗(id) , Q(α)(id)

which is defined in the following, provided that IC(A [Γn]) ≡ σ⃗(id) , α(id) and

IC(R(x, y) type [x ∈ A, y ∈ A]) ≡ σ⃗(id) , α(id) α[α(id)](id) , ρ(id)

with ρ(id) an equivalence relation on α(id) in C/AΣn. Hence, ⟨π1 · ρ(id) , π2 · ρ(id)⟩ is an
equivalence relation in C where π1 ≡ α(α(id)) and π2 ≡ q(α(id), α(id)) are the kernel

pair of α(id); therefore we can take the quotient c(id) of the equivalence relation in C
and we define Q(α(id)) as the unique morphism such that α(id) = Q(α(id)) · c(id) as

expressed in the following commutative diagram:

// ρ(id) //
π1 //

π2

// AΣ

c(id) //

α(id) ""

A/RΣ

Q(α(id))zz
AΣn

D

t

;;

Then, for any t : D → AΣn, we define Q(α)(t) ≡ Q(α(t)) as the unique morphism

such that α(t) = Q(α(t)) · c(t), where c(t) is the quotient map of the equivalence relation

obtained by pulling back the above diagram along t by using the corresponding fibred

functors, (for example ρ(id) is pulled back to ρ(t3) where t3 ≡ q(t2 , π1) and t2 ≡
q(t, α(id)).

IC([a] ∈ A/R [Γn]) ≡ c(id) · (aĨ(id))

IC(ElQs(m, p) ∈M [Γn]) ≡ q · pĨ(id)
where q is the unique morphism such that q · c(id) = q(α(id), µ(id)) · mĨ(id) provided

that IC(M [Γn]) ≡ σ⃗(id) , µ(id) and mĨ(id) · (π1 · ρ(id)) = mĨ(id) · (π2 · ρ(id)).

IC(eff(a, b) ∈ R(a, b) [Γn]) ≡ ⟨idAΣn
,A×AΣ

t⟩
which is the unique morphism toward the pullback of ρ(id) along the pair morphism

⟨aĨ(id), bĨ(id)⟩ toward the product of α(id) with itself in C/AΣn, where t is the

unique morphism in C such that (π1 · ρ(id)) · t = aĨ(id) and (π2 · ρ(id)) · t = bĨ(id)

obtained by effectiveness of the equivalence relation ⟨π1 · ρ(id), π2 · ρ(id)⟩, provided that

M.E. Maietti 40

c(id) · aĨ(id) = c(id) · bĨ(id).

Natural Numbers type: it is interpreted as List(⊤).

List type: (with weakened elimination rule)

IC(List(C) [Γn]) ≡ σ⃗(id) , List(γ)(id)

where List(γ)(t) ≡ List(γ(t)) that is the list object on γ(t) in C/D for t : D → AΣn

provided that IC(C [Γn]) ≡ σ⃗(id) , γ(id).

IC(ϵ ∈ List(C) [Γn]) ≡ rγo
that is the empty map for List(γ)(id) in C/AΣn.

IC(cons(s, c) ∈ List(C) [Γn]) ≡ r1
γ · ⟨sĨ(id), cĨ(id)⟩

where r1
γ : List(γ)(id) × γ(id) → List(γ)(id) is the list-constructor map in C/AΣn and

⟨sĨ(id), cĨ(id)⟩ is the pair morphism toward List(γ)(id)× γ(id) in C/AΣn.

IC(ElLists(a, l, s) ∈ L [Γn]) ≡ t · sĨ(id)
where t is the unique morphism such that t · roγ = aĨ and (πL2 · lĨ(id)) · t × id = r · r1γ
by the property of list object in C/AΣn with πL2 ≡ q(ξ(id) · γ(ξ(id)) , ξ(id)) provided

that IC(L [Γn]) ≡ σ⃗(id) , ξ(id).

Extensional dependent product type:

IC(Πy∈BC(y) [Γn]) ≡ σ⃗(id) , Πβ γ(id)

where Πβ γ(t) = Πβ(t) γ(q(t, β(id))) for t : D → AΣn and Πβ(t) is the right adjoint of

β(t)∗ provided that IC(B [Γn]) ≡ σ⃗(id) , β(id) and that IC(C [Γn, z ∈ B]]) ≡
σ⃗(id) , β(id) , γ(id).

Corresponding abstraction and application are interpreted analogously to those of the

forall type.

Omega type:

IC(Ω type [Γn]) ≡ σ⃗(id) , ̂!P(1)(!AΣn
)

where P(1) is the subobject classifier in C.

IC({B} ∈ Ω [Γn]) ≡ ℵ(β(id))
that is the characteristic morphism in C/AΣn of β(id) (thought of as a

morphism from β(id) to idAΣn
) with respect to ̂!P(1)(!AΣn

) provided that

IC(B type [Γn]) ≡ σ⃗(id) , β(id) with β(id) a monomorphism in C.

IC(ch(B) ∈ B [Γn]) ≡ ρBΣ

where ρBΣ
is the isomorphism in C/AΣn from the identity on AΣn to β(id) that exists

Modular correspondence 41

provided that IC(B type [Γn]) ≡ σ⃗(id) , β(id) with β(id) a monomorphism in C such

that ℵ(β(id)) = IC({⊤} ∈ Ω [Γn]), which yields that β(id) is isomorphic to idAΣn
.

In the next lemma we use the abbreviation Γj+1−⟩n ≡ xj+1 ∈ Aj+1, ..., xn ∈ An for a

given context Γn denoting with Γo the empty context.

Lemma 5.6. The weakening of a variable in type and term judgements is interpreted

as follows:

if IC(B(x1, ..., xn) [Γn]) ≡ α1(id) , α2(id) , ..., αn(id) , β(id)

and IC(b ∈ B(x1, ..., xn) [Γn]) ≡ bĨ(id)

and IC(D(x1, ..., xj) [Γj]) ≡ α1(id) , α2(id) , ..., αj(id) , δ(id) with j ≤ n, then

B(x1, ..., xn) [Γj , y ∈ D,Γj+1−⟩n] is interpreted as

α1(id) , ..., αj(id), δ(id), αj+1[tj](id) , ..., αn[tn−1](id) , β[tn](id)

(where α1(id) , ..., αj(id) appears only if Γj is not empty and

αj+1[tj](id) , ..., αn[tn−1](id) appears only if Γj+1−⟩n is not empty)

and b ∈ B(x1, ..., xn) [Γj , y ∈ D,Γj+1−⟩n] is interpreted as

bĨ(tn)

where tj ≡ δ(id) and ti ≡ q(ti−1, αi(id)) for i = j + 1, ..., n.

In the next lemma we use the abbreviation Γ′
j+1−⟩n ≡ x′j+1 ∈ A′

j+1, ..., x
′
n ∈ A′

n for a

given context Γn where if n ≥ j+1 we define A′
j+k ≡ Aj+k [xj/aj][xi/x

′
i]i=j+1,...,j+k−1

for k = 1, ...n− j for a given aj ∈ Aj [Γj−1].

Lemma 5.7. The substitution of variables in type and term judgements is interpreted

as follows:

if IC(B(x1, ..., xn) [Γn]) ≡ α1(id) , α2(id) , ..., αn(id) , β(id)

and IC(aj ∈ Aj [Γj−1]) ≡ aĨj (id) and IC(b ∈ B(x1, ..., xn)[Γn]) ≡ bĨ(id) where

n ≥ j then

B(x1, ..., xj−1, aj , x
′
j+1, ..., x

′
n) [Γj−1,Γ

′
j+1−⟩n] is interpreted as

α1(id) , ...αj−1(id) , αj+1[qj](id) , ..., αn[qn−1](id) , β[qn](id)

(where α1(id) , ...αj−1(id) appears only if Γj−1 is not empty and

αj+1[qj](id) , ..., αn[qn−1](id) appears only if Γj+1−⟩n is not empty)

and b(x1, .., xj−1, aj , x
′
j+1, .., x

′
n) ∈ B(x1, .., xj−1, aj , x

′
j+1, .., x

′
n) [Γj−1,Γ

′
j+1−⟩n] as

bĨ(qn)

where qj ≡ aĨj (id) and qi ≡ q(qi−1, αi(id)) for i = j + 1, ..., n.

Now, we just state the validity and completeness for pretopoi with respect to Tptop as a

paradigmatic example:

M.E. Maietti 42

Theorem 5.8 (Validity). If A type [Γn] is derivable in Tptop then IP(A type [Γn]) is

well defined for any pretopos P.
If a ∈ A [Γn] is derivable in Tptop, then also IP(a ∈ A [Γn]) is well defined for any

pretopos P.
Suppose that A type [Γn] and B type [Γn] are derivable in Tptop. Then, if A = B [Γn] is

derivable in Tptop, we have IP(A type [Γn]) = IP(B type [Γn]) for any pretopos P.
Suppose that a ∈ A [Γn] and b ∈ A [Γn] are derivable in Tptop. Then, if a = b ∈ A [Γn] is

derivable in Tptop, we have IP(a ∈ A [Γn]) = IP(b ∈ A [Γn]) for any pretopos P.

Proof. The proof proceeds by induction on the derivation of type and term judgements

by means of weakening and substitution lemmas.

We just underline that a mono type B(x) [x ∈ A] turns out to be interpreted by a

sequence of morphisms whose last one β(id) is a monomorphism, thanks to the fact that

the valid interpretation of the judgement

y = z ∈ B(x) [x ∈ A, y ∈ B(x), z ∈ B(x)]

says that the kernel pair of β(id) is the identity relation.

5.2. The syntactic categories out of the type theories

Now we show that every typed calculus proposed so far gives rise to a syntactic category

with the categorical properties it intends to capture, modularly as in the table of section

4. Actually, this holds for any theory of a given typed calculus, where by a theory we

mean the following:

Def. 5.9. Given a typed calculus T , then a theory T of T is an extension of T with:

- new (w.r.t. T) type judgements A type [Γ],

- new (w.r.t. T) type equality judgements A = B [Γ] provided that A type [Γ] and

B type [Γ] are derivable type judgements in T ,

- new (w.r.t. T) term judgements a ∈ A [Γ], provided that A type [Γ] is a derivable

type judgement in T ,

- new (w.r.t. T) term equality judgements a = b ∈ A [Γ], provided that a ∈ A [Γ] and

b ∈ A [Γ] are derivable type judgements in T .

(In other terms no inference rules are admitted to form new type or term judgements.)

From now on, we indicate with Tlex a theory of the calculus Tlex and we do the same

with the other calculi.

We start by showing how the syntactic category built out of a theory Tlex is a lex

category to end with the syntactic topos out of a theory of the calculus Ttop. These
categories will be useful to prove a completeness theorem between each calculus presented

in section 3 and the class of categories we mean to describe with it.

It is worth recalling that contrary to the syntactic topos in (Lambek and Scott 1986),

using dependent types we build a proof-relevant topos. Indeed, here morphisms are terms

Modular correspondence 43

instead of functional relations there. The same can be said for our syntactic lex and

regular categories with respect to those built out of a many-sorted logic in the literature.

From now on we refer to CT as the syntactic category built from the dependent typed

calculus T and defined as follows:

Def. 5.10. The objects of CT are closed types A,B,C... of T (modulo their equality),

and the morphisms between two types, A and B, are expressions (x) b(x) (see (Nordström

et al. 1990)) corresponding to b(x) ∈ B [x ∈ A] where the type B does not depend on

A, modulo their definitional equality, that is we state that (x) b(x) ∈ CT (A , B) and

(x) b′(x) ∈ CT (A , B) are equal iff we can derive b(x) = b′(x) ∈ B [x ∈ A] in T . The

composition in CT is defined by substitution, that is given (x) b(x) ∈ CT (A , B) and

(y) c(y) ∈ CT (B , C) their composition is (x) c(b(x)). The identity is (x)x ∈ CT (A , A)

obtained from x ∈ A [x ∈ A].

In the following we often write a morphism t in CT (A ,B) as t : A→ B.

Proposition 5.11 (Finite limits). The category CTlex
is finitely complete.

Proof. The terminal object is ⊤ and from any object A the morphism toward ⊤ is

(x) ⋆ ∈ CTlex
(A , ⊤) which is unique by the conversion rule for ⊤.

Given c ∈ CTlex
(A , C) and d ∈ CTlex

(B , C) the pullback is given by

Σx∈A Σy∈B Eq(C, c(x), d(y))

where the first projection to A is (z)πA1 (z) : Σx∈A Σy∈B Eq(C, c(x), d(y)) −→ A and the

second projection to B is (z)πB1 (πA2 (z)) : Σx∈A Σy∈B Eq(C, c(x), d(y)) −→ B.

In the following, we will often write a =A b to mean Eq(A, a, b) and eqC , instead of

eqC(c).

Proposition 5.12 (Finite disjoint coproducts). CText has finite disjoint coproducts.

Proof. The initial object is the false type ⊥. Given an object A, the morphism (x) r⊥(x)

from ⊥ to A is unique because, given any other morphism t :⊥→ A, we can derive a

proof of r⊥(x) =A t(x) for x ∈⊥ by the elimination of false type.

The coproduct of A and B is defined by A+B, equipped with the injections (x) inl(x) :

A→ A+B and (y) inr(y) : B → A+B. Given c : A→ C and d : B → C the mediating

morphism c⊕ d from A+B to C is (w)El+(w, c, d). Coproducts are disjoint by the rule

of disjointness.

Moreover, finite coproducts are stable under pullbacks. The stability of the initial object

follows easily and to show stability of binary coproducts we first prove that

Lemma 5.13. A+B is isomorphic in CText to

Σw∈A+B (Σx∈A inl(x) =A w) + (Σy∈B inr(y) =B w)

and in particular (z)π1(z) : Σw∈A+B Ã(w) + B̃(w) −→ A + B is equipped with an

inverse δ : A + B −→ Σw∈A+B Ã(w) + B̃(w) where Ã(w) ≡ Σx∈A inl(x) =A+B w and

B̃(w) ≡ Σy∈B inr(y) =A+B w.

M.E. Maietti 44

Hence, we are ready to prove:

Proposition 5.14. In CText
coproducts are stable under pullbacks.

Proof. Given the following pullbacks

P1

π1
1 ��

π1
2 // A

a
��

D
m // C

P2

π2
1 ��

π2
2 // B

b
��

D
m // C

P

πP
1 ��

πP
2 // A+B

a⊕b
��

D
m // C

we have to show that π1
1⊕π2

1 ≃ πP1 in CText/D. For this purpose we define γ : P1+P2 → P

as γ ≡ (w)El+(w, d1, d2) where d1 corresponds to

⟨π1
1(w1) , ⟨inl(π1

2(w1)), eqC⟩⟩ ∈ P [w1 ∈ P1]

and d2 corresponds to

⟨π2
1(w2) , ⟨inr(π2

2(w2)), eqC⟩⟩ ∈ P [w2 ∈ P2]

We can notice that πP1 · γ = π1
1 ⊕ π2

1 and that πP2 · γ = (inl · π1
2)⊕ (inr · π2

2).

Moreover, we want to define γ−1 : P → P1 + P2. First of all, we consider that, given

w ∈ P , we get πP2 (w) ∈ A+B, hence, by δ defined in the above lemma we deduce

π2(δ(π
P
2 (w))) ∈ Ã(πP2 (w)) + B̃(πP2 (w))

Now, we use the elimination rule with respect to Ã(πP2 (w)) + B̃(πP2 (w)) and we define

γ−1 ≡ (w)El+(π2(δ(π
P
2 (w))) , d

′
1 , d

′
2) where d

′
1 corresponds to

inl(⟨π1(w) , ⟨π1(x′), eqC⟩ ⟩) ∈ P1 + P2 [w ∈ P, x′ ∈ Ã(πP2 (w))]

Indeed, from w ∈ P and x′ ∈ Ã(πP2 (w)) we get m(π1(w)) = (a⊕b)(πP2 (w)) and πP2 (w) =
inl(π1(x

′)) and hence m(π1(w)) = a(π1(x
′)). In an analogous way, we define d′2 as

inr(⟨π1(w) , ⟨π1(y′), eqC⟩⟩) ∈ P1 + P2 [w ∈ P, y′ ∈ B̃(πP2 (w))]

We can prove that γ−1 is the inverse morphism of γ by the elimination rule of the disjoint

sum type.

Proposition 5.15 (The list object). The syntactic category CTloc
is equipped with

list-objects.

Proof. The empty map is (x) ϵ : B → List(A) and the list-constructor map is c̃ons ≡
(z) cons(π1(z), π2(z)) : List(A) × A → List(A). Then, given a closed type Y and the

morphisms f : B → Y and g : Y × A → Y we can prove that there exists a unique

morphism t ∈ CTloc
(B × List(A) , Y) such that the following diagram commutes in all

its parts:

B
id×((x) ϵ) //

f
((

B×List(A)

t

��

B×(List(A)×A)
id×c̃onsoo

(t×id)·σ
��

Y Y×A
g

oo

Modular correspondence 45

Indeed, by the weakened elimination rule of the list type we can define t ≡
(z)ElLists(f(π1(z)), g̃, π2(z)) : B × List(A) → Y , with g̃(x, y) ≡ g(⟨x, y⟩), which is

the unique map making the diagrams commute by βs and ηs C-list conversion rules.

Note that the existence of a natural numbers object in CTalex
can be proved specializing

the proof for list objects just seen to the list on the terminal object.

Proposition 5.16 (Images). CTreg has images.

Proof. The image of a morphism f : A→ B is

Im(f) ≡ π1 : I(f)→ B

where I(f) ≡ Σy∈B ∃x∈A Eq(B, f(x), y).

Indeed, there exists a map q such that f = Im(f) · q and defined as q(z) ≡
⟨f(z), (z, eq)⟩ ∈ I(f) [z ∈ A].
Moreover, Im(f) satisfies the universal property of an image. Indeed, given another

factorization f = i · p with i : D → B monic, we define by the elimination rule of the

mono existential type toward a general dependent type

t(z) ≡ Exg(π2(z) , (x)(y)p(x)) ∈ D

for z ∈ I(f). This is well defined because, if f(x) = π1(z) = f(x′), then i(p(x)) = f(x) =
f(x′) = i(p(x′)), and since i is monic we conclude p(x) = p(x′). (Note that i is monic if
and only if i is injective on elements of A, that is from i(z) = i(z′) ∈ B for z, z′ ∈ D we
conclude z = z′ ∈ D, since free variables correspond to projections.) Finally, we get that
i · t = π1 since for z ∈ I(f) we can derive a proof of

(i(Exg(w , (x)(y)p(x))) =B π1(z)) × (π2(z) =J w) [w ∈ ∃x∈A Eq(B, f(x), π1(z))]

by the elimination rule of the mono existential type, where J ≡ ∃x∈A Eq(B, f(x), π1(z)).

Moreover, we can prove:

Proposition 5.17. In CTreg
the image of any f : A→ B is stable under pullbacks.

Proof. Given h : C → B we need to show that the image of πD×A
1 is π

D×I(f)
1 in the

following pullback squares

P
πD×A
2 //

πD×A
1 ��

A

f
��

D
h

// B

Q
π
D×I(f)
2 //

π
D×I(f)
1 ��

I(f)

Im(f)
��

D
h

// B

with P ≡ Σy∈D Σx∈A Eq(B, h(y), f(x)) and Q ≡ Σy∈D Σx∈I(f) Eq(B, Im(f)(x) , h(y)).

It is sufficient to prove that there is an isomorphism between Q and I(πD×A
1) such that

Im(πD×A
1) is isomorphic to π

D×I(f)
1 in CTreg

/D.

We define δ(z) ∈ Q [z ∈ I(πD×A
1)] as

δ(z) ≡ ⟨π1(z), Exg(π2(z) , (w)(w′)⟨⟨f(πD×A
2 (w)) , (πD×A

2 (w), eq) ⟩, eq⟩) ⟩

M.E. Maietti 46

and we put δ−1(w) ≡ ⟨π1(w), Exg(π2(π
D×I(f)
2 (w)) , (x)(y)(⟨π1(w) , ⟨x, eq⟩ ⟩ , eq)) ⟩

for w ∈ Q. We can prove that δ and δ−1 are well defined and that they are inverse to

each other by the elimination rule of the mono existential type and the fact that the

existential type is mono.

Proposition 5.18 (Quotients of equivalence relations). CTptop has got effective

quotients of monic equivalence relations.

Proof. Given an equivalence relation R //
g // A×A we consider the following mono

type: R(x, x′) ≡ Σy∈R g(y) =A×A ⟨x, x′⟩ [x ∈ A, x′ ∈ A]. It is easy to check that the

categorical definition of equivalence relation implies that R(x, x′) [x ∈ A, x′ ∈ A] is an

equivalence relation from the type-theoretical point of view. Let A/R be the quotient

with respect to R(x, x′) [x ∈ A, x′ ∈ A]. We can prove that (z)[z] : A → A/R is the

coequalizer of π1 · g : R → A and π2 · g ∈ CTptop
: R → A (also called the quotient of g)

by the elimination and conversion rules of the quotient type. The uniqueness property of

the coequalizer follows from the ηsC-quotient rule.

In CTptop any categorical equivalence relation is effective, that is π1 · g and π2 · g are

projections of the pullback of (z)[z] along itself (that is, its kernel pair). The existence

of a morphism toward the pullback vertex is guaranteed by the effectiveness axiom and

its uniqueness follows from the fact that equivalence relations are monic.

Moreover, we prove stability of quotients for equivalence relations.

Proposition 5.19. In CTptop
quotients of monic equivalence relations are stable.

Proof. In the following we write πA×D
i for the i’th projection from the vertex of the

pullback of suitable arrows A→ · ← D. We will omit to label the projections when their

domains and codomains are clear from the context.

Given m ∈ CTptop
(D,A/R) let us consider the following pullbacks:

P
πD×A
2 //

πD×A
1

��

A

(z)[z]

��
D

m // A/R

Q

πD×R
1

��

πD×R
2 // R

π1·g
��

π2·g
��

A

(z)[z]

��
D

m // A/R

with P ≡ Σw∈D Σx∈A Eq(A/R, m(w), [x]) andQ ≡ Σw∈D Σy∈R Eq(A/R, m(w), [(π1 · g)(y)]).
Moreover, let us consider these two pullbacks:

Q

(πD×A
2)∗(π1·g)

��

πD×R
2 // R

π1·g
��

P
πD×A
2

// A

Q

(πD×A
2)∗(π2·g)

��

πD×R
2 // R

π2·g
��

P
πD×A
2

// A

Modular correspondence 47

where (πD×A
2)∗(π1 · g) ≡ (w)⟨π1(w) , ⟨π1(g(πD×R

2 (w))) , eq⟩⟩ and (πD×A
2)∗(π2 · g) ≡

(w)⟨π1(w) , ⟨π2(g(πD×R
2 (w))) , eq⟩⟩. We must show that in P/CTptop

we get πD×A
1 ≃

coeq((πA2)
∗(π1 · g), (πA2)∗(π2 · g)). (We recall that the objects of the category P/CTptop

are the morphisms b : P → B of C, and the morphisms of P/CTptop
from b : P → B to

b′ : P → B′ are the morphisms t : B → B′ of C such that t · b = b′.) We can observe

that the pullback given by effectiveness R

π1·g
��

π2·g // A

(z)[z]
��

A
(z)[z]// A/R

D

m

<<

can be completed in a cube

of pullbacks and hence Q

(πD×A
2)∗(π1·g)

��

(πD×A
2)∗(π2·g) // P

πD×A
1

��
P

πD×A
1

// D

is a pullback.

Therefore, ⟨π∗
2(π1 · g) , π∗

2(π2 · g)⟩ is an equivalence relation as kernel pair of πD×A
1 .

Then, consider the coequalizer of π∗
2(π1 · g) and π∗

2(π2 · g) written [−]P : P → P/m∗(R)
where P/m∗(R) is the quotient of the equivalence relation ⟨π∗

2(π1 · g) , π∗
2(π2 · g)⟩.

Since πD×A
1 · π∗

2(π1 · g) = πD×A
1 · π∗

2(π2 · g) there exists a map QP : P/m∗(R)→ D such

that QP · [−]P = πD×A
1 . Now, we want to prove that QP is an isomorphism in P/CTptop .

In order to define the inverse of QP we need the following lemma:

Lemma 5.20. In Tptop, the quotient type A/R is isomorphic to

Σz∈A/R (Σx∈A [x] =A/R z)/⊤

Proof.

We define the morphism ϕ : A/R → Σz∈A/R (Σx∈A [x] =A/R z)/⊤ as ϕ(z) ≡
⟨z,ElQ(z , (x) [⟨x, eq⟩]) ⟩ for z ∈ A/R and its inverse as ϕ−1(z′) ≡ π1(z

′) for

z′ ∈ Σz∈A/R (Σx∈A [x] =A/R z)/⊤.
It is immediate to see ϕ−1 · ϕ = id and ϕ · ϕ−1 = id follows from the fact that for every

fixed z ∈ A/R then (Σx∈A [x] =A/R z)/⊤ is a mono type.

Now, we go back to prove that QP is an isomorphism by finding its inverse. By means

of ϕ defined in the above lemma we define: for d ∈ D

QP
−1

(d) ≡ ElQ(π2(ϕ(m(d))) , (w)[⟨d , ⟨π1w , eq⟩ ⟩])

where the elimination constant ElQ is referred to the type (Σx∈A ([x] =A/R m(d)))/⊤.
This term is well typed by effectiveness. Then, by the elimination rule on the quotient

type P/m∗(R) it is easy to prove that QP
−1 ·QP = id. Moreover, note that we can prove

that QP
−1

is monic by lemma 5.20 and by the elimination rule on the quotient type and

effectiveness. Hence QP ·QP−1
= id also follows. This concludes the proof that π1

D is a

coequalizer of (π2
A)∗(π1 · g) and (π2

A)∗(π2 · g).

[of prop. 5.19]

M.E. Maietti 48

In order to show that in CThptop
each pullback functor on subobjects has a right ad-

joint, we first note that the pullback functor on subobjects is isomorphic to the functor

Prop(−) : CopT → Cat defined in the following.

Def. 5.21. For any object A ∈ ObCThptop
, the objects of the category Prop(A) are the

equivalence classes of mono types depending on A, B(x) [x ∈ A], under the relation

of equiprovability, and the morphisms are the terms f ∈ B(x) → C(x) [x ∈ A] where
B(x)→ C(x) ≡ ∀B(x)(C(x)). The identity is λy. y ∈ B(x)→ B(x). The composition of

f ∈ B(x)→ C(x) and g ∈ C ′(x)→ D(x), supposing that C(x) is equivalent to C ′(x) and

in particular that there exists s ∈ C(x)→ C ′(x), is given by λy.Ap(g,Ap(s,Ap(f, y))) ∈
B(x)→ D(x).

Therefore, we can define the above functor Prop(−) : CopThptop
−→ Cat:

Def. 5.22. For any object A ∈ ObCThptop
, Prop(A) is the above defined category and

given a morphism m ∈ CThptop
(D , A) we define Prop(m) as the following functor: for

any B(x) [x ∈ A]

Prop(m)(B(x) [x ∈ A]) ≡ B(m(z)) [z ∈ D]

and for every t ∈ B(x)→ C(x) [x ∈ A], given z ∈ D, we define

Prop(m)(t) ≡ λw ∈ B(m(z)).Ap(t[x := m(z)], w)

which is a term of type B(m(z))→ C(m(z)).

We can easily check that Prop(−) is a well defined functor. Then, we recall that the

functor Sub(−) : CopThptop
→ Cat is defined as follows: for every A ∈ ObCThptop

, Sub(A) is

the poset category Sub(A) of subobjects of CThptop
, and for every morphism t : A → B,

Sub(t) is the restriction of the pullback functor on subobjects. Then, we can prove that

Proposition 5.23. The functor Sub(−) : CopThptop
−→ Cat is naturally isomorphic to the

functor Prop(−) : CopThptop
−→ Cat.

Proof. Any monomorphism t : B // // A in CThptop
gives rise to a mono type

Σy∈B t(y) =A x [x ∈ A]

Conversely, any mono type B(x) [x ∈ A] gives rise to a monomorphism π1 :

Σx∈AB(x) // // A.

Proposition 5.24 (Right adjoints on subobjects). In CThptop
for every morphism

m(y) ∈ A [y ∈ D] there exists the right adjoint of the pullback functor m∗.

Sub(A)
m∗

//
Sub(D)

∀m

⊥oo

Proof. By the previous proposition, it is enough to show that Prop(m) has a right

adjoint. For every mono type B(y) [y ∈ D] we put similarly to (Seely 1984; Lawvere

1969)

∀m(B(y) [y ∈ D]) ≡ ∀y∈D (x =A m(y))→ B(y) [x ∈ A]

Modular correspondence 49

whose value at a mono type is indeed a mono type. Then we define a bijection (where

we omit the contexts of the type)

Prop(D)(Prop(m)(C(x)) , B(y))
ψ1 //

Prop(A)(C(x) , ∀m(B(y)))
ψ2

oo

as follows: for any t ∈ C(m(y))→ B(y) [y ∈ D] we put ψ1(t) ≡ λz. λy.λw.Ap(t, z) and

for any s ∈ C(x)→ ∀m(B(y)) [x ∈ A] and for any y ∈ D we put

ψ2(s) ≡ λz.Ap(Ap(Ap(s[x := m(y)], z), y), eqA)

It is easy to see that ψ1 and ψ2 are inverse to each other and that they are natural on

the first variable.

Proposition 5.25 (Right adjoints to pullback functors). In CTlcc
pullback functors

have right adjoints.

Proof. The right adjoint to a pullback functor is described as in (Seely 1984; Lawvere

1969): for every morphism m : D → A of CTlcc
, for every object b : B → D of CTlcc

/D,

we put

Πm(b) ≡ π1 : Σx∈A C(x) −→ A

where C(x) ≡ Πy∈D (x =A m(y))→ Σz∈B b(z) =D y for x ∈ A.

Proposition 5.26 (Subobject classifier). In the syntactic category CTtop
there is a

subobject classifier.

Proof. The subobject classifier is the type Ω and the true map is {⊤} ∈ Ω [x ∈ ⊤].
Moreover, given a monomorphism B //

t // A its characteristic map is

{Σy∈B t(y) =A x} ∈ Ω [x ∈ A]

since Σy∈B t(y) =A x [x ∈ A] is a mono dependent type. Indeed, it is easy to prove that

the pullback of the characteristic map with the true map is isomorphic to t, i.e.

B ��
t ��

≃ // Σx∈AΣz∈⊤({Σy∈Bt(y)=Ax}=Ω{⊤})
ss

π1ss
A

Then, the uniqueness of the characteristic map can be proved as follows. Given any

q(x) ∈ Ω [x ∈ A] such that

B ��

t ��

≃ // Σx∈AΣz∈⊤(q(x)=Ω{⊤})
vv

π1vv
A

we conclude q(x) = {Eq(Ω , q(x) , {⊤)}) } = {Σy∈Bt(y) =A x } by η-C conversion rule

of Ω and by the equality on Ω.

M.E. Maietti 50

5.3. Completeness

We know that the completeness theorem with respect to general contextual categories

with attributes is quite straightforward (see, for example, (Pitts 2000), (Streicher 1991)).

Indeed, the interpretation in the syntactic contextual category is faithful, since it turns

out to correspond to an identity modulo provable equality between types and between

terms. But, since our models are particular contextual categories with attributes, and

the interpretation of the indexed sum type is the composition of fibred functors, by

taking as a paradigmatic example the calculus Tptop, we have that the interpretation

ICTptop
in the syntactic pretopos CTptop is no longer exactly an identity modulo provable

equality. Anyway, this interpretation is isomorphic to an interpretation into a canonical

comprehension structure that resembles the identity interpretation and hence will be

useful to prove completeness.

In more detail, given a pretopos P, we define the following category P→fin whose objects

are sequences A0 A1a1
oo A2a2

oo Anan
oo of composable morphisms of P and whose

morphisms between a1 , a2 , ..., an and b1 , b2 , ..., bn are sequences ϕ0 , ϕ1 , ..., ϕn of

morphisms of P such that all the following squares commute

An

ϕn //
an ��

Bn

bn��
An−1

an−1

��

ϕn−1// Bn−1

bn−1

��

A2

a2 ��

ϕ2 // B2

b2��
A1

a1 ��

ϕ1 // B1

b1��
A0

ϕ0 // B0

Then, we can prove that there is a kind of isomorphism between the interpretation ICTptop

and another interpretation HCTptop
of Tptop-judgements into Pgr(CTptop

) which is close to

an identity interpretation modulo the equality and is clearly faithful. The idea is to define

HCTptop
on B(x) [x ∈ A] as the projection π1 : Σx∈AB(x)→ A and b(x) ∈ B(x) [x ∈ A]

as the section ⟨x, b(x)⟩ ∈ Σx∈AB(x) [x ∈ A] of π1 in CTptop
, all corrected to start from

the terminal type.

In more detail HCTptop
is defined by induction on the number of assumptions in the

context in this manner:

HCTptop
(B type [x1 ∈ A1, ..., xn ∈ An(x1, ..., xn−1)]) is

Σ
zn∈Ãn

B
πB
1 // Σ

zn−1∈Ãn−1
An

πn
1 // Σz∈⊤A1

π1
1 // ⊤

where Ã1 ≡ Σz∈⊤A1 and, for n ≥ 2, Ãn is the domain of the last morphism of

Modular correspondence 51

HCTptop
(An type [Γn−1]) and for zn ∈ Ãn

B ≡ B [x1 := π1
2 · π2

1 · · ·πn1 (zn)]...[xn−1 := πn−1
2 (πn1 (zn))][xn := πn2 (zn)]

with πni ≡ λx.πni (x) for i = 1, 2, where πn1 (x) and πn2 (x) are the two projections of

Σ
zn−1∈Ãn−1

An and πB1 and πB2 are the two projections of Σ
zn∈Ãn

B.

For i = 1, ..., n we define Ai in the same manner as B.

If b ∈ B [Γn] is a judgement of Tptop, we put

b ≡ b [x1 := π1
2 · π2

1 · · ·πn1 (zn)]...[xn−1 := πn−1
2 (πn1 (zn))][xn := πn2 (zn)]

and we define

HCTptop
(b ∈ B [Γn]) ≡ ⟨zn, b⟩ ∈ Σ

z′n∈Ãn
B [zn ∈ Ãn]

In order to prove the completeness theorem, we prove a lemma by induction on the type

and term judgements:

Lemma 5.27. For every judgement B type [Γn] derivable in Tptop, - which we suppose

to be interpreted as α1(id) , α2(id) , ..., αn(id) , β(id) - there is an isomorphism

ϕA1
, ..., ϕAn

, ϕB

in C→fin

Tptop
between ICTptop

(B type [Γn]) and HCTptop
(B type [Γn]) such that for every

judgement b ∈ B [Γn]

ϕB · bĨ(id) = ⟨id, b⟩ · ϕAn

and such that it commutes with the interpretations of weakening and substitution: namely

about weakening, for every judgementM type [Γj] with n ≥ j -supposed to be interpreted

as α1(id) , α2(id) , ..., αj(id) , µ(id)-

ϕB · q(tn, β(id)) = (pn × id) · ϕM×B

where ϕM×B : (M × B)Ĩ → Σ
x∈M̃B and (M × B)Ĩ ≡ dom(β(tn)) and ti for i = j, ...n

is defined as in the weakening lemma 5.6 and pj ≡ πM1 and pi ≡ pi−1 × id for

i = j + 1, ..., n.

and about substitution, for every aj ∈ Aj [Γj−1] with n ≥ j

ϕB · q(qn, β(id)) = (sn × id) · ϕB(aj)

where ϕB(aj) : (B(an))
I → Σ

x∈Ãn(aj)
B(aj) and (B(an))

I ≡ dom(β(qn)) and qi for

i = j, ...n is defined as in the substitution lemma 5.7 and sj ≡ ⟨id, aj⟩ and si ≡ si−1×id
for i = j + 1, ..., n.

Hence, we are ready to prove

Theorem 5.28 (completeness). Suppose that A type [Γn] and B type [Γn] are deriv-

able in Tptop, if, for every pretopos P, we have IP(A type [Γn]) = IP(B type [Γn]),

then A = B [Γn] is derivable in Tptop. Suppose that a ∈ A [Γn] and b ∈ A [Γn] are

derivable in Tptop, if, for every pretopos P, IP(a ∈ A [Γn]) = IP(b ∈ A [Γn]), then

a = b ∈ A [Γn] is derivable in Tptop.

M.E. Maietti 52

In conclusion the same validity and completeness theorems formulated as before hold

- for Tlex with respect to lex categories,

- for Talex with respect to arithmetic lex categories,

- for Treg with respect to regular categories,

- for Text with respect to lextensive categories,

- for Tloc with respect to locoi,

- for Tptop with respect to pretopoi,

- for Thptop with respect to Heyting pretopoi,

- for Tau with respect to arithmetic universes,

- for Tlcc with respect to locally cartesian closed categories,

- for Ttop with respect to topoi.

More details on the proofs can be found in (Maietti 1998b).

Comparison with contextual categories. Our notion of model for a dependent type

theory corresponds to particular contextual categories with attributes (Cartmell 1986;

Pitts 2000). Indeed, for each typed calculus presented in section 3 we can give a corre-

sponding notion of model in terms of a contextual category with attributes. Our notion

of model corresponds to the contextual category built out of the reindexing functor of

the split fibration equivalent to the codomain fibration based on a category C as follows.

We define Cont(C) as the category of contexts, where the objects of Cont(C) are finite

sequences a1, a2, ..., an of morphisms of C, also written 1 A1a1
oo A2a2

oo Anan
oo

and a morphism in Cont(C) from a1, a2, ..., an to b1, b2, ..., bm is simply a morphism b of

C such that (b1 · b2... · bn) · b = a1 · a2... · an.
Moreover, for each object of Cont(C) 1 A1a1

oo A2a2
oo Anan

oo we define

TypeCont(C)(a1, a2, ..., an) ≡ Fib(C/An, C→)

Therefore, in this case Cont(C) turns out to be equivalent to C and to TypeCont(C)(1).

Hence, the class of contextual categories with attributes for a dependent type theory

captured by our semantics is smaller than the corresponding class of contextual categories

with attributes, since it is not the case that for any contextual category we have that the

base category is equivalent to the fibre over 1.

5.4. Beyond soundness and completeness: dependent type theory as internal language.

The correspondence between typed calculi and categories described in section 3 satisfies

not only the validity and completeness theorem but also a stronger link namely that the

dependent type theories provide the internal languages of the corresponding categories

in which they are modelled. This is mathematically expressed by proving a sort of equiv-

alence between the category of theories (and translations) of a type calculus T and the

category of categorical structures that T is supposed to describe.

The reason why the internal language link between a calculus and some categorical

structures is stronger than validity and completeness is because validity and completeness

Modular correspondence 53

do not guarantee that the category of theories of the calculus is in a sort of equivalence

with the category of the complete categorical structures. Indeed, for a calculus T the

category of categorical structures for which T provides an internal language is determined

up to equivalences by the category of theories of T . Instead we may have not equivalent

categories of models both satisfying validity and completeness with respect to T . (Think
of the calculus of predicative intuitionistic logic without proof-terms: it is sound and

complete both with respect to Lawvere’s hyperdoctrines and with respect to models

based on complete Heyting algebras. But these two kinds of models are not equivalent

if organized into categories with morphisms preserving the corresponding structure!).

Therefore, soundness and completeness alone do not suffice to prove that the considered

calculus provides an internal language of the complete models.

Now, we take as a paradigmatic example Tptop and we sketch the proof that it provides

an internal dependent type theory for pretopoi. The same can be done for the other calculi

in section 3.

To connect theories of Tptop with pretopoi we first define the following categories:

1 Th(Tptop) whose objects are theories of Tptop (called pretopos type theories) and whose

morphisms are translations: they send derivable types to derivable types, derivable

terms to derivable terms so as to preserve their types and all the type and term

equalities and in addition all the type and term constructors of Tptop (for example, a

quotient type is sent into a quotient type and an equivalence class into an equivalence

class etc.); we call Th(Tptop)∼ the category whose objects are those of Th(Tptop),
but whose morphisms are translations preserving type and term constructors up to

isomorphism;

2 Ptopst whose objects are pretopoi with a fixed choice of pretopos structure and whose

morphisms are strict logical functors, that is functors preserving the pretopos struc-

ture with respect to the fixed choices; we call Ptop the category whose objects are

those of Ptopst but whose morphisms are functors preserving the pretopos structure

up to isomorphism.

These two categories are related each other by two functors. One is the functor from

pretopoi to pretopos type theories

T : Ptopst −→ Th(Tptop)

that associates to a pretopos P its internal type theory T (P) that is defined as an ex-

tension of the calculus Tptop with the specific type and term judgements of P and the

rules of substitution and weakening. As in the interpretation of a typed calculus in sec-

tion 5.1, the idea is that a type judgement corresponds to an object of Pgr(P) obtained
as the evaluation on the identical substitution of an object of Pgf(P), which repre-

sents a dependent type with all its possible substitutions. Analogously a term judgement

corresponds to a morphism of Pgr(P) obtained as the evaluation on the identical substi-

tution of a morphism of Pgf(P), which represents a dependent term with all its possible

substitutions.

In more detail, for any object !A1 , a2 , ..., an , t of Pgr(P) we add to T (P) a new type

M.E. Maietti 54

judgement

t−1(x1, .., xn) type [x1 ∈ A1, ..., xn ∈ a−1
n (x1, .., xn)]

that names the evaluation on identical substitution of the following object of Pgf(P)
(and hence it is preinterpreted by it):

!̂A1 , â2[p1], â3[p2], ..., ân[pn−1], t̂[pn]

where pi is the second projection of the pullback of ai and pi−1 for i = 2, . . . , n:

BΣ

p∗n(t) ��

t∗(pn)// B
t��

AΣn

pn //
p∗n−1(an) ��

An

an
��

AΣ2

p∗1(a2) ��

p2 // A2

a2��
AΣ1

!AΣ1 ��

p1 // A1

!A1��
1

id1 // 1

Analogously, for any dependent type B(x1, .., xn) [x1 ∈ A1, .., xn ∈ An] preinterpreted
by the sequence of fibred functors α1, α2, ..., αn, β of Pgf(P) and for every morphism of

Pgr(P) An

c //
id

""

B

β(id)}}
1 A1

!A1oo An

we introduce the new term judgement

c(x1, ..cn) ∈ B(x1, .., xn) [x1 ∈ A1, .., xn ∈ An]

which is preinterpreted in the unique natural transformation cĨ such that cĨ(id) ≡ c.
Moreover, we add all the type equality judgements regarding types that have the same

preinterpretation in Pgf(P) and all the definitional term equality judgements about

terms that have the same preinterpretation in Pgf(P) together with all the substitution

and weakening rules. The functor T associates to every morphism F : P → D of Pretopo
the translation T (F) : T (P) → T (D) defined by induction on the signature of T (P) by
sending the type and term constructors of Tptop in T (P) into the corresponding ones in

T (Q), that is for example T (F)(Σx∈AB(x)) ≡ Σx∈T (F)(A)T (F)(B(x)) , and each spe-

cific type arising from !A1 , a2 , ..., an, t is translated into the specific type of T (D) arising
from !F (A1), F (a2) , ..., F (an), F (t), and each specific term arising from a morphism c is

translated into the term arising from F (c). Note that this translation preserves type and

term equalities because F preserves the categorical structure strictly and because for any

type B preinterpreted into a fibred functor σ we have that T (F)(B) is preinterpreted

into a fibred functor σF such that σF (id) = F (σ(id)) and the translation of a term

interpreted into a morphism b via T (F) is a term interpreted into F (b).

Moreover, we can define a functor from pretopos type theories to pretopoi

P : Th(Tptop) −→ Ptopst

that associates to every type theory Tptop the pretopos CTptop defined in section 5.2 (with

Modular correspondence 55

the same choice of its structure). The functor P is defined on morphisms L of Th(Tptop)
as follows. For every closed type A, we put P (L)(A) ≡ L(A), and for every morphism

b(x) ∈ B[x ∈ A] of P (T) we put

P (L)(b(x) ∈ B [x ∈ A]) ≡ L(b(x)) ∈ L(B) [x ∈ L(A)]

Since L is a translation, then P (L) is a functor preserving the pretopos structure strictly.

Note that in the next we will need to think of Tptop as a category. A categorical structure

can be assigned to it by taking the dependent types of Tptop as objects, and the context

morphisms as morphisms from the dependent type B [Γ] to B′ [x′1 ∈ A′
1, ..., x

′
n ∈ A′

n],

that is terms of Tptop

b′ ∈ B′(a′1, ..., a
′
n) [Γ, y ∈ B]

where a1 ∈ A′
1 [Γ, y ∈ B] and a′i ∈ A′

i(a
′
1, ..., a

′
i−1) [Γ, y ∈ B] for i = 1, ..., n are derivable

terms (see also (Maietti 1998a)).

Therefore, we can consider equivalences of type theories and we are ready to state

the internal language theorem linking pretopoi and Tptop (where with ID we mean the

identical embedding functor):

Theorem 5.29. Let T : Ptopst → Th(Tptop) and P : Th(Tptop)→ Ptopst be the functors

defined above. There are two natural transformations: η from ID to T · P thought as

functors from Th(Tptop) to Th(Tptop)∼, and ϵ from P ·T to ID thought as functors from

Ptopst to Ptop such that for every pretopos type theory Tptop and for every pretopos P,
ηTptop

: Tptop → T (CTptop
) and ϵP : CT (P) → P are equivalences.

This theorem says that Th(Tptop) and Ptopst are in a sort of equivalence which is a

familiar feature of 2-dimensional algebra in the sense of Blackwell-Kelly-Power (Blackwell

et al. 1989). This appears to be the correct mathematical way to express - in the case

of dependent type theory§ - that Tptop provides an internal dependent type theory for

pretopoi.

Note that the usual definition of internal language just requires to check that the

syntactic category out of the internal language of a category P is equivalent to the

category P itself (see for example (Barr and Wells 1990; Pitts 2000)).

In conclusion, we can prove that

- Tlex provides an internal dependent type theory for lex categories,

- Talex provides an internal dependent type theory for arithmetic lex categories,

- Treg provides an internal dependent type theory for regular categories,

- Text provides an internal dependent type theory for lextensive categories,

- Tloc provides an internal dependent type theory for locoi,

- Tptop provides an internal dependent type theory for pretopoi,

- Thptop provides an internal dependent type theory for Heyting pretopoi,

- Tau provides an internal dependent type theory for arithmetic universes,

- Tlcc provides an internal dependent type theory for locally cartesian closed categories,

§ In the case of not dependent type theories, like simply typed lambda calculus, it is possible to prove
a simple categorical equivalence. For general reasons this gives a standard 2-equivalence.

M.E. Maietti 56

- Ttop provides an internal dependent type theory for topoi.

Hence, we conclude that the table in section 4 establishes a correspondence “internal

type theory/category” between a calculus obtained as a combination of the type construc-

tors in the table with respect to the categories enjoying the corresponding combination of

categorical properties. Alternatively, the correspondence “internal type theory/category”

can be read as “type theory/category as model” linked by internal language (and not

only validity and completeness).

5.5. Free structures and initiality.

The typed calculi for the categorical structures considered in this paper also provide a

way to build the free constructions of such categorical structures generated from a given

category. We study only the case of pretopoi as a paradigmatic example.

The main idea is to generate a pretopos from a given category C by considering its

objects as closed types and its morphisms as terms with a free variable.

Def. 5.30. Given a category C, we consider the dependent type theory T (C) generated

by the inference rules as follows:

1 For every object A of ObC we introduce a new type A and we state the closed type

judgement A [].

Given A ∈ ObC and B ∈ ObC we state A = B [], if they are the same object in ObC.
2 For every morphism b : A → B in C, we introduce a new term b(x) and we state

b(x) ∈ B [x ∈ A], where A and B are closed types.

Given b : A → B and d : A → B in C, we state b(x) = d(x) ∈ B [x ∈ A], provided
that b and d are equal morphisms in C.
Given b : A → B and a : D → A in C, we state about composition b(x)[x := a(y)] =

(b · a)(y) ∈ B [y ∈ D].

3 Then, we add all the inference rules of the typed calculus Tptop together with the

substitution and weakening rules.

Then, we prove that the category P (T (C)) classifies the functors from C to a pretopos

P, that is it classifies the models in P of Tptop augmented with new types and terms

naming objects and arrows of C, since such models are in correspondence with the above

functors. The classification on which we are interested is not that via strict structure

preserving functors but via the usual notion. Hence, we deal with free structures in the

up to isomorphism sense. (For the proper general context see (Blackwell et al. 1989)).

Theorem 5.31. (free pretopos) Let C be a category, P be a pretopos, Cat(C , P) be

the category having functors from C to P as objects (and natural transformations as

morphisms), Ptop(P (T (C)) , P) be the category having functors from P (T (C)) to P pre-

serving the pretopos structure up to isomorphism as objects (and natural transformations

as morphisms), and P : Th(Tptop) −→ Ptopo be the functor described at the beginning

of the section.

Modular correspondence 57

There exists an equivalence between the categories Cat(C , P) and

Ptop(P (T (C)) , P). ¶

Proof. We know that P (T (C)) is a pretopos from the definition of P . We can then

embed C into P (T (C)) via a functor Y : C → P (T (C)) defined as follows: for every

object A ∈ ObC we put Y(A) ≡ A[] and for every morphism b : A → B we put

Y(b) ≡ b(x) ∈ B [x ∈ A]. Now, the embedding Y induces a functor

Cat(Y,P) : Ptop(P (T (C)) , P)→ Cat(C , P)

associating the functor H · Y to a pretopos functor H and αY(−) to a natural transfor-

mation α. This functor establishes an equivalence of categories, whose inverse is

(̃−) : Cat(C , P)→ Ptop(P (T (C)) , P)

(̃−) applied to a functor K : C → P is defined as follows: we first define an interpretation

IK : T (C)→ PgrP of the calculus T (C) by extending the interpretation in section 5 on

a type arising from an C-object A as IK(A []) ≡ !̂K(A)(id) and on a term arising from

a C-morphism b : A→ B as IK(b ∈ B [x ∈ A]) ≡ ⟨ idK(A) ,1 K(b) ⟩ which is the unique

morphism toward the pullback of !K(B) along !K(A) induced by idK(A) and K(b).

Then, on generic objects and morphisms of P (T (C)) we put

K̃(A) ≡ dom(IK(A []))

K̃(b(x) ∈ B [x ∈ A]) ≡ q(IK(A []) , IK(B [])) · IK(b ∈ B [x ∈ A])

K̃ turns out to be a functor preserving the pretopos structure up to isomorphisms.

The definition of (̃−) on a natural transformation ϕ : K ⇒ H is defined by induction

on the type and term judgements as the result of the following lemma:

Lemma 5.32. For every judgement B type [Γn] derivable in T (C), there is a morphism

ϕ̃A1
, ..., ϕ̃An

, ϕ̃B

in P→fin from IK(B [Γn]) to IH(B [Γn]) such that for every judgement b ∈ B [Γn]

ϕ̃B · bI
K

= bI
H

· ϕ̃An

and such that it commutes with the interpretations of weakening and substitution:

namely about weakening, for every judgement M type [Γj] with n ≥ j -supposed

to be interpreted as αK1 (id) , αK2 (id) , ..., αKj (id) , µK(id) according to IK and

αH1 (id) , αH2 (id) , ..., αHj (id) , µH(id) according to IH -

ϕ̃B · q(tKn , β(id)) = q(tHn , β(id)) · ϕ̃M×B

where ϕ̃M×B : (M × B)I
K → (M × B)I

H

and (M × B)I
K ≡ dom(βIK

(tKn)) and tKi
and tHi for i = j, ..., n are defined as in the weakening lemma 5.6 respectively according

to IK and to IH ,

¶ The construction of free Heyting pretopos or topos in (Maietti 1998b; Maietti 1998a) works only up

to isomorphisms as presented here.

M.E. Maietti 58

and about substitution, for every aj ∈ Aj [Γj−1] with n ≥ j

ϕ̃B · q(qKn , β(id)) = q(qHn , β(id)) · ϕ̃B(an)

where ϕ̃B(an) : (B(an))
IK → (B(an))

IH

and (B(an))
IK ≡ dom(βIK

(qKn)) and qKi and

qHi for i = j, ..., n are defined as in the substitution lemma 5.7 respectively according to

IK and to IH .

Note that in the above lemma the morphism ϕ̃A on a type arising from a C-object A is

provided by ϕA.

Then, the fact that Cat(C , Y) · (̃−) is naturally isomorphic to the identity follows

easily.

Instead, to prove that (̃−)·Cat(Y,P) is naturally isomorphic to the identity we proceed

as follows. Given a pretopos functor G : P (T (C))→ P we define an interpretation

HG : T (C)→ Pgr(PG(⊤))

of the calculus T (C) into Pgr(PG(⊤)), where Pgr(PG(⊤)) is defined exactly as Pgr(P)
except for the choice of G(⊤) for the terminal object, by applying G to an interpretation

of T (C) into Pgr(P (T (C))) defined analogously to HCTptop
in section 5. More precisely,

HG(B [x1 ∈ A1, ..., xn ∈ An(x1, ..., xn−1)]) is defined as

G(Σ
zn∈Ãn

B)
G(πB

1) // G(Σ
zn−1∈Ãn−1

An)
G(πn

1) // G(Σz∈⊤A1)
G(π1

1) // G(⊤)

and

HG(b ∈ B [Γn]) ≡ G(⟨zn, b⟩ ∈ Σ
z′n∈Ãn

B [zn ∈ Ãn])

Then, we prove a lemma relating I(G·Y) with HG analogously to lemma 5.27 from which

we conclude that G̃ · Y is naturally isomorphic to G.

Remark 5.33. To connect theorem 5.31 with the notion of a free structure, note that

this equivalence implies that given a functor K : C → P, from the category C to the

pretopos P, there exists a functor K̃ : P (T (C)) → P in Ptop such that the diagram

C
Ĩ //

K ��

P (T (C))

K̃zzP

commutes up to a natural isomorphism.

Moreover, from this we derive in particular that

Corollary 5.34. The syntactic category CTptop in definition 5.10 is an initial up to

iso pretopos in the sense that for any pretopos P there is a functor from CTptop
to P

preserving the pretopos structure up to isomorphism and which is unique up to a natural

isomorphism.

Proof. We define a pretopos functor IP : CTptop
→ P as follows:

IP(A) ≡ dom(IP(A[]))
IP(b(x) ∈ B [x ∈ A]) ≡ q(IP(A[]) , IP(B[])) · IP(b ∈ B [x ∈ A])

where IP is the interpretation of Tptop in Pgr(P) defined in section 5. To show that this

Modular correspondence 59

is unique up to a natural isomorphism, we follow the technique used in theorem 5.31.

Indeed, given any functor G : CTptop
→ P we define an interpretation HG of Tptop into

Pgr(P) as in theorem 5.31 and we prove a lemma relating the interpretation IP with

HG analogously to lemma 5.27, from which we conclude that G is naturally isomorphic

to IP .

Analogously we can prove the existence of free structures and initial up to iso structures

for lex categories, arithmetic lex categories, regular categories, lextensive categories, locoi,

Heyting pretopoi, arithmetic universes, locally cartesian closed categories and topoi.

6. Conclusions

The modular correspondence between categories and dependent type theories so far ob-

tained can be applied:

- to reason within a categorical structure by using logical or type-theoretic proofs;

- viceversa, to import in type theory categorical proofs;

- to study the computational contents of internal languages of categories by employing

type-theoretic methods;

- to relate the internal dependent type theories of categorical universes with other type

theories like Martin-Löf’s Constructive Type Theory.

Acknowledgements. I wish to thank all the people with whom I talked and discussed

about internal languages of categories: during my work in Padova Giovanni Sambin, Pino

Rosolini and Silvio Valentini, during my visits abroad Martin Hyland and Peter Johnstone

and among the people I met at the Mittag-Leffler Institute during Spring 2001 especially

Per Martin-Löf, Peter Aczel, Steve Awodey, Andrej Brauer and Erik Palmgren for many

interesting discussions about this research topic.

References

Awodey, S and Bauer, A. (2004) Propositions as [types]. Journal of Logic and Computation,

14:447–471.

Aczel, P. and Rathjen, M. (2001) Notes on constructive set theory. Mittag-Leffler Technical

Report No.40.

Bell, J. L. (1988) Toposes and Local Set Theories: an introduction. Claredon Press, Oxford.

Benabou, J. (1985) Fibred categories and the foundations of naive category theory. Journal of

Symbolic Logic, 50:10–37.

Blackwell, R., Kelly, G. M., and Power, A. J. (1989) Two dimensional monad theory. Journal

of Pure and Applied Algebra, 59:1–41.

Barr, M. and Wells, C. (1990) Category Theory for Computer Science. International Series in

Computer Science. Prentice Hall.

Cartmell, J. (1986) Generalised algebraic theories and contextual categories. Annals of Pure

and Applied Logic, 32:209–243.

Coquand, T. and Huet, G. (1988) The calculus of constructions. Information and Computation,

76:95–120.

Carboni, A., Lack, S. and Walters, R. F. C. (1993) Introduction to extensive and distributive

category. Journal of Pure and Applied Algebra, 84:145–158.

M.E. Maietti 60

Cockett, J. R. B. (1990) List-arithmetic distributive categories: locoi. Journal of Pure and

Applied Algebra, 66:1–29.

Cole, J. C. (1973) Categories of sets and models of set theory. In The Proceedings of the

Bertrand Russell Memorial Conference (Uldum, 1971), pages 351–399, Leeds.

Constable, R. et al. (1986) Implementing mathematics with the Nuprl Development System.

Prentice Hall.

de Bruijn, N. G. (1991) Telescopic mapping in typed lambda calculus. Information and Com-

putation, 91:189–204.

Diaconescu, R. (1975) Axiom of choice and complementation. Proc. Amer. Math. Soc., 51:176–

178.

Hofmann, M. (1995) On the interpretation of type theory in locally cartesian closed categories.

In Computer science logic (Kazimierz, 1994), volume 933 of Lecture Notes in Comput. Sci.,

pages 427–441.

Hofmann, M. (1997) Extensional Constructs in Intensional Type Theory. Distinguished Disser-

tations. Springer.

Hyland, J. M. E. and Pitts, A. M. (1989) The theory of constructions: Categorical semantics

and topos theoretic models. In J. W. Gray and A. Scedrov, editors, Categories in Computer

Science and Logic, volume 92 of Contemporary Mathematics, pages 137–199.

Jacobs, B. (1999) Categorical Logic and Type Theory., volume 141 of Studies in Logic. Elsevier.

Joyal, A. and I. Moerdijk, I. (1995) Algebraic set theory., volume 220 of Lecture Note Series.

Cambridge University Press.

Johnstone, P. T. (1977) Topos theory. Academic Press.

Johnstone, P. T. (2002) Sketches of an elephant: a topos theory compendium. Vol. 2., volume 44

of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York.

Lawvere, F. W. (1969) Adjointness in foundations. Dialectica, 23:281–296.

Lawvere, F. W. (1970) Equality in hyperdoctrines and comprehension schema as an adjoint

functor. Proc. Sympos. Pure Math., XVII:1–14.

Lambek, J. and Scott, P. J. (1986) An introduction to higher order categorical logic., volume 7

of Studies in Advanced Mathematics. Cambridge University Press.

Mac Lane, S. (1971) Categories for the working mathematician., volume 5 of Graduate text in

Mathematics. Springer.

Maietti, M. E. (1998)a The internal type theory of an Heyting Pretopos. In C.Paulin-Mohring

E. Gimenez, editor, Types for Proofs and Programs. Selected papers of International Workshop

Types ’96, Aussois, volume 1512 of LNCS, pages 216–235. Springer Verlag.

Maietti, M. E. (1998)b The type theory of categorical universes. PhD thesis, University of

Padova, February, 1998.

Maietti, M. E. (1999) About effective quotients in constructive type theory. In W. Naraschewski

T. Altenkirch and B. Reus, editors, Types for proofs and programs. International workshop,

TYPES ’98. Kloster Irsee, Germany, March 27-31. 1999, volume 1657 of Lectures Notes in

Computer Science, pages 164–178. Springer Verlag.

Maietti, M. E. (2001) Modular correspondence between dependent type theories and categorical

universes. Mittag-Leffler Preprint Series, 44.

Maietti, M. E. (2003) Joyal’s arithmetic universes via type theory. In Category Theory in

Computer Science, 2002, volume 69 of Electronic Notes in Theoretical Computer Science.

Elsevier.

Maietti, M. E. (2005) Reflection into models of finite decidable fp-sketches in an arithmetic

universe. In Category Theory in Computer Science, 2004, volume 122 of Electronic Notes in

Theoretical Computer Science. Elsevier.

Modular correspondence 61

Martin-Löf, P. (1975) An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.

Shepherdson, editors, Logic Colloquium ’73 (Bristol, 1973), volume 80 of Studies in Logic and

the Foundations of Mathematics, pages 73–118. North-Holland, Amsterdam.
Martin-Löf, P. (1984) Intuitionistic Type Theory, notes by G. Sambin of a series of lectures

given in Padua, June 1980. Bibliopolis, Naples.
Martin-Löf, P. (1998) An intuitionistic theory of types. In G. Sambin and J. Smith, editors,

Twenty five years of Constructive Type Theory, pages 127–172. Oxford U. P..
Mitchell, W. (1972) Boolean topoi and the theory of sets. J. Pure Appl. Alg., 2:261–274.
Mac Lane, S. and Moerdijk, I. (1992) Sheaves in Geometry and Logic. A first introduction to

Topos theory. Springer Verlag.
Moerdijk, I. and Palmgren, E. (2000) Wellfounded trees in categories. Annals of Pure and Ap-

plied Logic, 104(1-3):189–218. Proceedings of the Workshop on Proof Theory and Complexity,

PTAC’98 (Aarhus).
Moerdijk, I. and Palmgren, E. (2002) Type theories, Toposes and Constructive Set Theory:

predicative aspects of AST. Annals of Pure and Applied Logic, 114(1-3):155–201. Commem-

orative Symposium Dedicated to Anne S. Troelstra (Noordwijkerhout, 1999).
Makkai, M. and Reyes, G. (1977) First order categorical logic., volume 611 of Lecture Notes in

Mathematics. Springer Verlag.
Maietti, M. E. and Sambin, G. (2005) Toward a minimalist foundation for constructive mathe-

matics. In L. Crosilla and P. Schuster, editor, From Sets and Types to Topology and Analysis:

Practicable Foundations for Constructive Mathematics. Oxford University Press. Forthcom-

ing.
Maietti, M. E. and Valentini S. (1999) Can you add powersets to Martin-Löf intuitionistic type

theory? Mathematical Logic Quarterly, 45:521–532.
Nordström, B., Peterson, K. and Smith, J. (1990) Programming in Martin Löf ’s Type Theory.

Clarendon Press, Oxford.
Pitts, A. M. (2000) Categorical logic. In Oxford University Press, editor, Handbook of Logic in

Computer Science, volume 5 of Oxford Sci. Publ., pages 39–128.
Power, A. J. (1989) A general coherence result. Journal of Pure and Applied Algebra, 57:165–

173.
Scedrov, A. (1995) Intuitionistic set theory. In Harvey Friedman’s research on the foundations

of mathematics, volume 117 of Stud. Logic Found. Math., pages 257–284. North-Holland,

Amsterdam.
Seely, R. (1984) Locally cartesian closed categories and type theory. Math. Proc. Cambr. Phyl.

Soc., 95:33–48.
Smith, J. (1988) The independence of Peano’s fourth axiom from Martin Löf’s type theory

without universes. Journal of Symbolic Logic, 53.
Streicher, T. (1991) Semantics of type theory. Birkhäuser.
Sambin, G. and Valentini, S. (1998) Building up a toolbox for Martin-Löf’s type theory: subset

theory. In G. Sambin and J. Smith, editors, Twenty-five years of constructive type theory,

Proceedings of a Congress held in Venice, October 1995, pages 221–244. Oxford U. P..
Swaen, M. D. G. (1991) The logic of first order intuitionistic type theory with weak sigma-

elimination. J. Symbolic Logic, 56:467–483.
Swaen, M. D. G. (1992) A characterization of ML in many-sorted arithmetic with conditional

application. J. Symbolic Logic, 57:924–953.
Taylor, P. (1997) Practical Foundations of Mathematics, volume 99 of Cambridge studies in

advanced mathematics. Cambridge University Press.
Wraith, G. C. (1985) Notes on arithmetic universes and Gödel incompleteness theorems. Un-

published manuscript.

