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Abstract

We define the notion of exact completion with respect to an existential
elementary doctrine. We observe that the forgetful functor from the 2-
category of exact categories to existential elementary doctrines has a left
biadjoint that can be obtained as a composite of two others. Finally, we
conclude how this notion encompasses both that of the exact completion
of a regular category as well as that of the exact completion of a category
with binary products, a weak terminal object and weak pullbacks.
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1 Introduction

The notion of completion by quotients, and in particular that of exact comple-
tion, has been widely studied in category theory, see for example [14, 5, 7]. The
concept of quotient completion is pervasive not only in mathematics but also
in computer science, in particular for what concerns the way proofs are formal-
ized in a computer-assisted way in an intensional set theory that does not carry
quotient sets as primitive notion.

In [22] the authors began to study a categorical structure involved with
quotient completions, relativizing the basic concept to a doctrine equipped with
a logical structure sufficient to describe the notion of an equivalence relation.
The notion of quotient within an elementary doctrine and that of elementary
quotient completion producing a quotient completion that is not generally exact
but encompasses relevant examples used in type theory were introduced in [21].

In the present paper, that analysis of quotient completion is pushed further
viewing the exact completion of a regular category or the exact completions of
a category with binary products, a weak terminal object and weak pullbacks as
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instances of a more general “exact completion” with respect to an elementary
existential doctrine.

Indeed, for an exact category X, the indexed inf-semilattice Suby: X" —
InfSL of subobjects, which assigns to an object A in X the poset S(A) of
subobjects of A in X, constitutes the archetypal example of a fibrations of
sets and functions as all known frameworks for modelling a constructive theory
of sets produce exact categories, e.g. toposes as models of IZF or arising from
a tripos, categories of classes for CZF, total setoids a la Bishop on Martin-6f’s
type theory [24]. Since, within a set theory, functions are defined from the logic,
it is of little surprise that the models are obtained from indexed inf-semilattices
which are existential elementary doctrines.

We show that many of the models are obtained as a free construction. In-
deed, the forgetful functor from the 2-category of exact categories to that of
existential elementary doctrines has a left biadjoint that can be obtained as a
composite of two others: the first adds (full) comprehensions to an existential
elementary doctrine, the other turns an existential elementary doctrine with full
comprehension into (the fibration of subobjects of) an exact category, univer-
sally so. In particular, when the second is applied to the doctrine of subobjects
of a regular category, it gives rise to its exact completion, see [11].

For an existential elementary doctrine P, the elementary quotient completion
of P presented in [21] appears as a subcategory of the exact completion of P
by the universal properties of the various constructions involved. There are
interesting cases when that inclusion is an equivalence; for instance, when P is
the poset indexed doctrine ¥ of weak subobjects of a category C with binary
products and weak pullbacks. Thus also the exact completion on a category
with binary products, a weak terminal object and weak pullbacks is an instance
of the exact completion of an elementary existential doctrine as the elementary
quotient completion of W¢ coincides with the exact completion of C as a weakly
lex category, see loc.cit..

2 Elementary existential doctrines

A doctrine subsumes the basic categorical concept of a logic. The notion was
introduced, in a series of seminal papers, by F.W. Lawvere to synthetize the
structural properties of logical systems, see [16, 17, 18], see also [19, 14] for a
unified survey. Lawvere’s crucial intuition was to consider logical languages and
theories as fibrations to study their 2-categorical properties, e.g. connectives
and quantifiers are determined by structural adjunctions, see for instance [3].

Recall that, for a category C with binary products, an elementary doctrine
(on C) is a C-indexed inf-semilattice, that is a functor P:C°* — InfSL from the
opposite category of C to the category of inf-semilattices and homomorphisms
such that, for every object A in C, there is an object 04 in P(A x A) and

(i) the assignment
H(idA,idA) (Ol) = Ppr1 (O[) A (5,4



for v in P(A) determines a left adjoint to P, ia,): P(A x A) = P(A)—
the action of a doctrine P on an arrow is written as Py

(i) for every map e := (pry,pry, pry): X x A — X x Ax A in C, the assignment

He(@) == Plpr, pry) (@) A Plor, pr,) (84)

for @ in P(X x A) determines a left adjoint to P.: P(X x A x A) —
P(X x A).

Also recall from loc.cit. that an existential doctrine is an indexed inf-
semilattice P:C” — InfSL such that, for A; and Ay in C and projections
pri: Ay x Ay — A;, i = 1,2, the functors Py,,: P(A;) — P(A; x Az) have a left
adjoint &, which satisfy

Beck-Chevalley condition: for any pullback diagram

’
pr
X/ L, A/

Aol

) Ay

with pr a projection (hence also pr’ a projection), for any 3 in P(X), the
canonical arrow H,, P/ () < PyH,(8) in P(A’) is iso;

Frobenius reciprocity: for pr: X — A a projection, a in P(A), § in P(X),
the canonical arrow Hp,, (Ppr() A B) < a A Hp,p(B) in P(A) is iso.

2.1 REMARK. Note for an elementary doctrine P:C°® — InfSL that, in case
C has a terminal object, conditions (ii) entails condition (i).
Also, given ag in P(X; x Y1) and ag in P(X3 x Ya), if one writes a3 X s
for the object
Plpr, pr) (1) A Plpry pr, (02)

in P(X; x Xy x Y1 X Y3) where pr;,i = 1,2,3,4, are the projections from
X1 x Xo x Y7 x Y3 to each of the four factors, then condition (ii) is to require
that daxp = 04 X dp for every pair of objects A and B in C.

Beyond the standard example of the elementary existential doctrine of sub-
objects of a regular category X, one can consider examples directly from logic
such as the indexed Lindenbaum-Tarski algebras LT: V" — InfSL of well-
formed formulae of a theory .7 with equality in a first order language £ where
the domain category V has lists of variables as objects and term substitutions
as arrows, with composition given by simultaneous substitution; the functor
LT:V? — InfSL takes a list of variables to the Lindenbaum-Tarski algebra of
equivalence classes of well-formed formulae of .Z whose free variables are within
T1,...,&n, see [22] for more details.

An important example for theories developed for formalizing constructive
mathematics is the following: Consider a category S with (strong) binary



products and weak pullbacks and the functor of weak subobjects U:S°* —s
InfSL which evaluates, at an object A of S, as the poset reflection of each
comma category S/A. The left adjoints are computed by post-composition. We
refer the reader to [22, 21] for further details.

We consider the 2-category ED: its objects are elementary doctrines, 1-
arrows are pairs (F,b) consisting of a functor F' and a natural transformation b
as indicated

c? X
Fop l bl- InfSL
D°P /

such that F' preserves binary products, and baxa(d4) = Rip(pr,),F(pry)) (0F(4))

for every object A in C. The 2-arrows of ED are natural transformations 6: F'—~G
such that

op
¢ P

FoP (< N
6°r b-<S>-C InfSL
DOP R

so that, for every object A in C and every ain P(A), one has ba(a) < Ry, (ca(a)).

The 2-category EED is the 1-full subcategory of ED on elementary existential
doctrines where 2-arrows have each component b4 preserving the existential
adjoints.

As we already mentioned in the Introduction, since the indexed inf-semilattice
Subx: X" — InfSL of subobjects for an exact category X is elementary exist-
ential, that construction induces an obvious forgetful functor from the 2-category
Xct of exact categories and exact functors to EED, as in [1, 7].

In [21] the authors presented a construction to add quotients to an element-
ary doctrine freely. A similar construction is that used to produce a topos from a
tripos, see [13, 26, 28], and it produces a left biadjoint to the forgetful 2-functor
from Xct to EED. The two constructions will be compared in section 4.

2.2 DEFINITION. Given an elementary existential doctrine P:C°® — InfSL,
consider the category Tp, called exact completion of the e.e.d. P, whose

objects are pairs (A, p) such that p is in P(A x A) and satisfies

(8) p < Py oy () in P(A x A)
where py,p2: A X A — A are the two projections

(B) Py p2) () A Plpypg) (p) < Py pg) (p) In P(A X A x A)
where pq, p2,p3: A X A — A are the projections

an arrow ¢: (A, p) — (B,0) is an object ¢ in P(A x B) such that



(i) ¢ < Py, p1)(P) A Plpy pa) (0)
(i) Pipy po)y () A Plpypg) (9) < Pipy g (¢) in P(AX A x B)
where the p;’s are appropriate projections

(iﬁ) P(Php2>(¢) A P<P27:D3>(U) = P<P17:D3>(¢) in P(A x B x B)
where, again, the p;’s are appropriate projections

(iV) Py pa) (@) A Pipy ) (8) < Py oy (0) in P(A x B x B)
where the p;’s are as before

(V) Py ) (p) < Hp, () in P(A)
where p1: A X B — A and py: A X B — B are the projections

where composition (4, p)—d)>(B7 o)i>(C, 7) is defined as

Hipy,ps) (Ppy pa) (8) A Py pg) (V)

and identity is (A4, p)—p>(A, 0)

2.3 ExAMPLES. The main examples of this construction are toposes obtained
from a tripos, see [13, 26, 28].

2.4 REMARK. It is quite apparent that the elementary structure plays no role
in the definitions in 2.2—but it will be crucial for 3.3. We refer the reader to
[25] for an analysis of that.

2.5 REMARK. The logical relevance of 2.2 is exposed if one considers the allegory
Ap of relations of an elementary existential doctrine P:C°? — InfSL, see [11],
whose objects are those of C and the poset of 1-arrows from A to B is P(A x B).

Composition of 1-arrows AJ—>B—|C—>C is
Hp, ps) (P<p1,pz>(9) A P{pz,p3>(o>

with identities given by d4. The opposite 6° of a l-arrow A-L-B is given by

BP(szl’l)(a)A.

If one then takes maps in the splitting (allegory) of the “symmetric idem-
potents” of Ap, one gets exactly the category Tp, see [6].

The locally posetal category Ap is also a cartesian bicategory, see [8]. The
product functor of the base extends to a symmetric tensor X as in 2.1. The
structure of commutative comonoid on each object A is given by

1 {T A P<p1,p2>(5)/\1}3<p1,133>(5)

Ax A

Note that the computation of the opposite 6° of a 1-arrow A-Y>B in the

Ppy,py) (0)
cartesian bicategory gives precisely the 1-arrow Bﬂ”_)A, see [8].



The conditions (ii)-(v) in 2.2 are written in the notation of the bicategory
respectively as

/;”/»Aﬂ.“’\ /‘L»Bx"\
A | B A |

\2_/7 \Q_’/B

®° A @
/%’ TR /_ﬁ’_\
B IN B A I A

\ct/ \'¢\—>B~/q*bo/,

We shall find it easy to obtain the construction of 7p as the composite of
two left biadjoints to forgetful functors:

(i) the left biadjoint to the inclusion of the 1-full 2-subcategory CEED of
EED on those elementary existential doctrines with full comprehensions
and comprehensive diagonals;

(ii) the left biadjoint to the forgetful functor from Xct to CEED which takes
an exact category X to the doctrine Suby: X — InfSL of subobjects
of X.

3 The left biadjoints

Recall that, for a doctrine P:C”” — InfSL and for an object o in some P(A),
a comprehensions of a is a map {af}: X — A in C such that Py, (o) = Tx
and, for every f: Z — A such that P;(a) = Tz there is a unique map ¢g: Z — X
such that f = {a}} o g. One says that P has comprehensions if every o has
a comprehension, and that P has full comprehensions if, moreover, a < 3
in P(A) whenever {a] factors through {3J}. Finally, we say that an elementary
doctrine P:C”” — InfSL has comprehensive diagonals if every diagonal
morphism (id4,id4): A — A x A is a comprehension.

As we may need also the weakened form of comprehension, recall that a
weak comprehension of o is a map ¢:W — A in C such that P.(a) = Ty
and, for every f: Z — A such that P;(a) = T there is a (not necessarily unique)
map g: Z — X such that f =cog.

Observe that the fibration of vertical maps on the category of points (see
[14]) freely adds comprehensions to a given fibration producing an indexed poset
in case the given fibration is such. For a doctrine P:C®> — InfSL, the indexed
poset consists of the base category Gp of points where

an object is a pair (A4, «) where A is in C and « is in P(A)

an arrow f:(A,a) — (B, ) is an arrow f: A — B in C such that o < P(5).



Since the fibres of P are inf-semilattices, the category Gp has binary products
and there is a natural embedding I:C — Gp which maps A to (4, T 4). The in-
dexed functor extends to (P).:Gp"" — InfSL along I by setting (P), (4, @) :=
{y € P(A) | v < a}. Moreover, the comprehensions in (P). are full.

Then, consider the category Xp, the “extensional collapse” of P from [21]:

the objects of Xp are the objects of C;

a morphism [f]: A — B is an equivalence class of morphisms f: A — B in C
such that 64 <axa Prxs(dp) in P(A x A) with respect to the equivalence
which relates f and f’ when d4 <axa Prxs(0B).

Composition is given by that of C on representatives, and identities are repres-

ented by identities of C.

Then we define the indexed inf-semilattice (P)
essentially as P itself.

3.1 THEOREM. There is a left bi-adjoint to the inclusion of CEED into EED.

Proof. It is enough to check that, when P:C°® — InfSL is existential, the
doctrine ((P)C)X:X(p)COp — InfSL is existential and the pair (I,idp): P —
((P).)y preserves them. O

:Xp”” — InfSL on Xp

x-

For the next step it is useful to recall three results about fibrations with full
comprehensions and about regular and exact categories:

The first is a variation of [12]: in the notation introduced above, it states that
there is a biequivalence between the subcategory of CEED made of elementary
doctrines on a base with a terminal object (and morphisms of CEED whose
base component also preserves the terminal object) and the 2-category LFS of
categories with finite limits and a proper stable factorization system (with left
exact functors preserving the factorization).

The second is in [15] and shows that the inclusion of the 2-category Reg
of regular categories (with exact functors) into LFS has a left biadjoint: the
left biadjoint to the inclusion is computed on a category B with stable proper
factorization system (£, M) as the category of maps for the cartesian bicategory
of M-relations in B.

The third is the result from [27, 11] that the inclusion into Reg of the full
2-subcategory Xct on exact categories has a left biadjoint, which we shall denote
as (—)ex/reg: Reg —> Xct.

The composite of the three left biadjoints can be extended to a 2-functor
CEED — Xct which, for any elementary existential doctrine P:C”® — InfSL,
gives the full subcategory Ep of Tp on those objects (A, p) such that

Ta < Pidy ida)P
—or, equivalently, d4 < p.
Following [22] we shall refer to such an object p in P(A x A) as a P-
equivalence relation on A. Condition 2.2(i) for arrows in £p becomes re-

dundant and condition 2.2(v) can be reduced to T4 < #,,(¢). For each ob-
ject A in C, one can consider the object (A,54) in Ep, and such assignment



extends to a functor D:C — Ep mapping an arrow f: A — B to the rela-
tion Hiq, 1 (Ta) = Pgxidp)(0p). In turn, it gives rise to a l-arrow from
P to the indexed inf-semilattice of subobjects SubgP:SPOp — InfSL since

SubgP (A, (SA) = P(A)

3.2 ExaMmPLES. The leading example of the above construction Ep is the exact
completion Xey/reg [11, 4, 7] of a regular category &', which coincides with Egy
for the doctrine Suby: XY —s InfSL of subobjects of X.

Other examples come from theories apt to formalize constructive mathem-
atics: the category of total setoids a la Bishop and functional relations based on
the Minimalist type theory in [20], which coincides with the construction Egmss
where the doctrine G™** is defined as in [22], or the category of total setoids &
la Bishop and functional relations based on the Calculus of Constructions [9],
which forms a topos as mentioned in [2] and coincides with Egcoc where the
doctrine GC°C is constructed from the Calculus of Construction as G™* in [22].

3.3 THEOREM. For every elementary existential doctrine P:C” — InfSL in
CEED, pre-composition with the 1-arrow

op
¢ P

DP|  idp J/ InfSL

/

gP op SubgP

in CEED induces an equivalence of categories
—o(D,idp): CEED(Subg,,Suby) = CEED(P, Suby)
for every X in Xct.

3.4 COROLLARY. The action of the left biadjoint to the 2-functor Xct —
EED that takes an exact category to the elementary existential doctrine of its
subobjects is given by Tp on each elementary existential doctrine P.

3.5 PROPOSITION. If the elementary existential doctrine P:C®™ — InfSL is in
CEED, then the inclusion of Ep into Tp is an equivalence of categories.

Proof. 1t is sufficient to note that, since P has full comprehensions, for any «
in P(A), one has a = dy4 T. Hence

EED(P,Suby) = CEED(P, Suby)
for any regular category X. O

3.6 REMARK. The statement in 3.5 holds also when the elementary existential
doctrine P has just weak full comprehension. We suspect that this is related to
the analysis carried out by Jonas Frey on pre-equipments of triposes in [10].



4 Comparing quotient completions

In [21], the authors considered a completion for quotients of an elementary doc-
trine P:C”® — InfSL which compares with the one presented in the previous
section when P is also existential. Recall from loc.cit. that the elementary
quotient completion Qp of P consists of

objects which are pairs (A4, p) such that p is a P-equivalence relation on A,

an arrow [f]: (A4, p) — (B, o) is an equivalence class of arrows f: A — B in C
such that p < Py ¢(0) in P(Ax A) with respect to the relation determined
by the condition that p < Pyy4(0)

Composition is given by that of C on representatives, and identities are repres-
ented by identities of C. R
The indexed partial inf-semilattice P: onp — InfSL on Qp is defined on
an object (A, p) as
P(A,p) := Des,

where Des,, is the sub-order of P(A) on those « such that P, (@) Ap < Py, (),
where pry,pry: A X A — A are the projections.

By Theorem 6.1 in [22], when P is existential with (weak) full comprehen-
sions, also P is existential. Since clearly Subg,, has quotients, there is a canonical
arrow

op
Qp 5

P

T
Lopl 4{/7 InfSL

gPOP SU-bTP

of elementary existential doctrines which preserves quotients.

It is easy to see that the action of L on objects is the identity and that the
components of £ are identity homomorphisms. For an arrow [f]: (A4, p) — (B, o)
in Op

L [f] - H(prl,prs)(P(prl,prz)(p) A P(foprQ,pr3) (J))
where pr denotes a projection from A x A x B. Note that the construction of

L can be performed for any elementary existential doctrine P and that clearly
L is faithful.

4.1 EXAMPLE. An interesting example of the comparison above appears in [10]
applied to the doctrine (P),:Gp"" — InfSL for P:C”” — InfSL a tripos and
it is used to analyze the tripos-to-topos construction in a refined 2-categorical
setup of pre-equipments.

4.2 THEOREM. Suppose that P:C”” —s InfSL is an elementary existential doc-
trine with weak full comprehensions. Suppose moreover that, for every A and B
in C and for every o in P(A x B) such that T4 < Hp, () wherepr: Ax B — A is
the first projection, there is an arrow w: A — B in C such that Ta < Pia, w)(c).
Then the functor L: Qp — Ep is an equivalence.



Proof. There is only to prove that L is full. So, given an arrow ¢: (4, p) — (B, o)
in Ep, it is T4 < &,,(¢). By hypothesis, there is f:A — B in C such that
Ta < Piay,p)(9), or equivalently Hiq,xr(64) < ¢. It is then easy to see that
¢ =L[f]. O

4.3 REMARK. For P:C”” — InfSL an elementary existential doctrine with
full comprehensions, it is possible to prove a converse to 4.2 under the further
hypothesis that every reflexive P-relation has a smallest transitive extension,
i.e. for every object C in C and every object ¢ in P(C x C) such that dc < ¢,
there is an object ¢* in P(C' x C) such that

¢ < Ct P(plaPZ)(Ct) A P<P27P3>(Ct) < P(P1,p3>(ct)

where p1,pa,p3: C x C — C are the projections, and ¢? is smallest with those
three properties.

It is easy to see that ¢* is symmetric when ¢ is such.

Given a in P(A x B) such that T4 < d, (a), we may assume with no
loss of generality that Tp < &, () since P has full comprehensions—pr;: A x
B — A and pry: A X B — B are the two projections. The P-relation ¢ :=
vt (Por pry) (@) A Py pry) (@) s reflexive and symmetric in P(B x B). Hence
a:(A,84) — (B,¢') is an arrow in Ep. Since L is an equivalence, there is
[w]:(A,04) = (B,¢") in Qp such that L [w] = «, thus Ta < Ppia, w) ().

4.4 REMARK. The leading example of exact completion satisfying the hypo-
thesis of 4.2 is that of exact completion of a category with binary products, a
weak terminal object and weak pullbacks [5, 4, 7]. It is £y where ¥: S —
InfSL is the functor of weak subobjects.

Note that the problem pointed out in [7] 8.3, p. 103, remains in the present
context of doctrines with just weak comprehensions as the result in 4.2 does not
extend to something similar to 3.3.

4.5 EXAMPLES. Another relevant application of 4.2 is for the doctrine F™% in
[22] giving rise to the total setoid model of Martin-Lof’s type theory in [24].

Note also that the second stage of the construction of Joyal’s arithmetic
universes in [23], which is the category of decidable predicates Pred(S) on a
Skolem theory S, is a regular category and coincides with the base category of
the doctrine obtained by adding full comprehension and forcing extensionality
in the sense of [21] to the elementary doctrine of decidable predicates on the
Skolem category S. Since epis split in Pred(S), this is an example where the
hypothesis of 4.2 holds for the doctrine of subobjects of the regular category
Pred(S).
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