Prima di uscire dall'aula, **CONSEGNARE QUESTO FOGLIO** indipendentemente dall'esito della prova. Nel caso, si barri "Ritirato" accanto alla firma.

ISTITUZIONI DI ANALISI MATEMATICA II (B)

Compito A - 9 settembre 2010

Cognome e nome (stampatello):	• • • • • • • • • • • • • • • • • • • •	
Numero matricola: Corso di laurea:		
Firma	Ritirato 🗆 5	E I

Esercizio 1 (7 punti) Calcolare il valore dell'integrale

$$\int_0^8 e^{2\sqrt[3]{x}} dx.$$

Esercizio 2 (7 punti) Stabilire per quali valori del parametro $\alpha \in \mathbb{R}$ la serie

$$\sum_{k=1}^{\infty} \left[1 - \cos \left(\frac{3k + k^2}{k^4 + 1} \right) \right] \left[\sin \left(\frac{1}{k} \right) \right]^{\alpha}$$

risulta convergente.

Esercizio 3 (7 punti) Dimostrare che esistono e trovare i massimi e minimi assoluti sul dominio $D = \{(x,y) \in \mathbb{R}^2 : x \geq 1, y \geq 1, xy \leq 3\}$ della funzione $f(x,y) = x^2 e^{3-y^2+2y}$.

Esercizio 4 (2 punti) Si enunci il teorema fondamentale del calcolo integrale.

- (2 punti) Si calcoli la derivata prima della funzione $F(x) = \int_{-2x}^{2x} e^t \sin t \, dt$.
- (2 punti) Si calcoli il valore di $F''(\pi/2)$.

Esercizio 5 (2 punti) Si enunci il teoema del differenziale totale.

- (2 punti) Dimostrare che la funzione $f(x,y) = 2xe^y + \cos(xe^y + 1)$ è di classe C^1 su \mathbb{R}^2
- (2 punti) Dimostrare che f non ammette estremi relativi su \mathbb{R}^2 .