Prima di uscire dall'aula, **CONSEGNARE QUESTO FOGLIO** indipendentemente dall'esito della prova. Nel caso, si barri "Ritirato" accanto alla firma.

ISTITUZIONI DI ANALISI MATEMATICA 2 (B)

Compito A - 30 giugno 2014

Cognome e nome (stampatello):	• • • • • • • • • • • • • • • • • • • •	
Numero matricola: Corso di laurea:		
Firma	Ritirato □	EI

Esercizio 1 a) (7 punti) Si calcoli l'integrale indefinito

$$\int \sqrt{e^x + 9} \, dx \, .$$

- b) (2 punti) Si enunci il teorema fondamentale del calcolo integrale.
- c) (2 punti) Si calcoli la derivata F'(x) della funzione

$$F(x) := \int_{3x}^{3x^2+1} \frac{\sin t}{3 + e^t} dt.$$

Esercizio 2 a) (7 punti) Stabilire il carattere della serie

$$\sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{\sqrt{14 + x^2}}{2 + x^2} \right)^k$$

al variare del parametro $x \in \mathbb{R}$.

- b) (2 punti) Si enunci il criterio di Leibnitz per la convergenza di una serie a termini di segno alterno.
- c) (2 punti) Si dica se la serie $\sum_{k=0}^{\infty} (-1)^k \frac{k}{k^2+25}$ è convergente o meno.

Esercizio 3 a) (7 punti) Si trovino massimi e minimi relativi in \mathbb{R}^2 della funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) := (x^2 - 1)(y^2 - 2y)$$
.

- b) (2 punti) Dimostrare che f NON assume né massimo né minimo assoluto su \mathbb{R}^2 .
- c) (2 punti) Si enunci il teorema del moltiplicatore di Lagrange.