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Monge-Ampère equations (M-A)

In Ω ⊆ IRn open and bounded

classical M-A det(D2u) = f (x)

Optimal transportation det(D2u) =
f (x)

g(Du)

Prescribed Gauss Curvature det(D2u) = k(x)(1 + |Du|2)
n+2

2

References: e.g., P.-L. LIONS, Manuscripta Math. (1983)
I.J. BAKEL’MAN, book (1994),
C. GUTIERREZ, book (2001),
C. VILLANI, book (2003),
L. A. CAFFARELLI, Contemp. Math. (2004),
N.S. TRUDINGER, Intern. Congress Math., Eur. Math. Soc. (2006)
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G(x , u, Du, D2u) = −det(D2u) + H(x , u, Du) = 0

They are FULLY NONLINEAR DEGENERATE ELLIPTIC equations
in the sense that ∀ X , Y ≥ 0, symmetric matrices

det(X ) ≥ det(Y ), ∀ X − Y ≥ 0.

So the Monge-Ampère equations are degenerate elliptic over
CONVEX solutions.

VISCOSITY SOLUTIONS are a good notion for these equations if
H(x , r , p) is nondecreasing in r .
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Known result

H. ISHII - P.L. LIONS, J. Diff. Eqs. (1990)

−det(D2u) + H(x , u, Du) = 0, in Ω ⊆ IRn bounded.

Theorem
H ≥ 0, H nondecreasing in u, and for all R > 0 there is LR such that

|H1/n(x , r , p)− H1/n(x , r , p1)| ≤ LR|p − p1|, ∀ |r |, |p|, |p1| ≤ R.

Then the comparison principle holds between convex subsolutions and
supersolutions.

Idea: Y ≥ 0, n × n symmetric matrix

−(det Y )1/n = sup{−tr(MY ), M ≥ 0, det M = n−n}
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Remarks

−det(D2u) + H(x , u, Du) = 0.

The principal part does NOT depend on x .
For H not strictly increasing in u they perturb subsolutions to strict
subsolutions.
in IRn u convex → locally Lipschitz : weak assumption on H is
enough.
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Fully nonlinear subelliptic equations

Given a family of smooth vector fields X1, ..., Xm define

intrinsic (horizontal) gradient DXu := (X1u, ..., Xmu),

symmetrized (horizontal) Hessian (D2
Xu)ij :=

XiXju + XjXiu
2

.

F (x , u, DXu, D2
Xu) = 0

Initiated by Bieske, Manfredi, and others ( ∼ 2002).
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Example: the Heisenberg operator

In IR3 write (x , y , t), and take

X1u = ux + 2yut , X2u = uy − 2xut

DXu(x) = (X1u, X2u), m = 2, n = 3.

Take the coefficients of X1 and X2 σ =

 1 0
0 1

2y −2x

.

Then DXu(x) = σT Du, D2
Xu = σT D2u σ

F (x , u, σT Du, σT D2u σ) = 0

Applications of Heisenberg geometry: L. CAPOGNA, D. DANIELLI, S.D.
PAULS, J.T. TYSON (2007)
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An alternative approach

Define
Xj = σj · ∇, σij = σj

i , σ n ×m matrix.

Then

DXu(x) = σT (x)Du and

D2
Xu = σT (x)D2u σ(x) + Q(x , Du),

Qij(x , p) :=
[
Dσj σi + Dσi σj] (x) · p

2

0 = F (x , u,

DX u︷ ︸︸ ︷
σ(x)T Du,

D2
X u︷ ︸︸ ︷

σT (x)D2u σ(x) + Q(x , Du)) =: G(x , u, Du, D2u).
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For

G(x , u, Du, D2u) = F (x , u, σT (x)Du, σT (x)D2u σ(x) + Q(x , Du)) = 0

can use standard viscosity theory if G is degenerate elliptic and strictly
increasing in u.

Without strict monotonicity can prove COMPARISON PRINCIPLE if
any subsolution can be perturbed to a STRICT subsolution.

see M. BARDI - P. MANNUCCI, On the Dirichlet problem for non-totally
degenerate fully nonlinear elliptic equations, Commun. Pure Applied Anal.
(2006).
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Subelliptic Monge Ampère type equations

−det(D2
Xu) + H(x , u, DXu) = 0.

For X1, ..., Xm generators of the Heisenberg group

−det(σT (x)D2u σ(x)) + H(x , u, σT (x)Du) = 0

is a prototype fully nonlinear equation, see
J.J. MANFREDI, Nonlinear Subelliptic Equations on Carnot Groups, (2003),
D. DANIELLI - N. GAROFALO - D.M. NHIEU, (2003), C.E. GUTIÈRREZ - A.
MONTANARI, (2004).
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Motivations

D. DANIELLI - N. GAROFALO - D.M. NHIEU, (2003) propose a
definition of HORIZONTAL Gauss curvature k(x) in Carnot
groups. The corresponding equation of prescribed curvature is

det(D2
Xu) = k(x)(1 + |DXu|2)

m+2
2 .

Equations of the form

” det(D2
Xu) =

f (x)

g(DXu)
”

are related to optimal transportation between Carnot groups or in
sub-riemannian geometry:
L. AMBROSIO-S. RIGOT (2004), A. FIGALLI-L. RIFFORD (2008)

If m = n, Monge Ampere on vectorial fields (related with
Riemannian geometry, T. Aubin, 1998)
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Subelliptic Monge Ampère type equations

−det(D2
Xu) + H(x , u, DXu) = 0 in Ω

It is degenerate elliptic on X − convex functions , i.e.

D2
Xu ≥ 0,

in the "viscosity" sense.

Some references on X -convexity in Carnot groups
G. LU - J. MANFREDI - B. STROFFOLINI, (2004), D. DANIELLI - N.
GAROFALO - D.M. NHIEU, (2003).
A survey of convexity in Carnot groups is in the book A. BONFIGLIOLI
- E. LANCONELLI - F. UGUZZONI, (2007).
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One of our main results

−det(D2
Xu) + H(x , u, DXu) = 0, in Ω ⊆ IRn bounded

Theorem
X1, ..., Xm are the generators of a Carnot group on IRn.H
nondecreasing in u. For all R > 0 there is LR such that

|H1/m(x , r , q)− H1/m(x , r , q1)| ≤ LR|q − q1|, ∀ |r |, |q|, |q1| ≤ R.

Let u X -convex and subsolution, v supersolution. Then the
comparison principle holds.
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EXAMPLE

The assumptions of the comparison theorem cover the prescribed
horizontal Gauss curvature equation in Carnot group

−det(D2
Xu) + k(x)(1 + |DXu|2)(m+2)/2 = 0, in Ω,

for k(x) > 0.

In particular, we obtain the uniqueness of a viscosity solution of the
PDE with prescribed boundary data.
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New difficulties

1. The principal part of the operator

F (x , p, X ) := −det(σT (x)X σ(x) + Q(x , p))

depends on x and does not satisfy in general the standard
structure conditions in viscosity theory.
2.

F (x , p, Y ) := −log det
(
σT (x)Y σ(x) + Q(x , p)

)
satisfies the structure conditions if

σT (x)Y σ(x) + Q(x , p) ≥ γI, γ > 0.

We have to use uniformly X -convex functions: for some γ > 0

D2
Xu = σT (x)D2u σ(x) + Q(x , Du) ≥ γI,

in the "viscosity" sense.
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−det(D2
Xu) + H(x , u, DXu) = 0.

1. H STRICTLY increasing in u → OK comparison principle.
2. H not decreasing in u (which is the most frequent in
applications), we perturb a subsolution u to a STRICT subsolution.

3. u be X -convex in Ω does this imply

|σT (x) Du| ≤ C in Ω1 ⊆ Ω ?

It is true in the Carnot groups: G. LU - J. MANFREDI - B.
STROFFOLINI (2004), D. DANIELLI - N. GAROFALO - D.M. NHIEU
(2003), V. MAGNANI (2006), M. RICKLY (2006), P. JUUTINEN - G. LU -
J. MANFREDI - B. STROFFOLINI (2007).
If 3. holds then it is possible to construct a STRICT subsolution
perturbing a subsolution without extra assumptions on H.
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Comparison for general vector fields

−det(D2
Xu) + H(x , u, DXu) = 0, in Ω ⊆ IRn bounded

Theorem

H ∈ C(Ω× IR × IRm), nondecreasing r ; H1/m Lipschitz in q uniformly in
x , r , 0 < Co ≤ H ≤ C1, H satisfies the structure condition,
|x |2 uniformly X -convex in Ω, i.e.,

σT (x)σ(x) + Q(x , x) ≥ η I, ∀x ∈ Ω, for some η > 0.

Then the comparison principle holds between X -convex subsolutions
and v supersolutions.
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A model example of well-posedness

{
−det(D2

Xu) + |DXu|m = f (x), in Ω,
u = 0, on ∂Ω.

with f ≤ 0, as P.L. Lions (ARMA,1985) in the Euclidean case;

Ω = {Φ(x) > 0} uniformly X -convex:

−D2
XΦ(x) ≥ γI, γ > 0.

as Trudinger (2006) in the Euclidean case.
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Theorem
X1, ..., Xm are the generators of a Carnot group on IRn.
Ω smooth and uniformly X -convex.
Then there exists a unique solution of the Dirichlet problem,
continuous in Ω.

Remark
The same result holds also if the PDE is replaced by

−det(D2
Xu) = f (x).
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