4 Topologia degli spazi affini

4.1 Nozioni generali

L'insieme $\mathbb{R}^n = \{\underline{x} = (x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}$ delle *n*-uple di numeri reali ha una naturale struttura di \mathbb{R} -spazio vettoriale, di dimensione n; la base $\{\underline{e}_1, \dots, \underline{e}_n\}$, ove \underline{e}_j è il vettore nullo ovunque tranne che nella componente j-esima che vale 1, è detta base canonica. Come ogni spazio vettoriale, anche \mathbb{R}^n ha una struttura di spazio affine, per la quale i suoi elementi possono essere visti sia come vettori che come punti. Su \mathbb{R}^n si ritiene fissato anche il prodotto scalare euclideo dato da $\underline{x}' \cdot \underline{x}'' = x'_1 x''_1 + \dots + x'_n x''_n$, che è legato alla norma euclidea dalla relazione $||\underline{x}|| = \sqrt{\underline{x} \cdot \underline{x}}$: si parla allora di \mathbb{R}^n come di spazio affine euclideo. Un sottoinsieme S di \mathbb{R}^n è usualmente chiamato insieme affine.

Prodotto scalare euclideo in \mathbb{R}^n

Insieme affine

La norma euclidea induce una topologia su \mathbb{R}^n , per la quale una base di intorni di un punto \underline{x}_0 è la famiglia delle palle aperte $\{B_n(\underline{x}_0,\varepsilon)\}_{\varepsilon>0}$, o delle palle chiuse $\{B_n(\underline{x}_0,\varepsilon)\}_{\varepsilon>0}$. (40)

Base di intorni

Palle aperte e chiuse

Per $n \geq 2$ non è più assegnato un ordine su \mathbb{R}^n , ovvero la relazione " \leq " perde senso; ed assieme ad essa perdono senso le nozioni di "insieme superiormente/inferiormente limitato" e di $\pm \infty$. Tuttavia:

Insieme limitato

– un sottoinsieme A di \mathbb{R}^n si può ancora definire *limitato* se esiste r > 0 tale che $||\underline{x}|| < r$ per ogni $\underline{x} \in A$, ovvero se è contenuto in qualche palla centrata nell'origine;

Infinito ∞_n in \mathbb{R}^n

– quanto all'"infinito", si aggiunge ad \mathbb{R}^n un unico punto ∞_n , ottenendo uno spazio esteso $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty_n\}$. Una base di "intorni" di ∞_n in \mathbb{R}^n è data da $\mathbb{R}^n \setminus B(\underline{0}, M] = \{\underline{x} \in \mathbb{R}^n : ||\underline{x}|| > M\}$ (i complementari di palle chiuse) al variare di M > 0; tale intorno di ∞_n sarà tanto più piccolo quando più grande è M. (41)

Spazio completato $\overline{\mathbb{R}^n}$

Una successione $(\underline{x}_k)_{k\in\mathbb{N}}$ di punti di \mathbb{R}^n (dunque $\underline{x}_k=(x_{k,1},\ldots,x_{k,n})$) ha limite $\underline{\ell}\in\overline{\mathbb{R}^n}$ se essa sta definitivamente in ogni intorno di $\underline{\ell}$, cioè se per ogni intorno (di base) U di $\underline{\ell}$ esiste $k_U\in\mathbb{N}$ tale che $\underline{x}_k\in U$ per ogni $k>k_U$.

Limite di successione in $\overline{\mathbb{R}^n}$

Proposizione 4.1.1. Il limite di una successione in \mathbb{R}^n si può ricondurre a quello in \mathbb{R} :

- (i) (Convergenza) $Se \ \underline{\ell} \in \mathbb{R}^n$, $si \ ha \lim_{k \to +\infty} \underline{x}_k = \underline{\ell} \ se \ e \ solo \ se \lim_{k \to +\infty} x_{k,j} = \ell_j \ per \ ogni \ j$.
- (ii) (Divergenza) Si ha $\lim_{k \to +\infty} \underline{x}_k = \infty_n$ se e solo se $\lim_{k \to +\infty} ||x_k|| = +\infty$.

Dimostrazione. (i) Basta passare al limite per $k\to +\infty$ nelle disuguaglianze $\max_j |x_{k,j}-\ell_j| \leq ||\underline{x}_k-\underline{\ell}|| \leq \sum_j |x_{k,j}-\ell_j|$. (ii) Per definizione.

⁽⁴⁰⁾Tuttavia, per la Proposizione 3.1.1, al posto della norma euclidea si potrebbe usare qualsiasi altra norma su \mathbb{R}^n , ad esempio $||\underline{x}||_m$ o $||\underline{x}||_s$, senza alterare la struttura topologica che ne risulta definita su \mathbb{R}^n . (41)Per visualizzare intuitivamente il "punto all'infinito" ∞_n , si pensi ad una superficie sferica (n-1)-dimensionale (dunque una circonferenza in \mathbb{R}^2 , una superficie sferica in \mathbb{R}^3 ...) centrata in $\underline{0}$ e di raggio che tende all'infinito, i cui punti vengano alla fine "pinzati" per farli diventare uno solo. In questo senso, lo spazio esteso $\overline{\mathbb{R}^n}$ si identifica con la superficie sferica n-dimensionale $\mathbb{S}^n = \{\underline{x} \in \mathbb{R}^{n+1} : ||\underline{x}|| = 1\}$: ciò si vede al meglio con la proiezione stereografica dal polo Nord di \mathbb{S}^n verso \mathbb{R}^n , in cui il polo Nord venga mandato in ∞_n (vedi pag. 46). La scelta fatta per la base di intorni di ∞_n è la naturale conseguenza di questa visualizzazione: gli intorni di ∞_n sono i sottoinsiemi di \mathbb{R}^n che "avvolgono" tutta questa "(n-1)-sfera all'infinito", e dunque sono proprio quelli che contengono qualche complementare di palla chiusa.

Proposizione 4.1.2. Ogni successione limitata in \mathbb{R}^n ammette una sottosuccessione convergente.

Dimostrazione. Ci limitiamo al caso n=2, in quanto l'idea è facilmente adattabile al caso generale. Se $(a_k,b_k)_{k\in\mathbb{N}}$ è una successione limitata in \mathbb{R}^2 , entrambe le successioni $(a_k)_{k\in\mathbb{N}}$ e $(b_k)_{k\in\mathbb{N}}$ sono limitate in \mathbb{R} . Esisterà in particolare una sottosuccessione $(a_{k_\ell})_{\ell\in\mathbb{N}}$ di $(a_k)_{k\in\mathbb{N}}$ convergente, diciamo a $\tilde{a}\in\mathbb{R}$. Anche la successione $(b_{k_\ell})_{\ell\in\mathbb{N}}$ di $(b_k)_{k\in\mathbb{N}}$ è limitata, e dunque ammette una sottosuccessione $(b_{k_\ell m})_{m\in\mathbb{N}}$ convergente, diciamo a $\tilde{b}\in\mathbb{R}$. Allora la sottosuccessione $(a_{k_\ell m},b_{k_\ell m})_{m\in\mathbb{N}}$ di $(a_k,b_k)_{k\in\mathbb{N}}$ converge a $(\tilde{a},\tilde{b})\in\mathbb{R}^2$.

Esempi. (1) La successione $\underline{x}_k = (\frac{1}{k}, \operatorname{arctg} k, -3)$ in \mathbb{R}^3 tende a $\ell = (0, \frac{\pi}{2}, -3)$. Invece, la successione $\underline{x}_k = (\frac{1}{k}, (-1)^k)$ in \mathbb{R}^2 non ha limite, perché non ce l'ha la successione $(-1)^k$ in \mathbb{R} : tuttavia è evidente che quest'ultima successione è limitata, e dunque deve ammettere sottosuccessioni convergenti (ad esempio, \underline{x}_{2k+1} converge a (0,-1)). (2) Topologicamente, i numeri complessi \mathbb{C} vengono identificati al piano euclideo \mathbb{R}^2 : dunque, ad esempio, quando si dice che la successione di numeri complessi $(z_k)_{k\in\mathbb{N}} = (x_k+iy_k)_{k\in\mathbb{N}}$ converge a $w = (u+iv) \in \mathbb{C}$, si intende che la successione $(x_k,y_k)_{k\in\mathbb{N}}$ converge a (u,v) in \mathbb{R}^2 . (3) Se $\lim \underline{x}_k = \infty_n$ (ovvero se $\lim ||x_k|| = +\infty$) non è detto che una delle componenti tenda a ∞ in \mathbb{R} : ad esempio, in \mathbb{R}^2 , le successioni (-k,0) e $(k\cos\frac{k\pi}{2},k\sin\frac{k\pi}{2})$ divergono entrambe a ∞_2 (infatti $||(-k,0)|| = ||(k\cos\frac{k\pi}{2},k\sin\frac{k\pi}{2})|| = k \to +\infty$), ma nel primo caso la y è sempre nulla, mentre nel secondo né la x né la y hanno limite. Invece, se una delle componenti di \underline{x}_k tende a ∞ allora anche $\lim \underline{x}_k = \infty_n$: infatti $||x_k|| \geq |x_{k,j}|$ per ogni j.

Nello spazio euclideo \mathbb{R}^n le definizioni di *insieme aperto*, *insieme chiuso*, *punto interno*, *punto di chiusura*, *punto di accumulazione*, *punto isolato* e *punto di frontiera* così come i risultati che legano queste nozioni tra loro e con le successioni, rimangono formalmente del tutto analoghe a quelle già viste per \mathbb{R} , a patto di sostituire le palle agli intervalli, e dunque la norma euclidea di \mathbb{R}^n al modulo.

Un sottoinsieme A di \mathbb{R}^n si dirà *compatto* se è chiuso e limitato⁽⁴²⁾, e *compatto per successioni* se da ogni successione in A si può estrarre una sottosuccessione convergente in A.

Proposizione 4.1.3. Un sottoinsieme di \mathbb{R}^n è compatto se e solo se è sequenzialmente compatto.

Dimostrazione. Supponiamo che $K \subset \mathbb{R}^n$ sia sequenzialmente compatto. Se K non fosse limitato, esisterebbe una successione di elementi di K che tende a ∞_n ; analogamente, se K non fosse chiuso esisterebbe una successione di elementi di K che converge ad un punto in $\mathbb{R}^n \setminus K$. In entrambi i casi, nessuna sottosuccessione delle successioni date potrebbe convergere in K, assurdo. Dunque K è sia chiuso che limitato, ovvero compatto. Supponiamo ora che K sia compatto, e sia $(\underline{x}_k)_k$ una successione in K. Poiché K è limitato, per la Proposizione 4.1.2 esiste una sottosuccessione $(\underline{x}_{k_\ell})_\ell$ che converge in \mathbb{R}^n , diciamo a $\underline{\tilde{x}}$; e poiché K è chiuso, deve essere $\underline{\tilde{x}} \in K$. Dunque K è sequenzialmente compatto.

A si dirà connesso se non esistono due aperti disgiunti $U, V \subset \mathbb{R}^n$ tali che $A \subset U \cup V$, $A \cap U \neq \emptyset$ e $A \cap V \neq \emptyset$; si dirà connesso per archi se per ogni $\underline{x}_0, \underline{x}_1 \in A$ esiste un cammino

Insiemi aperti e chiusi

Punti interni, di chiusura di accumulazione, isolati, di frontiera

Insiemi compatti e compatti per succession

Insiemi connessi e connessi per archi

⁽⁴²⁾ La definizione generale di compattezza in uno spazio topologico sarebbe la seguente: se X è uno spazio topologico, un sottoinsieme $A \subset X$ si dice compatto se, data una qualsiasi famiglia $\{U_{\iota} : \iota \in I\}$ di aperti di X che ricopre A (ovvero tale che $A \subset \bigcup_{\iota \in I} U_{\iota}$), da essa è sempre possibile scegliere una sottofamiglia finita $\{U_{\iota_1}, \ldots, U_{\iota_m}\}$ che continua a ricoprire A, ovvero tale che $A \subset U_{\iota_1} \cup \cdots \cup U_{\iota_m}$. La definizione più semplice di compattezza data sopra (chiusura più limitatezza) si addice agli spazi vettoriali di dimensione finita $X = \mathbb{R}^n$, nei quali si dimostra essere equivalente a quella generale; ma non funziona per spazi topologici qualsiasi, in particolare non funziona per gli spazi vettoriali di dimensione infinita come gli spazi di Hilbert.

in A (ovvero, una curva continua $\gamma:[a,b]\to A$) tale che $\gamma(a)=\underline{x}_0$ e $\gamma(b)=\underline{x}_1$. (43)

Proposizione 4.1.4. Un sottoinsieme di \mathbb{R}^n connesso per archi è anche connesso. (44)

Dimostrazione. Supponiamo che $A \subset \mathbb{R}^n$ sia sconnesso, e siano $U, V \subset \mathbb{R}^n$ due aperti disgiunti tali che $A\subset U\cup V,\ A\cap U\neq\varnothing\ \mathrm{e}\ A\cap V\neq\varnothing.\ \mathrm{Siano\ ora}\ \underline{x}_{_{0}}\in A\cap U\ \mathrm{e}\ \underline{x}_{1}\in A\cap V,\ \mathrm{e\ sia}\ \gamma:[a,b]\rightarrow A\ \mathrm{una}$ curva continua in A tale che $\gamma(a)=\underline{x}_0$ e $\gamma(b)=\underline{x}_1$; come vedremo nella Proposizione 4.3.7, il sostegno $\Gamma=\gamma([a,b])\subset A$ è anch'esso connesso. Ma allora si cade in contraddizione, perché $\Gamma\subset U\cup V, \ \Gamma\cap U\neq\varnothing$ e $\Gamma \cap V \neq \emptyset$. Dunque A non è connesso per archi.

4.2Limiti e continuità

Studieremo d'ora in poi funzioni del tipo $f:\mathbb{R}^n\to\mathbb{R}^m$, di n variabili reali (perché il dominio è \mathbb{R}^n , dunque va specificato il valore di f in ogni $x=(x_1,\ldots,x_n)$ e vettoriali (perché il codominio è \mathbb{R}^m , dunque il valore $f(\underline{x})$ sarà un vettore di \mathbb{R}^m). Più generalmente, dovremo aspettarci che f sia definita solo su un sottoinsieme $A \subset \mathbb{R}^n$, ovvero $f: A \to \mathbb{R}^m$; il grafico di f sarà allora

$$\Gamma_f = \{(\underline{x}, \underline{y}) \in A \times \mathbb{R}^m : \underline{y} = f(\underline{x})\} \subset \mathbb{R}^{n+m}.$$

Se $\pi_j : \mathbb{R}^m \to \mathbb{R}$ è la proiezione canonica j-esima $\pi_j(y) = y_j$ (con $j = 1, \dots, m$), la funzione $f_i = \pi_i \circ f : A \to \mathbb{R}$ si dice componente j-esima di f, e si ha $f = (f_1, \ldots, f_m)$. Per n = 1 (e A un intervallo di \mathbb{R}) ritroviamo la nozione di *curva*; per m=1 si parla anche di funzioni

Componenti di Funzione scalare

Esempi. (1) Se $A \in \mathbb{R}^2$ privato dell'asse x, le componenti di $f: A \to \mathbb{R}^3$ data da f(x,y) = (9x - 1) $3y, \sin xy, \frac{x^2 - e^x}{y}$) sono $f_1, f_2, f_3 : A \to \mathbb{R}$ date da $f_1(x, y) = 9x - 3y, f_2(x, y) = \sin xy$ e $f_3(x, y) = \frac{x^2 - e^x}{y}$. (2) Avendo identificato topologicamente $\mathbb C$ con $\mathbb R^2$, le componenti di una funzione $f:\mathbb C\to\mathbb C$ sono $f_1, f_2: \mathbb{C} \to \mathbb{R}$ date da $f_1 = \operatorname{Re} f$ e $f_2 = \operatorname{Im} f$. Ad esempio, se $f(z) = z^2 - ze^z$ si ha $z^2 = (x + iy)^2 = (x + iy)^2$ $(x^2 - y^2) + i(2xy) e^x = (x + iy)(e^x \cos y + ie^x \sin y) = e^x(x \cos y - y \sin y) + ie^x(x \sin y + y \cos y),$ dunque $f_1(z) = (\operatorname{Re} f)(z) = x^2 - y^2 + e^x(x\cos y - y\sin y) \text{ e } f_2(z) = (\operatorname{Im} f)(z) = 2xy + e^x(x\sin y + y\cos y).$

Proposizione - Definizione 4.2.1. (Limite di una funzione) Sia $p \in \overline{\mathbb{R}^n}$ un punto di accumulazione per A, e sia $\underline{\ell} \in \overline{\mathbb{R}^m}$. Si dirà che $\lim_{x \to p} f(\underline{x}) = \underline{\ell}$ se sono verificate le Limite di funzione sequenti condizioni equivalenti:

- (i) per ogni intorno V di $\underline{\ell}$ esiste un intorno U di p tale che $f((U \setminus \{p\}) \cap A) \subset V$;
- (ii) per ogni successione \underline{x}_k in $A \setminus \{p\}$ tale che $\lim \underline{x}_k = p$ si ha $\lim f(\underline{x}_k) = \underline{\ell}$.

Come fatto per le successioni, è molto importante iniziare notando che, nel calcolo dei limiti, ci si può comunque ridurre al caso m=1, cioè alle funzioni scalari $f:\mathbb{R}^n\to\mathbb{R}$:

Proposizione 4.2.2. (i) (Limiti finiti) $Se \ \ell \in \mathbb{R}^m$, si ha $\lim_{\underline{x} \to p} f(\underline{x}) = \underline{\ell}$ se e solo se $\lim_{x\to p} f_j(\underline{x}) = \ell_j \text{ per ogni } j = 1,\ldots,m.$

(ii) (Limiti infiniti) Si ha $\lim_{x\to p} f(\underline{x}) = \infty_m$ se e solo se $\lim_{x\to p} ||f(\underline{x})|| = +\infty$.

 $^{^{(43)}}$ In $\mathbb{R}^1 = \mathbb{R}$ si ritrova la nozione di *intervallo*, cioè "insieme senza buchi".

 $^{^{(44)}}$ Il viceversa è falso, come è evidenziato nell'esempio del seno del topologo in \mathbb{R}^2 , ovvero l'insieme $A = \{(x,y): x > 0, y = \sin \frac{1}{x}\} \cup \{(x,y): x = 0, |y| \le 1\}$ che si dimostra essere connesso ma non connesso per archi. Tuttavia, se A è un aperto di \mathbb{R}^n allora le due nozioni sono equivalenti.

Dimostrazione. Segue subito dalla Proposizione 4.1.1.

La Proposizione 4.2.2 mostra che a rendere più delicata la nozione di limite rispetto al caso base di funzioni di una sola variabile reale è solo, eventualmente, l'aumentata dimensione del dominio. Infatti, per $n \geq 2$, le palle $B_n(\underline{x}_0, \varepsilon)$ sono insiemi "più compositi" degli intervalli $B_1(x_0, \varepsilon) =]x_0 - \varepsilon, x_0 + \varepsilon[$, così come i complementari di palle chiuse lo sono più delle semirette: ora a $\underline{p} \in \mathbb{R}^n$ si può tendere in molti modi diversi, e non solo in due (da sinistra o da destra) come prima, ed $f(\underline{x})$ potrebbe avere comportamenti discordanti tra loro a seconda del modo in cui \underline{x} tende a \underline{p} . Dunque, anche se la nozione di limite è formalmente la stessa di prima, in realtà essa può diventare più delicata da maneggiare nei casi dubbi, come si vedrà ampiamente negli esempi presentati più in basso.

La funzione $f:A\to\mathbb{R}^m$ si dirà continua in $\underline{x}_0\in A$ se \underline{x}_0 è un punto isolato di A, oppure se \underline{x}_0 è di accumulazione per A e $\lim_{\underline{x}\to\underline{x}_0}f(\underline{x})=f(\underline{x}_0)$; si dirà che f è continua in A se è continua in ogni $\underline{x}_0\in A$.

Funzione continua

Proposizione 4.2.3. f è continua in \underline{x}_0 se e solo se lo sono tutte le sue componenti.

Dimostrazione. Vedi Proposizione 4.2.2(i).

La funzione $f:A\to\mathbb{R}^m$ si dirà lipschitziana in A se esiste una costante $L\geq 0$ tale che $||f(\underline{x})-f(\underline{x}')||\leq L||\underline{x}-\underline{x}'||$ per ogni $\underline{x},\underline{x}'\in A$. La migliore (ovvero la minima) di queste costanti $L_A\geq 0$ si dirà la costante di Lipschitz per f su A. (45)

Funzione lipschitziana

Proposizione 4.2.4. Se f è lipschitziana in A, essa è anche continua in A.

Dimostrazione. Esercizio (è la stessa di quella per funzioni di una variabile reale).

Corollario 4.2.5. La norma $||\cdot||: \mathbb{R}^n \to \mathbb{R}$ e le proiezioni $\pi_i: \mathbb{R}^n \to \mathbb{R}$ sono continue.

Dimostrazione. Sia la norma che le proiezioni sono lipschitziane: infatti da $\underline{x}' = \underline{x} + (-(\underline{x} - \underline{x}'))$, da $\underline{x} = \underline{x}' + (\underline{x} - \underline{x}')$ e dalla disuguaglianza triangolare delle norme discende $||\underline{x}|| - ||\underline{x}'|| | \le ||\underline{x} - \underline{x}'||$, e da $\max_j |x_j - x_j'| \le ||\underline{x} - \underline{x}'||$ segue $|x_j - x_j'| \le ||\underline{x} - \underline{x}'||$ per ogni j.

Le principali proprietà dei limiti e delle funzioni continue (ad esempio, la compatibilità con le operazioni e la composizione) restano vere anche in generale. Assieme alla Proposizione 4.2.2 e al Corollario 4.2.5, oltre al fatto che *le funzioni elementari sono continue nel loro dominio naturale*, queste proprietà permettono di risolvere gran parte delle questioni di limiti e continuità: ad esempio

Corollario 4.2.6. Tutte le funzioni lineari di \mathbb{R}^n in \mathbb{R}^m sono continue.

 $^{(^{45)}}$ Mostriamo che effettivamente esiste la minima costante di Lipschitz. Sia $S=\{L\geq 0: ||f(\underline{x})-f(\underline{x}')||\leq L||\underline{x}-\underline{x}'||$ per ogni $\underline{x},\underline{x}'\in A\}.$ Se f è lipschitziana in A si ha $S\neq\varnothing$; è inoltre ovvio che S è inferiormente limitato (0 è un minorante), dunque esiste $L_A=\inf S\geq 0.$ Dobbiamo mostrare che $L_A=\min S\geq 0,$ cioè che $L_A\in S.$ Se infatti esistessero $\underline{\tilde{x}},\underline{\tilde{x}}'\in A$ tali che $||f(\underline{\tilde{x}})-f(\underline{\tilde{x}}')||>L_A||\underline{\tilde{x}}-\underline{\tilde{x}}'||,$ si avrebbe di certo $\underline{\tilde{x}}\neq\underline{\tilde{x}}'$ (infatti $0\not>0$), dunque ciò equivarrebbe a $\frac{||f(\underline{\tilde{x}})-f(\underline{\tilde{x}}')||}{||\underline{\tilde{x}}-\underline{\tilde{x}}'||}>L_A$; per la proprietà caratteristica dell'estremo inferiore esisterebbe allora $L\in S$ tale che $\frac{||f(\underline{\tilde{x}})-f(\underline{\tilde{x}}')||}{||\underline{\tilde{x}}-\underline{\tilde{x}}'||}>L,$ ovvero $||f(\underline{\tilde{x}})-f(\underline{\tilde{x}}')||>L||\underline{\tilde{x}}-\underline{\tilde{x}}'||$: ma ciò sarebbe assurdo, proprio perché $L\in S.$

Dimostrazione. Come noto, una funzione lineare $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ è rappresentata —rispetto alle basi canoniche di \mathbb{R}^n e \mathbb{R}^m — da una e una sola matrice Φ ad m righe ed n colonne, ovvero tale che $\varphi(\underline{x}) = \underline{\Phi}\underline{x}$ per ogni $\underline{x} \in \mathbb{R}^n$ ove il secondo membro indica la moltiplicazione di Φ per il vettore colonna \underline{x} . Pertanto ogni componente di φ si scrive come combinazione lineare delle proiezioni π_1, \ldots, π_n (più precisamente si ha $\varphi_j = \Phi_{j1} \pi_1 + \cdots + \Phi_{jn} \pi_n$), e dunque è continua.

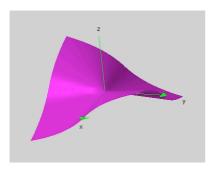
Come detto, i problemi si presentano quando si vogliono studiare i limiti di f nei punti dubbi, che possono essere punti di $\overline{\mathbb{R}^n}$ di accumulazione per il dominio e fuori da esso, o punti del dominio in cui f è definita "ad hoc" o in cui vi sono passaggi di definizione per f, e ciò per i motivi descritti in precedenza. Iniziamo col notare il seguente fatto, che generalizza quanto già noto per i limiti "sinistro" e "destro" nel caso di una variabile.

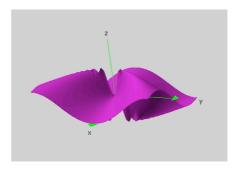
Proposizione 4.2.7. (Limiti e limiti di restrizioni) Siano $E \subset A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}^m$ una funzione, e $\underline{p} \in \overline{\mathbb{R}^n}$ un punto di accumulazione per E (dunque anche per A). Se esiste $\lim_{x \to p} f(\underline{x})$ allora esiste, ed è uguale, anche $\lim_{x \to p} (f|_E)(\underline{x})$.

Dimostrazione. Ovvio dalla definizione di limite.

La tecnica del limite di restrizioni, ovvero dello studiare il limite di $f(\underline{x})$ quando \underline{x} si avvicina a \underline{p} restando in un certo sottoinsieme del dominio permette dunque di "testare", pur senza poterla dimostrare, l'eventuale esistenza del limite globale: anzi, permette di dimostrare l'eventuale non-esistenza del limite globale, nel caso in cui si trovi un sottoinsieme E tale che $\lim_{\underline{x} \to \underline{p}} (f|_{E})(\underline{x})$ non esiste, o due sottoinsiemi E_1 ed E_2 tali che $\lim_{\underline{x} \to \underline{p}} (f|_{E_1})(\underline{x})$ e $\lim_{\underline{x} \to \underline{p}} (f|_{E_2})(\underline{x})$ esistono ma sono diversi. I sottoinsiemi più comunemente usati sono (i sostegni di) curve che passano, o tendono, a \underline{p} , e la ragione è chiara: se $\gamma: I \to A$ (con I intervallo di \mathbb{R}) parametrizza la curva, restringere f al sostegno di γ significa considerare la composizione $f \circ \gamma: I \to \mathbb{R}^m$, e dunque il limite della restrizione è ridotto al limite di una funzione di una sola variabile reale, il parametro $t \in I$.

In base alla Proposizione 4.2.3, possiamo limitarci a studiare il caso delle funzioni scalari.





(a) Grafico di $h(x,y)=\frac{xy}{|x|+|y|}$. (b) Grafico di $g(x,y)=\frac{xy^2}{x^2+y^4}$.

Esempi. (1) $h(x,y) = \frac{xy}{|x|+|y|}$ è definita e continua per $(x,y) \neq (0,0)$. Restringendo h agli assi (fuori da (0,0)) si ottiene h(x,0) = h(0,y) = 0, dunque $\lim_{(x,y)\to(0,0)} h(x,y)$, se esiste, vale 0. L'impressione è rafforzata restringendo a qualunque altra retta y = mx: infatti $\lim_{x\to 0} h(x,mx) = \lim_{x\to 0} \frac{m|x|}{1+|m|} = 0$. Ma nemmeno questo prova che $\lim_{(x,y)\to(0,0)} h(x,y)$ vale 0. Quanto a ∞_2 , tendendo lungo gli assi si ha

 $\lim_{x\to\infty} h(x,0) = \lim_{x\to\infty} h(0,y) = 0$, mentre tendendo lungo la bisettrice y=x si ha $\lim_{x\to\infty} h(x,x) = 0$ $\lim_{x\to\infty} \frac{|x|}{2} = +\infty$: dunque $\lim_{(x,y)\to\infty_2} f(x,y)$ non esiste, mentre la questione resta in sospeso per (0,0). (2) $\ell(x,y) = \frac{xy}{x+y}$ è definita e continua fuori dalla retta y = -x. Se $a \neq 0$ si ha $\lim_{(x,y) \to (a,-a)} \ell(x,y) = \infty$ (il numeratore tende a $-a^2 \neq 0$, il denominatore è infinitesimo). Sugli assi ℓ è nulla, dunque tendendo a (0,0) lungo le curve-assi si ha che $\lim_{t\to 0}\ell(t,0)=\lim_{t\to 0}\ell(0,t)=0$; d'altra parte, in ogni intorno di (0,0) vi sono punti della retta y=-x vicino ai quali ℓ diverge a ∞ , dunque $\lim_{(x,y)\to(0,0)}\ell(x,y)$ non può esistere. (3) $g(x,y) = \frac{xy^2}{x^2+y^4}$ è definita e continua fuori da (0,0); inoltre, g è nulla sugli assi, dunque $\lim_{(x,y)\to(0,0)} g(x,y)$, se esiste, deve essere 0. Inoltre, se $\gamma_{\alpha}(t)=(t,\alpha t)$ è una generica curva-retta per l'origine, vale $\lim_{t\to 0} g(\gamma_{\alpha}(t))=\lim_{t\to 0} \frac{t(\alpha t)^2}{(t)^2+(\alpha t)^4}=\lim_{t\to 0} \frac{\alpha^2 t}{1+\alpha^4 t^2}=0$; ma, come già visto, nemmeno questo basta per affermare che il limite vale 0. E infatti in questo caso è falso: se si sceglie la curva $\gamma(t) = (t^2, t)$ (il cui sostegno è il grafico $x = y^2$) si ha $g(\gamma(t)) \equiv \frac{1}{2}$, dunque $\lim_{t\to 0} g(\gamma(t)) = \frac{1}{2}$. In definitiva $\lim_{(x,y)\to(0,0)} g(x,y)$ non esiste. Per le stesse ragioni non esiste nemmeno $\lim_{(x,y)\to\infty_2} g(x,y)$. (4) m(x,y) = x è definita e continua su tutto \mathbb{R}^2 , e studiamo $\lim_{(x,y)\to\infty_2} m(x,y)$. Se $\gamma_1(t) = (t,0)$ (l'asse x), si ha $\lim_{t\to +\infty} m(t,0) = +\infty$, mentre se $\gamma_2(t) = (0,t)$ è l'asse y, si ha $\lim_{t\to +\infty} m(0,t) = 0$. Dunque $\lim_{(x,y)\to\infty_2} m(x,y)$ non esiste. (5) Anche $n(x,y)=x^2+y^2-x$ è definita e continua su tutto \mathbb{R}^2 . Si verifica facilmente che restringendosi ad una qualunque retta y = mx + q si ha $\lim_{x \to \infty} n(x, mx + q) = +\infty$, e lo stesso vale per le rette verticali x=k (ovvero $\lim_{y\to\infty}n(k,y)=+\infty$); ma ciò non dimostra ancora che $\lim_{(x,y)\to\infty_2} n(x,y) = +\infty$, e anche questa questione resta in sospeso.

Come visto, le considerazioni sui limiti di varie restrizioni, anche se tutte concordi, non bastano a provare l'esistenza di un limite globale. A questo fine, risultano invece utili i seguenti criteri (eventualmente con l'ausilio delle coordinate speciali), che generalizzano tecniche già usate nel caso di una variabile.

Proposizione 4.2.8. Siano $f: A \to \mathbb{R}$, $e \ p \in \overline{\mathbb{R}^n}$ un punto di accumulazione per A.

- (i) Sia $\ell \in \mathbb{R}$. Se esiste $\varphi : A \to \mathbb{R}$ infinitesima in \underline{p} (ovvero tale che $\lim_{\underline{x} \to \underline{p}} \varphi(\underline{x}) = 0$) per cui $|f(\underline{x}) \ell| \le |\varphi(\underline{x})|$ all'intorno di p, allora $\lim_{\underline{x} \to p} f(\underline{x}) = \ell$.
- (ii) Se esiste $\varphi: A \to \mathbb{R}$ infinita in \underline{p} (ovvero tale che $\lim_{\underline{x} \to \underline{p}} \varphi(\underline{x}) = \infty$) per cui $|f(\underline{x})| > |\varphi(\underline{x})|$ all'intorno di p, allora $\lim_{\underline{x} \to p} f(\underline{x}) = \infty$.

Dimostrazione. Esercizio (segue dalle definizioni e dal Teorema del confronto in una variabile). $\hfill\Box$

Negli esercizi in cui si studiano limiti di funzioni di due variabili f(x,y) in (0,0) o in ∞_2 può essere utile anche il *cambio di variabili polari*: il seguente criterio dice che il conto con (ρ, θ) funziona se il limite è uniforme rispetto a θ .

Proposizione 4.2.9. Sia f(x,y) definita in $A \subset \mathbb{R}^2$, e(0,0) sia di accumulazione per A.

- (i) Sia $\ell \in \mathbb{R}$. Se esiste $\varphi(\rho)$ infinitesima per $\rho \to 0^+$ per cui $|f(\rho \cos \theta, \rho \sin \theta) \ell| \le |\varphi(\rho)|$ all'intorno di $\rho = 0^+$, allora $\lim_{(x,y) \to (0,0)} f(x,y) = \ell$.
- (ii) Se esiste $\varphi(\rho)$ infinita per $\rho \to 0^+$ per cui $|f(\rho \cos \theta, \rho \sin \theta)| \ge |\varphi(\rho)|$ all'intorno di $\rho = 0^+$, allora $\lim_{(x,y)\to(0,0)} f(x,y) = \infty$.

Le stesse conclusioni valgono con ∞_2 al posto di (0,0), facendo tendere $\rho \to +\infty$.

Dimostrazione. Esercizio (anche qui, definizioni e Teorema del confronto in una variabile). \Box

Esempi. (1) Era rimasto il dubbio se $\lim_{(x,y)\to(0,0)}h(x,y)$ valesse 0. Per dimostrare che è così, basta notare che $|h(x,y)| \leq \varphi(x,y) = \frac{\sqrt{|xy|}}{2}$ (sugli assi h è nulla; mentre, essendo $|x| + |y| \geq 2\sqrt{|xy|}$, fuori dagli assi si ha $|h(x,y)| \leq \frac{|xy|}{2\sqrt{|xy|}} = \frac{\sqrt{|xy|}}{2}$), ed essendo $\varphi(x,y)$ infinitesima si conclude. (2) Era in dubbio anche se fosse $\lim_{(x,y)\to\infty_2}n(x,y) = +\infty$. La risposta è positiva: usando le coordinate polari, se $\rho \geq 2$ si ha $n(x,y) = \rho^2 - \rho\cos\theta = \rho(\rho - \cos\theta) \geq \rho$, e $\varphi(\rho) = \rho$ tende a $+\infty$. (3) Riprendiamo la funzione $g(x,y) = \frac{xy^2}{x^2+y^4}$. Passando in coordinate polari si ha $g(\rho\cos\theta,\rho\sin\theta) = \rho\frac{\cos\theta\sin^2\theta}{\cos^2\theta+\rho^2\sin^4\theta}$, e si può osservare che per ogni θ fissato il limite per $\rho \to 0^+$ è 0: dunque g tende a 0? Non si può dire: questa è solo un'errata applicazione della Proposizione 4.2.9, che invece richiede prima di maggiorare con una funzione infinitesima di ρ e poi di passare al limite (in effetti, che g tenda a 0 per ogni θ fissato equivale solo a dire che g tende a 0 quando si tende all'origine (0,0) lungo una qualsiasi retta passante per essa). Un discorso perfettamente analogo vale per ∞_2 facendo tendere $\rho \to +\infty$. In realtà, come già visto in precedenza, i limiti di g in (0,0) e in ∞_2 non esistono.

4.3 Proprietà delle funzioni continue

Esaminiamo ora le relazioni della continuità con gli insiemi aperti e chiusi, con i compatti e con i connessi; e anche la nozione di *omeomorfismo*, cioè "isomorfismo topologico".

Proposizione 4.3.1. (Funzioni continue, aperti e chiusi) Sia $A \subset \mathbb{R}^n$, e sia $f: A \to \mathbb{R}^m$ una funzione continua. Se $V \subset \mathbb{R}^m$ è aperto allora $f^{-1}(V)$ è aperto in A, ovvero esiste un aperto $U \subset \mathbb{R}^n$ tale che $f^{-1}(V) = A \cap U$. Similmente, se $D \subset \mathbb{R}^m$ è chiuso allora $f^{-1}(D)$ è chiuso in A, ovvero esiste un chiuso $C \subset \mathbb{R}^n$ tale che $f^{-1}(D) = A \cap C$. Entrambe le condizioni sono anche sufficienti per la continuità.

Dimostrazione. Sia V un aperto di \mathbb{R}^m , e sia $\underline{x} \in f^{-1}(V) \subset A$. Poiché V è intorno del suo punto f(x), per continuità esiste un intorno $U_{\underline{x}}$ di \underline{x} in \mathbb{R}^n tale che $f(A \cap U_{\underline{x}}) \subset V$, ovvero $A \cap U_{\underline{x}} \subset f^{-1}(V)$. Posto $U = \bigcup \{U_{\underline{x}} : \underline{x} \in f^{-1}(V)\}$ si ha allora che U è un aperto di \mathbb{R}^n e che $f^{-1}(V) = A \cap U$, dunque $f^{-1}(V)$ è aperto in A. L'analogo asserto per i chiusi discende poi dall'identità $f^{-1}(E \setminus F) = f^{-1}(E) \setminus f^{-1}(F)$: infatti $\mathbb{R}^m \setminus D$ è aperto, dunque $f^{-1}(\mathbb{R}^m \setminus D) = f^{-1}(\mathbb{R}^m) \setminus f^{-1}(D) = A \setminus f^{-1}(D)$ è un aperto di A, dunque $f^{-1}(D)$ è un chiuso di A.

Corollario 4.3.2. I sottoinsiemi di \mathbb{R}^n definiti da un numero finito di disequazioni strette di funzioni continue sono aperti. I sottoinsiemi di \mathbb{R}^n definiti da un numero qualunque di equazioni e/o disequazioni late sono chiusi.

Dimostrazione. Se $f: \mathbb{R}^n \to \mathbb{R}$ è continua e $a \in \mathbb{R}$, poiché ad esempio $]a, +\infty[$ è un aperto di \mathbb{R} mentre $[a, +\infty[$ e $\{a\}$ sono chiusi di \mathbb{R} si ha che $\{\underline{x} \in \mathbb{R}^n : f(\underline{x}) > a\} = f^{-1}(]a, +\infty[)$ è un aperto di \mathbb{R}^n mentre $\{\underline{x} \in \mathbb{R}^n : f(\underline{x}) \geq a\} = f^{-1}([a, +\infty[)$ e $\{\underline{x} \in \mathbb{R}^n : f(\underline{x}) = a\} = f^{-1}(\{a\})$ sono chiusi di \mathbb{R}^n . Il resto delle affermazioni segue dal fatto che intersezioni finite di aperti sono aperte, e che intersezioni arbitrarie di chiuse sono chiuse.

Esempi. (1) Gli insiemi $U_1 = \{(x,y) \in \mathbb{R}^2 : (x^2-1)e^y > 3x\}$ e $U_2 = \{(x,y,z) \in \mathbb{R}^3 : x > 0, y^2 < \cos(xyz)\}$ sono aperti: infatti $U_1 = \{(x,y) \in \mathbb{R}^2 : f(x,y) > 0\}$ con $f(x,y) = (x^2-1)e^y - 3x$ e $U_2 = \{(x,y,z) \in \mathbb{R}^3 : g_1(x,y,z) > 0, g_2(x,y,z) < 0\}$ con $g_1(x,y,z) = x, g_2(x,y,z) = y^2 - \cos(xyz)$, e le funzioni f, g_1, g_2 sono continue. (2) Analogamente, gli insiemi $S_1 = \{(x,y) \in \mathbb{R}^2 : x^2 - 4x + y^2 \le 0, x + y - 1 \ge 0\}$, $S_2 = \{(x,y) \in \mathbb{R}^2 : 4x - x^4 - y^2 + 3y \ge 1, x + 2y = 2\}$ e $S_3 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + 2z^2 \le 3, x^2 + y^2 \ge 1\}$ sono chiusi.

Proposizione 4.3.3. (Immagini continue di compatti sono compatte) Siano $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}^m$ una funzione continua, $e \ K \subset A$ compatto. Allora $f(K) \subset \mathbb{R}^m$ è compatto.

Dimostrazione. Usando la Proposizione 4.1.3 si può usare equivalentemente la compattezza sequenziale; la dimostrazione, facile, è allora come quelle per le funzioni di una variabile (esercizio).

Se Z è un insieme e $f: Z \to \mathbb{R}$ una funzione, il massimo (assoluto) di f è (se esiste) il numero reale $\alpha = \max f(Z)$. In tal caso, ogni $z \in Z$ tale che $f(z) = \alpha$ si dirà punto di massimo (assoluto) per f, e se z è l'unico punto di Z in cui $f(z) = \alpha$ si dirà che z è un punto di massimo stretto. Definizioni simili si hanno per il minimo. Massimo e minimo (risp. punti di massimo e minimo) di f sono detti estremi di f (risp. estremanti di f). Dalla Proposizione 4.3.3 segue allora il

Teorema 4.3.4. (Weierstrass) Se $K \subset \mathbb{R}^n$ è compatto, ogni funzione continua $f: K \to \mathbb{R}$ ammette massimo e minimo assoluti.

Dimostrazione. L'insieme f(K) è un compatto di \mathbb{R} : esso dunque ha gli estremi superiore ed inferiore in \mathbb{R} perché limitato, e li contiene perché chiuso.

Corollario 4.3.5. Siano $C \subset \mathbb{R}^n$ un chiuso non limitato $e \ f : C \to \mathbb{R}$ continua.

- (i) Se $\lim_{\underline{x}\to\infty_n} f(\underline{x}) = +\infty$, oppure se $\lim_{\underline{x}\to\infty_n} f(\underline{x}) = \alpha \in \mathbb{R}$ ed esiste $\underline{x}_0 \in C$ tale che $f(\underline{x}_0) < \alpha$, allora f ammette minimo assoluto in C.
- (ii) Più generalmente, se esistono $\beta \in \mathbb{R}$ e $\underline{x}_0 \in C$ tali che f sia definitivamente $> \beta$ e $f(\underline{x}_0) \leq \beta$, allora f ammette minimo assoluto in C.

Dimostrazione. Sia M>0 tale che se $\underline{x}\in C$ e $||\underline{x}||>M$ allora $f(\underline{x})>\beta$, e sia $C'=C\cap B(\underline{0},M]$: allora di certo $\underline{x}_0\in C'$, e infC $f=\inf_{C'}f$. Ma C' è compatto, dunque per Weierstrass f ammette minimo assoluto su C'.

Mettiamo in evidenza il seguente legame tra limiti e compattezza, che serve a stabilire con facilità la compattezza di insiemi affini.

Proposizione 4.3.6. Se C è un chiuso non limitato di \mathbb{R}^n ed $f: C \to \mathbb{R}$ è una funzione continua tale che $\lim_{\underline{x}\to\infty_n} f(\underline{x}) = +\infty$, allora l'insieme $\{\underline{x}\in C: f(\underline{x})\leq 0\}$ è compatto.

Più generalmente, se C è un chiuso non limitato di \mathbb{R}^n ed $f_1, \ldots, f_r : C \to \mathbb{R}$ sono funzioni continue tali che almeno una di esse è definitivamente > 0, (46) allora l'insieme $\{\underline{x} \in C : f_j(\underline{x}) \leq 0 \text{ per ogni } j = 1, \ldots, r\}$ è compatto.

I risultati sono veri anche cambiando tutte o alcune delle disuguaglianze " \leq " con "=".

Dimostrazione. Se C è un chiuso non limitato di \mathbb{R}^n ed $f:C\to\mathbb{R}$ è una funzione continua tale che $\lim_{\underline{x}\to\infty_n}f(\underline{x})=+\infty$, allora l'insieme $X=\{\underline{x}\in C:f(\underline{x})\leq 0\}$ è compatto in quanto chiuso (Corollario 4.3.2) e limitato (per definizione di limite). Nel caso generale, basta osservare che un sottoinsieme chiuso di un insieme compatto è esso stesso compatto.

Esempi. (1) L'insieme $S_1 = \{(x,y): x^2 - 4x + y^2 \le 0, \ x+y-1 \ge 0\}$ è compatto, poiché $\lim_{(x,y)\to\infty_2} x^2 - 4x + y^2 = +\infty$. Accorgendosi che $x^2 - 4x + y^2 \le 0$ rappresenta i punti interni alla circonferenza di centro

⁽⁴⁶⁾significa che esistono $j_0 \in \{1, \ldots, r\}$ e M > 0 tali che se $||\underline{x}|| > M$ allora $f_{j_0}(\underline{x}) > 0$.

(0,2) e raggio 2, la compattezza di S è chiara in quanto S è chiuso (vedi Corollario 4.3.2) e limitato (infatti $||(x,y)|| \le 4$). (2) L'insieme $S_3 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + 2z^2 \le 3, x^2 + y^2 \ge 1\}$ è compatto, perché è $S = \{(x,y,z) \in \mathbb{R}^3 : f_1(x,y,z) \le 0, f_2(x,y,z) \ge 0\}$ con $f_1(x,y,z) = x^2 + y^2 + 2z^2 - 3$ e $f_2(x,y,z) = x^2 + y^2 - 1$, e $\lim_{(x,y,z)\to\infty_3} f(x,y) = +\infty$. Anche qui la compattezza si può verificare direttamente, notando che da $f_1(x,y,z) \le 0$ segue subito $|x| \le \sqrt{3}, |y| \le \sqrt{3}$ e $|z| \le \sqrt{3/2}$. (Poiché $x^2 + y^2 + 2z^2 \le 3$, ovvero $\frac{x^2}{3} + \frac{y^2}{3} + \frac{z^2}{3/2} \le 1$, rappresenta i punti interni all'ellissoide di semiassi $\sqrt{3}, \sqrt{3}$ e $\sqrt{3/2}$, mentre $x^2 + y^2 \ge 1$ rappresenta i punti esterni al cilindro con base la circonferenza unitaria nel piano (x,y) ed asse l'asse z, l'insieme S è l'intersezione di questi due sottoinsiemi di \mathbb{R}^3 .) (3) Naturalmente il criterio può essere usato anche con i segni invertiti, e serve sempre un po' d'intuito. Ad esempio, $S_2 = \{(x,y) \in \mathbb{R}^2 : 4x - x^4 - y^2 + 3y \ge 1, x + 2y = 2\}$ può essere scritto come $S = \{(x,y) \in \mathbb{R}^2 : f_1(x,y) \ge 0, f_2(x,y) = 0\}$, con $f_1(x,y) = 4x - x^4 - y^2 + 3y - 1$ e $f_2(x,y) = x + 2y - 2$: poiché vale $\lim_{(x,y)\to\infty_2} f_1(x,y) = -\infty$, l'insieme S è certamente compatto.

Proposizione 4.3.7. (Immagini continue di connessi sono connesse) Siano $A \subset \mathbb{R}^n$ e $f: A \to \mathbb{R}^m$ una funzione continua. Se $B \subset A$ è connesso allora $f(B) \subset \mathbb{R}^m$ è connesso. Similmente, se B è connesso per archi allora $f(B) \subset \mathbb{R}^m$ è connesso per archi.

Dimostrazione. Supponiamo per semplicità che $A=\mathbb{R}^n$ (lasciando allo studente gli adattamenti nel caso generale). (i) Sia $B\subset\mathbb{R}^n$ connesso, e supponiamo che $f(B)\subset\mathbb{R}^m$ sia sconnesso: allora esistono V_1,V_2 aperti disgiunti di \mathbb{R}^m tali che $V_1\cap f(B)\neq\varnothing,V_2\cap f(B)\neq\varnothing$ e $f(B)\subset V_1\cup V_2$. Ma allora $U_1=f^{-1}(V_1)$ e $U_2=f^{-1}(V_2)$ sono aperti (Proposizione 4.3.1) disgiunti di \mathbb{R}^n tali che $U_1\cap B\neq\varnothing,U_2\cap B\neq\varnothing$ e $B\subset U_1\cup U_2$, assurdo. (ii) Sia B connesso per archi, e siano $\underline{y}_1=f(\underline{x}_1)$ e $\underline{y}_2=f(\underline{x}_2)$ due punti di f(B). Se $\gamma:[a,b]\to B$ è una curva continua in B da $\underline{x}_1=\gamma(a)$ a $\underline{x}_2=\gamma(b)$, allora $f\circ\gamma:[a,b]\to f(B)$ è una curva continua in f(B) da $\underline{y}_1=(f\circ\gamma)(a)$ a $\underline{y}_2=(f\circ\gamma)(b)$. Dunque f(B) è connesso per archi.

Corollario 4.3.8. (Teorema degli zeri) Siano $A \subset \mathbb{R}^n$ connesso, $f : A \to \mathbb{R}$ una funzione continua ed $\alpha, \beta \in \mathbb{R}$ (con $\alpha < \beta$) due valori assunti da f. Allora per ogni $\gamma \in [\alpha, \beta]$ esiste qualche $x \in A$ tale che $f(x) = \gamma$.

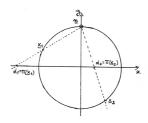
Dimostrazione. f(A) è un connesso di \mathbb{R} , ovvero è un intervallo: dunque, poiché $\alpha, \beta \in f(A)$ si ha anche $[\alpha, \beta] \subset f(A)$, da cui la conclusione.

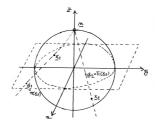
Dati due sottoinsiemi $A, B \subset \mathbb{R}^n$, una funzione $f: A \to B$ si dirà omeomorfismo se è continua, biiettiva e con inversa continua. Due sottoinsiemi $A, B \subset \mathbb{R}^n$ si diranno omeomorfi se esiste un omeomorfismo tra essi. Il significato è quello che A e B, pur essendo eventualmente diversi, sono in realtà "topologicamente equivalenti": in effetti, un omeomorfismo preserva le proprietà topologiche (un sottoinsieme $A' \subset A$ è aperto, chiuso, connesso, compatto, etc. se e solo se lo è $f(A') \subset B$).

Esempi. (1) $A = \mathbb{R}^n$ è omeomorfo ad una palla aperta $B = B(\underline{0}, r)$, con $f(\underline{x}) = \frac{r}{1+|\underline{x}||}\underline{x}$ (da cui $f^{-1}(\underline{y}) = \frac{1}{r-||\underline{y}||}\underline{y}$). (2) In \mathbb{R}^2 , un quadrato pieno $\{|x|+|y|<1\}$ è omeomorfo ad un disco pieno $B(\underline{0},1)$, e idem per i corrispondenti insiemi con il bordo incluso; inoltre, un disco bucato $B(\underline{0},1)\setminus\{\underline{0}\}$ è omeomorfo ad una corona circolare $B(\underline{0},1)\setminus B(\underline{0},\frac{1}{2}]$ (si provino queste affermazioni per esercizio). Provare poi (magari aiutandosi con un disegno) che un quadrato bucato $A = \{|x|+|y|<1\}\setminus\{\underline{0}\}$ è omeomorfo ad una corona circolare $B = B(\underline{0},1)\setminus B(\underline{0},\frac{1}{2}]$. (3) Si consideri la sfera n-dimensionale $\mathbb{S}^n = \{\underline{x} \in \mathbb{R}^{n+1} : ||\underline{x}|| = 1\}$, e sia $\underline{n} = (0,\ldots,0,1) \in \mathbb{S}^n$ il suo "polo Nord". Si dimostra che $A = \mathbb{S}^n\setminus\{\underline{n}\}$ (la sfera privata di un punto) è omeomorfa a \mathbb{R}^n tramite la proiezione stereografica $\pi:A\to\mathbb{R}^n$, che manda un punto $\underline{x}\in A$ nell'unico punto del "piano orizzontale" $x_{n+1} = 0$ (identificabile a \mathbb{R}^n) che sta sulla retta passante per

Omeomorfismo

 $\underline{x} \in \underline{\mathbf{n}}. \text{ In coordinate, se } \underline{x} = (x_1, \dots, x_n, x_{n+1}) \in A \text{ allora } \pi(\underline{x}) = (\frac{x_1}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}}, 0), \text{ mentre se } \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n \text{ allora } \pi^{-1}(\underline{\alpha}) = \frac{1}{|\alpha|^2+1}(2\alpha_1, \dots, 2\alpha_n, |\alpha|^2 - 1). \text{ Ad esempio, per } n = 1 \text{ si ha } \pi(x, y) = (\frac{x}{1-y}, 0) \text{ e } \pi^{-1}(\alpha) = (\frac{2\alpha}{\alpha^2+1}, \frac{\alpha^2-1}{\alpha^2+1}) \text{ ; mentre per } n = 2 \text{ si ha } \pi(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z}, 0) \text{ e } \pi^{-1}(\alpha_1, \alpha_2) = (\frac{2\alpha_1}{\alpha_1^2+\alpha_2^2+1}, \frac{2\alpha_2}{\alpha_1^2+\alpha_2^2+1}, \frac{\alpha_1^2+\alpha_2^2-1}{\alpha_1^2+\alpha_2^2+1}) \text{ .}$





(a) Proiezione sterografica per \mathbb{S}^1 . (b) Proiezione sterografica per \mathbb{S}^2 .