Indice

- Integrazione generalizzata
- Equazioni differenziali: primi elementi
- 3 Curve parametriche affini
- Topologia degli spazi affini
- Calcolo differenziale negli spazi affini
- Varietà differenziali affini

C. Marastoni e U. Marconi (UniPD)

Analisi Matematica 2

LT in Fisica ed Astronomia

5 / 11

Topologia degli spazi affini

La topologia di $\,\mathbb{R}\,$ e $\,\widetilde{\mathbb{R}}$

Topologia della retta reale \mathbb{R} : la vicinanza a x_0 è data dagli intervalli centrati $B(x_0, \varepsilon) =]x_0 - \varepsilon, x_0 + \varepsilon[$

 $(\text{più piccolo è } \varepsilon > 0, \text{ più vicini si è a } x_0).$

Topologia della retta reale estesa $\widetilde{\mathbb{R}}$: ad es., la vicinanza a $+\infty$ è data dalle semirette $]N, +\infty[$

 $(\text{maggiore è } N \in \mathbb{R}, \text{ più vicini si è a } +\infty).$

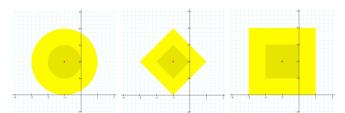
Come visto, da questa nozioni di vicinanza se ne ricavano molte altre:

- sottoinsiemi aperti e chiusi di \mathbb{R} e $\widetilde{\mathbb{R}}$; intorni di $x_0 \in \mathbb{R}$ e di $\mp \infty$;
- sottoinsiemi di ℝ connessi, limitati, compatti;
- ullet punti interni, isolati, di chiusura, di accumulazione per sottoinsiemi di $\mathbb R$;
- limite di una successione $(x_k)_{k\in\mathbb{N}}$ in \mathbb{R} ;
- limite di una funzione di variabile reale f(x) in un punto di accumulazione del dominio; continuità di f(x) in un punto del dominio.

La topologia di \mathbb{R}^n e di $\overline{\mathbb{R}^n}$

Analogamente, una norma $\|\cdot\|$ su \mathbb{R}^n dà una topologia su \mathbb{R}^n :

la vicinanza a \underline{x}_0 è data dalle palle centrate $B(\underline{x}_0, \varepsilon) = \{\underline{x} \in \mathbb{R}^n : ||\underline{x} - \underline{x}_0|| < \varepsilon\}$



Palle centrate in $\underline{x}_0=(-1,2)$ di raggi $\varepsilon=2$ (tutto il giallo) e $\varepsilon=1$ (solo giallo scuro) rispetto alle norme euclidea, perimetrale e del massimo.

Quanto all'infinito, non ha più senso parlare di $\mp \infty$ in \mathbb{R}^n se $n \ge 2$. Si ha $\overline{\mathbb{R}^n}$ aggiungendo a \mathbb{R}^n un solo punto infinitamente lontano ∞_n :

la vicinanza a ∞_n è data dalle corone illimitate $\{\underline{x} \in \mathbb{R}^n : ||\underline{x}|| > N\}$

Corone illimitate con N=1 (tutto il giallo) e N=2 (solo giallo scuro) rispetto alle tre norme.

A proposito: a cosa assomiglia \mathbb{R}^n ? (Pensare ai casi n = 1 e n = 2 ...)

C. Marastoni e U. Marconi (UniPD)

Analisi Matematica 2

LT in Fisica ed Astronomia

7/11

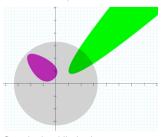
Topologia degli spazi affini

La topologia di \mathbb{R}^n e di $\overline{\mathbb{R}^n}$

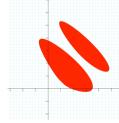
Con la topologia, si possono definire le stesse nozioni del caso n = 1:

- sottoinsiemi aperti e chiusi di \mathbb{R}^n e $\overline{\mathbb{R}^n}$; intorni di $\underline{x}_0 \in \mathbb{R}^n$ e di ∞_n ;
- lacktriangle sottoinsiemi di \mathbb{R}^n connessi, limitati, compatti;
- lacktriangle punti interni, isolati, di chiusura, di accumulazione per sottoinsiemi di \mathbb{R}^n ;
- limite di una successione $(\underline{x}_k)_{k \in \mathbb{N}} = ((x_1)_k, \dots, (x_n)_k)$ in \mathbb{R}^n ;
- limite di una funzione di n variabili reali $f(\underline{x}) = f(x_1, \dots, x_n)$ in un punto di accumulazione del dominio; continuità di $f(\underline{x})$ in un punto del dominio.

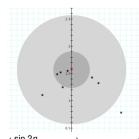
Formalmente, le definizioni sono circa le stesse del caso $n = 1 \dots$



Sottoinsiemi limitati e non



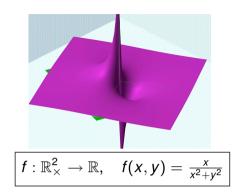
Sottoinsieme sconnesso



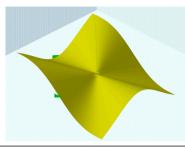
 $\underline{x}_n = (\frac{\sin 2n}{\sqrt{n}}, \arctan n)$ converge a $(0, \frac{\pi}{2})$

La topologia di \mathbb{R}^n e di $\overline{\mathbb{R}^n}$

... ma l'aumentato numero di variabili rende più delicato il loro uso ! Vediamo un paio di esempi eloquenti ...



- f(x, y) non ha limite in (0, 0)(è nulla sull'asse y, e tende a $\mp \infty$ lungo l'asse x)
- f(x,y) ha limite 0 in ∞_2 (in coord. polari: $|f(x,y)| = \frac{|\cos\theta|}{\rho} \underset{\rho \to +\infty}{\longrightarrow} 0$)



$$g: \mathbb{R}^2_{\times} \to \mathbb{R}, \quad g(x,y) = \frac{xy^2}{x^2 + y^2}$$

- g(x,y) ha limite 0 in (0,0)(in polari, o $|f(x,y)|=|y|\frac{|xy|}{x^2+y^2}\leq \frac{1}{2}|y|\to 0$)
- g(x, y) non ha limite in ∞_2 (è nulla sugli assi, ma tende a $+\infty$ lungo y = x)