
Notes on Algebraic Topology

A Appendices

A.1 Categories

We refer e.g. to Gelfand-Manin [4] or Kashiwara-Schapira [10] for further details.

Categories. A category C consists in the following data:

(a) a family of objects Ob(C),

(b) for any X,Y ∈ Ob(C) a set of morphisms HomC(X,Y ),

(c) for any triple X,Y, Z ∈ Ob(C) a composition law

· ◦ · : HomC(X,Y )×HomC(Y, Z) −→ HomC(X,Z), (f, g) �→ g ◦ f

such that (1) · ◦ · is associative and (2) for any X ∈ Ob(C) there exists an “identity mor-
phism” idX ∈ HomC(X,X) such that f ◦ idX = f and idX ◦g = g for any f ∈ HomC(X,Y )
and g ∈ HomC(Y,X). A morphism f ∈ HomC(X,Y ) is said to be a monomorphism (resp.
epimorphism) if f ◦ g = f ◦ g� (resp. g ◦ f = g� ◦ f) implies g = g�. f is said isomorphism
if there exists a (unique) g ∈ HomC(Y,X) (the inverse of f) such that g ◦ f = idX and
f ◦ g = idY . In such a case we shall write also X � Y . Note that a isomorphism is both
a monomorphism and an epimorphism. To denote f ∈ HomC(X,Y ) one often uses the
functional notation f : X −→ Y , without mentioning C (which should be clear from the
context).

A category C is said to be small if Ob(C) is a set. Given a category C, the opposed category
Cop is characterized by Ob(Cop) = Ob(C) and HomCop(X,Y ) = HomC(Y,X). We shall say
that a category C�� is a subcategory of C if Ob(C��) ⊂ Ob(C) and, for any X,Y ∈ Ob(C��), it
holds HomC��(X,Y ) ⊂ HomC(X,Y ). If HomC��(X,Y ) = HomC(X,Y ), one says that the
subcategory is full.

Examples. (1) The category Set of sets and map of sets. A monomorphism (resp. epimorphism,

isomorphism) in Set is a map which is injective (resp. surjective, bijective). (2) The category Top of

topological spaces and continuous maps (it is a a subcategory, not full, of Set). A isomorphism in Top

is called homeomorphism. (3) The category Groups of groups and homomorphisms of group. (4) The

category Mod(A) of left A-modules on a unitary ring A and A-linear morphisms (see Appendix A.2).

In particular, for A = Z (resp. A = K a field), one obtains the category of abelian groups (resp. K-

vector spaces). Note that Mod(A)op is the category of right A-modules. One uses the notation Hom
A

instead of HomMod(A)
. (5) Given a poset (I,≤)(96), one defines the category I with Ob(I) = I and

HomI(i, j) = {pt} if i ≤ j and = ∅ otherwise.

(96)A poset is a set endowed with a preorder, i.e. a relation which is reflexive and transitive; hence a
symmetric preorder is a equivalence, while an antisymmetric preorder is a (partial) order.
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Functors. Let C and C� be two categories. A covariant functor (resp. contravariant
functor) F : C −→ C� is the data of:

(a) a map F : Ob(C) −→ Ob(C�),

(b) for any X,Y ∈ Ob(C) a “map of morphisms”

F : HomC(X,Y )−→HomC�(FX,FY )

(resp. F : HomC(X,Y ) −→ HomC�(FY, FX)),

which respects the identity and the compositions, i.e. F (idX) = idF (X) and F (f ◦ g) =
F (f) ◦ F (g) (resp. F (f ◦ g) = F (g) ◦ F (f)). Note that a contravariant functor F : C −→ C�

is just a covariant functor (we shall simply say “functor”, “covariant” being understood)
from Cop to C�. The composition of functors and the identity functor idC are defined in a
natural way. Two functors F : C −→ C� and G : C� −→ C are called adjoint, and F (resp. G) a
left adjoint (resp. right adjoint) of G (resp. F ), if for any X ∈ Ob(C) and any Y ∈ Ob(C�)
ona has a functorial isomorphism (in both variables)(97)

HomC(X,GY ) � HomC�(FX, Y ).

One shows (exercise) that, if it exists, the left (resp. right) adjoint of F (resp. G) is unique
up to isomorphism.

Examples. (1) Given a category C and an object X ∈ Ob(C), HomC(X, · ) (resp. HomC( · , X)) is a

covariant (resp. contravariant) functor from C to Set. For example, for the functor HomC(X, · ) one has

Ob(C) � Y �→ HomC(X,Y ) ∈ Ob(Set) and, given a morphism f ∈ HomC(Y, Z), it holds HomC(X, f) :

HomC(X,Y ) −→ HomC(X,Z), α �→ f ◦ α. (2) Let (I,≤) be a poset. Any covariant (resp. contravariant)

functor I −→ C is naturally identified with the classic definition of inductive (resp. projective) system in C
indexed by I (see below). (3) Let A be a unitary ring, B a subring with center Z(A) (for example, if A

is commutative one can take B = A; in any case it is possible to choose B = Z). Some classical examples

of functors in the category of modules on a ring (see Appendix A.2): (a) for C = C� = Mod(A) and

K ∈ Mod(B), one has the functors · ⊗
B
K and Hom

B
(K, · ); (b) for C = Mod(A) and C� = Mod(B), one

has for (the functor which associates to any A-module the underlying B-module)(98) and, for Q ∈ Mod(A),

the functor Hom
A
(Q, · ); (c) for C = Mod(B) and C� = Mod(A), one has A ⊗

B
· (the extension of

coefficients) and, given Q ∈ Mod(A), the functor · ⊗
B
Q. One shows that the functors for and A ⊗

B
·

are adjoint to each other (exercise), as well as the functors in (a) and the second ones in (b) and (c) (see

(A.1)).

Inductive and projective limits. Let C be a category, (I,≤) a poset. An inductive
system in C indexed by I is the datum of (a) a family {Xi : i ∈ I} in Ob(C), and (b) for any

(97)This means that, given f ∈ HomC(X,X
�) and g ∈ HomC�(Y, Y

�), the following diagrams are commu-
tative:

HomC(X
�
, GY )

∼ ��

Hom
C
(f,GY )

��

HomC�(FX
�
, Y )

Hom
C� (F (f),Y )

��
HomC(X,GY )

∼ �� HomC�(FX, Y )

HomC(X,GY )
∼ ��

Hom
C
(X,G(g))

��

HomC�(FX, Y )

Hom
C� (FX,g)

��
HomC(X,GY

�)
∼ �� HomC�(FX, Y

�)

(98)“for” stands for “forgetful”, because a part of the structure of M on A gets forgotten when reduced
to the one on B.
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i ≤ j, of morphisms φi,j ∈ HomC(Xi, Xj) such that φj,k ◦ φi,j = φi,k if i ≤ j ≤ k: such a
system can be seen as a functor from the category I associated to I (see above) to C. The
inductive limit of the system is a object X ∈ Ob(C) together with a family of morphisms
φi ∈ HomC(Xi, X) for any i ∈ I such that φi = φj ◦ φi,j if i ≤ j, characterized by the
following universal property: given any Y ∈ Ob(C) and morphisms ψi ∈ HomC(Xi, Y ),
there exists a unique morphism ψ ∈ HomC(X,Y ) such that ψi = ψ ◦ φi for any i ∈ I.
By considering the category Iop instead of I, one obtains the dual notions of projective
system and projective limit in C indexed by I: the former is the datum of (a) a family
{Xi : i ∈ I} in Ob(C), and (b) for any i ≤ j, of morphisms φj,i ∈ HomC(Xj , Xi) such that
φj,i ◦ φk,j = φk,i if i ≤ j ≤ k, while the latter is an object X ∈ Ob(C) with a family of
morphisms φi ∈ HomC(X,Xi) for any i ∈ I such that φi = φj,i ◦ φj if i ≤ j such that,
given any Y ∈ Ob(C) with morphisms ψi ∈ HomC(Y,Xi), there exists a unique morphism
ψ ∈ HomC(Y,X) such that ψi = φi ◦ψ for any i ∈ I. The inductive and projective limits,
which (it they exist) are unique up to canonical isomorphism, are denoted respectively by
lim−→Xi and lim←−Xi.

Products and coproducts. A particular case of inductive and projective limits is given
by the product and coproduct of a family {Xλ : λ ∈ Λ} of objects of C. The former is an
object P of C with a family of morphisms (pλ ∈ HomC(P,Xλ))λ∈Λ such that, given any
object Y of C and a family of morphisms (fλ ∈ HomC(Y,Xλ))λ∈Λ, there exists a unique
morphism f ∈ HomC(Y, P ) such that fλ = pλ ◦ f for any λ ∈ Λ; dually, the latter is an
object C of C with a family of morphisms (iλ ∈ HomC(Xλ, C))λ∈Λ such that, for any object
Z of C and morphisms (gλ ∈ HomC(Xλ, Z))λ∈Λ, there exists a unique g ∈ HomC(C,Z)
such that gλ = g ◦ iλ for any λ ∈ Λ. Such objects, which (if they exist) are unique up
to canonical isomorphism, are denoted respectively by

�
λ∈ΛXλ and

�
λ∈ΛXλ, and they

clearly coincide respectively with lim←−Xλ and lim−→Xλ (with the trivial preorder on Λ).

Examples. (1) In Set, products and coproducts exist and are respectively the cartesian product and the

disjoint union of the sets Xλ, with the natural maps of projection and inclusion. In this way, the universal

properties of product and coproduct in a category C could be expressed by the formulas (where product

and coproduct in the l.h.s. members are in C, and in r.h.s. members in Set):

HomC(Y,
�

λ∈Λ

Xλ) �
�

λ∈Λ

HomC(Y,Xλ), HomC(
�

λ∈Λ

Xλ, Z) �
�

λ∈Λ

HomC(Xλ, Z).

(2) In Groups, products and coproducts exist and are respectively the direct product and the free product

(see §1.5) of groups Xλ. (3) In Mod(A) (where A is a unitary ring, see Appendix A.2), products and

coproducts exist and are respectively the direct product and the direct sum of the A-modules Xλ:

�

λ∈Λ

Xλ = {(xλ)λ∈Λ ∈
�

λ∈Λ

Xλ : xλ = 0 excepted a finite number of λ ∈ Λ}.

In these three cases, if all of Xλ are equal to a same X, it is clear that
�

λ∈Λ
Xλ � X

Λ (functions of Λ in

X) and, in Mod(A), one also has
�

λ∈Λ
Xλ � X

(Λ) (functions of Λ in X vanishing except than on a finite

number of λ ∈ Λ). (4) In Top, products and coproducts exist and are respectively the usual topological

product X × Y and the disjoint union (or “sum”) X � Y . There are products and coproducts also in Top
p

(the category of pointed topological spaces, see p. 14): for (X,x0) and (Y, y0), they are respectively the

pointed product (X×Y, (x0 , y0)) and the wedge sum (X∨Y, z0) (see p. 9; here z0 denotes the unique point

in which both x0 and y0 are identified)
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A.2 Modules on a ring

We shall deal with the category Mod(A) of modules on a unitary ring A and of A-linear
morphisms; recall that, if A is a ring, a left (resp. right) A-module is an abelian group
(M,+) endowed with a multiplication A×M −→ M ((a,m) �→ am) such that (a+ b)m =
am+bm, a(m+m�) = am+am� and a(bm) = (ab)m for any a, b ∈ A (resp. a(bm) = (ba)m
for any a, b ∈ A and m,m� ∈ M : in this case one better writes the multiplication on the
right, i.e. (ma)b = m(ab)). Clearly, if A is commutative the two notions coincide. In
particular, as we already said, for A = Z (resp. A = K a field), one obtains the category
of abelian groups (resp. K-vector spaces).

A.2.1 Tensor product

Let B be a subring of center Z(A), and let M (resp. N) be a left (resp. right) A-module,
K a B-module. We say that a map α : N ×M −→ K is ⊗-bilinear if: (1) α is B-bilinear,
i.e. α(nb+n�b�,m) = bα(n,m)+b�α(n�,m) and α(n, bm+b�m�) = bα(n,m)+b�α(n,m�) for
any b, b� ∈ B, n, n� ∈ N and m,m� ∈ M ; (2) α(na,m) = α(n, am) for any a ∈ A, n ∈ N
and m ∈ M .

Definition A.2.1. The tensor product ofN andM is the B-moduleN⊗
A
M , characterized

by the following universal property: (1) there exists a ⊗-bilinear map t : N×M −→ N⊗
A
M ,

and (2) given any B-module K, for any ⊗-bilinear map α : N × M −→ K there exists a
unique map B-linear �α : N ⊗

A
M −→ K such that α = �α ◦ t.

The uniqueness of N ⊗
A
M , up to B-linear isomorphisms, is easy to prove (exercise).

One is left with proving the existence. Let X the free B-module generated by the set
{n⊗m : (n,m) ∈ N×M}, Y the submodule generated by the elements (na)⊗m−n⊗(am),
(bn+b�n�)⊗m−b(n⊗m)−b�(n�⊗m) and n⊗(bm+b�m�)−b(n⊗m)−b�(n⊗m�) (where a ∈ A,
b, b� ∈ B, n, n� ∈ N , m,m� ∈ M), and consider the B-module X/Y (i.e. the B-module with
generators n⊗m and relations (na)⊗m = n⊗(am), (bn+b�n�)⊗m = b(n⊗m)+b�(n�⊗m)
and n ⊗ (bm + b�m�) = b(n ⊗m) + b�(n ⊗m�)). The obvious map t : N × M −→ X/Y ,
t(n,m) = n ⊗m is ⊗-bilinear; given then α as above, define �α(n ⊗m) = α(n,m). The
well-posedness of �α comes from the ⊗-bilinearity of α, the fact that α = �α ◦ t is evident
and the uniqueness of �α is ensured by the fact that the elements n⊗m generate N ⊗

A
M .

Examples. (1) One can always perform the tensor product of abelian groups, in the sense of Z-modules

(hence A = B = Z). For example, if k is a field with χ(k) �= 2 it holds k⊗
Z
(Z/2Z) = 0 (namely, r⊗0 = 0,

and r⊗1 = 2(r/2)⊗1 = (r/2)⊗2(1) = 0). (2) Extension of the scalars. Let R be a ring, φ : A −→ R a ring

monomorphism, M a left A-module: since R is naturally a right A-module, it makes sense to considerar
�M = R⊗

A
M . The B-module �M has a structure of left R-module (hence, in particular, of left A-module),

by defining r(s⊗m) = (rs)⊗m.

Now let us list some properties (that the student could verify by exercise).

(1) If A is commutative, then N⊗
A
M � M⊗

A
N and P ⊗

A
(N⊗

A
M) � (P ⊗

A
N)⊗

A
M

(as A-modules).

(2) The B-module A⊗
A
M has a structure of A-module (see Example A.2.1), and there

is a natural isomorphism A⊗
A
M � M .
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(3) Let K be a B-module and Q be a left A-module. The B-module K ⊗
B
Q (resp.

Hom
B
(K,Q), Hom

B
(Q,K)) has a structure of left (resp. left, right) A-module by

defining a(k ⊗ q) = k ⊗ (aq) (resp. (aϕ)(k) = aϕ(k), (ψa)(q) = ψ(aq)). The same
statements (exchanging right with left) hold if Q is a right A-module.

(4) Adjunction Hom-⊗. Given a B-module K, two left A-modules M and N and a right
A-module Q, one has the following functorial isomorphisms of B-modules:

(A.1)
Hom

A
(K ⊗

B
N,M) � Hom

A
(N,Hom

B
(K,M)) � Hom

B
(K,Hom

A
(N,M)),

Hom
B
(Q⊗

A
M,K) � Hom

A
(Q,Hom

B
(M,K)) � Hom

A
(M,Hom

B
(Q,K)).

(5) Bifunctoriality. Given a morphism f : N −→ N � (resp. g : M −→ M �) of right
(resp. left) A-modules, it is possible to define the morphism of B-modules f ⊗ g :
N ⊗

A
M −→ N � ⊗

A
M � by extending for B-linearity the map n⊗m �→ f(n)⊗ g(m),

i.e. (f ⊗ g)(
�

i
bi(ni ⊗mi)) =

�
i
bi(f(ni)⊗ g(mi));

(6) Commutations. With the direct sum: N⊗
A
(M⊕M �) � (N⊗

A
M)⊕(N⊗

A
M �). With

the cokernel: given a morphism of A-modules f : M −→ M �, there is an isomorphism
of B-modules N ⊗

A
coker(f) � coker(idN ⊗f).

More generally, one can define a tensor product for graded A-modules:(99) given a right
graded A-module N and a left graded A-module M , their tensor product N ⊗

A
M is a

B-module which is graded by

(A.2) (N ⊗
A
M)n =

�

i+j=n

Ni ⊗A
Mj .

A.2.2 Complexes and cohomology

We introduce the notion of cohomology of complexes (of cochains) in the categoryMod(A);
however, the notions introduced here will be valid in the natural generalization of abelian
categories(100).

(99)An A-module M is said to be graded if it is endowed with a family of submodules {Mn : n = 0, 1, 2, . . . }
such that M =

�
+∞
n=0

Mn. A morphism of graded A-modules f : M −→ N is a morphism of A-modules such
that f(Mn) ⊂ Nn for any n ∈ N ∪ {0}. We denote by Moddeg(A) the subcategory of Mod(A) of graded
modules.
(100)A category C is said to be additive if (a) for any X,Y ∈ Ob(C), HomC(X,Y ) is an abelian group and the
composition law is bilinear; (b) there exists 0 ∈ Ob(C) such that Hom(0, 0) = {0}; (c) for any X,Y ∈ Ob(C)
there exists a unique Z ∈ Ob(C) such that for any W ∈ Ob(C) one has a isomorphism of abelian groups
HomC(X,W ) × HomC(Y,W ) � HomC(Z,W ), functorial in W . (Such an object, denoted by X ⊕ Y , is
called the direct sum of X and Y .) If C and C� are additive, a functor F : C −→ C� is called additive if the
maps of morphisms are morphisms of abelian groups. Given an additive category C and f ∈ HomC(X,Y ),
the kernel of f is Z ∈ Ob(C) with a monomorphism αf ∈ HomC(Z,X) such that for any ϕ ∈ HomC(W,X)
with f ◦ ϕ = 0 there exists a unique �ϕ ∈ HomC(W,Z) such that ϕ = αf ◦ �ϕ; such property individues
(provided it exists) uniquely the object Z, which will be denoted by ker(f). Dually, the cokernel of f is
Z

� ∈ Ob(C) with a epimorphism βf ∈ HomC(Y, Z
�) such that for any ψ ∈ HomC(Y,W ) with ψ◦f = 0 there

exists a unique �ψ ∈ HomC(Z
�
,W ) such that ψ = �ψ ◦ βf ; such property individues (if it exists) uniquely

the object Z
�, which will be denoted by coker(f). Moreover one defines coim(f) = coker(αf ) (coimage of

f) and im(f) = ker(βf ) (image of f); one then has a natural morphism f̃ ∈ HomC(coim(f), im(f)). An
additive category C si called abelian if (i) any morphism f admits kernel and cokernel; (ii) the canonical
morphism f̃ is a isomorphism. For example, Mod(A) —where A is a unitary ring— is abelian, while
Ban(C) —the category of Banach C-vector spaces and continuous linear maps— is not (exercise).
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A sequence of morphisms (with n ∈ Z)

X• : · · · −→ Xn−1
d
n−1

X−→ Xn
d
n

X−→ Xn+1 −→ · · ·

where the module Xn is said “to be in degree n”, is called complex if dn
X
◦ dn−1

X
= 0 for

any n ∈ Z. The family of morphisms dn
X

is called the differential of the complex X•.
For any k ∈ Z, the shifted complex of k is (X[k]n, dn

X[k]
)n∈Z, where X[k]n = Xk+n and

dn
X[k]

= (−1)kdk+n

X
.

In a complex one then has im(dn−1

X
) ⊂ ker(dn

X
). The cohomology in degree n of the complex

X• is the A-module

Hn(X•) =
ker(dn

X
)

im(dn−1

X
)
.

The cohomology(101) of the complex X• is the graded A-module

(A.3) H•(X•) =
�

n∈Z
Hn(X•).

If ker(dn0

X
) = im(dn0−1

X
) (i.e. Hn0(X•) = 0), the complex is said to be exact in degree n0;

if this happens for any n ∈ Z, the complex is said to be an exact sequence. In particular,
an exact sequence

0 −→ X � α−→ X
β−→ X �� −→ 0

is called short exact sequence. (Here, of course, we mean that all the rest of the complex is
formed by zeros and zero morphisms; moreover, we are not interesting in fixing the position
of degree zero.) This means that α is injective, β is surjective and im(α) = ker(β).

If A� is another unitary ring, a covariant functor F : Mod(A) −→ Mod(A�) is called left

exact (resp. right exact) if, given any short exact sequence 0 −→ X � α−→ X
β−→ X �� −→ 0,

the sequence

0 −→ F (X �)
F (α)−→ F (X)

F (β)−→ F (X ��) (resp. F (X �)
F (α)−→ F (X)

F (β)−→ F (X ��) −→ 0)

is exact. A left and right exact functor is said to be exact. One shows (exercise) that the
left adjoint of a left exact functor is right exact. Let us examine now two fundamental
examples.

(101)We consider complexes of cochains: i.e., the morphisms go in the direction of increasing indexes.
However, historically the theory started by using complexes of chains, i.e. sequences of morphisms X• :

· · · −→ Xn+1

∂
X
n+1−→ Xn

∂
X
n−→ Xn−1 −→ · · · with ∂

X

n ◦ ∂
X

n+1 = 0 for any n ∈ Z, whose morphisms go in
the direction of decreasing indexes. It is usual to call homology in degree n of the complex X• the A-

module Hn(X•) =
ker(∂

X
n )

im(∂
X
n+1)

. This does not cause serious problems: in a sense this is just a notational

problem, since, given a complex of chains (X•, ∂•) one can define a complex of cochains (Y •
, d

•) by setting
Y

n := X−n and d
n := ∂−n, and it holds H

n(Y •) = H−n(X•) for any n ∈ Z; on the other hand, the
contravariance of the dual construction of cohomology is preferable for various reason, e.g. the presence of
some extra structure as the “cup product”, which makes the cohomology A-modules into A-algebras.
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The functor Hom and its “derived” Ext. Let B be a subring contained in the
center of A, and M b a A-module. One verifies easily (exercise) that the functors

Hom
A
( · ,M) : Mod(A)op −→ Mod(B),

(ϕ : N −→ N �) �→ (Hom
A
(ϕ,M) : Hom

A
(N �,M) −→ Hom

A
(N,M), f �→ f ◦ ϕ)

Hom
A
(M, · ) : Mod(A) −→ Mod(B),

(ϕ : N −→ N �) �→ (Hom
A
(M,ϕ) : Hom

A
(M,N) −→ Hom

A
(M,N �), g �→ ϕ ◦ g)

are left exact: in other words, if 0 −→ N � −→ N −→ N �� −→ 0 is a short exact sequence exact
then one obtains “truncated” exact sequences

0 −→ Hom
A
(N ��,M) −→ Hom

A
(N,M) −→ Hom

A
(N �,M)(A.4)

0 −→ Hom
A
(M,N �) −→ Hom

A
(M,N) −→ Hom

A
(M,N ��).(A.5)

If Hom
A
( · ,M) (resp. Hom

A
(M, · )) is also exact, the A-moduleM is called injective (resp.

projective).(102) Hence, for example, if M is injective the truncated short sequence (A.4)
can be completed by zero. It is then natural to raise the question: in general, if M is not
injective, how could it be possible to continue (A.4)? Now one can show that, even if M
non is injective, there exists anyway an injective resolution of M , i.e. an exact sequence
0 −→ M −→ I0 −→ I1 −→ · · · where the Ij ’s are injective A-modules; given another A-module
K, one defines Extj

A
(K,M) as the jth cohomology group of the complex of B-modules

0 −→ Hom
A
(K, I0) −→ Hom

A
(K, I1) −→ · · ·

(where Hom
A
(K, I0) is in degree zero); one can show that such modules depend only on

K and M and not on the particular injective resolution chosen for M ; one easily notes
that Ext0

A
(K,M) = Hom

A
(K,M), and that those groups Ext

A
are exactly those who

allow one to continue the sequence (A.4):

0 −→ Hom
A
(N ��,M) −→ Hom

A
(N,M) −→ Hom

A
(N �,M) −→

−→ Ext1
A
(N ��,M) −→ Ext1

A
(N,M) −→ Ext1

A
(N �,M) −→ Ext2

A
(N ��,M) −→ · · · .

Of course, if M is injective then Extj
A
(K,M) = 0 for any K and any j ≥ 1. Analogously,

if M is not projective, there exists anyway a projective resolution of M , i.e. an exact
sequence · · · −→ P 1 −→ P 0 −→ M −→ 0 where the P j ’s are projective A-modules; given
another A-module K, one shows that Extj

A
(M,K) is also equal to the jth cohomology

group of the complex of B-modules

0 −→ Hom
A
(P 0,K) −→ Hom

A
(P 1,K) −→ · · ·

(where Hom
A
(P 0,K) is in degree zero)(103), and then one can make also (A.5) continue:

0 −→ Hom
A
(M,N �) −→ Hom

A
(M,N) −→ Hom

A
(M,N ��) −→

−→ Ext1
A
(M,N �) −→ Ext1

A
(M,N) −→ Ext1

A
(M,N ��) −→ Ext2

A
(M,N �) −→ · · · .

(102)The usual definition of injective (resp. projective) A-module M , is equivalent to the one that we have
just given: for any monomorphism (resp. epimorphism) of A-modules f : X −→ Y and any morphism
α : X −→ M (resp. β : M −→ Y ) there exists a morphism α̃ : Y −→ M (resp. β̃ : M −→ X) such that α = α̃◦f
(resp. β = f ◦ β̃).
(103)Therefore we have understood that, in general, to compute Extj

A
(N �

, N
��) one may use either a pro-

jective resolution of N � or an injective one of N ��.
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If M is projective then Extj
A
(M,K) = 0 for any K and any j ≥ 1.(104)

The functor ⊗ and its “derived” Tor. Let N be a right A-module: by N⊗
A
· one can

associate to any left A-module M a B-module N⊗
A
M and, for f ∈ Hom

A
(M,M �) one can

define N⊗
A
f ∈ Hom

B
(N⊗

A
M,N⊗

A
M �) in the most natural way, i.e. N⊗

A
f = idN ⊗f .

In this way one obtains a covariant additive functor N ⊗
A

· : Mod(A) −→ Mod(B), which
in general (being a left adjoint of the left exact functor Hom

B
(N, · )) is only right exact:

i.e., by applying N ⊗
A
· to the short exact sequence 0 −→ X � −→ X −→ X �� −→ 0 one obtains

the truncated exact sequence of B-modules

(A.6) N ⊗
A
X � −→ N ⊗

A
X −→ N ⊗

A
X �� −→ 0.

A right A-module N such that N ⊗
A

· is exact is called flat: for example, all projective
A-modules are flat. Similarly, given a left A-module M the functor · ⊗

A
M : Mod(Aop) −→

Mod(B) is right exact.

Examples. (1) If A = k (a field), all k-vector spaces are flat on k. (2) Consider the following example of

non flat module: let A = C[x] and N = A/Ax. From the short exact sequence 0 −→ A
x·−→ A −→ A/Ax −→ 0,

by applying N ⊗
A

· one gets the complex 0 −→ A/Ax
x·−→ A/Ax −→ A/Ax⊗

A
A/Ax −→ 0. It is then enough

to note that the morphism x· : A/Ax −→ A/Ax is zero (hence non injective). As a consequence, one obtains

the isomorphism A/Ax � A/Ax⊗
A
A/Ax.

Also in this case, it is natural to raise the question: in general, if N is not flat, how
should (A.6) start? Let · · · −→ P 1 −→ P 0 −→ N −→ 0 be a resolution where the P js are flat

(possibly projective) right A-modules; given a left A-module K, one defines TorAj (N,K)
as the (−j)th cohomology group of the complex of B-modules

· · · −→ P 1 ⊗
A
K −→ P 0 ⊗

A
K −→ 0

(where P 0 ⊗
A
K is in degree zero); one shows that such modules depend only on K and

N , and do not depend on the particular flat resolution chosen for N ; one easily notes that
TorA0 (N,K) = N ⊗

A
K, and that these groups TorA allow one to continue (A.6) on the

left hand side:

· · · −→ TorA2 (N,X ��) −→ TorA1 (N,X �) −→ TorA1 (N,X) −→
−→ TorA1 (N,X ��) −→ N ⊗

A
X � −→ N ⊗

A
X −→ N ⊗

A
X �� −→ 0.

If N is flat then TorAj (N,K) for any K and any j ≥ 1.

Example. If A = k with k commutative field, any k-vector space is free on k, hence there are no nonzero

Extj
k
and Torkj for j �= 0. As for the case of A = Z (abelian groups) we refer to the Appendix A.2.3.

Given two complexes X• = (Xn, dn
X
)n∈Z and Y • = (Y n, dn

Y
)n∈Z in Mod(A), a morphism

f : X• −→ Y • is a family of morphisms fn ∈ Hom
A
(Xn, Y n) such that fn+1◦dn

X
= dn

Y
◦fn,

(104)If in the place of Hom
A
(M, · ) (resp. Hom

A
( · ,M)) one considers another covariant (resp. contravari-

ant) left exact functor F : C −→ C� (with C and C� abelian categories: for example, categories of modules
on a ring), one obtains the “derived functors” R

j
F : C −→ C� (with j ≥ 0) of the classical costruction of

Cartan-Eilenberg [3]. Therefore, in this terminology one has for example R
jHom

A
(X, · ) = Extj

A
(X, · ).
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i.e. the diagram

X• :

f

��

· · · �� Xn−1
d
n−1
X ��

f
n−1

��

Xn
d
n
X ��

f
n

��

Xn+1 ��

f
n+1

��

· · ·

Y • : · · · �� Y n−1
d
n−1
Y �� Y n

d
n
Y �� Y n+1 �� · · ·

commutes. It is immediate to verify that, in this way, one obtains a new category C(A)
(of complexes of Mod(A)). From f : X• −→ Y • one defines a morphism between shifted
complexes f [k] : X[k]• −→ Y [k]• by setting f [k]n = fk+n. Note also that a functor
F : Mod(A) −→ Mod(B) induces in a natural way a functor C(F ) : C(A) −→ C(B), which
will be also denoted by F .

Proposition A.2.2. A morphism f : X• −→ Y • induces a morphism of graded A-modules
H•f : H•(X•) −→ H•(Y •).

Proof. Given x ∈ ker(dnX), set H
n
f([x]) = [fn(x)]: since d

n

Y (fn(x)) = f
n+1(dnX(x)) = 0, it is actually

f
n(x) ∈ ker(dnY ); if then x

� ∈ ker(dnX) with [x] = [x�] (i.e. x − x
� = d

n−1

X
(x��) with x

�� ∈ X
n−1), then

[fn(x)] = [fn(x�)] since f
n(x)− f

n(x�) = f
n(dn−1

X
(x��)) = d

n−1

Y
(fn−1(x��)).

Such definition respects compositions, identity and the operations of morphisms: i.e., H•

is a additive functor from C(A) to Moddeg(A). If H•f is an isomorphism (i.e. if Hnf :
Hn(X•) −→ Hn(Y •) is isomorphism for any n), one says that f is a quasi-isomorphism.

Proposition A.2.3. (Snake’s Lemma) Let 0 −→ X• f−→ Y • g−→ Z• −→ 0 be a short ex-
act sequence in C(A).(105) Then there exists a (coboundary) morphism δ : H•(Z•) −→
H•+1(X•) such that the following complex of cohomologies in Mod(A) is an exact se-
quence:

· · · −→ Hn−1(Z•)
δ
n−1

−→ Hn(X•)
H

n
f−→ Hn(Y •)

H
n
g−→ Hn(Z•)

δ
n

−→ Hn+1(X•) −→ . . . .

Proof. Let us construct the morphism δ
n. Let z ∈ ker(dnZ), and let (gn surjective) y ∈ Y

n such that
g
n(y) = z. Since 0 = d

n

Z(g
n(y)) = g

n+1(dnY (y)), one has d
n

Y (y) ∈ ker(gn+1) = im(fn+1), and so let
x ∈ X

n+1 be such that f
n+1(x) = y: one then sets δ

n([z]) = [x] (note that d
n+1

X
(x) = 0 because

f
n+2(dn+1

X
(x)) = d

n+1

Y
(fn+1(x)) = 0 and f

n+2 is injective).(106) The remaining verifications are left as an
exercise.

Note that Mod(A) is a full subcategory of C(A) by identifying a A-module M with the
complex M• : · · · −→ 0 −→ M −→ 0 −→ · · · where M is in degree zero. If

0 −→ M
f−→ X0 f

0

−→ X1 f
1

−→ · · · −→ Xm−1 f
n

−→ · · ·

is an exact sequence where M is in degree zero, the complex (X•, f•) with Xm = 0 for
m < 0 is said a resolution of M . Note that the morphism F : M• −→ X• is defined by
setting F 0 = f and F j = 0 for j �= 0 is a quasi-isomorphism.

(105)I.e., for any n ∈ Z the sequence 0 −→ X
n f

n

−→ Y
n g

n

−→ Z
n −→ 0 is exact in Mod(A).

(106)This is an example of what is usually called “diagram chasing”. In this case, the itinerary to find x

starting from z reminds the shape of a snake, a fact which explains the popular name “Snake Lemma”.
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One says that a morphism f : X• −→ Y • is homotopic to zero if for any n ∈ N there exist
morphisms sn : Xn −→ Y n−1 such that fn = sn+1 ◦ dn

X
+ dn−1

Y
◦ sn:

· · · �� Xn−1
d
n−1

X ��

f
n−1

��

Xn
d
n

X ��

f
n

��

s
n

����
��

��
��

�
Xn+1 ��

f
n+1

��

s
n+1

����
��

��
��

�
· · ·

· · · �� Y n−1
d
n−1

Y �� Y n
d
n

Y �� Y n+1 �� · · ·

.

Two morphisms f, g : X• −→ Y • are said to be homotopic if f − g is homotopic to zero.
One shows (exercise) that if f : X• −→ Y • is homotopic to zero then H•(f) = 0: therefore,
since H• is an additive functor, two homotopic morphisms induce the same morphism in
cohomology.(107) It is clear that the subset Hom0

C(A)
(X•, Y •) of HomC(A)

(X•, Y •) formed

by morphisms homotopic to zero is a subgroup; moreover, g◦f is homotopic to zero if so is
at least one out of f and g (exercise). This allows to define a new category K(A) by setting
Ob(K(A)) = Ob(C(A)) and HomK(A)

(X•, Y •) = HomC(A)
(X•, Y •)/Hom0

C(A)
(X•, Y •).

The functor of cohomology H• : K(A) −→ Moddeg(A) is well-defined.

One sees immediately that, if f : X• −→ Y • is a isomorphism in K(A) (i.e., there exists
un morphism g : Y • −→ X• such that g ◦ f is homotopic to idX• and f ◦ g a idY •) then
f is a quasi-isomorphism. On the other hand, the converse is false: it shall be necessary
to perform a procedure of “localization” of K(A) to come to the derived category D(A).
(We refer to [4] or [10].)

Double complexes. A double complex

X•,• = {(Xm,n, δm,n, dm,n) : m,n ∈ Z}

is the data of a family of A-modules {Xm,n : m,n ∈ N ∪ {0}} and of morphisms

�
δm,n : Xm,n −→ Xm,n+1

dm,n : Xm,n −→ Xm+1,n
such that






d2 = 0
δ2 = 0
d ◦ δ = δ ◦ d

.

In other words, one has a commutative diagram whose rows (Xm,•, δm,•) and columns
(X•,n, d•,n) are complexes in C(A):

· · · · · · · · ·

· · · �� Xm+1,n−1δ
m+1,n−1

��

��

Xm+1,n δ
m+1,n

��

��

Xm+1,n+1 ��

��

· · ·

· · · �� Xm,n−1 δ
m,n−1

��

d
m,n−1

��

Xm,n
δ
m,n

��

d
m,n

��

Xm,n+1 ��

��

· · ·

· · · �� Xm−1,n−1δ
m−1,n−1

��

d
m−1,n−1

��

Xm−1,n δ
m−1,n

��

d
m−1,n

��

Xm−1,n+1 ��

d
m−1,n+1

��

· · ·

· · ·

��

· · ·

��

· · ·

��

(107)Of course, there is a similar costruction for the complexes of chains and relative homology.
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Given a double complex X•,• such that the set {(m,n) : m+n = k, Xm,n �= 0} is finite for
any k ∈ Z (for example, such that Xm,n = 0 if m < m0 or n < n0 for some m0, n0 ∈ Z),
one can construct a simple complex (s(X)•, D•) by “summing on the antidiagonals”, i.e.
by setting

s(X)k =
�

m+n=k

Xm,n, (Dk)i,j = δi,j−1 + (−1)jdi−1,j : s(X)k −→ Xi,j (i+ j = k + 1).

Note (and verify by exercise) that the presence of the alternating factor is indispensable
in order that s(X) become a complex.

Let (Y •, d•
Y
) be a complex with Y k = 0 for k < 0, X•,• a double complex withm0 = n0 = 0,

and let fp : Y p −→ Xp,0 be morphisms such that dp,0 ◦ fp = fp+1 ◦ dp
Y

for any p ∈ N. The
double complex X•,• augmented with the column Y • is

· · · · · · · · · · · ·

0 �� Y 2
f
2

��

��

X2,0 δ
2,0

��

��

X2,1 δ
2,1

��

��

X2,2 ��

��

· · ·

0 �� Y 1
f
1

��

d
1
Y

��

X1,0 δ
1,0

��

d
1,0

��

X1,1 δ
1,1

��

d
1,1

��

X1,2 ��

d
1,2

��

· · ·

0 �� Y 0
f
0

��

d
0
Y

��

X0,0 δ
0,0

��

d
0,0

��

X0,1 δ
0,1

��

d
0,1

��

X0,2 ��

d
0,2

��

· · ·

0

��

An analogous definition holds for a double complex augmented with the row Y •.

There is a natural morphism of complexes ψ : Y • −→ s(X)• sending y ∈ Y p in (fp(y), 0) ∈
s(X)p = Xp,0⊕

�
p

m=1
Xp−m,m (verify that ψ commutes with the differentials dY and D):

by Proposition A.2.2, it induces a morphism in cohomology H•ψ : H•(Y •) −→ H•(s(X)).

Proposition A.2.4. If all rows (resp. all columns) of the double complex X•,• augmented
with the column (resp. with the row) Y • are exact, then ψ is a quasi isomorphism: i.e.,
H•ψ induces an isomorphism

H•(Y •) � H•(s(X)).

Proof. We shall bound to the case of a double complex augmented with the column Y
•, the case of the row

being similar. To show that H
•
ψ is surjective, note that x ∈ Z

p(s(X)) is a x = (xm,n)m+n=p ∈ s(X)p =�
m+n=p

X
m,n such that d

p,0(xp,0) = 0, δm,n(xm,n) + (−1)n+1
d
m−1,n+1(xm−1,n+1) = 0 (for m + n = p

and m = 1, . . . , p) and δ
0,p(x0,p) = 0. By the latter equality, one has x

0,p = δ
0,p−1(z) for a certain

z ∈ X
0,p−1, hence, up to subtracting D(z) from x, we may assume that x

0,p = 0 without changing the
class of D-cohomology [x] of x. By continuing this way, we come to a representative x̃ of [x] with x̃

m,n = 0
for n > 0: therefore, further than d

p,0(x̃p,0) = 0, we also have δ
p,0(x̃p,0) = 0, and hence there will exist

y ∈ Yp such that fp(y) = x̃
p,0; we even get y ∈ Z

p(Y•), because f
p+1(dpy(y)) = d

p,0(fp(y)) = 0 and f
p+1 is

injective. As for the injectivity of H•
ψ, let y ∈ Z

p(Y •) be such that (fp(y), 0) ∈ B
p(s(X)). We shall then

get a z ∈ s(X)p−1 = X
p−1,0 ⊕

�
p−1

m=1
X

p−1−m,m such that D(z) = (fp(y), 0), i.e. dp−1,0(zp−1,0) = f
p(y),
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δ
m,n(zm,n)+(−1)n+1

d
m−1,n+1(zm−1,n+1) = 0 (for m+n = p−1 and m = 1, . . . , p−1) and δ

0,p−1(z0,p−1) =
0. Continuing as above, we may assume that z

p−1−m,m = 0 for m > 0: hence d
p−1,0(zp−1,0) = f

p(y)
and δ

p−1,0(zp−1,0) = 0. Therefore we have z
p−1,0 = f

p−1(y�) for a certain y
� ∈ Y

p−1, which implies
f
p(dp−1

Y
(y�)) = d

p,0(fp−1(y�)) = f
p(y), and therefore y = d

p−1

Y
(y�) since f

p is injective.

A.2.3 The case of abelian groups

As an example and for the particular interest of this case, let us say something more in
detail about the case A = Z (abelian groups).

Proposition A.2.5. Let

X• : 0 −→ X0 d
0

−→ X1 d
1

−→ · · · d
n−2

−→ Xn−1 d
n−1

−→ Xn −→ 0

be a bounded complex of finitely generated abelian groups. Then

n�

j=0

(−1)jrkXj =
n�

j=0

(−1)jrkHj(X),

where rk denotes the rank.(108), In particular,
�

n

j=0
(−1)jrkXj = 0 if X• is an exact

sequence.

Proof. We start by observing that if 0 −→ H −→ G −→ K −→ 0 is a short exact sequence of abelian groups, then
rk (G) = rk (H)+rk (K) (exercise). In our case, denoting Z

j = ker(dj) and B
j = im(dj−1), for j = 0, . . . , n

we have short exact sequences 0 −→ Z
j −→ X

j −→ B
j+1 −→ 0 and 0 −→ B

j −→ Z
j −→ H

j(X) −→ 0, which
implies rkXj = rkZj+rkBj+1 =

�
rkBj+rkHj(X)

�
+rkBj+1, i.e. rkXj = rkHj(X)+(rkBj+rkBj+1);

the result follows by moltiplying both members of the latter equality by (−1)j and summing on j.

Remark A.2.6. Let k be a field of characteristic zero. Given a finitely generated abelian
group G, Hom

Z
(G, k) and k ⊗

Z
G are k-vector spaces of finite dimension rkG, dual to

each other.(109) Note that, by applying the functor k⊗
Z
· to the complex X•, the Propo-

sition A.2.5 remains valid by replacing “k-vector spaces of finite dimension” with “finitely
generated abelian groups” and “dimk” with “rk ”.(110)

In the categoryMod(Z) the projective objects are the free abelian groups, the injective ones
are the divisible groups and the flat ones the torsion-free groups.(111) Since any abelian

(108) Recall that the rank rk (G) of a finitely generated abelian group G is the (finite) number of components
isomorphic to Z in any decomposition of G as direct sum of cyclic subgroups.
(109) It is clear that Hom

Z
(G, k) is a k-vector space of finite dimension rkG. By applying the adjunction

between k⊗
Z
· and for to the group G and to the k-vector space k one obtains an isomorphism of k-vector

spaces (k ⊗
Z
G)∗ = Hom

k
(k ⊗

Z
G, k) � Hom

Z
(G, k).

(110)Of course, one could have proved that fact directly, in the same way used for abelian groups.
(111)A free abelian group is a group of the form Z

(Λ) (recall, as we said in the Appendix A.1, that we
denote Y

Λ = {functions Λ −→ Y } �
�

λ∈Λ
Yλ and Y

(Λ) = {functions Λ −→ Y vanishing a. e.} �
�

λ∈Λ
Yλ).

Any abelian group is the homomorphic image of a free group (this is clear: it is enough to take a family
of generators A0 of R and consider the natural surjective morphism Z

(A0) −→ R −→ 0 given by (nr)r∈A0 �→�
r∈A0

nrr), and subgroups of free groups are free. Dually, the abelian group G is divisible if nG = G for
any n ∈ N. The structure theorem says that any divisible group is the direct sum of copies of Q (prototype
of torsion-free divisible group) and of Z/p∞Z :=

�
n∈N

Z/p
n
Z where p is a prime number (prototype of

divisible group of torsion: it holds Q/Z �
�

p
Z/p

∞
Z). The divisible groups enjoy properties dual to the

ones of free groups: homomorphic images of divisible groups are divisible, and any abelian group is the
subgroup (even essential, i.e. “dense” subgroup: a subgroup H ⊂ G is called essential in G if the unique
subgroup K ⊂ G such that H ∩K = {0} is K = {0}) of a divisibile group. Finally, an abelian group G is
torsion-free if nx = 0 with n ∈ Z and x ∈ G \ {0} implies that n = 0.
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group is homeomorphic image of a free group and the subgroups of free groups free, any
abelian group R has a projective resolution of type 0 −→ Z

(A1) −→ Z
(A0) −→ R −→ 0; similarly,

since any abelian group is the subgroup of a divisibile group, and any homeomorphic
image of divisible groups is divisible, any abelian group G has an injective resolution of
type 0 −→ G −→ D0 −→ D1 −→ 0 with D0 and D1 divisible: it folows that, given two abelian
groups R and G, the groups Extj

Z
(R,G) and TorZj (R,G) vanish for j �= 0, 1. As we have

seen, in general it holds Ext0
Z
(R,G) = Hom

Z
(R,G) and TorZ0 (R,G) = R ⊗

Z
G; for the

computation of Ext1
Z
(R,G) one could use either a free resolution of R or a divisible one

of G (hence Ext1
Z
(R,G) = 0 if R is a free group, or if G is divisible), and for TorZ1 (R,G)

a free resolution of R or of G (hence TorZ1 (R,G) = 0 if at least one out of R and G is free
or –more simply– flat, i.e. torsion-free).

Examples. (1) It holds Ext1
Z
( Z

nZ
,Z) = Z

nZ
, Ext1

Z
( Z

nZ
,

Z

mZ
) = Z

(n,m)Z
(where (n,m) = MCD{n,m}) and

Ext1
Z
(Q,Z) �= 0. (2) One has TorZ1 (

Z

mZ
,

Z

nZ
) = Z

(m,n)Z
.(112)

(112)Ext1
Z
(Q,Z) is usually computed by using the divisible resolution 0 −→ Z −→ Q −→ Q

Z
−→ 0 of Z but it

turns out to be complicated (see for example [8, Section 3.G]). The other statements can be easily obtained

using the free resolution 0 −→ Z
×n−→ Z −→ Z

nZ
−→ 0 of Z

nZ
.
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