
Notes on Algebraic Topology

1 The fundamental group of a topological space

The first part of these notes deals with the (first) homotopy group —or “fundamental
group”— of a topological space. We shall see that two topological spaces which are “ho-
motopic” —i.e. continuously deformable one to the other, for example homeomorphic
spaces— have isomorphic fundamental groups.
After defining the notion of homotopy (§1.1), we study the subsets which are “retract” (in
various senses) of a given space (§1.2); then we come to the definition of the fundamental
group of a topological space and investigate its invariance (§1.3), and we study the exam-
ples of the circle and of the other quotients of topological groups by discrete subgroups
(§1.4). In computing a fundamental group, the theorem of Van Kampen allows one to
decompose the problem on the subsets of a suitable open cover (§1.5). Deeply related
to the fundamental group is the theory of covering spaces —i.e. local homeomorphisms
with uniform fibers— of a topological space (§1.6), which enjoy the property of “lifting
homotopies” (§1.7). The covering spaces have a simpler homotopy structure than the one
of the original topological space, at the point that the graph of subgroups of the funda-
mental group of the latter describes the formers up to isomorphisms (§1.8). In particular,
the “universal” covering space —whose characteristic subgroup is trivial— describes, by
means of the covering automorphisms, the fundamental group itself (§1.9). We end by
studying some examples, among them the fundamental group of manifolds and of real
linear groups (§1.10).

The notes of this part are largely inspired by the lecture notes of a nice course held by
Giuseppe De Marco in Padua while the author was still an undergraduate student.

Notation. In what follows, I denotes the closed interval [0, 1] ⊂ R, ∂I = {0, 1} its boundary points, {pt}
the one-point set, Sn = {x ∈ R

n+1 : |x| = 1} the n-dimensional sphere and B
n+1 = {x ∈ R

n+1 : |x| ≤ 1}
the (n + 1)-dimensional closed ball (of which S

n is the boundary in R
n+1). If not otherwise specified, on

a subset of a topological space we shall always consider the induced topology.
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1.1 Homotopy

Let us remind the notion of “path” in a topological space.

Definition 1.1.1. Let X be a topological space. A path, or arc, in X is a continuous
function γ : I −→ X. It is usual to denote by γ also the image γ(I) ⊂ X. The points
x

0
= γ(0) and x1 = γ(1) are called extremities (or endpoints) of the path. In the case where

x1 = x
0
, one calls the path a loop based on x

0
. (Analogously, a loop in X based on x

0
can

be understood as a continuous function γ̃ : S1 −→ X where, if we identify S
1 ⊂ C � R

2, we
have γ̃(1) = x

0
.) A change of parameter (or reparametrization) is a continuous function

p : I −→ I such that p(0) = 0 and p(1) = 1 (note that the paths γ and γ ◦ p have the same
image). The space X is called arcwise connected if for any pair of points x

0
, x1 ∈ X there

exists a path γ in X with extremities x
0
and x1.

Remark 1.1.2. Recall that a topological space X is connected if it is not a disjoint union
of two non empty open subsets or, equivalently, if all continuous functions of X with
values in a discrete topological space are constant (hence, if A ⊂ X is connected such is
also A). An arcwise connected space is also connected,(1) but not vice versa: for example,
if A = {(x, y) ∈ R

2 : x > 0, y = sin( 1
x
)} then B := A = ({0} × [−1, 1]) ∪ A (commonly

called topologist’s sinus) is connected but not arcwise connected.(2) In any case one should
be careful about which topology is being considered on the space: X = {p, q} (the two-
points space) is arcwise connected when endowed with the topology {∅, {p}, X}, while
the discrete topology makes it disconnected.(3)

Let X,Y be topological spaces, and denote by C(X,Y ) the space of continuous functions
between them.(4) Given f, g ∈ C(X,Y ) , we want to give a precise meaning to the idea of
“deforming continuously the function f into the function g”.

Definition 1.1.3. A homotopy between the functions f and g is a continuous function
h : X × I −→ Y such that h(x, 0) = f(x) and h(x, 1) = g(x) for any x ∈ X. Two
functions are called homotopic (f ∼ g) if there exists a homotopy between them. More
generally, given a subset A ⊂ X, the functions f and g are called homotopic relatively to
A (also homotopic rel A for short) if there exists a homotopy h between them such that
h(x, t) = f(x) = g(x) for any x ∈ A and t ∈ I. A function is called nullhomotopic if it is
homotopic to a constant function.

(1)If X is arcwise connected, D is discrete, f : X −→ D is continuous, x0 , x1 ∈ X and γ is a path between
them, then f ◦ γ is continuous and therefore (since I is connected) f(γ(I)) ⊂ D is connected. But then
f(γ(I)) ⊂ D is a point, and in particular f(x0) = f(x1).

(2)Let γ : I −→ B be a path joining a point of A and a point of B \ A = {0} × [−1, 1]: then {t ∈ I :
x(γ(t)) = 0} is a non empty closed subset of I, and therefore there will exist its minimum δ > 0. On the
other hand, once more thanks to the continuity, there must exist a δ

� ∈]0, δ[ such that |γ(t) − γ(δ)| < 1

2

for any t ∈]δ�, δ[, but this is absurd: namely, in any left neighborhood of δ in I there are points where the
value of y ◦ γ is 1 and other points where it is −1. Note that such argument does not apply (happily) to
B

� = {(x, y) ∈ R
2 : x > 0, y = x sin( 1

x
)} ∪ {(0, 0)}, which is indeed arcwise connected (it is a continuous

image of I).
(3)If the topology is {∅, {p}, X}, a path from p to q is γ : I −→ X, γ|

[0,
1
2 [

≡ p and γ|
[
1
2 ,1]

≡ q; if the

topology is the discrete one, X = {p} ∪ {q} shows that X is disconnected.
(4)In other words, we have C(X,Y ) = HomTop(X,Y ) in the category Top of topological spaces (see

Appendix A.1).
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Remark 1.1.4. Here are a couple of initial observations about the relation between the
notions of homotopy and path.

(a) For X = {pt} and Y = X one finds again the definition of path in X (as a homotopy
between the functions of {pt} in X of values x

0
and x1).

(b) For X = I and Y = X the functions f and g are paths in X. In the case of a homo-
topy of paths, it is frequent to require that the endpoints be fixed, i.e. that h(0, t)
and h(1, t) do not depend on t (in particular f(0) = g(0) and f(1) = g(1)):(5) at
least this is the situation that we shall soon consider in the definition of fundamental
groupoid/group.

Figure 1 - Homotopy (with fixed endpoints) between two paths f0 and f1.
(6)

For t ∈ I, one often uses the notation

ht : X −→ Y, ht(x) := h(t, x) :

hence f = h0 and g = h1.

Examples. (1) If Y is a convex subset of a topological vector space, any two continuous functions

f, g : X −→ Y are homotopic by means of the affine homotopy h(x, t) = (1− t)f(x)+ tg(x). Such homotopy

is clearly rel A = {x ∈ X : f(x) = g(x)}. (2) Two constant functions with values in a topological space

Y are homotopic if and only if such constants belong to the same arcwise connected component of Y . (3)

As functions of S1 to itself, two rotations (i.e. multiplications by e
iθ, with θ ∈ R) are homotopic. On the

contrary, the identity is not nullhomotopic (in other words, as we shall say soon, S1 is not “contractible”),

as it is well-known to those who have a basic knowledge of holomorphic functions (see 1.4.1).

Remark 1.1.5. (Compact-open topology) Let X be locally compact (i.e., any point has
a compact neighborhood) and Hausdorff (hence it is possible to prove that any point has
a basis of compact neighborhoods), and Y be Hausdorff. On the space of continuous
functions C(X,Y ) one can consider the compact-open topology, generated by the subsets
of type MK,V = {f ∈ C(X,Y ) : f(K) ⊂ V } where K runs among the compact subsets of
X and V among the open subsets of Y .(7) Now, h : X × I −→ Y is a homotopy if and only

(5)In the terminology introduced just above, we could say that the homotopies between paths are fre-
quently meant to be rel ∂I = {0, 1}.

(6)This picture, as well as others in these notes, are taken from the book of Hatcher [8].
(7)Given a topology T on a set Z, one says that S ⊂ T is a prebasis of T if any element of T may be

expressed as an arbitrary union of finite intersections of elements of S (in this case, the family of finite
intersections of elements of S is said to be a basis of T ). Any S ⊂ P(Z) generates in such a way a
topology T (S) on Z; if S� ⊂ S, it is clear that T (S�) = T (S) if and only if S ⊂ T (S�). For example,
if Z = C(X,Y ) and S = {MK,V : K compact of X, V open in Y }, let us consider a family of compact
subsets K of X containing a basis of neighborhoods of any point, and a prebasis B of the topology of Y , and
set S� = {MK,V : K ∈ K, V ∈ B}: then also S

� generates the compact-open topology on C(X,Y ). Namely,
assumed that B is a basis (this is not restrictive, since MK,V1 ∩MK,V2 = MK,V1∩V2), it is enough to prove
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if (1) ht ∈ C(X,Y ) for any t ∈ I, and (2) the function h̃ : I −→ C(X,Y ), h̃(t) = ht, is a
path in C(X,Y ).(8)

Lemma 1.1.6. (Gluing lemma) Let X and Y be topological spaces, X =
�

r

j=1
Fj a finite

covering by closed subsets. Then f : X −→ Y is continuous if and only if so are the
restrictions f |

Fj
(j = 1, . . . , r).

Proof. Follows immediately from the definition (f is continuous if and only if f−1(C) is closed in X for
any closed C ⊂ Y ...).

Proposition 1.1.7. Homotopy is an equivalence relation in C(X,Y ).

Proof. Reflexivity and simmetry are obvious, while transitivity follows from Lemma 1.1.6 (exercise).

Definition 1.1.8. (Homotopy category) The category hTop has the topological spaces as
objects, and the morphisms between two of them are the equivalence classes of continuous
functions modulo homotopy. An isomorphism in hTop is called homotopic equivalence;
two spaces isomorphic in hTop are said homotopically equivalent (X ∼ Y ). A space
homotopically equivalent to a point is called contractible.

Hence, by definition f : X −→ Y is a homotopic equivalence if there exists g : Y −→ X such
that g ◦f ∼ idX and f ◦g ∼ idY . We leave to the student to check that hTop is a category
(for example, the compatibility of the homotopy with the composition).

Proposition 1.1.9. A topological space X is contractible if and only if idX is nullhomo-
topic. In particular, a contractible space is arcwise connected, and its identity is nullho-
motopic to any constant.

Proof. The first statement follows immediately from the definitions. Then, if h : X×I −→ X is a homotopy
between idX and the constant x0 , another point x1 of X is connected to x0 by the arc h(x1, · ).

Examples. (0) From what has just been seen, topological spaces non arcwise connected (for example,

discrete spaces with more than one point) cannot be contractible. (1) Star-shaped subsets of topological

vector spaces are immediate examples of contractible spaces. (2) The space X = {(x, y) ∈ I × I : xy =

0}∪{( 1

n
, y) : n ∈ N, 0 ≤ y ≤ 1} (the so-called comb space, see Figure 2) is contractible but non “contractible

that, given a function f ∈ C(X,Y ), a compact K ⊂ X and an open V ⊂ Y such that f ∈ MK,V , there exist
compact subsets K1, . . . ,Kr ∈ K and open subsets V1, . . . , Vr ∈ B such that f ∈

�
r

i=1
MKi,Vi ⊂ MK,V .

For any x ∈ K let Vx ∈ B be such that f(x) ∈ Vx ⊂ V , and let Kx ∈ K be a neighborhood of x such that
f(Kx) ⊂ Vx (i.e. f ∈ MKx,Vx); by compactness there exist x1, . . . , xr ∈ K such that K ⊂

�
r

i=1
Kxi : hence

one can set Ki = Kxi and Vi = Vxi .
(8)More generally, ley us show that if T is any Hausdorff topological space then h : X × T −→ Y is

continuous if and only if ht ∈ C(X,Y ) for any t ∈ T , and h̃ : T −→ C(X,Y ), h̃(t) = ht is a path in C(X,Y ).
If h is continuous, obviously also its restrictions ht will be continuous; let us show that h̃ is continuous in
t0 ∈ T . Let K be a compact of X, and let V be an open subset of Y such that h̃(t0)(K) ⊂ V : then it
is enough to prove that there exists an open neighborhood U ⊂ T of t0 such that h̃(U) ⊂ MK,V . Since h

is continuous, for any x ∈ K there exist open neighborhoods Wx ⊂ X of x and Ux ⊂ T of t0 such that
h(Wx × Ux) ⊂ V ; if x1, . . . , xk are such that K ⊂

�
k

j=1
Wxj , it will be enough to take U =

�
k

j=1
Uxj .

Conversely, let us show that h is continuous in (x0, t0) ∈ X×T : if V ⊂ Y is a neighborhood of y0 = h(x0, t0),
we must find open neighborhoods W ⊂ X of x0 and U ⊂ T of t0 such that h(W × U) ⊂ V . Since ht0 is
continuous, there exists W such that h(W × {t0}) ⊂ V ; then, if K ⊂ X is a compact neighborhood of x0

contained in W (remember the hypotheses on X), due to the continuity of h̃ in t0 there exists U such that
h̃(U) ⊂ MK,V . We then conclude that h(W × U) ⊂ V .
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rel q”, i.e. there does not exist a homotopy rel {q} of idX with the constant function X −→ {q} ⊂ X.(9) (3)

The space X = {( 1−t

n
, sign(n)t) : n ∈ Z×, t ∈ I} ∪ {(0, 2t− 1) : t ∈ I} (see Figure 3) is arcwise connected

but not contractible.(10) (4) Later we shall see that the spheres Sn are not contractible.

0 · · · 1
n
· · · 1

5

1

4

1

3

1

2
1

q = (0, 1)

Figure 2 - The “comb space”
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Figure 3 - A space arcwise connected but not contractible

Before studying the functions defined or having values in S
n, let us recall the definition

and some properties of quotient functions.

Definition 1.1.10. A surjective function p : X −→ Y is called quotient if the following
condition holds: V ⊂ Y is open in Y if and only if p−1(V ) is open in X. (In particular, p
is continuous.)

Of course, this is equivalent to saying that the topology of Y coincides with the quotient
topology with rispect to p, i.e. the finest (=largest) topology on Y such that p is continuous.
Now, on Y \ p(X) such topology clearly coincides with the discrete topology, hence the
non surjective case is not very interesting: therefore the problem is to check whether a

(9)To write a homotopy (even rel {0}) between idX and the constant function X −→ {0} ⊂ X is easy:
for example, the function given by h((x, y), t) = (x, (1− 2t)y) for t ∈ [0, 1

2
] and h((x, y), t) = (2(1− t)x, 0)

for t ∈][ 1
2
, 1] (continuous by Lemma 1.1.6). To show the “non contractibility rel q”, it is enough to show

that a hypothetical homotopy rel {q} between idX and the constant function X −→ {q} ⊂ X cannot be
continuous: in fact such a homotopy should have constant value q on {q}× I, and to find a discontinuity
point of one can argue as in the example that follows.
(10)Let us suppose that there exists a homotopy h : X × I −→ X between idX and the constant 0, and
set h = (h1, h2) in R

2. For any n ≥ 1 set x±n
= (± 1

n
, 0), and let t±n = min{t ∈ I : h(x±n

, t) = p±}
(h is continuous, hence t±n exist > 0), and set t± = lim infn−→+∞ t±n. (Recall that, if A ⊂ R, x0 ∈ A,
f : A −→ R and � ∈ R then � = lim infx−→x0 f(x) means that (i) for any � > 0 there exists N ∈ N such that
xn ≥ x0 − � for any n ≥ N , and (ii) for any � > 0 and N ∈ N there exists n ≥ N such that xn ≤ x0 + �.)
If one out of the t±’s would be zero (assume e.g. t+ = 0) then h2 (and hence h) cannot be continuous
in (0, 0): otherwise for any � > 0 there would exist τ > 0 and N ∈ N such that |h2(xn

, t)| < � if n ≥ N

and t < τ , but this is false since for any � > 0 and any τ > 0 there exists n such that 1

n
< �, tn < τ and

h(x
n
, tn) = p

+
(hence h2(xn

, tn) = 1). On the other hand, if t± are both > 0, note that for any 0 ≤ t < t+

it holds h2(0, t) ≥ 0 (namely x
n
−→ 0 and h2(xn

, t) ≥ 0), and analogously for any 0 ≤ t < t− it holds
h2(0, t) ≤ 0. We conclude that h2(0, t) ≡ 0 for any 0 ≤ t < t̃ := min{t+, t−}. Arguing as above, we show
that h2 (and therefore h) cannot be continuous in (0, t̃).
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given continuous and surjective function p : X −→ Y is quotient or not. In general this is
obviously false (it is enough to weaken the topology of Y : the continuity of p will be even
improved). In any case, the following criterion holds.

Proposition 1.1.11. Let p : X −→ Y be a continuous and surjective function. If p is open
or closed, then p is quotient. Conversely, if p is quotient then p is open (resp. closed) if
and only if for any subset open (resp. closed) A ⊂ X the “p-saturated” p−1p(A) ⊂ X is
open (resp. closed) in X.

Proof. Exercise.

Corollary 1.1.12. Let X be compact and Y be Hausdorff. Then a continuous and sur-
jective function p : X −→ Y is quotient.

Proof. Under these hypotheses p is closed, so we may apply Proposition 1.1.11.

Remark 1.1.13. As we have seen, in general a continuous and surjective function is
far from being quotient. In particular, one should be careful when restricting quotient
functions. For example, consider the exponential map π : R −→ S

1 given by π(t) = e2πit: it
is quotient, open and closed. The restriction π|

[0,1]
is closed (hence quotient) but non open,

π|
]0,2[

is open (hence quotient) but non closed, and the bijection q = π|
[0,1[

: [0, 1[−→ S
1

is even no longer quotient. This provides a confirmation that, as it is well-known, the
continuous bijection q is not a homeomorphism between the interval [0, 1[ and the circle
S
1 with their usual topologies: in order to make it such, it would be necessary to refine

the topology of S1 into the quotient one with respect to q.(11)

The quotient functions have the factorization property:

Proposition 1.1.14. Let p : X −→ Y be a quotient function, f : X −→ Z a continuous
function constant on the fibers of p. Then there exists a (unique) continuous function
f̃ : Y −→ Z such that f̃ ◦ p = f .

Proof. Let us define f̃(y) = f(x) for an arbitrary choice of x ∈ p
−1(y): this function is well-defined by

hypothesis, and uniqueness is obvious. If W ⊂ Z is open, since p is quotient f̃
−1(W ) is open if and only

if p−1
f̃
−1(W ) = f

−1(W ) is open in X, and this is true since f is continuous.

A consequence:

Corollary 1.1.15. Let q : X −→ Y be a quotient function, Xq the space of fibers of q
(i.e. the quotient of X by the equivalence relation x1 ∼ x2 if and only if q(x1) = q(x2))
endowed with the quotient topology. Then Y is canonically homeomorphic to Xq.

Proof. The following is a standard argument which is often useful when one must prove the uniqueness
(up to canonical identifications) of some structure starting from existence and uniqueness of morphisms.
Let π : X −→ Xq be the canonical projection, and let us apply Proposition 1.1.14 repeatedly. For p = q

and f = π we get that there exists a unique π̃ : Y −→ Xq such that π̃ ◦ q = π; for p = π and f = q we get
that there exists a unique q̃ : Xq −→ Y such that q̃ ◦ π = q: this gives (q̃ ◦ π̃) ◦ q = q. But for p = f = q

there is only one α : Y −→ Y such that α ◦ q = q, and by uniqueness this α must be the identity: hence
q̃ ◦ π̃ = idY . One shows similarly that π̃ ◦ q̃ = idXq , and the proof is over.

(11)For 0 < ε < 1, [0, ε[ (resp. ]0, ε]) is a open subset of [0, 1] (resp. a closed subset of ]0, 2[) but its image is
not open (resp. closed) in S

1. Moreover, V = {e2πit : 0 ≤ t < ε} is not open in S
1, while π|−1

[0,1[
(V ) = [0, ε[

is open in [0, 1[. Therefore the quotient topology of S1 with respect to q must contain, among its open
subset, also those of the form of V .
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This shows that, up to canonical homeomorphisms, quotient functions are the maps of type
π : X −→ X

∼ , where ∼ is an equivalence relation in X and X

∼ is the space of equivalence
classes endowed with the quotient topology with respect to the canonical projection π.

Examples. (1) In B
n+1 let us consider the equivalence relation ∼ which identifies all the points of the

boundary S
n: the quotient B

n+1

∼ is homeomorphic to S
n+1.(12) (2) (Suspensions and wedge sums) Among

the various classic topological constructions obtained by a quotient procedure, let us mention a couple

of them. The suspension SX of a topological space X, is the quotient of X × I obtained by identifying

X × {0} to a single point and X × {1} to another single point: so, for example, it is quite clear that SSn

is homeomorphic to S
n+1.(13) The wedge sum X ∨ Y of two topological spaces X and Y with base points

respectively x0 ∈ X and y0 ∈ Y is the quotient of the disjoint union X � Y obtained by identifying the

two points x0 and y0 to a single point: for example, S1 ∨ S
1 is homeomorphic to the “figure eight”.

Figure 4 - The suspension SS
1
and the wedge sum S

1 ∨ S
2
.

Remark 1.1.16. If p : X −→ Y is quotient, it is clear that Y � X

∼ is Hausdorff if and only
any pair of different equivalence classes are contained in disjoint saturated open subsets.
A necessary condition is that the classes are closed subsets of X (in other words, that Y
is T1). But this is not sufficient, as shows the following example of Jänich [9]. Let X =
[−π

2
, π
2
]×R, r± = {±π

2
}×R, s1(c) = {(x, tg (x)+c) : x ∈]− π

2
, π
2
[}, s2(c) = {(x, 1

cos(x)
+c) :

x ∈] − π

2
, π
2
[} (where c ∈ R) and consider the partitions Y1 = {r±, s1(c) (c ∈ R)} and

Y2 = {r±, s2(c) (c ∈ R)}. Both the classes of Y1 and of Y2 are closed subsets of X, but
only Y1 is of Hausdorff.(14)

Figure 5 - The partitions Y1 and Y2 of the examples of Jänich.

(12)The idea of the proof: for example, for n = 1 identify, in R
3, B2 � {x2 + y

2 + z
2 = 4, z ≥ 0} and

S
2 � {x2 + y

2 + (z − 1)2 = 1}, then consider the continuous map B
2 −→ S

2 sending (x, y, z) ∈ B
2 in the

point of S2 given by the intersection with the horizontal half-line {(tx, ty, z) : t ≥ 0}. Since B
2 is compact

and S
2 is Hausdorff, by Corollary 1.1.12 the map is quotient.

(13)Try to visualize and write down the case n = 1 (see Figure 4), then argue in the general case.
(14)In both spaces the graphs sj(c) are separable both between them and from the two vertical lines r±;
on the other hand, r± can be separated only in Y1.
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So let us study the functions having S
n as domain or as codomain.

Proposition 1.1.17. Let Y be a topological space and f : S
n −→ Y be a continuous

function. The following statements are equivalent:

(i) f is nullhomotopic;

(ii) f has a continuous extension f̃ : Bn+1 −→ Y ;

(iii) f is nullhomotopic rel {x
0
} for any x

0
∈ S

n.

Proof. (i) ⇒ (ii): let y0 ∈ Y and h : Sn × I −→ Y be a homotopy such that h(x, 0) = f(x) and h(x, 1) = y0 .
If u : I −→ I is any continuous function with u ≡ 0 in a neighborhood of 0 and u(1) = 1, then f̃ : Bn+1 −→ Y

defined as f̃(z) = h( z

|z| , 1−u(|z|)) (if z �= 0) and f̃(0) = y0 is continuous and extends f . Another proof can

be obtained as follows. Let g : Sn×I −→ B
n+1 be given by g(x, t) = (1−t)x: it is continuous, surjective and

closed (both spaces are compact) and hence quotient by Proposition 1.1.11. The fiber of g above z ∈ B
n+1

is the point {(z/|z|, 1− |z|)} (if z �= 0) and S
n × {1} (if z = 0): hence h is constant on the fibers of g. By

Proposition 1.1.14 there exists a continuous function f̃ : Bn+1 −→ Y such that h = f̃ ◦ g. The function f̃ is
the desired extension. (ii) ⇒ (iii): if we define h : Bn+1 × I −→ Y by h(x, t) = f̃(x0 + (1− t)(x− x0)), the
function h|

Sn×I
is a homotopy rel x0 between f and the constant f(x0). (iii) ⇒ (i): obvious.

Proposition 1.1.18. Let X be a topological space, f : X −→ S
n and g : X −→ S

n continuous
functions. If f and g are never antipodal (i.e. if f(x) �= −g(x) for any x ∈ X) then they
are homotopic.

Proof. The function α : X × I −→ R
n+1 given by α(x, t) = (1 − t)f(x) + tg(x) —i.e. the affine homotopy

between f and g— never vanishes (if (1 − t)f(x) = −tg(x), comparing the norms of both members one
has 1 − t = t, i.e. t = 1/2: hence f(x) = −g(x), which contradicts the hypothesis): a homotopy is then
h = α/|α|.

Corollary 1.1.19. Let X be a topological space. Any f : X −→ S
n continuous and non

surjective is nullhomotopic.

Proof. If y0 ∈ S
n \ f(X), then f and the constant map g(x) ≡ −y0 are never antipodal. By Proposition

1.1.18, they are homotopic.

Another consequence (if we accept to postpone the completion of the proof to the second
part of the course, where we shall meet the notion of topological degree) is the following
funny result. Recall that a vector field on a manifold is a continuous section of the tangent
bundle, i.e. a continuous function ϕ : Sn −→ R

n+1 such that, for any x ∈ S
n, ϕ(x) is a

vector tangent to S
n in x (i.e., ϕ(x) ∈ TxS

n).

Corollary 1.1.20. (Hairy Ball theorem) There exist continuous and never vanishing vec-
tor fields on S

n if and only if n is odd.

In particular, any continuous vector field on S
2 has at least one zero (this provides a

justification for the popular name “Hairy Ball theorem” of the result: it is impossible to
“comb a sphere in a continuous way without creating some baldness”).

Proof. To assume that there exists a vector field both continuous and never vanishing on S
n is obviously

the same than assuming that there exists a continuous field of tangent versors ϕ : Sn −→ S
n. Since ϕ

can never be antipodal neither to idSn nor to − idSn (since neither x ∈ S
n nor −x belong to TxS

n), by
Proposition 1.1.18 it is homotopic to both and then, by transitivity, one has idSn ∼ − idSn . Now, the
topological degree of a proper continuous function is invariant under proper homotopies (the sphere S

n is
compact, so of course everything is proper), and one proves that this degree is 1 for idSn and (−1)n+1 for
− idSn (this will be done in the second part of the course: see Examples 2.7): so we get a contradiction
when n is even. On the other hand, when n is odd a field of tangent versors both continuous and never
vanishing is easy to exhibite: just set ϕ(x1, x2, . . . , xn, xn+1) = (x2,−x1, . . . , xn+1,−xn).

Corrado Marastoni 10



Notes on Algebraic Topology

1.2 Retractions

There are various ways to “shrink” a space into a subset of it: let us investigate them.

Definition 1.2.1. Let X be a topological space and A ⊂ X. A is said to be a retract of
X if there exists a continuous function r : X −→ A (retraction) such that r(x) = x for any
x ∈ A.(15)

Lemma 1.2.2. Let X and Y be topological spaces, f, g : X −→ Y two continuous functions.
If Y is Hausdorff, then A = {x ∈ X : f(x) = g(x)} is closed in X.

Proof. Let (f, g) : X −→ Y × Y the product map (continuous). Recalling (exercise) that Y is Hausdorff if
and only if the diagonal ∆Y is closed in Y × Y , it is enough to observe that A = (f, g)−1(∆Y ).

The following proposition provides a first, elementary bound to the fact of being a retract
of a Hausdorff space.

Proposition 1.2.3. If X is a Hausdorff topological space and A ⊂ X is a retract of X,
then A is closed.

Proof. Note A = {x ∈ X : idX(x) = r(x)}, then apply Lemma 1.2.2.

Examples. (1) For any x0 ∈ X, A = {x0} is a retract of X. (2) S
n is a retract of R

n+1

× (with

r(x) = x/|x|), but not of Bn+1, as we shall see soon (Theorem 1.2.5). (3) Let X = I × I and A be the

“comb space” (see Figure 2 of §1.1): although these spaces are both contractible, A is not a retract of

X.(16)

In the notion of “retract” the whole set X is sent into A with all points of A kept fixed,
but this happens all at once, without any progressiveness: in other words, the idea of ho-
motopy does non appear. Consequently it is not so surprising that even two homotopically
elementary spaces as those of the last example could be not the retract of each other. In
fact, the homotopy comes into play in the following notions of “deformation retract”.

Definition 1.2.4. Let X be a topological space and A ⊂ X. A is a weak deformation
retract of X if the canonical inclusion iA : A −→ X is a homotopic equivalence. A is a
deformation retract of X if there exists a retraction r : X −→ A such that iA ◦ r ∼ idX .
Finally, A is a strong deformation retract of X if exists a retraction r : X −→ A such that
iA ◦ r ∼ idX rel A.

From the definitions it is clear that “strong deformation retract” implies “deformation
retract”, which in turn separately implies “retract” and “weak deformation retract”. On
the other hand the two latter notions are independent, as it is shown in the following
examples.

(15)In other words, the map r is a left inverse of the canonical inclusion iA : A −→ X in the category Top.
(16)Namely, let q = (0, 1) ∈ A and V a neighborhood of q in X: then A∩ V is a neighborhood (which, up
to shrinking V , can be assumed to be disconnected) of q in A. Would there exists a retraction r : X −→ A,
since r(q) = q and r is continuous there would exist a connected neighborhood U of q in X such that
r(U) ⊂ A ∩ V , which implies r(U) ⊂ {(x, y) ∈ A ∩ V : x = 0}. But this is absurd, since r induces the
identity on A (and in particular on A ∩ U).
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Examples. (1) S
n (resp. Bn+1) is a strong deformation retract of X = R

n+1

× (resp. X = R
n+1): the

retractions are r(x) = x/|x| and r(x) =

�
x (|x| ≤ 1)
x/|x| (|x| ≥ 1)

, and the latter is continuous by the Gluing

lemma. As an exercise, find the homotopies between iA ◦ r and idX . (2) Any contractible subset A of

a contractible space X is a weak deformation retract of X: namely, if x0 is any point of A, the constant

function g : X −→ A, g ≡ x0 is a homotopic inverse of iA (any contractible space is arcwise connected, hence

its identity is homotopic to any constant: see Proposition 1.1.9). But it is false that A must necessarily

be a retract of X: we already saw it with X = I × I and A the comb space, and a even more immediate

example is given by X = R
n+1 and A the open ball Ḃn+1 which, being non closed, can not be retract of

X. (3) On the other hand, if X is a topological space, x0 a point of X and A = {x0}, we saw that A is

always a retract of X, while it is clear that A is deformation retract of X if and only if X is contractible.

(4) If X is contractible, any point of X is a deformation retract of X: namely, this amount to saying

(see Proposition 1.1.9) that the identity is nullhomotopic to any constant. So, for example, both points

(0, 0) and q = (0, 1) are deformation retracts of the comb space X, but only the first point is a strong

deformation retract: namely we saw (see p. 7) that there does not exist a homotopy rel q of the identity

into the constant q.

The following theorem shows a fact about Sn which has been already announced: however,
once more we must wait for the second part of the course (when we shall use the notion
of cohomology) to complete the proof.

Theorem 1.2.5. The following equivalent statements hold:

(i) S
n is not contractible;

(ii) S
n is not a retract of Bn+1;

(iii) (Brouwer’s Fixed Point Theorem) Any continuous function of Bn+1 into itself has
at least one fixed point.

Proof. First let us prove that the three statements are equivalent. (i) ⇔ (ii): just apply Proposition
1.1.17 to idSn . (ii) ⇒ (iii): let f : Bn+1 −→ B

n+1 be a continuous function without fixed points: then a
retraction r : Bn+1 −→ S

n is obtained by setting, for z ∈ B
n+1, the image r(z) as the intersection point

with S
n of the half line starting from f(z) and passing through z (note that f(z) �= z by hypothesis).(17)

(iii) ⇒ (ii): conversely, if r : Bn+1 −→ S
n is a retraction, the function f = −iSn ◦ r is continuous and

without fixed points. • Now let us start the proof of (ii), which will be completed later. Using Weierstrass’
approximation theorem, it is easy to prove that it is enough to show that there does not exist retractions
of class C∞ of Bn+1 on S

n.(18) It could be possible to provide a direct but some cumbersome proof of the
latter fact (or even something more: that there does not exist retractions of class C1), based on arguments
of differential topology, but we rather prefer to wait for the notion of cohomology in second part of the
course (see Corollary 2.5.6).

(17)Here are some details of the computation. For z ∈ B
n+1 let y = f(z): the half line is parametrized by

y+ t(z− y) for t > 0. Let us look for the unique t(z) > 0 such that |y+ t(z)(z− y)| = 1: the computations

yield t(z) =
|y|2−(z·y)+

√
|z|2+|y|2−|z|2|y|2−2(z·y)+(z·y)2
|z|2+|y|2−2(z·y) (e.g. check that for |z| = 1, z = 0 and y = 0 the result

is as expected), and r(z) = f(z) + t(z)(z − f(z)) is the desired retraction.
(18)Reading again the proof (ii) ⇔ (iii), this is equivalent to show that any C∞ function of B

n+1 into
itself has at least one fixed point. But, thanks to Weierstrass’ approximation theorem, this is equivalent
to (iii) (hence to (ii)). Namely, assume by absurd that f : Bn+1 −→ B

n+1 is continuous and without fixed
points, and let µ = minx∈Bn+1 |f(x) − x| > 0. Take a function h : Bn+1 −→ R

n+1 of class C∞ such that
sup

x∈Bn+1 |h(x) − f(x)| < µ

2
, and set g = h/(1 + µ/2): then g : Bn+1 −→ R

n+1 is obviously of class C∞,
g(Bn+1) ⊂ B

n+1 (since |h(x)| < |f(x)|+µ/2 ≤ 1+µ/2) and sup
x∈Bn+1 |g(x)−f(x)| < µ (since |g(x)−f(x)| =

(1+µ/2)−1|f(x)− h(x) + (µ/2)f(x)| ≤ (1+µ/2)−1(|f(x)− h(x)|+ (µ/2)|f(x)|) < 2µ/(2+µ) < µ), hence
if x0 is a fixed point of g one gets |x0 − f(x0)| ≤ |x0 − g(x0)| + |g(x0) − f(x0)| = |g(x0) − f(x0)| < µ, a
contradiction.
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1.3 The fundamental group of a topological space

We start with the notion of “groupoid”.

Definition 1.3.1. A groupoid is a small (see §A.1) category C in which all morphisms are
isomorphisms.

If C is a groupoid, it is clear that HomC(a, a) is a group for any a ∈ Ob(C); moreover, if
a, b ∈ Ob(C) are such that HomC(a, b) �= ∅, any isomorphism ϕ : a −→ b provides a (non

canonical) isomorphism of groups HomC(a, a)
∼−→ HomC(b, b) where f �→ ϕ ◦ f ◦ ϕ−1. The

groupoid is said to be connected if HomC(a, b) �= ∅ for any a, b ∈ Ob(C): in this case, the
groupoid is associated to a precise class of isomorphism of groups.

Now we define the “fundamental (or Poincare’s) groupoid” of a topological space X.

Let γ : I −→ X and φ : I −→ X be two paths in X, and assume that x1 = γ(1) = φ(0). In
this case one can “join” the paths by setting

(γ · φ)(t) =
�

γ(2t) (0 ≤ t ≤ 1

2
)

φ(2t− 1) (1
2
< t ≤ 1)

,

and γ · φ is also a path (exercise: just use the Gluing lemma).

Remark 1.3.2. This junction is not associative: however, if ψ : I −→ X is a path with
x2 = φ(1) = ψ(0), then (γ · φ) · ψ and γ · (φ · ψ) differ only by a change of parameter
(exercise: determine this change explicitly).

Let us introduce into the space C(I,X) of paths in X the already mentioned relation of
homotopy rel ∂I = {0, 1} (i.e., homotopy with fixed extremities, see Remark 1.1.4), and
denote by [γ] the equivalence class of the path γ. In the sequel, for x ∈ X we denote by
cx the constant path on x (i.e., cx : I −→ X, cx(t) ≡ x).

Proposition 1.3.3. The following statements hold.

(i) If γ is a path with extremities x0 = γ(0) and x1 = γ(1), one has [γ · cx1
] = [γ] =

[cx
0
· γ].

(ii) If γ is a path and p is a change of parameter, then [γ ◦ p] = [γ].

(iii) Let γj (j = 1, 2) two paths with extremities x
0
and x1, and let ψj (j = 1, 2) two paths

with extremities x1 and x2; then, assuming that [γ1] = [γ2] and [ψ1] = [ψ2], one has
[γ1 · ψ1] = [γ2 · ψ2].

Proof. Exercise.

Thanks to Proposition 1.3.3(iii), it makes sense to define the junction also at the level
of equivalence classes of paths: [γ] · [φ] = [γ · φ]. Due to (ii) and to Remark 1.3.2, such
junction of classes is associative: in the previous notation it holds [(γ ·φ) ·ψ] = [γ · (φ ·ψ)].
This gives a sense to the following definition.
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Definition 1.3.4. The fundamental groupoid (or Poincaré groupoid ) of X is the groupoid
whose objects are the points of X, the morphisms between them are the classes of homo-
topy rel ∂I of paths joining them, and the composition law is — given two paths γ and ψ
with γ(1) = ψ(0) — the law [ψ]◦ [γ] := [γ ·ψ]. If x

0
∈ X, the fundamental group (or (first)

homotopy group) of X in x
0
is the corresponding group of endomorphisms of x

0
, i.e. the

set π1(X;x
0
) of equivalence classes of loops based on x

0
endowed with the operation of

junction.

In the group structure of π1(X;x
0
), the identity element is obviously [cx

0
] and, given a loop

γ based on x
0
, the inverse of [γ] is [γ−1], where γ−1 is the loop defined by γ−1(t) = γ(1−t)

for t ∈ I.

It is clear that the fundamental groupoid of X is connected if and only if X is arcwise
connected. In this case, as it has been seen, if γ is a path in X with γ(0) = x

0
and

γ(1) = x1, the map

(1.1) h[γ] : π1(X,x
0
) −→ π1(X,x1), [φ] �→ [(γ−1 · φ) · γ]

gives a non-canonical isomorphism between the two groups. This explains the abuse of
notation (frequent in arcwise connected spaces) of neglecting the base point by simply
writing π1(X) and talking about the fundamental group of X.

Remark 1.3.5. Note that π1(X;x
0
) is also the family of homotopy classes of continuous

functions γ : (S1, 1) −→ (X,x
0
), endowed with the structure of group. More generally,

one can define the higher homotopy groups πn(X;x
0
) set-theoretically as the family of

homotopy classes of continuous functions γ : (Sn,1) −→ (X,x
0
), where 1 = (1, 0, . . . , 0)

denotes the first versor of the canonical basis of Rn+1, then endowed with a structure of
group given by a “junction” naturally generalizing the one for loops when n = 1. The
study of higher homotopy groups is very interesting and rich of fundamental questions
which are still open — for example, even the homotopy groups of the sphere S

n are not
completely known. These groups are commutative for n ≥ 2, a feature which does not
hold when n = 1 as we shall understand very soon. In fact we shall deal only with the
basic case n = 1, and when talking about “homotopy group” we shall always mean “first”
homotopy group.

The class of spaces which are trivial with respect to the structure of fundamental group
should be already familiar to non-freshmen students:

Definition 1.3.6. A topological space is said to be simply connected if it is arcwise
connected and its fundamental group is trivial.

Proposition 1.3.7. An arcwise connected topological space is simply connected if and
only if there is a unique homotopy class of paths connecting any two points.

Proof. The condition is obviously sufficient; conversely, given any two paths γ1 and γ2 we have [γ1] =
[γ1 · (γ−1

2
· γ2)] = [(γ1 · γ−1

2
) · γ2] = [γ2], since γ1 · γ−1

2
is a loop and the space is simply connected.

Examples. (1) A contractible topological space is simply connected. (2) S
1 is not simply connected, as

we shall prove soon. (3) On the other hand, for any n ≥ 2 the spheres S
n —although non contractible,

recall Theorem 1.2.5— are simply connected. This will be an easy consequence of Van Kampen theorem

(§1.5); however we provide another proof of this fact in a exercise here below, taken from [8, §1].
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Let Topp be the category of “pointed” topological spaces, whose objects are the pairs
(X,x

0
) with X a topological space and x

0
a point of X, and the morphisms between

(X,x
0
) and (Y, y

0
) are the continuous functions f : X −→ Y such that f(x

0
) = y

0
. Then

one can define the following functor:

π1 : Topp −→ Groups,

which associates to (X,x
0
) the group π1(X,x

0
), and which sends the continuous function

f : X −→ Y such that f(x
0
) = y

0
in the morphism of groups

f# = π1(f) : π1(X,x
0
) −→ π1(Y, y0

), f#([γ]) = [f ◦ γ].

We leave to the student the necessary verifications (for example, that f# is well-defined
and that (g ◦ f)# = g# ◦ f#). It is important to note that maps homotopic rel {x

0
} give

rise to the same functor:

Proposition 1.3.8. Let X and Y be topological spaces, f, g : X −→ Y two homotopic
continuous functions. Then for any x

0
∈ X there exists a path ω in Y between y

0
= f(x

0
)

and y1 = g(x
0
) such that g# = h[ω] ◦ f#. If morever f and g are homotopic rel x

0
(hence

in particular y
0
= y1) then f# = g#.

Proof. Let h : X × I −→ Y be a homotopy between f and g, and consider the path ω : I −→ Y defined by
ω(t) = h(x0 , t). We are left with showing that for any [σ] ∈ π1(X,x0) it holds [g ◦ σ] = [ω−1 · ((f ◦ σ) ·ω)],
i.e. that [ω] · [g ◦ σ] · [ω−1] · [f ◦ σ−1] = [cy0 ]. To this aim let us define the following continuous function on
the boundary of the square I × I with values in Y :

H(t, τ) =






f(σ(t)) (τ = 0)
g(σ(t)) (τ = 1)
ω(τ) (t = 0, 1).

The function H admits a natural extension to all of I × I by setting H(t, τ) = h(σ(t), τ): by a result
completely analogous to Proposition 1.1.17 for n = 1, where B

2 becomes I × I and S
1 the boundary of

I × I (we leave the adaptation of the proof as an exercise to the student), H is nullhomotopic rel (0, 0).
But this is precisely what we are looking for (exercise). Finally, if moreover f and g are homotopic rel x0 ,
then ω = cy0

and therefore f# = g#.

A consequence of this fact is the invariance of the fundamental group under homotopy:

Theorem 1.3.9. Arcwise connected topological spaces which are homotopically equivalent
have isomorphic fundamental groups.

Proof. If f : X −→ Y and g : Y −→ X are such that g ◦ f ∼ idX and f ◦ g ∼ idY , from Proposition 1.3.8 one
gets that g# ◦ f# = (g ◦ f)# is a isomorphism (hence f# is injective and g# surjective) and the same for
f# ◦ g# = (f ◦ g)# (hence g# is injective and f# surjective). Therefore both f# and g# are isomorphisms.

Example. This happens in particular when Y = A ⊂ X is a weak deformation retract of X: hence, for

example, it holds π1(S
n) � π1(R

n+1

× ) and π1(Ḃ
n+1) � π1(B

n+1) � π1(R
n+1).

On the other hand, for the retracts one has:

Proposition 1.3.10. If A ⊂ X is a retract of X, i : A −→ X is the canonical injection,
r : X −→ A is a retraction and x

0
∈ A, then i# : π1(A, x0

) −→ π1(X,x
0
) is injective and

r# : π1(X,x
0
) −→ π1(A, x0

) is surjective.
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Proof. Since r ◦ i = idA, one has (r ◦ i)# = r# ◦ i# = idπ1(A,x): this says that i# is injective and r# is
surjective.

Corollary 1.3.11. Any retract of a simply connected topological space is itself simply
connected.

The fundamental group of a topological product is the product of the fundamental groups:

Proposition 1.3.12. (Fundamental group of a topological product). Let X and Y be
arcwise connected topological spaces, p1 : X×Y −→ X and p2 : X×Y −→ Y be the canonical
projections, (x0, y0) ∈ X × Y . Then the morphism p1# × p2# defines an isomorphism

π1(X × Y, (x0, y0)) � π1(X,x0)× π1(Y, y0).

Proof. Follows from the definition of the product topology on X × Y .

Corollary 1.3.13. If Y is simply connected, then

π1(X × Y, (x0, y0)) � π1(X,x0);

in particular, if X and Y are simply connected so is X × Y .

Exercise. (1) Prove directly that S
n is simply connected for n ≥ 2. (2) Deduce from that and from

π1(S
1) � Z (which will be proven in §1.4) that R2 is not homeomorphic to R

n for any n �= 2.

Solution. (1) [8, Proposition 1.1.14] Let γ be a loop in S
n at some basepoint x0. If the image of γ is

disjoint from some other point x ∈ S
n then γ is nullhomotopic since S

n \ {x} is homeomorphic to R
n,

which is simply connected. So it is enough to find a homotopy of γ with another non surjective loop. To

do this we will look at a small open ball B in S
n about any point x �= x0 and see that the number of times

that γ enters B, passes through x, and leaves B is finite, and each of these portions of γ can be pushed

off x without changing the rest of γ. At first glance this might appear to be a difficult task to achieve

since the parts of γ in B could be quite complicated geometrically, for example space-filling curves. But

in fact it turns out to be rather easy. The set γ
−1(B) is open in ]0, 1[, hence is the union of a possibly

infinite collection of disjoint open intervals ]ai, bi[. The compact set γ
−1(x) is contained in the union of

these intervals, so it must be contained in the union of finitely many of them. Consider one of the intervals

]ai, bi[ meeting γ
−1(x). The path γi obtained by restricting γ to the closed interval [ai, bi] lies in the

closure of B, and its endpoints γ(ai) and γ(bi) lie in the boundary of B. If n ≥ 2, we can choose a path

ψi from γ(ai) to γ(bi) in the closure of B but disjoint from x. For example, we could choose ψi to lie in

the boundary of B, which is a sphere of dimension n− 1, hence path-connected if n ≥ 2. Since the closure

of B is homeomorphic to a convex set in R
n and hence simply connected, the path γi is homotopic to ψi

by Proposition 1.3.7, so we may homotope γ by deforming γi to ψi. After repeating this process for each

of the intervals ]ai, bi[ that meet γ
−1(x), we obtain a loop ψ homotopic to the original γ and with ψ(I)

disjoint from x. (2) [8, Proposition 1.1.16] First note that Rn \ {x} is homeomorphic to S
n−1 ×R (or also

that Sn−1 is a strong deformation retract of Rn \{x}), hence π1(R
n \{x}) � π1(S

n−1), i.e. π1(R
2 \{x}) � Z

and π1(R
n \ {x}) is trivial for n ≥ 3. Now, any homeomorphism ϕ : R2 −→ R

n would induce, for any point

x ∈ R
2, a homeomorphism R

2 \ {x} −→ R
n \ {ϕ(x)}: but this is a contradiction both when n = 1 (namely

R
2 \ {x} is arcwise connected while R \ {ϕ(x)} is not) and when n ≥ 3 (homeomorphic spaces should have

isomorphic fundamental groups).
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1.4 An example: the circle S
1 and the discrete quotients of topological groups

Let us compute the fundamental group of the circle S
1 ⊂ C: as we have seen, this group

shall be isomorphic to the fundamental group of C× = C \ {0}.

Remark 1.4.1. We briefly recall some elementary properties of holomorphic functions of one complex
variable. Let z = x + iy ∈ C, z = x − iy, and consider the corresponding differential operators ∂z =
1

2
(∂x−i∂y) (holomorphic derivative) and ∂z = 1

2
(∂x+i∂y) (antiholomorphic derivative, or Cauchy-Riemann

operator) and differential forms dz = dx + idy, dz = dx − idy and dzdz = −2idxdy: if U ⊂ C is an open
subset and f = f1 + if2 : U −→ C a function with real and imaginary parts f1, f2 : U −→ R of class C1, one
has df = (∂xf)dx + (∂yf)dy = (∂zf)dz + (∂zf)dz . Given a path γ = γ1 + iγ2 : I −→ U piecewise of class
C1 one can define the integral of f along γ as the complex number(19)

�

γ

f(z)dz :=

�
1

0

f(γ(t))γ�(t)dt

=

�
1

0

�
f1(γ)γ

�
1 − f2(γ)γ

�
2

�
(t)dt+ i

�
1

0

�
f1(γ)γ

�
2 + f2(γ)γ

�
1

�
(t)dt.

The theorem of Stokes in the plane shows that, if γ is a loop in U boundary of an open subset Vγ ⊂ U

and z0 ∈ Vγ , it holds

(1.2) f(z0) =
1
2πi

��

γ

f(z)
z − z0

dz +

�

Vγ

∂zf(z)
z − z0

dzdz

�
.

The function f is called holomorphic in U if ∂zf = 0, i.e. if ∂xf1 = ∂yf2 and ∂yf1 = −∂xf2 (Cauchy-
Riemann system) at any point of U ; denoting by OC(U) the complex vector space of holomorphic functions
on U , this defines a sheaf OC of C-vector spaces. The condition f ∈ OC(U) is equivalent both to the

existence of the complex limit f
�(z0) = lim

z→z0

f(z)−f(z0)

z−z0
in any z0 ∈ U (note that, since ∂x = ∂z + ∂z, in

this case one has f �(z0) = ∂zf(z0) = ∂xf(z0)) and to the closure of real differential forms f1dx− f2dy and
f2dx+ f1dy. Hence, for f ∈ OC(U) the integral

�
γ
f(z)dz is invariant under homotopy rel ∂I of the path

γ (in particular, the integral of a holomorphic function on a nullhomotopic loop is zero); this shows that if
U is a simply connected open subset then any f ∈ OC(U) admits a primitive F = F1 + iF2 ∈ OC(U) (i.e.
∂zF = f), because this is equivalent to finding a primitive F1 (resp. F2) for the closed form f1dx − f2dy

(resp. f2dx+ f1dy), and one then has
�
γ
f(z)dz = F (γ(1))− F (γ(0)). We also note that if f ∈ OC(U) the

formula (1.2) riduces to the well-known Cauchy integral formula:

(1.3) f(z0) =
1
2πi

�

γ

f(z)
z − z0

dz.

Finally, observe that f ∈ OC(U) is locally invertibile (with holomorphic inverse) in z0 if and only if
f
�(z0) �= 0: namely, denoted by Jf (z0) the jacobian determinant of f , due to Cauchy-Riemann system it

holds Jf (z0) = |f �(z0)|2 > 0 and, denoted by g the local inverse, one has g�(f(z0)) = 1

f �(z0)
.

Let γ : I −→ S
1 be a loop based at 1. When γ is piecewise of class C1, one defines the index

of γ in 0 as

Indγ(0) =
1

2πi

�

γ

1

z
dz =

1

2πi

�
1

0

γ�(t)

γ(t)
dt.

(19)One easily sees that
�
γ
f(z)dz does not depend on the chosen parametrization: if p : I −→ I is a change

of parameter piecewise of class C1, one has
�

1

0
f(γ(p(t)))γ�(p(t))p�(t)dt =

�
1

0
f(γ(τ))γ�(τ)dτ , with τ = p(t).
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More generally, if γ is only continuous, note that in [γ] there are anyway representatives
which are piecewise of class C1.(20) It is well-known that the index has integer values and
that it is invariant under homotopy rel ∂I,(21) and hence one gets a function

Ind(0) : π1(S
1, 1) −→ Z.

Proposition 1.4.2. Ind(0) induces a group isomorphism

π1(S
1, 1) � Z.

Proof. The function Ind(0) is a surjective homomorphism of groups: namely

Ind(0)([γ1 · γ2]) =
1
2πi

�� 1
2

0

2γ�
1(2t)

γ1(2t)
dt+

�
1

1
2

2γ�
2(2t− 1)

γ2(2t− 1)
dt

�

=
1
2πi

��
1

0

γ
�
1(τ)

γ1(τ)
dτ +

�
1

0

γ
�
2(τ)

γ2(τ)
dτ

�
= Ind(0)([γ1]) + Ind(0)([γ2]),

and for n ∈ Z it holds Ind(0)([e2πint]) = n. We are left with showing that Ind(0) is injective. Let γ be
piecewise of class C1 and such that Indγ(0) = 0, and let us show that γ is nullhomotopic. If we consider
the exponential function � : R −→ S

1, �(t) = e
2πit we note that there exists a unique loop ψ : I −→ R based

in 0 such that γ = � ◦ ψ: namely, from ψ
� = γ

�

2πiγ
one gets ψ(t) = 1

2πi

�
t

0

γ
�
(τ)

γ(τ)
dτ + c for some c ∈ R, and

the conditions 0 = ψ(0) = c and 0 = ψ(1) = Indγ(0) + c = c determine univoquely c = 0.(22) At this
point, since R is contractible and hence simply connected, just choose a homotopy h rel ∂I of ψ with the
constant loop c0 (for example, the affine homotopy h(τ, t) = (1− t)ψ(τ)): then, � ◦ h is a homotopy rel ∂I
between γ and c1.

We have proved that π1(S1) is isomorphic to Z, with a generator given
by the class of the loop I � t �→ e2πit ∈ S

1; in the meanwhile, we have
met the exponential function � : R −→ S

1, �(t) = e2πit (represented in the
picture, where R appears as a helix over S1), which is the first important
example of a “covering space”, a notion that we are going to study soon
and which will be useful in the computation of fundamental groups.

As a first consequence of the fact that π1(S1) � Z, let us provide a proof of the Fundamental
Theorem of Algebra.

Corollary 1.4.3. Any nonconstant polynomial with coefficients in C has a complex root.

Proof. Suppose that p(z) = z
n + a1z

n−1 + · · · + an ∈ C[z] has no roots in C. Then, for r ≥ 0 one

gets a family of loops in S
1 based at 1 mutually homotopic by setting γr(t) = p(re

2πit
)/p(r)

|p(re2πit)/p(r)| . Since

γ0 ≡ 1, one has [γr] = 0 for any r ≥ 0. Now let r >> 1 + |a1| + · · · + |an|: if |z| = r one has
|zn| = r

n = r · rn−1
> (|a1|+ · · ·+ |an|)|zn−1| ≥ |a1z

n−1 + · · ·+ an|: hence, for any τ ∈ I the polynomial

(20)Just consider a partition 0 = t0 < t1 < · · · < tm−1 < tm = 1 such that sup{|γ(t) − γ(tj)| : t ∈
[tj , tj+1]} < 2 for any j = 0, . . . ,m− 1, construct the loop φ in C whose image is the poligonal joining the
points γ(0) = 1, γ(t1), . . . , γ(tm−1), γ(1) = 1 (note that 0 does not belong to the image of φ) and then
consider the loop ϕ = φ/|φ| in S

1, which will be homotopic to γ (exercise: for any piece [tj , tj+1] consider
the affine homotopy in C between γ and ϕ...).
(21)Let ϕ(t) = exp

��
t

0
(γ�(τ)/γ(τ)) dτ

�
: then ϕ

� = (γ�
/γ)ϕ, therefore (ϕ/γ)� = (ϕ�

γ − ϕγ
�)/γ2 = 0, and

so, since γ(0) = γ(1), one has 1 = ϕ(0) = ϕ(1) = exp (2πi Indγ(0)): in other words, Indγ(0) ∈ Z. As for
the invariance under homotopy, observe that the function 1

z
is holomorphic in C×.

(22)In a future terminology, the loop ψ will be called a lifting of γ by the map �; and we will see that
the property of � of lifting the paths in S

1 with uniqueness will be a consequence of the fact that � is a
so-called “covering space”.

Corrado Marastoni 18



Notes on Algebraic Topology

pτ (z) = z
n + τ(a1z

n−1 + · · ·+ an) has no roots on |z| = r. It follows that, by replacing p(z) with pτ (z) in
the definition of γr and letting τ run in I, if r >> 1+ |a1|+ · · ·+ |an| one gets a homotopy between e

2πint

and γr(t): this implies that n = [e2πint] = [γr(t)] = 0, in other words p is constant.

Now we aim to generalize Proposition 1.4.2. Recall that a topological group G is a group
endowed with a topology which makes continuous both the operation (x, y) �→ xy and the
inversion x �→ x−1 (or, analogously, the “division” map (x, y) �→ xy−1). Given a subgroup
H of G denote by p : G −→ G/H the canonical projection, where the homogeneous space
G/H is meant to be endowed with the quotient topology with respect to p: note that p is
an open map.(23)

Let G be a simply connected topological group, Z(G) its center, e the identity element,
and let H be a discrete normal subgroup of G.

Remark 1.4.4. In the preceding hypotheses, it holds H ⊂ Z(G). Namely, for g ∈ H
consider the (continuous) map kg : G −→ G, x �→ xgx−1g−1. Since H is normal in G one
has kg(G) ⊂ H; since G is connected, also kg(G) will be the same; but then, H being
discrete, it holds kg(G) = {e}. Hence g ∈ Z(G).

We need the following result of general topology, due to Lebesgue. Recall that in a metric
space (X, d) the diameter of a subset A ⊂ X is diam(A) = sup{d(x, y) : x, y ∈ A}.

Lemma 1.4.5. (Lebesgue). Let (X, d) be a compact metric space, U an open cover of X.
Then there exists δ > 0 such that for any A ⊂ X with diam(A) < δ there exists U ∈ U
such that A ⊂ U .

Let LU ⊂]0,+∞[ be the segment of δ which satisfy the conditions of Lemma. The supre-
mum (which is also the maximum)(24) of LU is called Lebesgue number of the open cover
U in (X, d).

Proof. Let (xn)n∈N be a sequence in X such that Bn = {x : d(x, xn) ≤ 1/n} is not contained in any
element of the cover, x0 ∈ X a closure point for the sequence, U ∈ U such that x0 ∈ U and M ∈ N such
that B = {x : d(x, x0) ≤ 1/M} ⊂ U . If x0 would not be an accumulation point (i.e., if x0 would be
an isolated point of {xn : n ∈ N}) there would exists a subsequence (xnk )k∈N which would be definitely
equal to x0 , i.e. such that there would exists k0 ∈ N such that xnk ≡ x0 for any k ≥ k0: but then, for
k ≥ max{M,k0} one would have Bnk ⊂ B ⊂ U , which is absurd. Assume then that x0 is an accumulation
point for the sequence, and let N ∈ N such that d(xN , x0) ≤ 1/2M ; since such N can be chosen to be
arbitrarily large, we may assume that N > 2M . But then, once more we get BN ⊂ B ⊂ U , absurd.

Lemma 1.4.6. Let K ⊂ R
n be a compact subset star-shaped with respect to 0, f : K −→

G/H a continuous function, g
0
∈ G such that p(g

0
) = f(0). Then there exists a unique

continuous function (lifting) f̃ : K −→ G such that f̃(0) = g
0
and f = p ◦ f̃ in Topp.

Proof. We may assume that f(0) = eH and g0 = e.(25) Let W be a neighborhood of e in G such
that W ∩ H = {e}, and let U be an open and symmetric (i.e. U−1 = U) neighborhood of e such that

(23)By the Proposition 1.1.11, a quotient function p : X −→ Y is open if and only if for any subset open
A ⊂ X the “p-saturated” p

−1
p(A) ⊂ X is open in X. Now, the p-saturated of an open subset A ⊂ G is

AH =
�

h∈H
Ah, which is indeed open as it is the union of right translates of A (in a topological group

the right and left traslations by a fixed element are autohomeomorphisms).
(24)If δ is such supremum and A ⊂ X has diam(A) < δ, by definition of supremum there exists a δ ∈ LU
such that diam(A) < δ ≤ δ: hence there exists U ∈ U such that A ⊂ U , and this proves that δ ∈ LU .
(25)Namely, let φ = f · (g−1

0
H) : K −→ G/H (remember that G/H is a group since H is normal in G): then

φ(0) = eH. If φ̃ : K −→ G is the unique continuous function such that p◦φ̃ = φ and φ̃(0) = e, then f̃ = φ̃ ·g0
solves the problem, because f̃(0) = g0 and (p ◦ f̃)(x) = p(φ̃(x) · g0) = p(φ̃(x)) · p(g0) = φ(x) · g0H = f(x).
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U · U ⊂ W .(26) Then, setting V = p(U), one has that p|
U

: U −→ V is a homeomorphism,(27) and
let q : V −→ U be the inverse map. Let U0 be another open symmetric neighborhood of e such that
U0 · U0 ⊂ U . Since {p(gU0) : g ∈ G} form an open cover of G/H, {f−1(p(gU0)) : g ∈ G} form an
open cover of the compact K. Let δ > 0 be the Lebesgue number of such cover (see Lemma 1.4.5),
and let N ∈ N be such that diam(K)/N ≤ δ. For x ∈ K, the segment {tx : t ∈ I} is contained in

K: let us write f(x) =
�

N

j=1
f( j−1

N
x)−1

f( j

N
x) (recall that f(0) = eH). Since | j

N
x − j−1

N
x| = |x|

N
≤

δ (where j = 1, . . . , N), the elements f( j−1

N
x) and f( j

N
x) belong to the same p(gU0): hence it holds

f( j−1

N
x)−1

f( j

N
x) ∈ p(gU0)

−1
p(gU0) = p((gU0)

−1(gU0)) = p(U0U0) ⊂ p(U). A function which satisfies the

required hypotheses will then be f̃(x) =
�

N

j=1
q
�
f( j−1

N
x)−1

f( j

N
x)
�
. Finally let f̃1 : K −→ G be another

function with the same properties of f̃ : if we denote for example by f̃
−1 the composition of f̃ with the

inversion of G, it holds p ◦ (f̃ f̃−1

1
) = (p ◦ f̃)(p ◦ f̃1)

−1 = eH, therefore f̃ f̃
−1

1
(K) ⊂ ker(p) = H. But, K

being connected, H discrete, f̃ f̃−1

1
continuous and f̃ f̃

−1

1
(0) = e, it holds f̃ f̃−1

1
(K) = {e}: i.e., f̃1 = f̃ .

Proposition 1.4.7. π1(
G

H
, eH) � H .

Proof. Thanks to Lemma 1.4.6 (with K = I ⊂ R) the loops γ : I −→ G/H based at eH lift uniquely to
γ̃ : I −→ G such that γ̃(0) = e. Since γ = p ◦ γ̃, it holds p(γ̃(1)) = eH, and hence γ̃(1) ∈ H. We then
define ψ : π1(G

H
, eH) −→ H by setting ψ([γ]) = γ̃(1). For the well-posedness of ψ we observe, again by

the Lemma 1.4.6 (with K = I × I ⊂ R
2), that the homotopies rel ∂I of loops in G/H based at eH lift

uniquely to h̃ : I × I −→ G such that h̃(0, 0) = e; now, since h = p ◦ h̃, it holds h̃({(0, τ) : τ ∈ I}) ⊂ H

and h̃({(1, τ) : τ ∈ I}) ⊂ H. Since H is discrete and h̃ is continuous, we get h̃({(0, τ) : τ ∈ I}) = {e}
(recall that h̃(0, 0) = e) and h̃({(1, τ) : τ ∈ I}) = {g} for some g ∈ H: in other words, also h̃ is a
homotopy rel ∂I of paths (no longer loops) in G from e to g ∈ H. Therefore, if [γ1] = [γ2] we shall
also have γ̃1(1) = h̃(1, 0) = h̃(1, 1) = γ̃2(1).

(28) Now let us show that ψ is a homomorphism. Let
[γ1], [γ2] ∈ π1(G

H
, eH): using Lemma 1.4.6 one gets �γ1 · γ2 = γ̃1 · (γ̃2)g, where g = γ̃1(1) ∈ H and

(γ̃2)g : I −→ G is such that γ2 = p ◦ (γ̃2)g and (γ̃2)g(0) = g. On the other hand, again by Lemma 1.4.6
one has (γ̃2)g = gγ̃2, and hence ψ([γ1] · [γ2]) = �γ1 · γ2(1) = gγ̃2(1) = ψ([γ1])ψ([γ2]). The surjectivity
comes from the fact that G is arcwise connected: if g ∈ H, there exists a path α : I −→ G with α(0) = e

and α(1) = g: then, since clearly �p ◦ α = α, it holds g = ψ([p ◦ α]). As for the injectivity, note that
ker(ψ) = {[γ] : γ̃ is a loop}: since G is simply connected, there exists a homotopy h̃ rel ∂I from γ̃ to ce,
which gives a homotopy h = p ◦ h̃ rel ∂I from γ to ceH .

Examples. (1) Let H � R⊕R
3 be the (noncommutative) fields of quaternions: recall that (λ, u)+(µ, v) =

(λ+µ, u+v), (λ, u)(µ, v) = (λµ−u ·v,λv+µu+u∧v), where · (resp. ∧) denotes the scalar (resp. vectorial)
product; the conjugated of q = (λ, u) is q = (λ,−u), the norm of q is |q| = (qq)

1
2 = (λ2 + |u|2) 1

2 , the
inverse of q is q−1 = q/|q|2. Let G = S

3 (the multiplicative group of quaternions of norm 1, which is simply
connected as we shall see by the Theorem of Van Kampen), and H = {±1} (discrete normal subgroup):
one has G/H = P

3(R) (real projective space of dimension 3) and hence π1(P
3(R); [1]) � Z/2Z. We shall

see that this hold more generally for P
n(R) with n ≥ 2. (2) Let T

n = (S1)n the n-dimensional torus.
From Propositions 1.3.12 and 1.4.2 one gets immediately π1(T

n;x0) � Z
n (where x0 = (1, . . . , 1) ∈ (S1)n):

but this follows also from Proposition 1.4.7, noting that T
n � G/H with G = R

n and H = Z
n. Some

generators (mutually commuting) of π1(T
n;x0) are the classes of loops γi : I −→ T

n (1 ≤ i ≤ n) whose
ith component is e

2πit and whose others are the constant 1. In order to verify that they commute, let
us examine the case n = 2 (the generalization will then be natural): the torus T

2 can be seen as a filled
square where one identifies the opposed sides pairwise, and hence the four vertices become a single point:

γ1

γ1

T
2 = γ2 γ2

x0

x0

x0

x0
✲

✲

✻✻ ✻✻�
�

�
�

�

(26)In a topological group G the symmetric neighborhoods form a basis of neighborhoods of e: namely
if U is a neighborhood of e, such is also U

−1 (the inversion is an autohomeomorphism), and hence also
U ∩ U

−1, which is symmetric.
(27)

p|
U

is open (as a restriction of an open map to an open subset), continuous and surjective; if then
p(u1) = p(u2) one has u1u

−1

2
∈ H, but also u1u

−1

2
∈ U · U−1 = U · U ⊂ W , hence u1u

−1

2
∈ W ∩H = {e}:

i.e., u1 = u2.
(28)We shall meet this fact also later (Monodromy lemma).
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(if one visualizes the square as a sheet, this amounts to gluing the sides γ1, then the sides —which in

the meanwhile have become circles— γ2 by overlapping the points x0: in this way one obtains the usual

picture of the torus as a doughnut in R
3). The generators of π1(T

2
, x0) are γ1 and γ2, and it is quite clear

what should be a homotopy rel ∂I, passing through a diagonal of the square, of the loop γ1 · γ2 into the

loop γ2 · γ1. (As an exercise, try to translate that homotopy on the doughnut.)
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