
Notes on Algebraic Topology

A.3 Multilinear algebra

Given a R-vector space V , let us consider the dual space V ∗ = Hom
R
(V,R), and costruct

the tensor algebra ⊗•V ∗ on V ∗ as follows. Set ⊗0V ∗ = R and, for m ∈ N, consider

⊗mV ∗ = V ∗ ⊗
R
V ∗ ⊗

R
· · ·⊗

R
V ∗

(with m factors): then ⊗mV ∗ is naturally identified with the space of multilinear (i.e.,
linear in all variables) functions of V m with real values, or m-forms on V . Given a
basis {φi : i ∈ J} of V ∗, then {φi1

⊗ · · · ⊗ φim : (i1, . . . , im) ∈ Jm}, where (φi1
⊗ · · · ⊗

φim)(v1, . . . , vm) = φi1
(v1) · · ·φim(vm), will be a basis of ⊗mV ∗. In particular, if dimV = n

one has dim⊗mV ∗ = nm. The tensor product

⊗ : ⊗mV ∗ ×⊗pV ∗ −→ ⊗m+pV ∗,

(α⊗β)(v, . . . , vm, vm+1, . . . , vm+p) = α(v, . . . , vm)β(vm+1, . . . , vm+p),

is associative and distributive with respect to the addition but not commutative, and gives
to the tensor algebra ⊗•V ∗ = ⊕+∞

m=0
(⊗mV ∗) the structure of graded R-algebra(119) (the

algebra of forms on V ). To a morphism f : V −→ W is associated the morphism (pull-
back) of algebras f∗ : ⊗•W ∗ −→ ⊗•V ∗: given α ∈ ⊗mW ∗, one defines f∗α ∈ ⊗mV ∗ by
(f∗α)(v1, . . . , vm) = α(f(v1), . . . , f(vm)); if g : W −→ W � is another morphism, it holds
(g ◦ f)∗ = f∗ ◦ g∗. We then get a contravariant functor from Mod(R) (the category of
R-vector spaces) to Algdeg(R) (the category of graded R-algebras).

We denote by ∧mV ∗ the subspace of ⊗mV ∗ formed by the alternating m-forms, i.e. those
forms which are sensitive to permutations of the arguments: it is the exterior algebra on
V ∗. Given α ∈ ⊗mV ∗ and σ ∈ Sm, let ασ(v1, . . . , vm) = α(vσ(1), . . . , vσ(m)) (note that

(ασ)τ = α(σ◦τ)): then α ∈ ∧mV ∗ if and only if ασ = sign(σ)α for any σ ∈ Sm. This
suggests the surjective linear application

Alt : ⊗mV ∗ −→ ∧mV ∗, Alt(α) =
1

m!

�

σ∈Sm

sign(σ)ασ

which expresses ∧mV ∗ also as quotient of ⊗mV ∗. (Note that Alt(α) = α for any α ∈
∧mV ∗.) The tensor product induces an external product

∧ : ∧mV ∗ × ∧pV ∗ −→ ∧m+pV ∗, α ∧ β = Alt(α⊗β)

which is easily verified to be associative (since (α∧β)∧γ = Alt(α⊗β⊗γ)) and distributive
with respect to addition. Given I = (i1, . . . , im) ∈ Jm, thanks to the associativity of ∧ it
makes sense to set

φI = φi1
∧ · · · ∧ φim := Alt(φi1

⊗ · · ·⊗φim).

Therefore, since Alt is surjective, the elements {φI : I ∈ Jm} generate ∧mV ∗. On the other
hand, if α,β ∈ V ∗ then one has the anticommutativity α∧β = 1

2
(α⊗β−β⊗α) = −β∧α.

(119)A R-algebra A is graded if is a graded R-vector space
�

+∞
n=0

An such that AmAn ⊂ Am+n.
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Assuming to have a total order ≤ on J , this shows that (1) the elements {φI : I =
(i1, . . . , im) ∈ Jm, i1 < · · · < im} generate ∧mV ∗, and since they are linearly indipendent
(exercise), they form a basis for ∧mV ∗; (2) one has also the general anticommutativity

β ∧ α = (−1)mpα ∧ β, α ∈ ∧mV ∗, β ∈ ∧pV ∗,

which gives also to the exterior algebra ∧•V ∗ = ⊕+∞
m=0

(∧mV ∗) the structure of graded
R-algebra on V . Note that, if dimV = n, one has ∧mV ∗ = 0 for m > n, dim∧mV ∗ =

�
n

m

�

and hence dim∧•V ∗ =
�

n

m=0

�
n

m

�
= 2n.

Example. In the case of V = R
n, consider the canonical basis {e1, . . . , en} and let {u1, . . . , un} be the

dual basis of (Rn)∗ (the ui : R
n −→ R, given by ui(ej) = δi,j , are the coordinate functions). An alternating

m-form α ∈ ∧m(Rn)∗ can be uniquely written as α =
�

|I|=m
aIuI , where uI = ui1 ∧ · · · ∧ uim .

If f : V −→ W is a morphism, the pull-back f∗ : ⊗•W ∗ −→ ⊗•V ∗ induces f∗ : ∧•W ∗ −→
∧•V ∗, and one has another contravariant functor fromMod(R) to Algdeg(R). In particular,
let dimV = n, f ∈ End(V ) and consider f∗ : ∧nV ∗ −→ ∧nV ∗: since this is a linear map
between spaces of dimension 1, it must be indeed the multiplication by a constant, which
is precisely det(f). In particular, one obtains

(A.7) f∗φ1 ∧ · · · ∧ f∗φn = det(f)φ1 ∧ · · · ∧ φn.

There is a similar costruction for ⊙mV ∗, the subspace of ⊗mV ∗ formed by the symmetric
forms, i.e. those forms which keep the sign unchanged for any permutation of variables
(the symmetric algebra on V ∗). Given α ∈ ⊗mV ∗, one has α ∈ ⊙mV ∗ if and only if ασ = α
for any σ ∈ Sm, and this gives the surjective linear application

Sym : ⊗mV ∗ −→ ⊙mV ∗, Sym(α) =
1

m!

�

σ∈Sm

ασ

which expresses ⊙mV ∗ also as quotient of ⊗mV ∗. The tensor product induces a symmetric
product

⊙ : ⊙mV ∗ ×⊙pV ∗ −→ ⊙m+pV ∗, α⊙ β = Sym(α⊗β)

which is associative, distributive with respect to the addition and commutative and gives
also to ⊙•V ∗ = ⊕+∞

m=0
(⊙mV ∗) the structure of graded R-algebra. A basis for ⊙mV ∗

is given by {φi1
⊙ · · · ⊙ φim : i1 ≤ · · · ≤ im}; in particular, if dimV = n one has

dim⊙mV ∗ =
�
n+m−1

m

�
.
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A.4 Sheaves

We present some sketch of sheaf theory, referring for example to Kashiwara-Schapira [10]
for a more complete exposition.

Presheaves and sheaves. Given a topological space X, consider the category TX defined
by the open subsets of X ordered by inclusion (i.e., HomTX (U, V ) = {pt} if U ⊂ V and
∅ otherwise). Fix a unitary ring A and the category Mod(A) of left A-modules. A
presheaf of A-modules on X is a contravariant functor F : TX −→ Mod(A). In other words,
to any open subset U ⊂ X is associated a A-module F (U) (denoted also by Γ(U ;F )),
and whenever U ⊂ V there is a “restriction” morphism ρV U : F (V ) −→ F (U) —often
denoted by ·|

U
, without mentioning V— such that ρUU = idF (U) and ρV U ◦ρWV = ρWU if

U ⊂ V ⊂ W . A s ∈ F (U) is called a section on U of the presheaf F . One defines the zero
presheaf and the direct sum of presheaves in a natural way. A morphism of presheaves
ϕ : F −→ G is a family ϕU ∈ Hom

A
(F (U), G(U)) compatible with the restrictions, i.e.

such that ρV U,G ◦ ϕV = ϕU ◦ ρV U,F (where U ⊂ V ). A morphism ϕ : F −→ G defines in
a natural way other presheaves on X by means if the associations U �→ (P ker(ϕ))(U) =
ker(ϕU ) (kernel presheaf of ϕ), and similarly for the presheaves cokernel P coker(ϕ), image
P im(ϕ) and coimage P coim(ϕ) of ϕ. We shall denote by with PMod(AX) the category of
presheaves (of left A-modules) on X; hence for any open subset U ⊂ X, one has a functor
Γ(U, · ) : PMod(AX) −→ Mod(A).

If U ⊂ X is open, the restriction F |
U

of a presheaf F to U is the presheaf on U given
by Γ(V ; F |

U
) = Γ(V ;F ) for any open V ⊂ U . The fiber of a presheaf F in x ∈ X is the

A-module Fx = lim−→
U�x

F (U) =
�
U�x

F (U)/ ∼, where (s ∈ F (U)) ∼ (t ∈ F (V )) if s and t

coincide in some neighborhood of x, i.e. there exists W ⊂ U ∩ V such that s|
W

= t|
W
.

Therefore, if x ∈ U there is a morphism F (U) −→ Fx in Mod(A) sending a section s into its
“germ” [s]x. (In particular, note that [s]x = 0 if and only if s|

W
= 0 for some W ⊂ U .) If

ϕ : F −→ G is a morphism of presheaves and x ∈ X, one defines a morphism of A-modules
ϕx : Fx −→ Gx by setting, for s ∈ Γ(U,F ) with U � x, ϕx([s]x) = [ϕU (s)]x (exercise). In
this way one obtains a functor ( · )x : PMod(AX) −→ Mod(A) which commutes with kernel
and cokernel: for example, (P ker(ϕ))x = ker(ϕx).

A sheaf on X is a presheaf F such that, if U is open and U =
�

i∈I Ui is any open cover
of U , the following local conditions hold:

(F1) (Local vanishing) Any section s ∈ F (U) such that s|
Ui

= 0 for any i ∈ I is itself
zero.

(F2) (Gluing) Given a family of sections si ∈ F (Ui) such that si|Ui∩Uj
= sj |Ui∩Uj

for any

i, j ∈ I, there exists a section s ∈ F (U) such that s|
Ui

= si for any i ∈ I.

One verifies that (F1)+(F2) is equivalent to the fact that for any open cover U =
�

i∈I Ui

stable by finite intersections, the natural morphism F (U) −→ lim−→
i∈I

F (Ui) is an isomorphism.

The support supp(F ) of a sheaf F is the closed subset complementary of the largest
open U ⊂ X such that F |

U
= 0. Given a section s ∈ F (U), the support of s is the
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complementary (in U) of the largest open V ⊂ U such that s|
V
= 0. We shall denote by

Γc(U ;F ) the submodule of Γ(U ;F ) of sections with compact support.

Let F and G be sheaves on X. A morphism ϕ : F −→ G is a morphism as presheaves. One
proves that (exercise) ϕ : F −→ G is a monomorphism (resp. isomorphism) if and only if
ϕx : Fx −→ Gx is a monomorphism (resp. isomorphism) for any x ∈ X.

LetMod(AX) be the category of sheaves (of left A-modules) onX. Since not all presheaves
are sheaves, Mod(AX) embeds as a full subcategory into PMod(AX). Actually, to any
presheaf F one can canonically associate a sheaf F+, whose fibers coincide with those of
F (and which, obviously, is isomorphic to F if F is already a sheaf) and a morphism of
presheaves θ : F −→ F+ such that any morphism of presheaves ϕ : F −→ G, where G is a
sheaf, can be uniquely factorized through θ, i.e. there exists a unique morphism of sheaves
ϕ+ : F+ −→ G such that ϕ = ϕ+ ◦ θ. The pair (F+, θ) is unique up to isomorphisms.
Moreover, for any x ∈ X, θx : Fx −→ F+

x is a isomorphism. The sheaf F+ is costructed
by considering, as sections on an open subset U ⊂ X, the functions of U with values in�

x∈U Fx locally induced as germs of a single section t:

F+(U) = {s : U −→
�

x∈U
Fx : s(x) ∈ Fx, for any x ∈ U exists an open x ∈ V ⊂ U

and a section t ∈ F (V ) with [t]y = s(y) for any y ∈ V };

the morphism θ is defined by setting s ∈ F (U) �→ (x �→ [s]x) ∈ F+(U) (complete the
verifications as an exercise).

Remark A.4.1. Passing to the category of sheaves fixes some strange situations: for
example, it could happen (see the Examples below) that a presheaf F is nonzero even if
Fx = 0 for any x ∈ X. In such a case, the associated sheaf is zero (namely in a sheaf, but
not in a presheaf, to be zero is a local matter).

Let ϕ : F −→ G be a morphism of sheaves: it is easy to see that the presheaf P ker(ϕ) is a
sheaf, that we denote by ker(ϕ). On the other hand, in general the presheaf P coker(ϕ) is
not a sheaf, hence we shall set coker(ϕ) = (P coker(ϕ))+. In any case it holds (ker(ϕ))x =
ker(ϕx) and (coker(ϕ))x = coker(ϕx). One shows that Mod(AX) is an abelian category.

Examples. (0) One has PMod(A{pt}) = Mod(A{pt}) = Mod(A). (1) Let M ∈ Mod(A): the constant

presheaf with fiber M is defined by setting always U �→ M . In general this is not a a sheaf (namely (F1)

is verified, but not (F2): if U1 and U2 are disjoint open subset of X, consider sj = mj ∈ F (Uj) with

m1 �= m2). The associated sheaf, called constant sheaf of fiber M , is denoted by MX and its sections on

the open subset U ⊂ X are the locally constant functions of U with values in M : note that (MX)x = M

for any x ∈ X. (2) More generally, it is very important to consider the locally constant sheaves of fiber

M , i.e. the sheaves F ∈ Mod(AX) for which there exists an open cover {Ui : i ∈ I} of X such that F |
Ui

is a constant sheaf on Ui. For example, let π : Y −→ X be a real vector bundle on a topological space

X: the presheaf Fπ on X given by Γ(U ;Fπ) = {s : U −→ Y : π ◦ s = idU} (the sections of π on U) is a

locally constant sheaf of R-vector spaces. (3) The most direct examples of (pre)sheaves are provided by

the functional spaces: the presheaf U �→ C0

X(U) (real, or complex, continuous functions ) is a sheaf of C-

or C-vector spaces, denoted by C0

X ; if X is a real analytic manifold one has the sheaves AX , C∞
X , DbX

and BX (analytic functions, smooth functions, distributions and hyperfunctions) or, more generally, the

sheaves Ωp(AX) of differential p-forms with coefficients in AX etc.; if X is a complex analytic manifold, one
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has the sheaf OX of holomorphic functions or, more generally, the sheaf Ωp(OX) of holomorphic p-forms.

(4) If X is a topological space endowed with a measure, the presheaf U �→ L
∞(U) satisfies (F1) but not

(F2) (boundedness is not a local property), the same for the presheaf U �→ L
1(U) (the associated sheaf

is L
1

loc). (5) Consider the morphism of sheaves ∂

∂z
: OC −→ OC, and the presheaf F = P coker(∂/∂z), i.e.

F (U) = OC(U)/ ∂

∂z
OC(U): then F has fiber zero, because if U is an open disc the equation ∂

∂z
f = g is

solvable in U (any holomorphic function on a simply connected set admits a primitive there), but F �= 0

since F (C\{0}) � C (namely, 1

z
is holomorphic on C\{0} but it has no primitives defined on all of C\{0}:

the branches of the complex logarithm are defined on angular wedges strictly smaller than 2π). Hence F

is not a sheaf because (F1) is not valid, and the associated sheaf (coker(∂/∂z)) is zero.

What we said for the complexes of A-modules and their cohomology extends naturally
to the categories of presheaves and of sheaves, but paying attention to the fact that
images and cokernels of morphisms in PMod(AX) are not the same than in Mod(AX). In
particular, a complex of sheaves which is an exact sequence in PMod(AX) (i.e., on any
open subset) is the same also in Mod(AX) (i.e., on any fiber), but the converse is not
true: namely, the functor Γ(U, · ) is obviously exact on PMod(AX), but only left exact on

Mod(AX) (exercise). An example is the one provided above, i.e. OC

∂/∂z−→ OC −→ 0: this is
an exact sequence in Mod(AX) (namely coker(∂/∂z) = 0) but, by applying Γ(C \ {0}, · ),
as we saw one obtains a complex which is not exact in Mod(A).

Operations. Let f : X −→ Y be a continuous function. If F is a sheaf on X, the
presheaf f∗F on Y defined by f∗F (V ) = F (f−1(V )) is a sheaf (exercise), called the
direct image of F ; it has has a subsheaf f!F (the proper direct image of F ) defined by
f!F (V ) = {s ∈ F (f−1(V )) : f is proper on supp(s)}(120). One then obtains two functors
f∗, f! : Mod(AX) −→ Mod(AY ), with (g ◦ f)∗ = g∗ ◦ f∗ and (g ◦ f)! = g! ◦ f!. If G is a sheaf
on Y , the presheaf Pf−1G on X defined by Pf−1G(U) = lim−→

V⊃f(U), open

G(V ) in general is

not a sheaf: the associated sheaf f−1G =
�
Pf−1G

�+
is called the inverse image of G.

One obtains a functor f−1 : Mod(AY ) −→ Mod(AX) with (g ◦ f)−1 = f−1 ◦ g−1. Note that
(f−1G)x = Gf(x) for any x ∈ X.

Examples. (1) Let F ∈ Mod(AX) and M ∈ Mod(A). Denoted by aX : X −→ {pt} the constant map,

one has aX∗F = Γ(X;F ), aX !F = Γc(X;F ) and a
−1

X
M = MX . (2) If Z ⊂ X and ι : Z −→ X is the

canonical inclusion, the sheaf ι−1
F on Z is denoted by F |

Z
(the restriction of F to Z). For example, if

Z is open one recovers the restriction previously defined; if Z = {x} one has ι
−1

F = Fx; if Z is a real

analytic manifold and X is a complexification —just think to Z = R
n ⊂ X = C

n, one has AZ = OX |
Z
.

(3) There is a natural morphism C0

Y −→ f∗C0

X of sheaves on Y (exercise).

Remark A.4.2. In general, given a topological space X and a subset S ⊂ X, if F is a
sheaf on X one defines Γ(S;F ) := Γ(S; F |

S
). One proves that, if X is Hausdorff and S is

compact, or if X is paracompact(121) and S closed, then Γ(S;F ) = lim−→ U⊃SΓ(U ;F ), i.e.

(120)A continuous function is said proper if the inverse image of any compact subset is compact.
(121)A topological space is said paracompact if for any open cover U = {Uλ : λ ∈ Λ} of X there exists an
open cover V = {Vµ : µ ∈ M} finer than U (i.e. for any λ ∈ Λ there exists µ ∈ M such that Vµ ⊂ Uλ)
and locally finite (i.e., for any compact subset K ⊂ X the set {µ ∈ M : Vµ ∩ K �= ∅} is finite). Locally
compact spaces which are countable at infinity (i.e. countable union of compact subsets: for example, the
manifolds) and metric spaces are paracompact; closed subspaces of paracompact spaces are paracompact.
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“the sections of F on S are the restrictions to S of sections of F on some open neighborhood
U of S”.

If F,G ∈ Mod(AX), the presheaf U �→ Hom
AU

(F |
U
, G|

U
) is a sheaf on X (exercise),

denoted by Hom
AX

(F,G): one obtains a functor (covariant in both variables)

Hom
AX

( · , · ) : Mod(AX)op ×Mod(AX) −→ Mod(BX)

(where B is a subring contained in the center of A). One verifies thatHom
AX

(AX , F ) � F ,
which implies Hom

AX
(AX , F ) � Γ(X;F ). If H ∈ Mod(Aop

X
), the presheaf U �→ H(U)⊗

A

F (U) in general is not a sheaf on X; the associated sheaf is denoted by H ⊗
AX

F (tensor
product), and one obtains a functor (covariant in both variables)

· ⊗
AX

· : Mod(AX)×Mod(AX) −→ Mod(BX).

One verifies that AX ⊗
AX

F � F , H ⊗
AX

AX � H and (H ⊗
AX

F )x � Hx ⊗A
Fx for any

x ∈ X.

Example. Let P = (ai,j) be a matrix (m × n) with coefficients in A, and consider the associated

morphism of sheaves of left A-modules A
m

X

·P−→ A
n

X (multiplication on the right by P of row vectors).

Setting MP = coker(·P ), one has the exact sequence of sheaves A
m

X

·P−→ A
n

X −→ MP −→ 0. Now let

N ∈ Mod(AX), and apply the functor Hom
AX

( · , N): recalling that the functor Hom , and hence Hom ,

is left exact, one gets the exact sequence of sheaves of B-modules 0 −→ Hom
AX

(MP , N) −→ N
n P ·−→ N

m

(namely Hom
AX

(Ap

X
, N) � N

p and the morphism Hom
AX

(·P,N) is the multiplication on the left by P

of column vectors). Finally, given an open subset U ⊂ X, one can apply the left exact functor Γ(U, · )
obtaining a functorial isomorphism Hom

AU
(MP |U , N |

U
) � ker[Γ(U ;Nn)

P ·−→ Γ(U ;Nm)]. Hence the

sheaf Hom
AX

(MP , N) represents on any open subset the solutions of the linear system Px = 0 in the

unknown x ∈ N
n: all informations relative to the homogeneous problems associated to the linear system

P are contained in the sheaf MP . (Actually, one proves that also the informations relatives to the non-

homogeneous problems are contained in MP , but this requires a deeper knowledge of homological algebra

than the one provided in these brief notes.)
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A.5 Manifolds

Let X be a countable Hausdorff topological space. In what follows, by Ck we mean
k ∈ N ∪ {0,∞,ω}, where Cω denotes analytic regularity.

Definition A.5.1. A local chart of dimension n is a pair (U,ϕ) formed by an open subset
U ⊂ X and a homeomorphism ϕ : U

∼−→ R
n. Two local charts (U1,ϕ1) and (U2,ϕ2) of

dimension n are k-compatible if (a) U1 ∩ U2 = ∅ or (b) U1 ∩ U2 �= ∅ and the transition
function ϕ12 = ϕ2 ◦ ϕ−1

1
: ϕ1(U1 ∩ U2) −→ ϕ2(U1 ∩ U2) is a diffeomorphism Ck between

open subsets of Rn. A Ck differential atlas of dimension n is a family {(Uλ,ϕλ) : λ ∈ Λ}
of k-compatible local charts of dimension n, where the Uλ’s form an open cover of X.

Note that two local charts of dimension n are always 0-compatible.

Definition A.5.2. X is a (real) Ck manifold of dimension n if it is endowed with an
atlas Ck {(Uλ,ϕλ) : λ ∈ Λ} of dimension n, assumed to be maximal with respect to the
inclusion. Denoting by ui : Rn −→ R the ith coordinate function (i.e. ui(a) = ai), setting
xλ,i = ui ◦ϕλ : Uλ −→ R it holds ϕλ = (xλ,1, . . . , xλ,n): the n-tuple of functions (xλ,i)i=1,...,n

is called a system of local coordinates on Uλ.

The local coordinates allow one to operate in Uλ as in R
n. Note that a manifold is always

locally simply connected.

Example. The sphere S
n = {x ∈ R

n+1 : |x| = 1} is a C∞ manifold of dimension n. An atlas is given by

{(U±
i
,ϕ

±
i
) : i = 1, . . . , n + 1} with U

±
i

= {x ∈ S
n : xi ≷ 0} and ϕ

±
i

= ψ ◦ �ϕ±i, where �ϕ±
i

: Ui± ∼−→ Ḃn is

given by �ϕ±
i
(x) = (x1, . . . , xi−1, xi+1, . . . , xn+1), and ψ : Ḃn

∼−→ R
n (the inverse is (ϕ±

i
)−1 = (�ϕ±

i
)−1 ◦ψ−1,

with (�ϕ±
i
)−1(u) = (u1, . . . ui−1,

�
1− |u|2, ui, . . . , un). Another atlas is provided by the stereographic

projections {(Sn \ {N},ϕN ), (Sn \ {S},ϕS)}, where N = en−1 = −S and for example, given x ∈ S
n \ {N},

one has ϕN (x) = ( 2x1
1−xn−1

, . . . ,
2xn

1−xn−1
) (intersection of the half line coming from N and passing through

x with the plane {x ∈ R
n+1 : xn+1 = −1} = TSS

n � R
n), and hence ϕ

−1

N
(u) = ( 4u1

|u|2+4
, . . . ,

4un
|u|2+4

,
|u|2−4

|u|2+4
).

Finally, another atlas is given by the polar coordinates on S
n: one of these charts is ϑ ◦ α

−1, where

ϑ : U =]0, 2π[×(]0,π[)n−1 ∼−→ R
n and α : U

∼−→ S
n \ {x ∈ S

n : x1 > 0, x2 = 0} is defined by

α(θ,φ1, . . . ,φn−1) = (cos θ sinφ1 · · · sinφn−1, sin θ sinφ1 · · · sinφn−1,

cosφ1 sinφ2 · · · sinφn−1, . . . , cosφn−2 sinφn−1, cosφn−1).

Definition A.5.3. Let X (resp. Y ) be a Ck manifold of dimension n (resp. m), {(Uλ,ϕλ) :
λ ∈ Λ} (resp. {(Vµ,ψµ) : µ ∈ M}) a maximal differentiable atlas in X (resp. in Y ). Given
h ≤ k, a continuous function f : X −→ Y is said to be (of class) Ch if such are all the
functions ψµ ◦ f ◦ ϕ−1

λ
.(122)

In particular, given an open subset U ⊂ X, a function f : U −→ R is Ck if such are the
maps f ◦ ϕ−1

λ
: ϕλ(U ∩ Uλ) −→ R for any λ ∈ Λ such that U ∩ Uλ �= ∅. The set Ck

X
(U) of

Ck functions on U has a natural structure of R-algebra.
For x ∈ X, let Ck

X,x
be the R-algebra of germs of Ck functions in x, i.e.

Ck

X,x = {(U, f) : U open neighborhood of x, f : U −→ R of class Ck}/ ∼ ,

(122)More precisely, if such are ψµ ◦ f |
f−1(Vµ)

◦
�
ϕλ|Uλ∩f−1(Vµ)

�−1

for any λ ∈ Λ and µ ∈ M such that

Uλ ∩ f
−1(Vµ) �= ∅).
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where (U, f) ∼ (V, g) if there exists a open neighborhood W ⊂ U ∩ V of x such that
f |

W
= g|

W
. In the terminology of sheaves, Ck

X
(U) are the sections Γ(U ; Ck

X
) of the sheaf

Ck

X
on U , and Ck

X,x
= lim−→

U�x
Ck

X
(U) is the fiber of Ck

X
in x.

From now on we shall assume that k ≥ 1.

Let X be a Ck manifold of dimension n, and {(Uλ,ϕλ) : λ ∈ Λ} be a maximal Ck atlas.
On Uλ it is defined the operator of ith partial derivative: if 1 ≤ h ≤ k is a integer,

∂

∂xλ,i
: Ch

X(Uλ) −→ Ch−1

X
(Uλ),

∂f

∂xλ,i
(x) =

∂(f ◦ ϕ−1

λ
)

∂ui
(ϕλ(x)).

Proposition A.5.4. If Uλ ∩ Uµ �= ∅, it holds

∂

∂xµ,j
=

n�

i=1

∂xλ,i
∂xµ,j

∂

∂xλ,i
.

Proof. Just use the chain rule for maps between open subsets of affine spaces. Namely let f ∈ Ch

X(Uλ∩Uµ):
it holds

∂f

∂xµ,j

(x) =
∂(f ◦ ϕ−1

µ )

∂uj

(ϕµ(x)) =
∂((f ◦ ϕ−1

λ
) ◦ (ϕλ ◦ ϕ−1

µ ))

∂uj

(ϕµ(x))

=
n�

i=1

∂(f ◦ ϕ−1

λ
)

∂ui

((ϕλ ◦ ϕ−1

µ )(ϕµ(x)))
∂(ui ◦ (ϕλ ◦ ϕ−1

µ ))

∂uj

(ϕµ(x))

=
n�

i=1

∂(f ◦ ϕ−1

λ
)

∂ui

(ϕλ(x))
∂((ui ◦ ϕλ) ◦ ϕ−1

µ )

∂uj

(ϕµ(x)) =
n�

i=1

∂f

∂xλ,i

(x)
∂xλ,i

∂xµ,j

(x).

In other words, denoted by Jλ,µ =
�
∂xµ,j

∂xλ,i

�

i,j

the jacobian transition matrix, and by ∂

∂xλ

and ∂

∂xµ
the coordinate vectors, one has

(A.8)
∂

∂xµ
= t(Jλ,µ)

−1
∂

∂xλ
.

For any x ∈ Uλ it is naturally induced a operator ∂

∂xλ,i

(x) : Ch

X,x
−→ Ch−1

X,x
.

Definition A.5.5. The tangent space in x, denoted by TxX, is the real vector space of
dimension n generated by the operators ∂

∂xλ,i

(x) (i = 1, . . . , n). The tangent bundle to X

is defined as TX = {(x, v) : x ∈ X, v ∈ TxX}. We denote by τ : TX −→ X the natural
projection on X.

Note that the definition of TxX is well-posed thanks to (A.8).

Remark A.5.6. From the previous definitions we get the classical definition of embedded
differential manifold, and the other two equivalent to it. Let X ⊂ R

N , and let ι : X −→ R
N

be the inclusion map. ThenX is a Ck manifold of dimension n if one of following equivalent
conditions holds:
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(1) for any x ∈ X there exists an open V ⊂ R
n, an open neighborhood U ⊂ R

N of x
and a homeomorphism φ : V

∼−→ U ∩X (local parametrization at x, the inverse of a
local chart) such that the function ι◦φ : V −→ R

N is of class Ck with jacobian matrix
of rank n at any point;

(2) for any x ∈ X there exist 1 ≤ i1 < · · · < in ≤ N , an open neighborhood U � ⊂ R
n of

x� (where x = (x�, x��) ∈ R
n × R

N−n � R
N with x� = (xi1 , . . . , xin)) and a function

f : U � −→ R
N−n of class Ck such that, denoted by q� : RN −→ R

n the projection
q�(x�, x��) = x�, one has X ∩ q�−1(U �) = {x = (x�, x��) ∈ U � × R

N−n : f(x�) = x��};

(3) for any x ∈ X there exists an open neighborhood U ⊂ R
N of x and a function

g : U −→ R
N−n (defining function at x) of class Ck and submersive (i.e., with jacobian

matrix of rank N − n) on g−1(0), such that X ∩ U = g−1(0).

Moreover, given x
0
∈ X and denoted by φ : V

∼−→ U ∩ X a local parametrization at x
0

(with φ(v0) = x
0
) and by g : U −→ R

N−n a defining function at x
0
, one has Tx

0
X =

im
�
dφ(v0) : Rn �→ R

N
�
= ker

�
dg(x

0
) : RN � R

N−n
�
⊂ R

N .

Proposition A.5.7. The tangent bundle TX is a vector bundle on X (see Definition
1.6.1) and has a structure of Ck manifold of dimension 2n.

Proof. Fixed λ ∈ Λ, a trivialization of TX over Uλ is the map Uλ×R
n −→ τ

−1(Uλ) associating to (x, a) the
pair (x,

�
n

i=1
ai

∂

∂xλ,i
(x)). Hence TX is a vector bundle on X. An atlas of TX is given by {(τ−1(Uλ),Φλ) :

λ ∈ Λ} with Φλ(x,
�

n

i=1
ai

∂

∂xλ,i
(x)) = (ϕλ(x), a). For the transition function, if

�
n

i=1
aλ,i

∂

∂xλ,i
(x) =

�
n

j=1
aµ,j

∂

∂xµ,j
(x), from (A.8) one immediately gets that aµ = Jλ,µ(x) aλ.

Definition A.5.8. A section on an open U ⊂ X of τ is called a vector field on U .

Hence, a Ck vector field on U ⊂ Uλ can be uniquely written as A =
�

n

i=1
Ai

∂

∂xλ,i

with

Ai ∈ Ck

X
(U); in general, a vector field on U ⊂ X is a family A = (Aλ)λ∈Λ where Aλ =�

n

i=1
Aλ,i

∂

∂xλ,i

with Aλ,i ∈ Ck

X
(U ∩ Uλ) such that, whenever U ∩ Uλ ∩ Uµ �= ∅, one has

Aµ = Jλ,µAλ.

Definition A.5.9. LetX and Y be two Ck manifolds of dimension resp. n andm, f : X −→
Y a Ch map (h ≥ 1). The tangent map df : TX −→ TY is defined by df(x, v) = (f(x), dfxv)
where dfxv : Ch

Y,f(x)
−→ Ch−1

Y,f(x)
is given by dfxv([α]) = v([α ◦ f ]).

In local coordinates, meaning f : Uλ −→ Vµ (with x ∈ Uλ and f(x) ∈ Vµ) and (x1, . . . , xn) ∈
Uλ and (y1, . . . , ym) ∈ Vµ, setting yj = fj(x) (for j = 1, . . . ,m) the chain rule is still valid:

df(x, ∂

∂xi
) = (f(x),

�
m

j=1

∂fj

∂xi
(x) ∂

∂yj
). If Y = R, dfx is the usual differential TxX −→ R.

Definition A.5.10. The cotangent bundle of X is defined as T ∗X = {(x,ω) : x ∈ X, ω ∈
T ∗
xX}, where T ∗

xX is the dual vector space of TxX. We denote by π : T ∗X −→ X the
natural projection on X.

Also the cotangent bundle T ∗X is a vector bundle on X and has a structure of Ck manifold
of dimension 2n. Fixed λ ∈ Λ, introduce for any x ∈ Uλ the dual basis

dxλ,i(x) ∈ T ∗
xX (i = 1, . . . , n),

�
∂

∂xλ,i
(x), dxλ,j(x)

�
= δi,j .
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Let (Uµ,ϕµ) with Uλ ∩ Uµ �= ∅: the relation between the dxλ,i and the dxµ,j is given by

(A.9) dxµ,j =
n�

i=1

∂xµ,j
∂xλ,i

dxλ,i, i.e. dxµ = Jλ,µ dxλ.

Hence, if
�

n

i=1
αλ,idxλ,i(x) =

�
n

j=1
αµ,jdxµ,j(x), from (A.9) one computes (and this pro-

vides the transition functions) that

αµ = tJ−1

λ,µ
(x)αλ.

Definition A.5.11. A section on an open U ⊂ X of π is called a linear differential form
on U .

Analogously to vector fields, a Ck linear differential form one U ⊂ Uλ can be uniquely
written as ω =

�
n

i=1
ωidxλ,i with ωi ∈ Ck

X
(U) and, in general, a linear differential form on

U ⊂ X is a family ω = (ωλ)λ∈Λ where ωλ =
�

n

i=1
ωλ,idxλ,i with ωλ,i ∈ Ck

X
(U ∩ Uλ) and

ωµ = tJ−1

λ,µ
ωλ.

This equality will be intrinsecally espressed by the equality of pull-back of linear differential
forms on Uλ and Uµ with respect to the canonical inclusions of Uλ ∩ Uµ (see §2.2).

Example. A natural example of linear differential forms is the differential of a function: as we have seen,

if f : X −→ R, for any x ∈ X is defined dfx = df(x) ∈ T
∗
xX, and hence df is a linear differential form.

Figure 18: A partition of unity by three functions.

Definition A.5.12. Let X be a Ck manifold. A partition of unity is a family {ρλ : λ ∈ Λ}
of non negative Ck functions such that (a) {ρλ : λ ∈ Λ} is locally finite, i.e. for any x ∈ X
there exists a neighborhood U ⊂ X of x such that ρλ|U �= 0 only for a finite number of
λ ∈ Λ, (b)

�
λ∈Λ ρλ = 1.

In the case k = ∞, the following result is well-known (we refer e.g. to de Rham [11]).
Recall that the support of f : X −→ R is

supp(f) = {x ∈ X : f(x) �= 0}.
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Proposition A.5.13. Let X be a C∞ manifold, {Uλ : λ ∈ Λ} a open cover of X. Then
there exists a partition of unity {ρλ : λ ∈ Λ} “subordinate to {Uλ : λ ∈ Λ}”, i.e. such that
supp(ρλ) ⊂ Uλ for any λ ∈ Λ. Moreover there exist partitions of unity {ρµ : µ ∈ M} of
functions with compact support, and a function γ : M −→ Λ, such that supp(ρµ) ⊂ Uγ(µ)

for any µ ∈ M .

Let us conclude with the definition of manifold with boundary. Consider the half-space
H

n = {u ∈ R
n : un ≥ 0} and its boundary ∂Hn = {u ∈ R

n : un = 0} � R
n−1.

Definition A.5.14. X is a Ck manifold of dimension n with boundary if it is endowed
with an atlas (Ck of dimension n) {(Uλ,ϕλ) : λ ∈ Λ} where ϕλ is a homeomorphism of Uλ

on R
n or on H

n such that ϕµ ◦ϕ−1

λ
: ϕλ(Uλ ∩Uµ)

∼−→ ϕµ(Uλ ∩Uµ) is a Ck diffeomorphism.

The subset ∂X = {x ∈ X : x ∈ Uλ, ϕλ : Uλ

∼−→ H
n, ϕλ(x) ∈ ∂Hn} is called boundary of

X, and Ẋ = X \ ∂X the manifold (without boundary) associated X.

Example. (1) Let g : R2 −→ R, g(x, y) = x
4 − 4(x2 − y

2), and let X = g
−1(R≤0) (the “figure eight” filled

inside). X is not a manifold with boundary: namely, no neighborhood V of (0, 0) ∈ X is homeomorphic to

H
2 (let ϕ : H2 ∼−→ V be a homeomorphism, u0, u1 ∈ H

2 with x(ϕ(u0)) < 0 and x(ϕ(u1)) > 0, γ : I −→ H
2

with γ(0) = u0, γ(1) = u1 and ϕ
−1(0, 0) /∈ γ(I): then ϕ ◦ γ joins ϕ(u0) to ϕ(u1) without passing through

(0, 0), absurd). (2) Let g : R2 −→ R, g(x, y) = y
2 − x

5 and let X = g
−1(R≤0) (the cusp): it is manifold

with boundary C0 (the boundary is ∂X = g
−1(0)). (3) In general, let g : Rn+1 −→ R be a Ck function

(with k ≥ 1) such that the system

�
g(x) = 0
dg(x) = 0

has no solutions: then X = g
−1(R≤0) is a manifold with

boundary ∂X = g
−1(0), the hypersurface of Rn+1 defined by g.

One sees immediately that Ẋ is a Ck manifold of dimension n (without boundary). Let
us show that also ∂X is a manifold.

Lemma A.5.15. A Ck autodiffeomorphism F : Hn ∼−→ H
n (i.e., an autohomeomorphism

which extends to a Ck diffeomorphism on some open neighborhood of Hn) induces a Ck au-
todiffeomorphism f : ∂Hn ∼−→ ∂Hn. Moreover, if F has Jacobian determinant everywhere
positive, this holds also for f .

Proof. As a consequence of the theorem of local inversion in R
n one obtains that F (∂Hn) = ∂H

n (it must
be F

−1(Ḣn) ⊂ Ḣn, hence F (∂Hn) ⊂ ∂H
n; then one can argue analogously with the inverse F

−1) and the
first statement follows with f = F |

∂Hn . Now we show the second statement for n = 2, (the general case
being similar). Let (y1, y2) (resp. (x1, x2)) be a coordinate system in the domain (resp. codomain), and

let F = (F1, F2): then f(y1) = F1(y1, 0). By hypothesis it holds det

�
∂F1
∂y1

(y1, 0)
∂F1
∂y2

(y1, 0)
∂F2
∂y1

(y1, 0)
∂F2
∂y2

(y1, 0)

�
> 0 for

any y1. Since F2(y1, 0) ≡ 0, one has ∂F2
∂y1

(y1, 0) ≡ 0; moreover, since F (Ḣn) ⊂ Ḣn, one has ∂F2
∂y2

(y1, 0) > 0.

Hence ∂f

∂y1
(y1) =

∂F1
∂y1

(y1, 0) > 0.

Proposition A.5.16. If X is a Ck manifold with boundary and dimension n, its boundary
∂X is a Ck manifold without boundary of dimension n− 1.

Proof. Let x ∈ ∂X and let x ∈ Uλ with ϕλ : Uλ

∼−→ H
n and ϕλ(x) ∈ ∂H

n. It is enough to show that
ϕ

−1

λ
(∂Hn) = ∂X ∩ Uλ, because then ϕλ|∂X∩Uλ

: ∂X ∩ Uλ −→ ∂H
n � R

n−1 would be a local chart of

∂X at the neighborhood of x. The inclusion ϕ
−1

λ
(∂Hn) ⊂ ∂X ∩ Uλ is true by definition. Conversely, let
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U ⊂ Uλ and ϕ : U
∼−→ H

n be another local chart in Uλ compatible with ϕλ. Consider the diffeomorphism
ϕλ|U ◦ϕ−1 : Hn ∼−→ ϕλ(U) ⊂ H

n. Arguing as in the proof of Lemma A.5.15 one has (ϕλ◦ϕ−1)(∂Hn) ⊂ ∂H
n,

i.e. ϕ−1(∂Hn) ⊂ ϕ
−1

λ
(∂Hn), as desired.
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