
Notes on Algebraic Topology

2.6 Finiteness, Poincaré duality, relations with singular cohomology

Let us show some other important consequences of the results of Mayer-Vietoris.

Definition 2.6.1. Let X be a C∞ manifold without boundary, of dimension n. An open
cover {Uλ : λ ∈ Λ} of X is said to be good if any finite intersection Uλ1

∩ · · · ∩ Uλr
is

diffeomorphic to R
n. A manifold endowed with a finite good cover is said to be of finite

type.

Lemma 2.6.2. Any C∞ manifold admits a good cover. In particular, any compact C∞

manifold is of finite type.

Proof. We give only the idea of the proof, referring to texts of differential geometry (e.g. Spivak [14]) for
more details. Assign to X a riemannian metric(87). �· , ·�, and choose a cover made by geodesically convex
open subsets(88) with respect to �· , ·�: such open subsets being diffeomorphic to R

n, as well as anyone of
their non empty finite intersections, such a cover is good.

Theorem 2.6.3. The cohomology and the cohomology with compact support of a C∞

manifold of finite type is finite dimensional.

Proof. LetX be a C∞ manifold of finite type, of dimension n, and let us prove the result for the cohomology
(the proof for the cohomology with compact support is similar) by recurrence on the cardinality of a finite
good cover of X. If X is diffeomorphic a R

n it is enough to recall Poincaré lemma; then, if {U1, . . . , Up+1}
is a good cover of X, set U = U1 ∪ · · · ∪ Up and V = Up+1 (note that a good cover for U ∩ V is
{U1 ∩ Up+1, . . . , Up ∩ Up+1}). From the exact sequence of Mayer-Vietoris

· · · �� Hm−1(U ∩ V )
αm−1 �� Hm(X)

βm �� Hm(U)⊕H
m(V ) �� · · ·

we get that Hm(X) � ker(βm)⊕ im(βm) � im(αm−1)⊕ im(βm): in particular, since Hm−1(U ∩V ), Hm(U)
and H

m(V ) have finite dimension by the inductive hypothesis, also H
m(X) has finite dimension.

From now on, X is a oriented manifold without boundary of finite type, of dimension n.
By Theorem 2.6.3, we know that H•(X) and H•

c (X) have finite dimension.

Lemma 2.6.4. There is a natural bilinear form

(2.24)

�

X

: H•(X)⊗
R
Hn−•

c (X) −→ R, ([ω], [θ]) �→
�

X

(ω ∧ θ) .

Proof. This integration form is clearly bilinear; we must only check that it is well-posed. Namely, let
ω ∈ Z

m(X) and θ ∈ Z
n−m

c (X): then, setting ω
� = ω + dτ and θ

� = θ + dψ one has ω
� ∧ θ

� = ω ∧ θ + dχ

where χ = (−1)mω ∧ ψ + τ ∧ θ + τ ∧ dψ ∈ Ωn−1

c (X), and then Stokes’ theorem (since ∂X = ∅) implies
that

�
X
(ω ∧ θ) =

�
X
(ω� ∧ θ

�).

(87)Recall that a riemannian manifold is a C∞ manifold endowed with a Riemannian metric, which is a
global C∞ section �· , ·� of ⊙2

T
∗
X (in other words, for any x ∈ X it is assigned a metric �· , ·�x on TxX

such that, if A and B are two vector fields C∞ on X —i.e., global C∞ sections of TX— the function
x �→ �A(x), B(x)�x is in C∞(X)). Any C∞ manifold can be endowed with a riemannian structure: given
an atlas {(Uλ,ϕλ) : λ ∈ Λ}, a riemannian metric �· , ·�λ on any Uλ and a partition of unity {ρλ : λ ∈ Λ}
subordinate to {Uλ : λ ∈ Λ}, consider

�
λ∈Λ

ρλ�· , ·�λ.
(88)Any point of a riemannian manifold admits a geodesically convex neighborhood (recall that a subset
of a riemannian manifold is called geodesically convex if any two points of it can be joint by a geodesic
contained in it).
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Recall that a bilinear form b : V ⊗
R
W −→ R naturally induces a morphism V −→ W ∗,

which sends v ∈ V into b(v, · ) ∈ W ∗; if both spaces have the same finite dimension,
such a morphism is an isomorphism if and only if b is nondegenerate, i.e. if and only if
b(v,W ) = 0 implies v = 0, and b(V,w) = 0 implies w = 0.

Proposition 2.6.5. The integration form (2.24) defines, for any pair of open subsets
U, V ⊂ X, a morphism between the sequence of Mayer-Vietoris (2.15) and the dual se-
quence of Mayer-Vietoris with compact support (2.18):

· · · −→ H
m−1(U ∩ V )

δ ��

εm−1
�
U∩V

��

H
m(U ∪ V )

r ��

εm
�
U∪V

��

H
m(U)⊕H

m(V )
µ ��

εm(
�
U ⊕

�
V )

��

H
m(U ∩ V ) −→ · · ·

εm
�
U∩V

��
· · · −→ H

n−m+1

c (U ∩ V )∗
δ
∗
c �� Hn−m

c (U ∪ V )∗
σ
∗

�� Hn−m

c (U)∗ ⊕H
n−m

c (V )∗
µ
∗
c �� Hn−m

c (U ∩ V )∗ −→ · · ·

where εm = (−1)[
m−1

2
], δ and δc (resp. r, µ, σ, µc) are the maps induced by the morphisms

of coboundary (resp. by restriction, restriction and difference, extension by zero and sum,
extension by zero and embedding map with sign) and ( · )∗ indicates the trasposed map.

Proof. The verification that the second and third square of the diagram commute is immediate from the
definitions.(89) As for the first square, let ω ∈ Z

m−1(U ∩ V ) and τ ∈ Z
n−m

c (U ∪ V ). Recalling (2.16) and
(2.19) and that δω has the support in U∩V , and observing that d(ρV ω) = (dρV )∧ω and d(ρV τ) = (dρV )∧τ ,
one has

�
U∪V

δ(ω)∧ τ =
�
U∩V

δ(ω)∧ τ = −
�
U∩V

(dρV )∧ω∧ τ and δ
∗
c

��
U∩V

ω ∧ ·
�
(τ) =

�
U∩V

ω∧ (δcτ) =�
U∩V

ω∧(dρV )∧τ = (−1)m−1
�
U∪V

(dρV )∧ω∧τ , and hence there is a difference of sign given by (−1)m; the
presence of the factor εm as in the diagram ensures the equality, since one has always m+

�
m−2

2

�
≡

�
m−1

2

�

modulo 2.

Lemma 2.6.6. (Five Lemma) Consider a commutative diagram of abelian groups and
morphisms

A1

f1 ��

α

��

A2

f2 ��

β

��

A3

f3 ��

γ

��

A4

f4 ��

δ

��

A5

ε

��
B1

g1 �� B2

g2 �� B3

g3 �� B4

g4 �� B5

where the rows are exact sequences and α,β, δ, ε are isomorphisms. Then also γ is an
isomorphism.

Proof. Exercise.

Theorem 2.6.7. (Poincaré duality) Let X be a oriented manifold without boundary, of
dimension n. Then the bilinear integration form (2.24) is nondegenerate, and hence one
has

H•(X) � Hn−•
c (X)∗.

(Note that the hypothesis of finite type has been removed.)

Proof. We start by assuming thate X is of finite type. Let U, V ⊂ X be two open subset. By Proposition
2.6.5 and Lemma 2.6.6, if the statement holds for U , V and U ∩ V it will hold also for U ∪ V . Hence it
shall be once more enough to argue by recurrence on the cardinality of a finite good cover of X, exactly as
in the proof of Theorem 2.6.3. In the general case, we refer to a text of topology differential, for example
Greub-Halperin-Vanstone [7].

(89)Recall also that, given two vector spaces V1 and V2 on a field k, then V
∗
1 ⊕ V

∗
2 is naturally identified

with (V1 ⊕ V2)
∗ by sending (α,β) ∈ V

∗
1 ⊕ V

∗
2 into γ ∈ (V1 ⊕ V2)

∗ defined as γ(v, w) = α(v) + β(w).
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Example. Let X =
�

i∈N
Xi, where the Xi are oriented C∞ manifolds of finite type. One then has

H
•(X) =

�
i∈N

H
•(Xi), while H

•
c (X) =

�
i∈N

H
•
c (Xi), which implies H

•
c (X)∗ =

�
i∈N

H
•
c (Xi)

∗ (the dual

of a direct sum is isomorphic to the direct product of the duals, see Appendix A.2): since H
•(Xi) �

H
n−•
c (Xi)

∗, this agrees with Poincaré duality. Note that, if X is of finite type, it holds also H
•
c (X) �

H
n−•(X)∗ (the bidual of a vector space of finite dimension is canonically isomorphic to the space itself),

but this is false in general: as in the case X =
�

i∈N
Xi above, the dual of a direct product is not necessarily

isomorphic to the direct sum of the duals.

Hence let us show that the generator of the cohomology with compact support of top
degree of a orientable manifold is a “bump form” as we saw for S

1 (see the example at
p. 67).

Corollary 2.6.8. If X is a connected oriented manifold without boundary of dimension
n, one has

Hn

c (X) = R;

a generator of Hn
c (X) will be a n-form on X with compact support, as small as one likes,

with total integral 1.

Proof. Recall that H0(X) = R, then apply Poincaré duality. Finally, a n-form of the type described above
is surely non zero in H

n

c (X) (otherwise, since ∂X = ∅, its total integral should be zero).

Remark 2.6.9. Given a manifold without boundary X, the fact that Poincaré duality
fails to hold is one of the simplest methods for proving that such manifold is not orientable.
For example, if one has a compact manifold without boundary, we said above that it has
finite dimensional cohomology (in this case obviously coinciding with the cohomology with
compact support), and so if such manifold is orientable then Poincaré duality implies that
such dimensions must be symmetric (i.e. dimHj(X) = dimHn−j(X) for j = 0, . . . , n =
dim(X)). But, for example, this does not happen for the Möbius band, the Klein bottle
and the real projective of even dimension (see Exemples at pp. 77 and 88), which therefore
can not be orientable.

Let us show that, as repeatedly announced, the cohomology of de Rham is isomorphic to
the singular cohomology with coefficients in R.

Theorem 2.6.10. (de Rham) Let X be a C∞ manifold. For any open subset U ⊂ X one
has a isomorphism in Moddeg(R)

(2.25) H•(U)
∼−→ H•(U,R).

Proof. We show the sketch of the proof, referring for example to Bredon [2] for more details. Consider
the singular simplexes C∞ in X (i.e., those simplexes σ : ∆k −→ X which extend to C∞ functions in
some open neighborhood of ∆k) and the C∞ chains generated by them: since their boundary is a C∞

chain, the C∞ chains form a subcomplex of (2.2). Let us dualize it, so obtaining the complex of sheaves
S

•
X,C∞(R) of C∞ singular cohomology. Since a C∞

k-form can be integrated on a compact C∞ submanifold
of dimension k with boundary, for any k it is defined a morphism of sheaves Ωk

X −→ S
k

X,C∞(R); thanks to
Stokes’ theorem, such morphism commutes with the differential, giving rise to a morphism of complexes
of sheaves Ω•

X −→ S
•
X,C∞(R) and hence, given any open subset U ⊂ X, to a morphism of graded R-

modules ψ : H•(U) −→ H
•
C∞(U,R), where H

•
C∞(U,R) is the singular cohomology with coefficients in R

obtained considering only the simplexes C∞. The already used inductive argument, based on Mayer-
Vietoris principle, Poincaré lemma and the Five Lemma, allows one to show that ψ is a isomorphism in
the case where X is of finite type. The compatibility of both cohomologies with disjoint unions allows
to remove the hypothesis of finite type; finally, one proves analogously that the natural morphism χ :
H

•(U,R) −→ H
•
C∞(U,R) is a isomorphism. The desired isomorphism is χ−1 ◦ ψ.
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Remark 2.6.11. Theorem 2.6.10 provides a direct proof that two different cohomology
theories (in this case, de Rham cohomology and singular cohomology) give the same results;
other similar comparisons are Theorem 2.1.19 (between cellular homology and singular
homology) and Corollary 2.9.6 (between Čech cohomology and de Rham cohomology).
All these results provide an ad hoc approach for each case; an alternative —and, by
many aspects, preferable— axiomatic approach is to state a few axioms that a reasonable
homology/cohomology theory should satisfy (for example the invariance under homotopy
equivalence), and then to prove that all homology/cohomology theories satisfying those
axioms must give the same result at least on a sufficiently large class of spaces, e.g. on CW
complexes. For this approach we refer to the classical book of Eilenberg and Steenrod [4].
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2.7 Degree

Let X and Y be oriented connected manifolds without boundary of dimension n, f : X −→
Y a proper C∞ map. There is a pull-back morphism

Hnf∗ : Hn

c (Y ) −→ Hn

c (X), Hnf∗([ω]) = [f∗ω].

We have seen (Corollary 2.6.8) that Hn
c (X) = R and Hn

c (Y ) = R.

Definition 2.7.1. The degree of f is deg(f) =
�
X
f∗ω, where [ω] is a generator of Hn

c (Y )
with

�
Y
ω = 1.

Proposition 2.7.2. The real number deg(f) is well-posed and invariant under proper
homotopies.(90)

Proof. The well-posedness follows from Stokes’ theorem: if ω� = ω+dσ, one has
�
X
f
∗
ω

� =
�
X
f
∗
ω because�

X
f
∗
dσ =

�
X
d(f∗

σ) =
�
∂X

f
∗
σ = 0. For the proof of the invariance under proper homotopies we follow

the trace of Guillemin-Pollack [8, pag. 189] in the case of compact manifolds. (1) In general, let S and T be
oriented manifolds without boundary of dimension k with S boundary of a manifold W , and let u : S −→ T

be a proper map which has a smooth and proper extension to all of W (i.e. there exists a smooth and
proper map U : W −→ T such that u is the restriction of U to S = ∂W ): then

�
S
u
∗
ω = 0 for any k-form

ω with compact support on T . Namely, since U = u on S, by Stokes one has
�
S
u
∗
ω =

�
∂W

U
∗
ω =�

W
d(U∗

ω) =
�
W

U
∗(dω) = 0 (because ω is a k-form on the manifold T of dimension k, hence dω = 0).

(2) Now let f, g : X −→ Y be two proper maps which are homotopic by a proper homotopy h : X × I −→ Y ,
with f = h0 and g = h1. The map ∂h : ∂(X× I) = (X×{1})− (X×{0}) −→ Y (where the “minus” means
“union with opposite orientation”), identifying X × {1} and X × {0} with X, operates on X × {0} as f

and on X × {1} as g. Applying (1) to S = (X × {1})− (X × {0}), T = Y , W = X × I, U = h and u = ∂h

one then has 0 =
�
(X×{1})−(X×{0})(∂h)

∗(ω) =
�
X×{1}(∂h)

∗(ω)−
�
X×{0}(∂h)

∗(ω) �
�
X
g
∗
ω−

�
X
f
∗
ω.

Remark 2.7.3. Note that, by the invariance of the degree, it is important that the
homotopy be a proper map (of course this does not cause any problem in the case where
X and Y are compact manifolds). For example, let X = Y = R, f = idR and g = − idR;
both f and g are proper maps, but there does not exist any proper homotopy between
them.(91) In fact it turns out that these maps have different degree (as we shall see soon,
one has deg(idR) = 1 and deg(− idR) = −1).

Now we try to better understand deg(f). Given a morphism of C∞ manifolds f : X −→ Y ,
a critical point for f is a point of X in which the differential is not surjective, and a critical
value for f is the image of some critical point. A point of Y which is not a critical value for
f is said regular value for f : in particular, any y ∈ Y \ f(X) is a regular value for f . Let
us recall an important theorem which will be useful in the sequel, referring for example to
Guillemin-Pollack [8] for the proof.

Theorem 2.7.4. (Sard) The set of critical values for f has measure zero(92) in Y .

(90)i.e., if g : X −→ Y is another proper C∞ map and h : X × I −→ Y is a proper homotopy between f and
g, then deg(f) = deg(g).
(91)A continuous and proper map ϕ from R to itself must necessarily satisfy either limx−→+∞ ϕ(x) = +∞ or
limx−→+∞ ϕ(x) = −∞; would there exist a proper homotopy h : R× I −→ R with h0 = idR and h1 = − idR,
since h0 = idR by continuity it should be limx−→+∞ h(x, t) = +∞ for any t ∈ I, but this is in contrast
to h1 = − idR. On the other hand, a (non proper) homotopy between idR and − idR is the affine one
h(x, t) = (1− 2t)x: note that h−1(0) = (R× { 1

2
}) ∪ ({0}× I) is non compact.

(92)A subset B ⊂ Y has measure zero if there exists a countable family {(Vm,ψm) : m ∈ N} of charts in
Y such that B ⊂

�
m∈N

Vm and ψm(Vm ∩B) has Lebesgue measure zero in R
n for any m ∈ N.
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If f is a C∞ diffeomorphism from a connected open neighborhood U of x0 ∈ X to a
(connected) open neighborhood V of f(x0) ∈ Y , one defines sign(f)(x0) = ±1 according
to the fact that df(x0) : Tx0

X
∼−→ Tf(x0)

Y preserves or reverses the orientations. The
function sign(f) is constant on U ; if (Uλ,ϕλ) (resp. (Vµ,ψµ)) is a oriented local chart in X
(resp. Y ) containing x0 (resp. f(x0)), one has sign(f)(x0) = sign(ψµ ◦ f ◦ϕ−1

λ
)(u0), where

ϕλ(x0) = u0 ∈ R
n. From the affine case we easily get that if ω ∈ Ωn

c (V ) then one has
f∗ω ∈ Ωn

c (U) and for any x0 ∈ U it holds

(2.26)

�

U

f∗ω = sign(f)(x0)

�

V

ω.

Proposition 2.7.5. If f is not surjective then deg(f) = 0 , and in general it holds

deg(f) =
�

x∈f−1(y)

sign(f)(x) ∈ Z,

where y is any regular value for f .

Proof. We start by proving that deg(f) = 0 if f is not surjective. Let y ∈ Y \ f(X) and let V be an
open neighborhood of y with V ∩ f(X) = ∅:(93) choosing a generator [ω] of H

n

c (Y ) with the support
of ω compact in V and

�
V
ω = 1 (see Corollary 2.6.8), one has f

∗
ω = 0 and hence deg(f) = 0. So

let f be surjective, and let y be a regular value for f (which exists by Sard theorem): by the Implicit
Function theorem f is a local homeomorphism in the points of f−1(y) (in these points df(x) is surjective,
hence an isomorphism), therefore the fiber f

−1(y) is discrete, and even finite (f is proper). Let then
f
−1(y) = {x1, . . . , xk}, Uxj an open neighborhood of xj with f |

Uxj
: Uxj

∼−→ Vxj := f(Uxj ), V =
�

k

j=1
Vxj

(open neighborhood of y), Uj = f
−1(V )∩Uxj (open neighborhood of xj): one has f |

Uj
: Uj

∼−→ f(Uj) = V

for any j = 1, . . . , k. If [ω] is a generator of Hn

c (Y ) with support of ω compact in V and
�
V
ω = 1, then

f
∗
ω is a n-form with compact support in

�
k

j=1
Uj (see Figure 21): recalling (2.26), one has

�
X
f
∗
ω =

�
k

j=1

�
Uj

f
∗
ω =

�
k

j=1
sign(f |

Uj
)(xj).

Figure 21: Pulling back a bump form by a local diffeomorphism.

Example. (1) Given n ∈ N, consider fn : C −→ C, fn(z) = z
n. We saw that fn is a n-sheet covering of

C
×, hence a proper map; the regular values are those of C×. Let us choose for example 1, and consider

f
−1

n (1) = {wj : 1 ≤ j ≤ n}, the nth roots of unity. Since (see Remark 1.4.1) Jfn(wj) = |f �
n(wj)|2 = n

2
> 0,

the differentials dfn(wj) preserve the orientations: hence deg(fn) = 1 + · · · + 1 = n. The same holds for

(93)Any proper function between metrizable spaces is closed (exercise).
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the restriction fn|S1 : S
1 −→ S

1. On the other hand, φn := fn|R : R −→ R has degree 0 for n even

(it enough to observe that is not surjective; or that φ
−1

n (1) = {∓1} and φ
�
n(∓1) = ∓n ≶ 0 so that

deg(φn) = (−1) + (+1) = 0), and degree 1 for n odd (namely φ
−1

n (1) = {1}, and φ
�
n(1) = n > 0). (2)

Consider f, g : Sn −→ S
n (n ≥ 2), with f = idSn and g = − idSn (the antipodal map): they are auto-

diffeomorphisms, hence all y ∈ S
n are regular values. Let us choose for example y = N = en+1 (the North

pole). Since sign(f)(N) = 1 (namely df(N) = idTN Sn), one has deg(f) = 1; on the other hand, setting

S = −N (the South pole), dg(S) sends the positive basis (−1)n+1(e1, . . . , en) of TSS
n (see the example at

p. 71) into the basis (−1)n+1(−e1, . . . ,−en) = −(e1, . . . , en) of TNS
n. Recalling that a positive basis of

TNS
n is (−1)n(e1, . . . , en), this implies that deg(g) = (−1)(−1)n = (−1)n+1. It follows that, if n is even,

by Proposition 2.7.2 f = idSn can not be smoothly homotopic to g = − idSn , and hence these maps can

not be homotopic at all, again by Whitney approximation theorem on smooth manifolds (we remind the

cited reference Lee [12, Theorems 10.21 and 10.22]). In particular, this provides an answer to the pending

question about the “combing” of spheres (Corollary 1.1.20).
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2.8 Künneth formula

Let us study the cohomology of the product of manifolds.

Let X and Y be two C∞ manifolds, π : X × Y −→ X and ρ : X × Y −→ Y the projections.
Viewing Ω•(X) and Ω•(Y ) as graded vector spaces, Ω•(X) ⊗

R
Ω•(Y ) has a structure of

graded vector space given by (Ω•(X)⊗
R
Ω•(Y ))m =

�
j∈Z

�
Ωj(X)⊗

R
Ωm−j(Y )

�
(see (A.2)),

and one obtains a morphism of graded vector spaces by setting

Ω•(X)⊗
R
Ω•(Y ) −→ Ω•(X × Y ), ω ⊗ θ �→ π∗ω ∧ ρ∗θ.

Now, if dω = 0 and dθ = 0 then d(π∗ω ∧ ρ∗θ) = d(π∗ω) ∧ ρ∗θ + (−1)deg(ω)π∗ω ∧ d(ρ∗θ) =
π∗(dω)∧ρ∗θ+(−1)degωπ∗ω∧ρ∗(dθ) = 0; moreover, if dω = 0 and θ = dτ then π∗ω∧ρ∗θ =
(−1)deg(ω)d(π∗ω ∧ ρ∗τ) and similarly if ω = dσ and dθ = 0 then π∗ω ∧ ρ∗θ = d(π∗σ ∧ ρ∗θ).
Hence it is induced a map of cohomology(94)

ψ : H•(X)⊗
R
H•(Y ) −→ H•(X × Y ),

which we now show to be an isomorphism if at least one of the two manifolds is of finite
type.

Theorem 2.8.1. (Künneth formula) Let X and Y be two C∞ manifolds, and assume that
X is of finite type. Then

H•(X × Y ) � H•(X)⊗
R
H•(Y ),

i.e.
Hm(X × Y ) �

�

j∈Z

�
Hj(X)⊗

R
Hm−j(Y )

�
for any m ∈ Z.

Proof. We shall use once more the argument of induction on the cardinality of a finite good cover of X, the
base case (i.e. X � R

n) being true by Poincaré lemma. Let U, V ⊂ X be open, and fix any integer m ∈ Z.
Applying to the sequence of Mayer-Vietoris (2.15) the exact functor · ⊗

R
H

m−j(Y ) and considering the
direct sum for j ∈ Z, one obtains the exact sequence

· · · −→
�

j∈Z

�
H

j−1
(U ∩ V ) ⊗R H

m−j
(Y )

�
−→

�

j∈Z

�
H

j
(U ∪ V ) ⊗R H

m−j
(Y )

�
−→

�

j∈Z

��
H

j
(U) ⊗R H

m−j
(Y )

�
⊕

⊕
�
H

j
(V ) ⊗R H

m−j
(Y )

��
−→

�

j∈Z

�
H

j
(U ∩ V ) ⊗R H

m−j
(Y )

�
−→

�

j∈Z

�
H

j+1
(U ∪ V ) ⊗R H

m−j
(Y )

�
−→ · · ·

The commutativity of the diagram

· · · −→
�

j∈Z

�
H

j
(U ∪ V ) ⊗R H

m−j
(Y )

�
��

ψm
U∪V

��

�

j∈Z

��
H

j
(U) ⊗R H

m−j
(Y )

�
⊕

�
H

j
(V ) ⊗R H

m−j
(Y )

��
��

ψm
U ⊕ψm

V

��
· · · −→ H

m
((U ∪ V ) × Y ) �� Hm

(U × Y ) ⊕ H
m

(V × Y ) ��

��
�

j∈Z

�
H

j
(U ∩ V ) ⊗R H

m−j
(Y )

� ⊕jδj ��

ψm
U∩V

��

�

j∈Z

�
H

j+1
(U ∪ V ) ⊗R H

m−j
(Y )

�
−→ · · ·

ψm+1
U∪V

��
�� Hm

((U ∩ V ) × Y )
δ ��

H
m+1

((U ∪ V ) × Y ) −→ · · ·

(94)Alternatively, Ω•(X) ⊗
R
Ω•(Y ) is a complex by considering the differential induced from those of

Ω•(X) and Ω•(Y ), i.e. d(ω ⊗ θ) = dω ⊗ θ + (−1)deg(ω)
ω ⊗ dθ; for what we have just seen, such differential

commutes with the morphism ω ⊗ θ �→ π
∗
ω ∧ ρ

∗
θ which therefore, as morphism of complexes, induces a

morphism between the cohomologies; then, since ⊗
R
is an exact functor, we get H

•(Ω•(X) ⊗
R
Ω•(Y )) �

H
•(X)⊗

R
H

•(Y ).
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follows immediately from the definitions for what concerns the first two squares. As for the third (which
contains the morphism of coboundary δ), let [ω] ⊗ [θ] ∈ H

j(U ∩ V ) ⊗
R
H

m−j(Y ) and note that, given a
partition of unity {ρU , ρV } in U ∪V subordinate to {U, V }, the pull-backs {π∗

ρU ,π
∗
ρV } = {ρU ◦π, ρV ◦π}

are a partition of unity in (U ∪V )×Y subordinate to {U ×Y, V ×Y }: recalling the definitions, one hence
has δ(ψm

U∩V (ω⊗θ)) = δ(π∗
ω∧ρ

∗
θ) = d((π∗

ρU )(π
∗
ω∧ρ

∗
θ)) = d((π∗

ρU )(π
∗
ω)∧ρ

∗
θ) = d(π∗(ρUω))∧ρ

∗
θ =

π
∗
d(ρUω)∧ ρ

∗
θ = π

∗
δj(ω)∧ ρ

∗
θ = ψ

m+1

U∪V
(δj(ω⊗ θ)). Now, by the Five Lemma 2.6.6 the statement is true

for U ∪ V if it is true separately for U , V and U ∩ V , and the induction proceeds.

Remark 2.8.2. It is also possible to show that the Künneth formula still holds with the
slightly weaker hypothesis that H•(X) be finite dimensional.

The morphism ψ : H•(X)⊗
R
H•(Y ) −→ H•(X × Y ) induces a morphism

ψc : H
•
c (X)⊗

R
H•

c (Y ) −→ H•
c (X × Y ),

which is actually a isomorphism, without further hypotheses:

Theorem 2.8.3. (Künneth formula with compact support) Let X and Y be two C∞

manifolds. Then
H•

c (X × Y ) � H•
c (X)⊗

R
H•

c (Y ),

i.e.
Hm

c (X × Y ) �
�

j∈Z

�
Hj

c (X)⊗
R
Hm−j

c (Y )
�

for any m ∈ Z.

Proof. If one of the two manifols is of finite type we can argue by induction as in the proof just done, the
base case being true by the Poincaré lemma with compact support.(95) For the proof of the general case,
which uses arguments similar to those previously seen in the proof of Künneth formula and also some more
refined considerations of topology, we refer for example to Greub-Halperin-Vanstone [7].

Definition 2.8.4. If X is a C∞ manifold of dimension n with H•(X) (resp. H•
c (X)) of

finite dimension, the number

bj(X) = dimRHj(X) (resp. bjc(X) = dimRHj
c (X))

is called the jth Betti number (resp. jth Betti number with compact support) of X, and

PX(t) =
n�

j=0

bj(X) tj (resp. PX,c(t) =
n�

j=0

bjc(X) tj )

the Poincaré polynomial (resp. Poincaré polynomial with compact support) of X.

From Künneth formulas we get the following

Corollary 2.8.5. If X and Y have finite dimensional cohomology, then

PX×Y (t) = PX(t)PY (t), PX×Y,c(t) = PX,c(t)PY,c(t).

(95)Note that if X and Y are of finite type and orientable, the result can also be obtained by Poincaré
duality from the Künneth formula.
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Examples. (1) Consider T
n = (S1)n (the n-dimensional torus): one has PTn(t) = PS1(t)

n = (1 + t)n,
hence b

j(Tn) =
�
n

j

�
. More generally, let n1, . . . , nk ∈ N, and M =

�
k

j=1
S
nj : then PM (t) =

�
k

j=1
(1 + t

nj ).

(2) Let Xk be the closed unitary disc of R2 with k internal points x1, . . . , xk removed. Since X is a strong
deformation retract of the plane with k holes Πk, it has the same cohomology of the latter (i.e., as we
have seen, H0(Xk) = R, H1(Xk) = R

k, and H
2(Xk) = 0). As for the cohomology with compact support

(in this case, due to the presence of boundary points, it is not possible to apply Poincaré duality), let us
argue by induction on k in order to prove that H

0

c (Xk) = 0, H1

c (Xk) = R
k−1 and H

2

c (Xk) = 0. If k = 1
one has X1 � R≥0 × S

1, and hence by Künneth one has H
•
c (X1) = (0, 0, 0); then if k ≥ 2 we can apply

the sequence of Mayer-Vietoris with compact support for X = Xk−1, U = Xk and V a small open disc
which covers xk but not x1, . . . , xk−1 (note that V is diffeomorphic to R

2 and U ∩ V to R × S
1, hence

H
•
c (V ) = (0, 0,R) and H

•
c (U ∩ V ) = (0,R,R)). (3) Let us consider the following polygons, which give rise

to surfaces with or without boundary. Anytime we say “bordered”, we mean that the edges represented
with a continuous line and without arrows belong to the surface, while the dashed edges do not; a white
(resp. black) vertex does not belong (resp. belongs) to the surface; finally, the edges marked with arrows of
the same type should be identified by respecting the direction of the arrows (this is equivalent to passing
to a quotient space where the pair of sticked points —vertexes included— are identified to a single point).
Of course, in the case of presence of non smooth boundary points, to make such surfaces into C∞ ones it
will be enough to make the wedged points into smooth ones through a suitable homeomorphism (like the
one which makes a square homeomorphic to a ball).

◦ ���

�
�
�

(1)

◦
�
�
�

◦ ��� ◦

◦ ���

�
�
�

(2)

◦
�
�
�

◦ ◦

◦
�
�
�

(3)

◦
�
�
�

◦ ◦

◦ ���

(4)

◦
�
�
�

• ◦

◦ ���

(5)

◦

• •

•
(6)

•

• •

◦ ���

(7)

◦
�
�
�

• ��

��

◦
◦ ��

�
�
�

(8)

◦
�
�
�

◦ �� ◦

• ��

(9)

•

• �� •

◦ ��

�
�
�

(10)

◦
�
�
�

◦ ◦��

• ��

(11)

•

• •��

• ��

(12)

•

• ��

����

•

����
• ��

(13)

•
����• ��

����

•

• ��

(14)

•
����•

����

•��

(1) Square without boundary: homeomorphic to R
2; orientable manifold without boundary, contractible;

the Betti numbers are b
• = (1, 0, 0), and those with compact support are b

•
c = (0, 0, 1).

(2) Square bordered at one edge: homeomorphic to R≥0 × R; orientable manifold with boundary, con-
tractible; b• = (1, 0, 0), b•c = (0, 0, 0) (Künneth, or Poincaré lemma).

(3) Square bordered on two opposed edges: homeomorphic to I ×R; orientable manifold with boundary,
contractible; b• = (1, 0, 0), b•c = (0, 1, 0) (Künneth, or Poincaré lemma).

(4) Square bordered on two contiguous edges: homeomorphic to (R≥0)
2; orientable manifold with bound-

ary, contractible; b• = (1, 0, 0), b•c = (0, 0, 0) (Künneth).

(5) Square bordered on three edges: homeomorphic to I × R≥0; orientable manifold with boundary,
contractible; b• = (1, 0, 0), b•c = (0, 0, 0) (Künneth). (Note that (4) and (5) are homeomorphic.)

(6) Bordered square: homeomorphic to I
2, or to B

2; compact orientable manifold with boundary, con-
tractible; b• = b

•
c = (1, 0, 0).

(7) “Roast chestnut wrapping”: homeomorphic to R
2; orientable manifold without boundary, con-

tractible; b• = (1, 0, 0), b•c = (0, 0, 1).

(8) Annulus without boundary: homeomorphic to S
1 × R; orientable manifold without boundary, not

contractible; it deformation-retracts on the central circle � S
1, hence b

• = (1, 1, 0) and b
•
c = (0, 1, 1)

by Poincaré lemmas.

(9) Bordered annulus: homeomorphic to S
1 × I; compact orientable manifold with boundary, not con-

tractible; it deformation-retracts on the central circle � S
1, hence b

• = b
•
c = (1, 1, 0).
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(10) Möbius band without boundary: non orientable manifold without boundary; it deformation-retracts
on the central circle � S

1, hence b
• = (1, 1, 0); on the other hand one has b•c = (0, 0, 0).(96)

(11) Bordered Möbius band: compact non orientable manifold with boundary, not contractible; it defor-
mation-retracts on the central circle � S

1, hence b
• = b

•
c = (1, 1, 0).

(12) Torus T
2: homeomorphic to (S1)2; compact orientable manifold without boundary, not contractible;

b
• = b

•
c = (1, 2, 1) (Künneth).

(13) Klein bottle: compact non orientable manifold without boundary, not contractible; in its well-known
3-dimensional representation, the “Klein bottle” is a bottle with a hole in the bottom and with the
neck which penetrates at one side of the bottle until glueing its end with the hole in the bottom. In
the representation as square, such “glued hole” corresponds to the loop denoted by with “�”. One
can compute that b• = b

•
c = (1, 1, 0).(97)

(14) Real projective plane P
2: compact non orientable manifold without boundary, non contractible. In

this representation, the identified points are the points at infinity (a copy of the real projective line
P
1). One computes that b• = b

•
c = (1, 0, 0).(98)

Note that, in the framework of manifolds without boundary, the Poincaré duality is respected in the case

of orientability (1-7-8-12) and not respected in the case of non orientability (10-13-14).

(96)Apply the sequence of Mayer-Vietoris with compact support with U an open piece of Möbius band
which should be a neighborhood of the edge “−→” (in the figure, U appears to be formed by two horizontal
bands, one above and one below, which include the identified edge: although it could appear to be discon-
nected, in fact it is homeomorphic to R

2) and V an open central piece (homeomorphic to R
2) of the band,

which should slightly overlap U on the two extremities: hence U∩V is homeomorphic to two disjoint copies
of R2. In this case the linear map ϕ : R2 � H

2

c (U ∩V ) −→ H
2

c (U)⊕H
2

c (V ) � R
2 is an isomorphism: namely,

if (1, 0) and (0, 1) represent respectively a positive bump form generating H
2

c (U ∩ V )+ and H
2

c (U ∩ V )−
then ϕ(1, 0) = (−1, 1) and ϕ(0, 1) = (−(−1), 1) = (1, 1) (in fact, when sticking the two edges to create
U , the bump form on (U ∩ V )− changes sign with respect to the one of (U ∩ V )+ because of the twisting
structure of the Möbius band). It is interesting to note that the same argument can be applied to the
annulus without boundary (8), the only difference being that in the latter case the linear map ϕ has rank
1 (because, in the previous notation, both (1, 0) and (0, 1) are mapped into (−1, 1)).
(97)Choose U and V similarly to (10), i.e. U is an open piece of bottle which is a neighborhood of the
edge “→” identified by keeping the orientation (in the figure, U appear to be formed by two horizontal
bands of the same tickness, one above and one below, which includes the edge “→”: U is only apparently
disconnected, and is in fact homeomorphic to a Möbius band without boundary) and V a horizontal
central piece of band, symmetric and open (also homeomorphic to a Möbius band without boundary) ,
which slightly overlaps U on the two extremities: the intersection U ∩ V is then homeomorphic to a ring
without boundary of type (8). Both the sequences of Mayer-Vietoris (usual and with compact support, in
fact the manifold is compact) give the above result. Of course, one could come to the same result also with
a different choice of U and V : for example, taking as U an open piece of the bottle which is a neighborhood
of the edge “�” identified by reversing the orientation (such U is homeomorphic to an annulus without
boundary), and as V a vertical central open piece (itself homeomorphic to an annulus without boundary)
of the band, which slightly overlaps U on both extremities: the intersection U ∩ V is then homeomorphic
to two disjoint copies of the annulus without boundary.
(98)Let X = P

2, Y � P
1 the manifold of points at infinity and p any point of the affine plane X \ Y � R

2;
consider the open subset U = X \ {p} and V = X \ Y . Now, U deformation-retracts to Y � P

1, while, as
it has been said, V � R

2; using the sequence of Mayer-Vietoris (either the usual or with compact support,
since the manifold is compact), one obtains the result. As we saw in the examples at p. 77, the same
argument with B

n in the place of the square and S
n−1 with identified antipodal points allows to prove

that b
•(Pn) = b

•
c(P

n) = (1, 0, . . . , 0, 1) (if n is odd, with 1 in degree 0 and n: it is a compact orientable
manifold) and = (1, 0, . . . , 0, 0) (if n is even: it is a compact non orientable manifold).
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2.9 Cohomology of Čech

We aim to compute the de Rham cohomology of a C∞ manifold by using arguments of
combinatorial nature on any good cover of the manifold.

Let X be a C∞ manifold, U = {Un : n ∈ N} a countable open cover of X. Given q + 1
natural numbers k0 < · · · < kq, we set for short Uk0,...,kq

=
�

q

i=0
Ukj

. The embedding map
ιj : Uk0,...,kq

−→ U
k0,...,

�kj ,...,kq (where, as usual, �· denotes that the term is removed) induces

the restriction map ι∗
j
: Ω•(U

k0,...,
�kj ,...,kq) −→ Ω•(Uk0,...,kq

).

Definition 2.9.1. The space

Cq(U ,Ωp) =
�

k0<···<kq

Ωp(Uk0,...,kq
)

is called space of q-cochains of the cover U with values in Ωp.

We have morphisms of complexes

ι∗ : Ω•(X) −→ C0(U ,Ω•), δ : Cq(U ,Ω•) −→ Cq+1(U ,Ω•),

where ι∗ is the product of the restriction maps Ω•(X) −→ Ω•(Uk0
) (for k0 ∈ N) and, given

a q-cochain ω = (ωk0,...,kq
)k0<···<kq

,

δ(ω)k0,...,kq+1
=

q+1�

j=0

(−1)jι∗jωk0,...,
�kj ,...,kq+1

∈ Ω•(Uk0,...,kq+1
).

It should be clear that in fact we are generalizing the sequences of Mayer-Vietoris.

Proposition 2.9.2. The generalized sequence of Mayer-Vietoris

C•(U ,Ω•) : 0 −→ Ω•(X)
ι
∗

−→ C0(U ,Ω•)
δ−→ C1(U ,Ω•)

δ−→ C2(U ,Ω•)
δ−→ · · ·

is exact in C(R).

Proof. One verifies directly that the sequence is a complex, and that im(ι∗) = ker(δ) (exercise). In order to
prove that it is in fact an exact sequence, it is enough to show that the identity is homotopic to zero, i.e. to
find an operator k : C•(U ,Ω•) −→ C

•−1(U ,Ω•) such that idC•(U,Ω•) = k ◦ δ+ δ ◦ k. Consider a partition of
unity {ρn : n ∈ N} subordinate to U and, setting ω ∈ C

q+1(U ,Ω•), let kq+1(ω)k0,...,kq =
�

n∈N
ρnωn,k0,...,kq

(here we mean that the indexes of ω are alternating, and hence ωn,k0,...,kq = 0 if n = kj for some
0 ≤ j ≤ q, and ωn,k0,...,kq = (−1)j+1

ωk0,...,kj ,n,kj+1,...,kq if kj < n < kj+1): then k
q+1

δ(ω)k0,...,kq =�
n
ρnδ(ω)n,k0,...,kq = (

�
n
ρn)ωk0,...,kq +

�
n,j

(−1)j+1
ρnωn,k0,...,

�kj ,...,kq
= ωk0,...,kq − δk

q(ω)k0,...,kq , as

desired.

The cochains with values in Ω• form a double complex (Cq(U ,Ωp), δp,q, dp,q) where the
row morphisms δp,q : Cq(U ,Ωp) −→ Cq+1(U ,Ωp) have just been introduced, and the col-
umn morphisms dp,q : Cq(U ,Ωp) −→ Cq(U ,Ωp+1) are induced by the differential of forms;
moreover, one clearly has Cq(U ,Ωp) = 0 for p < 0 or q < 0. Recall that, given such a
double complex X•,•, it is canonically defined a simple complex s(X•,•) (see Appendix
A.2).
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Proposition 2.9.3. For any open cover U of X, the generalized sequence of Mayer-
Vietoris induces an isomorphism

H•(X) � H•(s(C•(U ,Ω•)).

Proof. Follows from Proposition 2.9.2 and from Proposition A.2.4 in Appendix A.2 (the double complex
C

•(U ,Ω•) is augmented with the column given by the complex of de Rham).

Now let us define the cohomology of Čech associated to the cover U . For q ≥ 0 let

Cq(U ,R) = {(fk0,··· ,kq) ∈ Cq(U ,Ω0) =
�

k0<···<kq

C∞(Uk0,··· ,kq) : df = 0},

the space of functions locally constant on the intersections Uk0,··· ,kq . The morphisms of
the generalized sequence of Mayer-Vietoris induce morphisms δ : Cq(U ,R) −→ Cq+1(U ,R).

Definition 2.9.4. The complex of Čech is

C•(U ,R) : 0 −→ C0(U ,R) δ−→ C1(U ,R) δ−→ C2(U ,R) −→ · · · ,

The cohomology of Čech of the cover U is the cohomology H•(U ,R) = H•(C•(U ,R)).

Proposition 2.9.5. For any good cover U of X, it is induced a isomorphism

H•(U ,R) � H•(s(C•(U ,Ω•)).

Proof. Consider the double complex C
•(U ,Ω•) augmented with the row C

•(U ,R) (note that, for any q,
it holds C

q(U ,R) = ker
�
d
q,0 : Cq(U ,Ω0) −→ C

q(U ,Ω1)
�
. If U is a good cover of X, all columns are exact

(the cohomology of the qth column is given by
�

k0<···<kq
H

•(Uk0,··· ,kq )), and the conclusion follows again
from Proposition A.2.4 in Appendix A.2.

Applying Propositions 2.9.3 and 2.9.5 one hence obtains:

Corollary 2.9.6. For any good open cover U of X, one has a isomorphism

H•(X) � H•(U ;R).

One immediately recovers the result on finiteness (Theorem 2.6.3): namely, if X has a
finite good cover U , then surely also H•(U ,R) (and hence H•(X)) has finite dimension.

Remark 2.9.7. More generally, the notion of Čech cohomology could be defined for any
topological space endowed with an open cover U , with particularly satisfactory results
when the cover is good, i.e. any open set in U as well as any finite intersection of open sets
in U is contractible. We refer e.g. to Hatcher [9].

Examples. (1) Let X = S
1, and consider a good cover U given by three open arcs Uj (with j = 0, 1, 2)

which slightly overlap each other (see Figure 22(a)). The complex of Čech relative to U is

C
•(U ,R) : 0 −→ C

0(U ,R) δ−→ C
1(U ,R) −→ 0;

in this case one has C
0(U ,R) = {(α0,α1,α2) : αj constant on Uj} � R

3 and C
1(U ,R) = {(β01,β02,β12) :

βij constant on Uij} � R
3, while δ(α)ij = αj − αi and hence, with respect to the canonical bases one has
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δ =




−1 1 0

−1 0 1

0 −1 1



; since δ has rank 2, one has H
0(S1) � ker(δ) � R and H

1(S1) � coker(δ) � R. Note

that a 1-cocycle β is a coboundary if and only if β02 = β01 + β12, hence a generator of H1(S1) is (the class
of) the 1-cocycle β = (1, 0, 0). (2) Let X = S

2, and consider a good cover U given by the open northern
emisphere U0 and by three open spherical wedges Uj (with j = 1, 2, 3) which cover the closed southern
emisphere and slightly overlap each other, in a way that each one of them contains the South pole S = −e3

and a portion of the equator (see Figure 22(b)). The complex of Čech relative to U is

C
•(U ,R) : 0 −→ C

0(U ,R) δ
0

−→ C
1(U ,R) δ

1

−→ C
2(U ,R) −→ 0;

it holds C0(U ,R) = {(α0,α1,α2,α3)} � R
4, C1(U ,R) = {(β01,β02,β03,β12,β13,β23)} � R

6 and C
2(U ,R) =

{(γ012, γ013, γ023, γ123} � R
4, while δ

0(α)ij = αj − αi and δ
1(β)ijk = βij − βik + βjk. With respect to the

canonical bases one hence has

δ
0 =





−1 1 0 0

−1 0 1 0

−1 0 0 1

0 −1 1 0

0 −1 0 1

0 0 −1 1




, δ

1 =





1 −1 0 1 0 0

1 0 −1 0 1 0

0 1 −1 0 0 1

0 0 0 1 −1 1





(note that δ
1 ◦ δ

0 = 0). The maps δ
j have rank 3: hence both H

0(S2) � ker(δ0) and H
2(S2) � coker(δ1)

have dimension 4− 3 = 1, and H
1(S2) � ker(δ1)/ im(δ0) vanishes. (3) Let X be the plane with two holes.

Thinking for example X � R
2 \ {(±1, 0)}, a good cover U is given by the five open subsets U0 = {|y| >

2(|x|−1)}, U1 = {−(x−1) < y < 3(x−1)}, U2 = rx(U1), U3 = ry(U1) and U4 = rxry(U1), where rx(x, y) =

(x,−y) and ry(x, y) = (−x, y) (see Figure 22(c)). The complex of Čech relative to U is hence given by

C
0(U ,R) = {(α0,α1,α2,α3,α4)} � R

5 and C
1(U ,R) = {(β01,β02,β03,β04,β12,β34)} � R

6, with δ
0(α)ij =

αj −αi having rank 4: hence H
0(X) � ker(δ0) has dimension 5−4 = 1, H1(X) � coker(δ0) has dimension

6 − 4 = 2 and H
j(X) = 0 for j ≥ 2. Another good cover U � is given by U

�
0 = {y > 0}, U �

1 = {y < 0},
U

�
2 = {y < −x−1}, U �

3 = {y < x−1} and U
�
4 = {|x| < 1} (see Figure 22(d)), whose complex of Čech is hence

given by C
0(U �

,R) = {(α0,α1,α2,α3,α4)} � R
5, C1(U �

,R) = {(β02,β03,β04,β12,β13,β14,β23,β24,β34)} �
R

9, C2(U �
,R) = {(γ123, γ124, γ134, γ234)} � R

4, C3(U �
,R) = {(δ1234)} � R with δ

0(α)ij = αj − αi of rank

4, δ1(β)ijk = βij − βik + βjk of rank 3 and δ
2(γ)1234 = γ123 − γ134 + γ124 − γ234 of rank 1 (check that

δ
j+1 ◦ δ

j = 0 for j = 0, 1): therefore, once more we get that H
0(X) � ker(δ0) has dimension 5 − 4 = 1,

H
1(X) � ker(δ1)/ im(δ0) has dimension (9− 3)− 4 = 2, H2(X) � ker(δ2)/ im(δ1) has dimension 3− 3 = 0

and hence vanishes, as well as (obviously!) H
3(X) � coker(δ2).

Figure 22: Čech covers for (a) the circle S
1
, (b) the sphere S

2
, (c-d) the plane with two holes.
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