
Notes on Algebraic Topology

2 Cohomology theories

The second part of these notes deals with the notions of homology and, mainly, with
the dual one of cohomology. The definition of groups of singular homology and coho-
mology with coefficients in any commutative group can be given, in whole generality,
for any topological space, with a particular computational ease for the CW complexes
(§2.1). Then we define the de Rham cohomology for a C∞ manifold (§2.2), a construction
which will be shown to be isomorphic to the singular cohomology with real coefficients.
The Mayer-Vietoris principle, analogously to Van Kampen’s theorem for the fundamental
group, decomposes the problem of computing cohomology on the open subsets of a cover
(§2.3). After having studied orientation and integration on manifold, until the theorem
of Stokes (§2.4) and Poincaré lemma for R

n (§2.5), we show that in a manifold of finite
type the cohomology satisfies finiteness and Poincaré duality (§2.6). We then examine the
degree of a smooth and proper map between C∞ manifolds (§2.7), the Künneth formula
for the cohomology of a product of manifolds (§2.8) and finally the cohomological theory
of Čech, which provides the same results than the one of de Rham (§2.9).

The main references for the notes of this second part are Bott-Tu [1] and Hatcher [8].
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2.1 Singular homology and cohomology of a topological space

We start by presenting some sketch of the construction of the groups of singular homology
and cohomology for a topological space X with coefficients in an abelian group R.(54) Then
we treat the special case of CW complexes.

2.1.1 Singular homology and cohomology

Let us deal first with the basic case of integer coefficients.

Definition 2.1.1. Let k ∈ N. The standard k-simplex ∆k ⊂ R
k is the convex hull of the

origin p0 and the vectors p1, . . . , pk of the canonical basis, i.e.

∆k = {x ∈ R
k : xi ≥ 0 for any 1 ≤ i ≤ k,

k�

i=1

xi ≤ 1}.

Figure 13: The standard simplexes ∆k for k = 0, 1, 2, 3.

A singular k-simplex in X is any continuous map σ : ∆k −→ X (in particular, if X = R
n

one talks about affine singular k-simplex in R
n); its image |σ| = σ(∆k) ⊂ X is called

support of σ.(55) We shall denote by Sk(X,Z) the abelian group with coefficients in Z

generated by the singular k-simplexes, i.e. the set of finite formal sums of type
�

λ∈Λ aλσλ
with Λ finite, aλ ∈ Z and σλ a singular k-simplex for any λ ∈ Λ: such a sum is called
singular k-chain in X.

It is clear that ∆0 = {0} and ∆1 = I: hence, the singular 0- and 1-simplexes in X are
nothing but points and paths in X, and S0(X,Z) (resp. S1(X,Z)) is the set of finite
formal sums

�
n

i=1
aixi (resp.

�
n

i=1
aiγi) where the xi are points (resp. the γi are paths)

of X. A singular simplex in X could also be degenerated, because the only thing required
is continuity (for example, the image in X of a 2-simplex could collapse to a path or a
point).

(54)If, as it often happens, R has also the structure of commutative ring, the constructions which follow
will give rise to R-modules and R-linear morphisms.
(55)As it happens for paths, by abuse of language it is usual to forget about the difference between a
singular simplex and its support.
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Now let us define a boundary morphism for these groups:

∂k : Sk(X,Z) −→ Sk−1(X,Z).

The idea is to send a singular k-simplex into its “oriented boundary”, and then to extend to
k-chains “by Z-linearity”. To start, note that ∆k has k+1 faces, which are singular (k−1)-
simplexes: for i = 0, . . . , k define ιi

k
: ∆k−1 −→ ∆k by sending the k points {p0, . . . , pk−1}

of Rk−1 into the k points {p0, . . . , �pi, . . . , pk} of Rk and then by extending the definition
to their convex combinations by R-linearity. Then, given a singular k-simplex σ in X,
define the ith face of σ as the singular (k − 1)-simplex σ(i) = σ ◦ ιi

k
in X, and set ∂kσ =�

k

i=0
(−1)iσ(i); finally, given a singular k-chain

�
λ∈Λ aλσλ in X, set ∂k

��
λ∈Λ aλσλ

�
=�

λ∈Λ aλ(∂kσλ).

Figure 14: The faces of the standard simplexes ∆2 and ∆3.

Proposition 2.1.2. One has ∂k ◦ ∂k+1 = 0 (for k = 1, 2, . . . ) .

Proof. Exercise (it is enough to check the statement on the singular simplexes; for example, in the case
k = 1 —see Figure 14(a)— one has ∂2(σ) = σ

(0) − σ
(1) + σ

(2) and hence ∂1(∂2(σ)) = ∂1(σ
(0))− ∂1(σ

(1)) +
∂1(σ

(2)) = (p2 − p1)− (p2 − p0) + (p1 − p0) = 0).

By Proposition 2.1.2 one has a complex (of chains) of abelian groups

(2.1) · · · −→ Sk+1(X,Z)
∂k+1−→ Sk(X,Z)

∂k−→ Sk−1(X,Z) −→ · · · −→ S1(X,Z)
∂1−→ S0(X,Z) −→ 0.

Now, if R is any abelian group, by applying the functor R ⊗
Z
· to (2.1) one obtains the

complex

(2.2) · · · −→ Sk+1(X,R)
∂k+1−→ Sk(X,R)

∂k−→ Sk−1(X,R) −→ · · · −→ S1(X,R)
∂1−→ S0(X,R) −→ 0,

where Sk(X,R) := R⊗
Z
Sk(X,Z) and the morphisms ∂k are defined in practice as in the

case of integral coefficients, replacing Z with R.

Definition 2.1.3. The singular k-cycles (resp. k-boundaries) in X are the elements of
the subgroup Zk(X,R) = ker ∂k (resp. Bk(X,R) = im ∂k+1) of Sk(X,R). The singular
homology of X with coefficients in R is the homology (see Appendix A.2) of the complex
(2.2):

Hk(X,R) =
Zk(X,R)

Bk(X,R)
.
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Remark 2.1.4. Note that all 0-chains are 0-cycles (i.e., Z0(X,R) = S0(X,R)). On the
other hand the 1-cycles are precisely the loops, so both the first homology group (with
integer coefficients) and the fundamental group are formed by equivalence classes of loops;
however the differences between the two constructions are quite deep. Let us explain
this point. If γ is a path in X from x0 to x1 and ψ is a path from x1 to x0, then in
the fundamental group (which always needs a basepoint) we must distinguish between
γ · ψ (a loop based at x0) and ψ · γ (a loop based at x1), although (if one just forgets
about basepoints) both γ · ψ and ψ · γ represent in fact the same 1-cycle: in other words,
in homology theory the paths γ and ψ commute to each other(56), while in homotopy
theory they do not. Moreover, the equivalence relation in homology —i.e. to differ by
a 1-boundary— is different from the one in homotopy —i.e. to be homotopic with fixed
basepoint: in fact, the former is weaker than the latter (see the arguments written in the
proof of Proposition 2.1.8).

Example. Let us compute the homology of the space with one point {pt}. Note that Sk({pt}, R) � R

for any k ≥ 0 (namely there is only the constant k-simplex σk(∆k) ≡ pt). Now, σk has (k + 1) faces all

equal to σk−1, and hence ∂k(σk) =
�

k+1

i=1
(−1)iσk−1 (for k ≥ 1): therefore ∂k : R −→ R is zero for k odd

and an isomorphism for k even. This implies that H0({pt}, R) � R and Hk({pt}, R) = 0 for k > 0.

Remark 2.1.5. More generally, given a subset A ⊂ X one can consider the groups
of relative singular k-chains Sk(X/A,R) := Sk(X,R)/Sk(A,R): the morphisms ∂k :
Sk+1(X,R) −→ Sk(X,R) then induce morphisms ∂k : Sk+1(X/A,R) −→ Sk(X/A,R), and
so one obtains the complex of relative singular k-chains, whose homology Hk(X/A,R) is
called relative singular homology with coefficients in R. From the short exact sequence of
complexes of chains 0 −→ S•(A,R) −→ S•(X,R) −→ S•(X/A,R) −→ 0 we get a long exact
sequence of homology (see Appendix A.2)

(2.3) · · · −→ Hk+1(X/A,R) −→ Hk(A,R) −→ Hk(X,R) −→ Hk(X/A,R) −→ Hk−1(A,R) −→ · · · .

Now let us try to simplify our study. To start, observe that it is enough to bound to
arcwise connected spaces:

Lemma 2.1.6. If X =
�

α∈AXα is the decomposition of X in arcwise connected compo-
nents, then for any k one has Hk(X,R) �

�
α∈AHk(Xα, R).

Proof. The singular k-simplexes are always arcwise connected, hence Sk(X,R) decomposes in the direct
sum of its subgroups Sk(Xα, R). The boundary morphisms send any Sk(Xα, R) into Sk−1(Xα, R), hence
also their kernels and images decompose in the same way: it follows that also the groups of homology
decompose.

As a second step, since any abelian group R is a Z-module, we may ask if and how the
groupsHk(X,Z) (homology with integer coefficients) determine the groupsHk(X,R). One
indeed proves that:(57)

(56)Also the additive notation used in homology, i.e. γ + ψ = ψ + γ, suggest this abelian situation.
(57)See Appendix A.2 for the notion of Tor , and especially A.2.3 for TorZ.
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Proposition 2.1.7. (Universal coefficients formula for the singular homology). For any
k one has an exact sequence, which splits non functorially:

(2.4) 0 −→ Hk(X,Z)⊗
Z
R −→ Hk(X,R) −→ TorZ1 (R,Hk−1(X,Z)) −→ 0.

In particular one has Hk(X,R) � Hk(X,Z)⊗
Z
R if at least one out of R and Hk−1(X,Z)

has no torsion.

Hence we may substantially bound to study the singular homology with integer coefficients
of arcwise connected spaces. Let us investigate more in detail the cases k = 0, 1.

Proposition 2.1.8. Let X be an arcwise connected space. Then:

H0(X,Z) � Z, H1(X,Z) � π1(X)

[π1(X),π1(X)]
.

Proof. (1) As we have seen, S0(X,Z) is the set of finite formal sums
�

n

i=1
aixi. So there is a natural

morphism (“degree”) ψ : S0(X,Z) −→ Z given by ψ(
�

n

i=1
aixi) =

�
n

i=1
ai. Consider a path σ ∈ S1(X,Z)

between x0 and x1: since ∂1σ = x1 − x0, one has ψ(∂1σ) = 0. Hence it is induced a morphism, clearly
surjective, H0(X,Z) = S0(X,Z)/ im(∂1) −→ Z. If X is arcwise connected, ψ is also injective: namely, if�

n

i=1
ai = 0 then choose paths σi from a base point x0 to the various xi, and note that ∂1(

�
n

i=1
aiσi) =�

n

i=1
aixi−(

�
n

i=1
ai)x0 =

�
n

i=1
aixi. (2) We saw that the singular 1-simplexes are the paths. Hence there

are two possible equivalence relations between them: the one of homotopy rel ∂I (which we shall denote by
�) and the one of homology, i.e. to differ by a 1-boundary (which we shall denote by ∼). Note that (i) if
σ is a constant path then σ ∼ 0, (ii) σ1 � σ2 implies σ1 ∼ σ2, (iii) σ1 ·σ2 ∼ σ1 +σ2, (iv) σ

−1 ∼ −σ (where
we recall that σ−1(t) := σ(1− t)). (58) Thanks to these remarks, for a given base point x0 ∈ X one obtains
a morphism of groups α : G := π1(X,x0) −→ H1(X,Z). Let us give a cycle

�
i
aiσi ∈ Z1(X,Z); up to

repeating the paths σi we may suppose that ai = ±1. Since ∂1(
�

i
σi) =

�
i
∂1σi =

�
i
(σi(1)−σi(0)) = 0,

given a σi there is surely some other σj such that σi · σj is defined, and this will be used to replace
the two; continuing this procedure we may assume that all σi are loops, let us say of base point xi. If
γi is a path from x0 to xi, one has γ · σi · γ−1 ∼ σi for (iii) and (iv), and hence we may assume that
all σi are loops based at x0. Using again (iii) we may combine all σi’s in a unique loop σ: this shows
that α is surjective. Being [G,G] ⊂ ker(α) (this is obvious, since the homology H1(X,Z) is an abelian
group), it is induced a surjective morphism α̃ : G/[G,G] −→ H1(X,Z): now let us construct a morphism
ψ̃ : H1(X,Z) −→ G/[G,G], which will be shown to be the inverse of α̃. For any x ∈ X fix a path γx

from x0 to x, with γx0
= cxo; given then a path σ in X, let us define ψ(σ) = [γσ(0) · σ · γ−1

σ(1)
] ∈ G,

extending then by Z-linearity to a morphism ψ : S1(X,Z) −→ G/[G,G].(59) Noting that ψ(B1(X,Z)) = {1}
mod [G,G],(60) one obtains an induced morphism ψ̃ : H1(X,Z) −→ G/[G,G]. Therefore, if σ is a loop one
has (ψ̃ ◦ α̃)([σ]) = ψ̃(σ +B1(X,Z)) = [γx0

· σ · γ−1

x0
] = [σ], i.e. ψ̃ ◦ α̃ = idG/[G,G]. We are left with showing

that α̃ ◦ ψ̃ = idH1(X,Z). Note that the assignation x �→ γx extends, again by Z-linearity, to a morphism
γ : S0(X,Z) −→ S1(X,Z); and then one proves that, given a 1-chain σ ∈ S1(X,Z), the class α̃(ψ(σ)) in

(58)(i) is clear, since σ = cx0
= ∂2(ϕ) with ϕ the 2-singular simplex constantly equal to x0 . For (ii), given

a homotopy h : I2 −→ X we cut I
2 along the diagonal obtaning two 2-simplexes ϕi; then, by calculating

∂2(ϕ2 − ϕ1) one obtains σ2 − σ1 plus two constant paths in edges, which are boundaries by (i). For (iii),
let σ : ∆2 −→ X be obtained by the composition of the orthogonal projection of ∆2 on the edge [p0, p2]
followed by the map σ1 · σ2 : [p0, p2] � I −→ X: then ∂2σ = σ2 − (σ1 · σ2) + σ1. Finally, (iv) follows from
the others, since σ + σ

−1 ∼ σ · σ−1 ∼ 0.
(59)If G is a group and T a set, any function f : T −→ G gives rise to a morphism of groups f̃ : Z(T ) −→
G/[G,G] by setting f̃(

�
n

i=1
aiti) = f(t1)

a1 · · · · · f(tn)an mod [G,G] (namely, since Z
(T ) is abelian, only

the definition in the abelianization of G makes sense).
(60)By linearity,it is enough to show that if ϕ : ∆2 −→ X is a 2-simplex the ψ(∂ϕ) = 1 mod [G,G]. Set
σ(pi) = yi, f = σ

(2), g = σ
(0), h = (σ(1))−1: then ψ(∂ϕ) = ψ(σ(0) − σ

(1) + σ
(2)) = ψ(g − h

−1 + f) =
ψ(f)ψ(g)ψ(h−1)−1 = · · · = [γy0 ·f ·γ−1

y1
·γy1 ·g ·γ−1

y2
·(γy0 ·h−1 ·γ−1

y2
)−1] = [f ·g ·h] = 1 because f ·g ·h ∼ cy0 .
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H1(X,Z) is represented by σ − γ∂σ.
(61) In particular, if σ is a 1-cycle (i.e., if σ ∈ Z1(X,Z)) this yields

that the class α̃(ψ(σ)) is represented by the same σ, and this completes the proof.

Remark 2.1.9. The isomorphism H1(X,Z) � π1(X)

[π1(X),π1(X)]
is known as Hurewicz theorem.

This theorem, of fundamental importance in homotopy theory, in its most general form
states also that if there exists n ≥ 2 such that πi(X) = 0 for any i = 1, . . . , n− 1 then it
holds also Hi(X,Z) = 0 for any i = 1, . . . , n−1, and it is defined a isomorphism of abelian
groups Hn(X,Z) � πn(X).

If f : X −→ Y is a continuous map, then it is naturally induced a morphism of com-
plexes S•f : S•(X,R) −→ S•(Y,R), and hence a morphism of graded Z-modules H•f :
H•(X,R) −→ H•(Y,R), and it holds H•(g ◦ f) = H•g ◦H•f and H•(idX) = idH•(X,R): in
other words, it is induced a covariant functor

H• : Top −→ Moddeg(Z).

The functoriality shows immediately that

Corollary 2.1.10. Homeomorphic spaces have the same homology.

Actually, similarly to the fundamental group, there is an invariance under homotopy:

Proposition 2.1.11. Homotopic maps induce the same morphism in homology.

Proof. If h : X × I −→ Y is a homotopy between f = h0 and g = h1, then the morphism of complexes of
chains S•g−S•f is homotopic to zero (see Appendix A.2) and hence H•g = H•f . Namely, the idea (for the
details see [8, §2.1])) is to see ∆k × I as a union of k+1 (k+1)-simplexes where each one has a k-simplex
in common with the next one,(62) and to construct in this way a morphism (Kh)k : Sk(X,Z) −→ Sk+1(Y,Z)
for which then one verifies that (S•g − S•f)k = (∂Y )k+1 ◦ (Kh)k + (Kh)k−1 ◦ (∂X)k.

Corollary 2.1.12. Homotopically equivalent spaces have the same homology (in particu-
lar, if X is contractible then it holds H0(X,R) � R and Hk(X,R) = 0 for k > 0) .

Applying the functor Hom
Z
( · , R) to the complex of chains (2.1) one obtains the dual

complex:

(2.5) 0 −→ S0(X,R)
d
0

−→ S1(X,R) −→ · · · −→ Sk−1(X,R)
d
k−1

−→ Sk(X,R)
d
k

−→ Sk+1(X,R) −→ · · ·

where Sk(X,R) = Hom
Z
(Sk(X,Z), R) and dk is the morphism transposed to ∂k+1.(63)

This is then a complex of cochains in Mod(Z).

(61)By linearity, it is enough to check the statement for a 1-simplex; then it holds α̃(ψ(σ)) = α̃([γσ(0) · σ ·
γ
−1

σ(1)
] = γσ(0) · σ · γ−1

σ(1)
+ B1(X,Z) = γσ(0) + σ + γ

−1

σ(1)
+ B1(X,Z) = γσ(0) + σ − γσ(1) + B1(X,Z), where

the second-last equality follows from (iii) and the last one from (iv).
(62)For example, a square is divided by a diagonal in two triangles (i.e., 2-simplexes) with an edge in
common; and a prism with triangular base, if we consider the three planes containing each a vertex of the
inferior base and the opposed edge of the superior base, gets divided in three tetragons (i.e., 3-simplexes)
pairwise with a face in common.
(63)If R is a commutative unitary ring, the adjunction between the functor of extension of coefficients
and the “forgetful” functor (see Appendix A.2) gives a natural isomorphism of R-modules S

k(X,R) =
Hom

Z
(Sk(X,Z), R) � Hom

R
(Sk(X,R), R).
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Definition 2.1.13. The singular k-cocycles (resp. k-coboundaries) in X are the elements
of the subgroups Zk(X,R) = ker dk (resp. Bk(X,R) = im dk−1) of Sk(X,R). The singular
cohomology of X with coefficients in R is the cohomology of the complex (of cochains)
(2.5):

Hk(X,R) =
Zk(X,R)

Bk(X,R)
.

The singular cohomology enjoys properties similar to those of singular homology (among
them, the additivity with respect to arcwise connected components and the fact that
H0(X,R) � R if R is arcwise connected(64) ). This last fact follows also from the following
formula, which is analogous to the one for singular homology(65):

Proposition 2.1.14. (Universal coefficients formula for the singular cohomology). For
any k one has an exact sequence, which splits non functorially:

(2.6) 0 −→ Ext1
Z
(Hk−1(X,Z), R) −→ Hk(X,R) −→ Hom

Z
(Hk(X,Z), R) −→ 0.

In particular it holds Hk(X,R) � Hom
Z
(Hk(X,Z), R) if Hk−1(X,Z) is a free group or R

is divisible.

If f : X −→ Y is a continuous map, it is naturally induced a morphism (pull-back) of
complexes S•f : S•(Y,R) −→ S•(X,R), and hence a morphism of graded Z-modules H•f :
H•(Y,R) −→ H•(X,R): so one obtains a contravariant functor

H• : Top −→ Moddeg(R)

which is once again invariant under homotopy:

Proposition 2.1.15. Homotopic maps induce the same morphism in cohomology. In
particular, homotopically equivalent spaces have the same cohomology.

In particular let j : U −→ X be the inclusion of an open subset (endowed with the topology
induced from X): then S•j : S•(X,R) −→ S•(U,R) is the restriction morphism. For any
k ∈ N one the obtains a sheaf Sk

X
(R) (see Appendix A.4) given by Γ(U ;Sk

X
(R)) = Sk(U,R)

and, from (2.5), a complex of sheaves

(2.7) S•
X
(R) : 0 −→ S0

X
(R)

d
0

−→ S1
X
(R) −→ · · · −→ Sk−1

X
(R)

d
k−1

−→ Sk

X
(R)

d
k

−→ Sk+1
X

(R) −→ · · · .

Remark 2.1.16. (1) As abelian group, a field k of characteristic zero is obviously without
torsion, and it is also divisible(66): from (2.4) and (2.6) it follows that

Hj(X, k) � k ⊗
Z
Hj(X,Z), Hj(X, k) � Hom

Z
(Hj(X,Z), k).

These k-vector spaces are dual to each other (see Note 115, p. 101); in particular, they
have the same dimension. (2) If X is a topological space whose homology groups Hj(X,Z)

(64)Namely H
0(X,R) � Hom

Z
(S0(X,R)/ im(∂1), R) = Hom

Z
(H0(X,Z), R) � Hom

Z
(Z, R) � R.

(65)See Appendix A.2 for the notion of Ext , and especially A.2.3 for Ext
Z
.

(66)because it contains Z and hence Q, and hence it is a Q-vector space.

Corrado Marastoni 55



Notes on Algebraic Topology

are finitely generated and vanish for j large enough,(67) one can define the Euler-Poincaré
characteristic of X as the alternating sum (in which rk denotes the rank(68))

(2.8) χ(X) :=
�

j∈Z
(−1)jrkHj(X,Z).

Since homology groups are invariant under homotopic equivalence (in particular, under
homeomorphisms), also χ(X) is homotopically invariant. For what has been said just
above in (1), if k is a field of characteristic zero then χ(X) =

�
j∈Z(−1)j dimk Hj(X, k) =�

j∈Z(−1)j dimk Hj(X, k).

2.1.2 CW complexes

As a particularly significant example of computation of the singular homology, we now
briefly present the cellular complexes or CW complexes, which are a generalization of
the classical notion of “triangularizable spaces” (see Examples at p. 57) due to J.H.C.
Whitehead; we refer for example to Hatcher [8, §2.2] for the missing proofs.

We call Ḃ
n (open ball) a n-cell ; to “attach a n-cell” to a topological space T means

to provide a continuous map φ : S
n−1 −→ T and then to consider the quotient space

(T � B
n)/ ∼, where ”∼” identifies x ∈ ∂Bn � S

n−1 with φ(x) ∈ T . A CW complex is a
topological space X obtained by successively attaching to a discrete set (whose elements
are seen as 0-cells) a family of n-cells, for increasing n, without being forced to do that
necessarily for any n and with the possibility of attaching any number (possibly infinitely
many) for any n that we have decided to consider; one of these (potentially infinite)
constructions which lead to X is called a CW structure on X. Fixed one of them, the “nth
intermediate stage” Xn ⊂ X, where we have already attached all m-cells with m ≤ n but
not yet the next ones, will be called n-skeleton of X (relative to the fixed CW structure).
Let us resume the procedure:

(1) start from a discrete set X0, the 0-cells of X;

(2) inductively, form the n-skeleton Xn from Xn−1 by attaching n-cells Dn
α � Ḃ

n to it
by means of continuous maps φα : Sn−1 −→ Xn−1: i.e., Xn is the quotient space of
Xn−1 �

�
α
Dn

α via the identification x ∼ φα(x), where x ∈ ∂Dn
α � S

n−1;

(3) to X =
�

n
Xn is assigned the weak topology, for which A ⊂ X is open (closed) if

and only if A ∩Xn is open (closed) in Xn for any n ∈ N.

(67)Such a space is usually called of finite type. Note that —excepted the case of a space with a finite
number of points— the groups of chains Sj(X,Z) are far from being finitely generated, and therefore one
can not apply Proposition A.2.5, since

�
j∈Z

(−1)jrkSj(X,Z) does not make sense. On the other hand, as
we shall see soon in the framework of CW complexes, the groups of cellular chains (see (2.9)) are free of
finite rank, and Proposition A.2.5 will be applied.
(68)The rank rk (G) of a finitely generated abelian group G is the (finite) number of components isomorphic
to Z in any decomposition of G as a direct sum of cyclic subgroups. So, for example, rk (Zn) = n and
rk (Z/nZ) = 0.
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If there exists n ∈ N such that Xk = X for k ≥ n, X the complex will be called of finite
dimension, and in such case its dimension dimX will be defined as the minimum of such
n;(69) this happens in particular if X is finite, i.e. if it has a finite number of cells(70). A
subcomplex of X is a subset obtained by attaching cells of X and containing the closure
of anyone of these cells; it is easy to prove that a subcomplex is closed in X, and that it
is itself a CW complex.

Proposition 2.1.17. A finite CW complex is compact(71). Conversely, any compact
subspace of a CW complex is contained in a finite subcomplex (in particular, the closure
of any cell meets only a finite number of other cells(72)).

Examples. (1) X = [0, 1] is a finite CW complex of dimension 1 obtained by attaching a 1-cell to

X
0 = {0, 1} (with φ : S0 = {±1} −→ X

0, φ(−1) = 0, φ(1) = 1). (2) If X = [0, 1[ is a CW complex, then

surely it can not be finite(73). Actually a CW structure for X is obtained by setting X
0 = {Pn = n−1

n
:

n ∈ N = Z≥1} and attaching, for n ∈ N, the 1-cell D1

n between the points Pn and Pn+1, i.e. by means of

φn : {±1} −→ X
0, φn(−1) = Pn, φn(1) = Pn+1. Hence X has dimension 1. (3) A bouquet of circles is a

CW complex of dimension 1 obtained by attaching 1-cells to X
0 = {pt} (with φ constant). (4) (See Figure

15(c) for the case n = 2) X = S
n is a finite CW complex of dimension n obtained by attaching a n-cell to

X
0 = {pt} (with φ constant). Its k-skeletons are {pt} (for 0 ≤ k < n) and X (for k ≥ n). (5) (See Figure

15(a-b) for the case n = 2) The cube X = [0, 1]n is a finite CW complex of dimension n with
�
n

k

�
2n−k

k-cells (0 ≤ k ≤ n). Its k-skeletons are formed by the graph of its vertexes (k = 0), of its edges (k = 1),

and so on. Also its boundary ∂X = X
n−1 is a finite CW complex, of dimension n−1; thinking to “inflate”

∂X until it becomes Sn−1, the CW structure of ∂X gives rise to a CW structure of Sn−1 alternative to the

simpler one of (3). (6) (See Figure 15(d)) The projective space X = P
n is obtained by attaching a n-cell

to P
n−1 (with φ : Sn−1 −→ P

n−1 the Hopf map). Hence X has a k-cell for any 0 ≤ k ≤ n. (7) The complex

projective space X = P
n(C) is obtained by attaching a 2n-cell to P

n−1(C): hence it has a k-cell for any

0 ≤ k ≤ 2n even. (8) As said above, the triangularizable spaces are the classical notion at the origin of

CW complexes: let us briefly recall what they are. A “simplicial complex” in R
n is a family K of affine

singular simplexes in R
n such that (1) if σ is in K, also its faces σ(i) are in K, and (2) if σ and τ are in K,

then |σ|∩ |τ | is either the support of a face both of σ and of τ , or it is empty (in other words, any simplex

in K is univoquely determined by the set of its vertexes: there are not two different simplexes with the

same set of vertexes); the “support” of K is |K| =
�
{|σ| : σ ∈ K} ⊂ R

n. A topological space X is said

“triangularizable”, or also “polyhedron”, if there exists a homeomorphism |K| ∼−→ X for some simplicial

complex K; such homeomorphism (which, as it is easy to verify, defines a CW structure on X) is said to

be a “triangularization” of X.(74)

(69)Note that, if X has finite dimension, the condition (3) is superfluous.
(70)Of course, these notions and properties do not depend on the particular CW structure considered.
(71)Namely, to attach a cell preserves compactness.
(72)Actually the name CW complex comes from the reference both to the just mentioned property of
Closure-finiteness and to the term Weak (which denotes weak topology).
(73)otherwise, by Proposition 2.1.17 it should be compact, but it is not.
(74)In presence of a triangularization, the calcolation of the homology gets semplified by using a “ad hoc”
theory, called “simplicial homology”, which can be proven to give the same results of the singular homology
(on the other hand, as we shall see soon, also the presence of the more general CW structure gives the
same advantages, thanks to the “cellular homology”). Historically the triangularization procedure is the
more classical one, but almost always it results to be much more complicated than the decomposition in
cells: actually, to triangularize a space could be not simple at all. For example, while for a square [0, 1]2

the disadvantage is still relative (it is enough to provide four vertexes, five edges and two triangles versus
one 0-cell, one 1-cell and one 2-cell), one shows that for a torus (S1)2 it is necessary to consider at least
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Figure 15: In these pictures the 0-cells are represented in red, the 1-cells in blue and the 2-cells in yellow. (a-b)
Two CW structures on the square. (c) The standard CW structure of S

2
. (d) The standard CW structure (with

the Hopf map) of the projective plane P
2
.

The decomposition of a CW complex in n-skeletons turns out to be particularly useful for
the calcolation of the homology. Let us start with the following lemma.

Lemma 2.1.18. Let X be a CW complex.

(i) The relative homology (see Remark 2.1.5) Hk(Xn/Xn−1,Z) vanishes for k �= n, and
is a free abelian group of rank equal to the number of n-cells of X when k = n.

(ii) Hk(Xn,Z) = 0 for any k > n (in particular, if X is of finite dimension then
Hk(X,Z) = 0 for any k > dimX).

(iii) The inclusion Xn �→ X induces a isomorphisms Hk(Xn,Z)
∼−→ Hk(X,Z) for k < n.

Given a CW complex, one can naturally construct a complex (of cellular chains) of abelian
groups

(2.9) · · · −→ Hn+1(X
n+1/Xn,Z)

dn+1−→ Hn(X
n/Xn−1,Z)

dn−→ Hn−1(X
n−1/Xn−2,Z) −→ · · ·

where the abelian group Hn(Xn/Xn−1,Z) is in degree n and, by the Lemma 2.1.18(i), is
free of rank equal to the number of n-cells of X, and dn is the composition of natural maps
Hn(Xn/Xn−1,Z) −→ Hn−1(Xn−1,Z) −→ Hn−1(Xn−1/Xn−2,Z), see (2.3). The homology
groups of this complex, called cellular homology groups of X, are denoted by HCW

k
(X,Z).

Theorem 2.1.19. One has HCW

k
(X,Z) � Hk(X,Z) for any k ∈ Z.

Corollary 2.1.20. Let X be a CW complex.

(i) If X has a finite number N of n-cells, then Hn(X,Z) has at most N generators (in
particular, if for a certain n the complex X has no n-cells then Hn(X,Z) = 0).

(ii) If X has no cells in adjacent dimensions, then the groups Hn(X,Z) are free of rank
equal to the number of n-cells of X.

seven vertexes, twenty-one edges and fourteen triangles versus one 0-cell, two 1-cells and one 2-cell, while
for the projective space P

2 there are at least six vertexes, fifteen edges and ten triangles versus one 0-cell,
one 1-cell and one 2-cell (see e.g. Hatcher [8, §2.1], Bredon [2, p. 248]).
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(iii) If X is finite, then its Euler-Poincaré characteristic (see (2.8)) can be computed as

(2.10) χ(X) =
dimX�

j=0

(−1)j�{j-cells of X}

and it is independent from the particular CW structure considered on X.

Proof. (i) By Lemma 2.1.18(i), Hn(X
n
/X

n−1
,Z) is a free abelian group with N generators, hence it fol-

lows that its subgroup ker(dn) and the quotient of the latter H
CW

n (X,Z) � Hn(X,Z) have at most N

generators. (ii) Since there are no two consecutive non zero Hn(X
n
/X

n−1
,Z), the morphisms dn of the

complex of cellular homology are forced to be zero, hence Hn(X,Z) � H
CW

n (X,Z) � Hn(X
n
/X

n−1
,Z),

and by Lemma 2.1.18(i) the latter is free of rank equal to the number of n-cells of X. (iii) If X is finite, the
groups HCW

j (X,Z) are of finite rank and vanish for j > n = dimX, hence χ(X) =
�

j
(−1)jrkHj(X,Z) =�

n

j=0
(−1)jrkHCW

j (X,Z) is defined. But from Proposition A.2.5 applied to the complex of cellular ho-

mology we get also χ(X) =
�

n

j=0
(−1)jrkHj(X

j
/X

j−1
,Z), and (2.10) follows from Lemma 2.1.18(i);

the independence of χ(X) from the CW structure considered on X is clear, since any two of them give
homeomorphic topological spaces, and hence the same homology groups.

Examples. (1) The complex of cellular chains of X = [0, 1] is 0 −→ Z
d1−→ Z

2 −→ 0, and since X

is connected it must be H0(X,Z) � Z, which implies that d1 is injective: hence H1(X,Z) = 0. So it

holds χ(X) = rkH0(X,Z) − rkH1(X,Z) = �(vertexes) − �(edges) = 1. (2) For X = [0, 1[ the complex

becomes 0 −→ Z
(N) d1−→ Z

(N) −→ 0, with d1(D
1

n) = Pn+1 − Pn: hence(75) ker(d1) = 0 and coker(d1) � Z,

and we get that H0(X,Z) = Z and H1(X,Z) = 0, as it is well known.(76) (3) If X is the bouquet

of n circles, the complex of cellular chains is 0 −→ Z
n d1−→ Z −→ 0; since X is connected, it must be

H0(X,Z) � Z, which implies d1 = 0: hence H1(X,Z) = Z
n, and χ(X) = 1 − n. (4) If n ≥ 2,

from Corollary 2.1.20(ii) one immediately gets Hj(S
n
,Z) � Z (if j = 0, n) and zero otherwise; then

χ(Sn) = 1 + (−1)n. (5) Let X = [0, 1]n. Since X is contractible, it must be χ(X) = χ({pt}) =

1. On the other hand, for (2.10) it must be also χ(X) =
�

n

j=0
(−1)j

�
n

j

�
2n−j , and this is true since

�
n

j=0
(−1)j

�
n

j

�
2n−j = (−1)n

�
n

j=0
(−1)j

�
n

j

�
2j = (−1)n

�
n

j=0

�
n

j

�
(−2)j = (−1)n[1 + (−2)]n = 1. Similarly,

∂X is homeomorphic to S
n−1 and hence χ(∂X) = χ(Sn−1) = 1 + (−1)n−1: namely, also for (2.10) one

has χ(∂X) =
�

n−1

j=0
(−1)j

�
n

j

�
2n−j =

��
n

j=0
(−1)j

�
n

j

�
2n−j

�
− (−1)n = 1 − (−1)n = 1 + (−1)n−1. (6) The

complex of cellular chains of the projective space X = P
n is 0 −→ Z

dn−→ Z −→ · · · −→ Z
d1−→ Z −→ 0. One can

calculate that dk is zero for k odd, and the multiplication by 2 for k even: one then obtains that Hk(X,Z)

is isomorphic to Z if k = 0 or if (k = n, n odd); to Z/2Z if (0 < k < n, k odd); and zero otherwise. Hence

it holds χ(X) = 1 (if n is even) and χ(X) = 1−1 = 0 (if n is odd): namely, since X is formed by one k-cell

for any 0 ≤ k ≤ n, this is also what says (2.10) (i.e. χ(X) = 1 − 1 + 1 − 1 + · · · , with n + 1 summands).

Using another method, to think P
2 as a square with the identification of antipodal boundary points (see

Examples 2.8) gives to it another CW structure with two 0-cells, two 1-cells and one 2-cell: therefore, once

more by (2.10) one has that χ(P2) = 2 − 2 + 1 = 1. (7) For the complex projective space X = P
n(C),

from Corollary 2.1.20(ii) one gets that Hk(X,Z) � Z for (0 ≤ k ≤ 2n, k even) and zero otherwise; it holds

χ(X) = n + 1 (note that P
1(C) � S

2, and namely χ(P1(C)) = 2 = χ(S2)) (8) Consider any polyhedral

surface X in R
3 homeomorphic to S

2.(77) Then χ(X) = χ(S2) = 2; on the other hand, by (2.10) it holds

(75)It holds d1(
�

n∈N
anD

1

n) =
�

n∈N
an(Pn+1 − Pn) = −a1P1 −

�
n≥2

(an − an−1)Pn: if this quantity
is zero then −a1 = 0, a2 − a1 = 0, ... which implies ker(d1) = 0; if one aims to solve the equality
−a1P1 −

�
n≥2

(an − an−1)Pn =
�

n∈N
bnPn (where, say, bn = 0 for any n > N) one finds a0 = −b0,

a1 = −b0 − b1, ..., aj = −
�

N

n=1
bn for any j ≥ N , which forces

�
N

n=1
bn = 0 (otherwise the an’s would

not be “almost all zero”, as it is prescribed by the direct sum): this says that coker(d1) � Z.
(76)In this case, of course, one would have better used the homotopic invariance of the singular homology.
(77)For example the external surfaces of a cube, of a tetrahedron, of a prism or pyramid with polygonal
base, of a parallelepiped with a pyramidal hole in the upper face,...
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also χ(X) = V − E + F , where V (resp. E, F ) indicates the number of vertices (resp. edges, faces) of X.

We deduce the well-known Euler relation V −E + F = 2 (for example, 8− 12 + 6 for the external surface

of a cube, 4− 6 + 4 for the one of a tetrahedron, ...).
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2.2 Cohomology of de Rham

The singular cohomology is defined for any topological space; now we deal with a different
cohomological construction (with coefficients in R = R)(78) for C∞ manifolds, due to G.
de Rham. This construction will give rise to R-vector spaces isomorphic to the spaces of
singular cohomology with coefficients in R defined above (see Theorem 2.6.9).

Let X be a C∞ manifold of dimension n, {(Uλ,ϕλ) : λ ∈ Λ} a C∞ atlas, π : T ∗X −→ X the
cotangent bundle. Consider the mth external power of T ∗X for m = 0, . . . , n:

∧m(T ∗X) = {(x,α) : x ∈ X, α ∈ ∧m(T ∗
xX)}.

The pair (∧m(T ∗X),∧mπ), where ∧mπ : ∧m(T ∗X) −→ X is the natural projection, is a
vector bundle of rank

�
n

m

�
on X: in particular, ∧0(T ∗X) = X × R and ∧1(T ∗X) = T ∗X.

Definition 2.2.1. The sheaf Ωm

X
of C∞ differential m-forms on X is the sheaf of R-vector

spaces on X of C∞ sections of the real vector bundle (∧m(T ∗X),∧mπ).

Therefore, given an open subset U ⊂ X, a differential m-form ω ∈ Ωm

X
(U) assigns in a

smooth way to any x ∈ U an alternating m-form ω(x) on TxX and, if U ⊂ V , one has a
restriction map Ωm

X
(V ) −→ Ωm

X
(U). Note that in particular it holds Ω0

X
= C∞

X
.

Remark 2.2.2. In the case of an open subset W ⊂ R
n, let ui be the coordinate functions

(which form a basis of T ∗
t W � (Rn)∗ for any t ∈ W ). For any t ∈ W it holds dui(t) = ui,

hence (see Example A.3) a differential m-form C∞ on W can be uniquely written as ω =�
|I|=m

fIduI , where fI ∈ C∞(W ) and duI = dui1 ∧ · · ·∧duim with 1 ≤ i1 < · · · < im ≤ n.
Hence, on U ∩ Uλ a ω ∈ Ωm

X
(U) can be uniquely written as ω =

�
|I|=m

fIdxλ,I , where
fI ∈ C∞(U) and dxλ,I = dxλ,i1 ∧ · · · ∧ dxλ,im .

For ω ∈ Ωm

X
(U) and θ ∈ Ωp

X
(U), the external product (or wedge product) ω ∧ θ ∈ Ωm+p

X
(U)

will be defined pointwise, i.e. (ω ∧ θ)(x) = ω(x) ∧ θ(x) for any x ∈ U , and will enjoy the
same formal properties shown in Appendix A.3: in particular it holds ω∧θ = (−1)mpθ∧ω.
This gives to the sheaf of graded R-vector spaces

Ω•
X =

n�

m=0

Ωm

X

the structure of sheaf of graded R-algebras, with the multiplication

· ∧ · : Ω•
X ⊗

R
Ω•
X −→ Ω•

X .

Example. If ω = f1 dt1 + f2 dt2 + f3 dt3 ∈ Ω1

R3(U) and θ = g12 dt1dt2 + g13 dt1dt3 + g23 dt2dt3 ∈ Ω2

R3(U),

one has ω ∧ θ = (f1g23 − f2g13 + f3g12)dt1dt2dt3 ∈ Ω3

R3(U).

If f : X −→ Y is a C∞ map, the pull-back of differential forms associated to f is the
morphism of sheaves on Y

f∗ : Ω•
Y −→ f∗Ω

•
X

(78)Viewing C∞ as functions with values in C (as it is usual to do) instead than only in R as we do here,
one naturally obtains the same construction with values in C instead than in R.
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defined pointwise: if V ⊂ Y is open, ω ∈ Ωm

Y
(V ), x ∈ f−1(V ) and u1, . . . , um ∈ TxX, one

defines f∗ω ∈ Ωm

X
(f−1(V )) by (f∗ω)(x) = df∗

x(ω(x)), i.e.

(f∗ω)(x)(u1, . . . , um) = ω(f(x))(dfx(u1), . . . , dfx(um)).

(If ι : U −→ X is the embedding of an open subset, ι∗ is simply the restriction map.) In
local coordinates, let X ⊃ Uλ

∼−→ R
n, Y ⊃ Vµ

∼−→ R
p and f : Uλ −→ Vµ: then, written

f = (f1, . . . , fp) and ω =
�

|I|=m
ωIdyµ,I , one has

(2.11) f∗ω =
�

|I|=m

(ωI ◦ f)dfI ,

where dfI = dfi1 ∧ · · · ∧ dfim with dfij =
∂fij

∂xλ,1

dxλ,1 + · · · + ∂fij

∂xλ,n

dxλ,n. In particular, if

f : U
∼−→ V is a diffeomorphism of open subsets of Rn and ω = dy1 ∧ · · ·∧ dyn, then, using

(A.7) and (2.11), one obtains

(2.12) f∗(dy1 ∧ · · · ∧ dyn) = det(Jf ) dx1 ∧ · · · ∧ dxn.

The pull-back commutes with the external product, and hence one obtains:

Proposition 2.2.3. Ω• is a contravariant functor from C∞ to the category of graded R-
algebras, which assigns to any X ∈ C∞ the graded R-algebra Ω•

X
(X) and to any morphism

f : X −→ Y of C∞ manifolds the pull-back morphism f∗ : Ω•
Y
(Y ) −→ Ω•

X
(X).

Let us construct a differential morphism for the differential forms, which generalizes the
classical differential of functions and allows to interpret Ω•

X
also as complex of sheaves on

X. We start by observing that

Proposition 2.2.4. If f : X −→ Y is a map of C∞ manifolds, then f∗ commutes with the
differential of functions.

Proof. If α : Y −→ R is C∞, x ∈ X, v ∈ TxX, then (f∗
dα)(x)(v) = dα(f(x))(dfx(v)) = d(α ◦ f)(x)(v), i.e.

f
∗
dα = d(α ◦ f) = d(f∗

α).

Now we define the differential in the affine case.

Proposition 2.2.5. For any open U ⊂ R
n there exists one and only one application

D : Ω•
Rn(U) −→ Ω•+1

Rn (U)

such that:

(1) D is R-linear;

(2) D(ω ∧ θ) = Dω ∧ θ + (−1)mω ∧Dθ for any ω ∈ Ωm

Rn(U) and θ ∈ Ωp

Rn(U);

(3) D ◦D = 0;

(4) D : Ω0

Rn(U) = C∞(U) −→ Ω1

Rn(U) is the usual differential of functions d.

If ω =
�

|I|=m
ωIdxI ∈ Ωm

Rn(U), such application is

(2.13) Dω =
�

|I|=m

dωI ∧ dxI ∈ Ωm+1

Rn (U).
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Proof. The fact that (2.13) satisfies the conditions (1) and (4) is obvious, while (2) and (3) can be verified
by a direct calculation (exercise: we may assume in (2) that ω = ωIdxI and θ = θJdxJ , in (3) that ω be
either a function or ω = dxI). Finally let δ be another operator satisfying the conditions (1)–(4). We first
remark that for any I with |I| = m it holds δ(dxI) = 0 (arguing by induction on m: if m = 1 then by (4)
and (3) δ(dxi) = δ(δxi) = 0; then, assuming the statement be true until m − 1, the induction proceeds
to m by (2)): therefore, setting ω =

�
|I|=m

ωIdxI , we have δω =
�

|I|=m
[δωI ∧ dxI + (−1)1ωIδ(dxI)] =�

|I|=m
δωI ∧ dxI = Dω.

From now on, D shall be denoted by d.

Corollary 2.2.6. If f : V
∼−→ U is a diffeomorphism between open subsets of Rn, then d

commutes with f∗.

Proof. Let δ = (f−1)∗ ◦ d ◦ f
∗: it satisfies (1), (2), (3) (exercise) and (4) (see Proposition 2.2.4), hence

δ = d by Proposition 2.2.5.

Let X be a manifold, U ⊂ X an open subset, ω ∈ Ωm

X
(U). Given a chart (Uλ,ϕλ) with

U ∩ Uλ �= ∅, define dω on U ∩ Uλ by ϕ∗
λ
d((ϕ−1

λ
)∗ω). By Corollary 2.2.6, this is a good

definition: if U∩Uλ∩Uµ �= ∅, set f = ϕµ◦ϕ−1

λ
one has ϕ∗

λ
d((ϕ−1

λ
)∗ω) = ϕ∗

λ
d(f∗(ϕ−1

µ )∗ω) =
ϕ∗
λ
f∗d((ϕ−1

µ )∗ω) = ϕ∗
µd((ϕ

−1
µ )∗ω), where the second equality comes from Corollary 2.2.6.

This differential inherits the properties (1)–(4) from the affine case; we now show that d
commutes with the pull-back.

Proposition 2.2.7. If f : X −→ Y is a morphism of C∞ manifolds, then d ◦ f∗ = f∗ ◦ d.
Proof. Let V ⊂ Y be an open subset and ω ∈ Ωm

Y (V ): let us show that d(f∗
ω) = f

∗(dω) in Ωm+1

X
(f−1(V )).

From Proposition 2.2.4 we know that this is true when m = 0, and can be verified by recurrence if ω = dφ

(namely dω = 0 and d(f∗
ω) = d(f∗

dφ) = d(d(f∗
φ)) = 0); moreover, if ω = θ ∧ ε and the commutation

holds for θ and ε, it holds also for ω (use the property (2)). Now, since the definition of d is local, we may
bound to the case where ω =

�
|I|=m

ωIdyI , and then this is true for what has been said previously.

Let X be a C∞ manifold of dimension n. By Proposition 2.2.7, d commutes with the
restriction. Hence d is a morphism of sheaves, and since d ◦ d = 0 the following definition
makes sense.

Definition 2.2.8. The complex of de Rham of sheaves on X is

Ω•
X : 0 −→ C∞

X

d−→ Ω1

X

d−→ · · · d−→ Ωn−1

X

d−→ Ωn

X −→ 0.

Given an open subset U ⊂ X, the elements of the subspace

Zm

X (U) = {ω ∈ Ωm

X(U) : dω = 0} (resp. Bm

X
(U) = d

�
Ωm−1

X
(U)

�
⊂ Zm

X
(U))

(resp. the m-cocycles and m-coboundaries in U) are called closed (resp. exact) differential
m-forms on U . The de Rham cohomology on U is the cohomology of the complex (of
cochains) Ω•

X
calcolated in U , i.e. the R-vector spaces

Hm

X (U) =
Zm

X
(U)

Bm

X
(U)

.

It is clear that the cohomology of de Rham is concentrated between the degrees 0 and n.

Example. The classical example is the de Rham complex on X = R
3. Given an open subset W ⊂ R

3, the

differential d : C∞
R3(W ) −→ Ω1

R3(W ) is the usual differential dφ = ∂φ

∂t1
dt1 +

∂φ

∂t2
dt2 +

∂φ

∂t3
dt3; the differential

Corrado Marastoni 63



Notes on Algebraic Topology

d : Ω1

R3(W ) −→ Ω2

R3(W ) is the curl operator curl(α1dt1 + α2dt2 + α3dt3) = ( ∂α2
∂t1

− ∂α1
∂t2

)dt1 dt2 − ( ∂α1
∂t3

−
∂α3
∂t1

)dt1 dt3 + ( ∂α3
∂t2

− ∂α2
∂t3

)dt2 dt3; the differential d : Ω2

R3(W ) −→ Ω3

R3(W ) is the divergence div(ρ3dt1 dt2 −
ρ2dt1 dt3 + ρ1dt2 dt3) = ( ∂ρ1

∂t1
+ ∂ρ2

∂t2
+ ∂ρ3

∂t3
)dt1 dt2 dt3.

Given a morphism f : X −→ Y of C∞ manifolds, we have seen (Proposition 2.2.7) that the
pull-back f∗ : Ω•

Y
−→ f∗Ω•

X
is a morphism of complexes. Then for any open V ⊂ Y it is

naturally induced a functorial morphism of cohomology (see Appendix A.2)

H•f∗ : H•
Y (V ) −→ H•

X(f−1(V )).

Proposition 2.2.9. Let A ⊂ X be a C∞ submanifold of X, r : X −→ A a C∞ retraction.
Then, denoted by ι : A −→ X the canonical inclusion, the morphism H•ι∗ : H•

X
(X) −→

H•
X
(A) is surjective and the morphism H•r∗ : H•

X
(A) −→ H•

X
(X) is injective.

Proof. Since r ◦ ι = idA, one has H•
ι
∗ ◦H•

r
∗ = idH

•
X (A), which implies the statement.

We can construct another complex by considering the forms with compact support. Given
an open subset U ⊂ X, we define

C∞
X,c(U) = {φ ∈ C∞

X (U) : supp(φ) is compact in U}.

Since supp(dω) ⊂ supp(ω), the complex of de Rham induces another complex with
the forms with compact support: if Zm

X,c
(U) := Zm

X
(U) ∩ Ωm

X,c
(U) and Bm

X,c
(U) :=

d
�
Ωm−1

X,c
(U)

�
⊂ Zm

X,c
(U), the de Rham cohomology with compact support on an open subset

U ⊂ X is

Hm

X,c(U) =
Zm

X,c
(U)

Bm

X,c
(U)

.

Obviously, if X is a compact manifold then Hm

X,c
(X) = Hm

X
(X) .

Remark 2.2.10. Note that Ω•
c is not a functor on C∞: namely the pull-back of a form

with compact support does not have necessarily compact support (for example, the pull-
back of functions by vector bundles). However, Ω•

c is a contravariant functor from C∞

to the category of graded R-algebras if one considers only the proper C∞ morphisms(79):
hence, given a proper morphism f : X −→ Y of C∞ manifolds, for any open V ⊂ Y it is
naturally induced a morphism of cohomologyH•

c f
∗ : H•

Y,c
(V ) −→ H•

X,c
(f−1(V )). Moreover,

it is a covariant functor for the open inclusions: if U ⊂ X is open and ι : U −→ X is the
inclusion, then ι∗ : Ω•

U,c
−→ Ω•

X,c
is the natural morphism of extension by zero, and induces

a morphism of cohomology H•
c ι∗ : H

•
U,c

(U) −→ H•
X,c

(X).

Remark 2.2.11. From the construction it is evident that the cohomology is invariant
under diffeomorphisms: as a consequence, if U ⊂ X we shall often write H•(U) and
H•

c (U) instead of H•
X
(U) and H•

X,c
(U).

(79)I.e., the inverse image of any compact of Y is compact in X.
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Remark 2.2.12. We can define the cohomology of de Rham also for the manifolds with
boundary (see Appendix A.5): if V is an open subset of Hn, the C∞ functions on V are
the restrictions to V of C∞ functions defined on some open neighborhood of V in R

n.(80)

The same can be said for the cohomology of de Rham with compact support: the C∞

functions on V with compact support are the restrictions to V of C∞ functions defined on
some open neighborhood of V in R

n such that the intersection of their support with V is
compact.

The cohomology of manifolds will be the object of our study in the sequel. For the degree
zero the computation is immediate.

Proposition 2.2.13. H0(U) is the vector space of functions locally constant on U (hence
dimR(H0(U)) is the number of connected components of U).(81) Analogously, H0

c (U) is the
vector space of functions locally constant on U with compact support (hence dimR(H0

c (U))
is the number of compact connected components of U).

Proof. It is a direct consequence of the definition.

Examples. (0) It holds H0({pt}) = R and H
m({pt}) = 0 for m �= 0. (1) Let X = R. Then H

0(R) = R;

moreover B
1

R(R) = Ω1

R(R) since ω = fdx = dg, with g(x) =
�

x

0
f(t)dt, and so H

1(R) = 0. Since there

are no constant functions on R with compact support, one has H
0

c (R) = 0. Then consider the integration

map
�
R

: Ω1

c(R) −→ R, which is a morphism of R-vector spaces. We claim that B
1

R,c(R) = ker(
�
R
): if

ω = df ∈ B
1

R,c(R) with supp(f) compact in ]a, b[, then
�
R
ω =

�
b

a
f
�(x)dx = f(b) − f(a) = 0; conversely,

if ω = f dx ∈ ker(
�
R
), then ω = dg with g(x) =

�
x

−∞ f(t)dt ∈ C∞
c (R). Hence,

�
R
being clearly surjective,

one has H
1

c (R) = Ω1

c(R)/ ker(
�
R
) = R. Later se shall show (Poincaré lemmas) that for any n ∈ N it holds

H
0(Rn) = H

n

c (R
n) = R and H

m(Rn) = H
n−m

c (Rn) = 0 for any m �= 0. (2) Let X = R≥0, a manifold

with boundary ∂X = {0} (see Remark 2.2.12). One has Ω0(X) = C∞
R (X) � {f |

X
: f ∈ C∞

R (R)} and

Ω1(X) � {gdx : g ∈ C∞
R (X)}: hence H

0(X) = R and H
1(X) = 0, exactly as for R. On the other hand one

has Ω0

c(X) = C∞
R,c(X) � {f |

X
: f ∈ C∞

R (R), supp(f) ∩X compact} and Ω1

c(X) � {ψdx : ψ ∈ C∞
R,c(X)}:

hence H
0

c (X) = 0, while, given ψ ∈ C∞
R,c(X), one has ψdx = dϕ with ϕ(x) = −

�
+∞
x

ψ(t)dt (note that

supp(ϕ) ∩X is compact, i.e. ϕ ∈ C∞
R,c(X)), and hence also H

1

c (X) = 0.

(80)In fact, Hn is closed in the paracompact space R
n: see Remark A.4.2.

(81)On the other hand, recall that the dimension of the singular cohomology in degree zero H
0(U ;R) is

the number of arcwise connected components of U .
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