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Abstract

Let G be a complex semisimple algebraic group, X and X ′ be dual generalized flag
manifolds of G, and O be the open dense G-orbit in X ×X ′. We first show that the
integral transform from X to X ′ naturally associated to O provides an equivalence
at the level of derived categories of sheaves and D-modules, then we prove that the
problem of computing the integral transform of a quasi-G-equivariant locally free
DX -module of finite rank is equivalent to studying the irreducibility of a generalized
Verma module. In particular, when G = SL(n,C) and X and X ′ are dual Grassmann
manifolds, we give an alternative proof of our results of [13], and concretely show how
the above construction can be applied to the representation theory of real forms of G.

Introduction

In our work [13] we studied the correspondence between dual Grassmann manifolds of a
finite-dimensional complex vector space V given by transversal linear subspaces of com-
plementary dimensions in V . In particular we showed that this correspondence defines
an equivalence at the level of derived categories of sheaves and D-modules, and computed
the induced integral transform of D-modules associated to SL(V )-equivariant line bundles.
The object of this paper is to consider the same problem in the more general setting of dual
generalized flag manifolds of any complex semisimple algebraic group, and of equivariant
bundles of any finite rank. Although the problem has an analytic nature, our approach
here will be essentially algebraic, and hence quite different from the one of [13].

Let G be a connected and simply connected semisimple algebraic group over C, P and
P ′ a pair of dual parabolic subgroups of G (i.e. L = P ∩P ′ is reductive), g, p and p′ their
Lie algebras, X = G/P and X ′ = G/P ′ the corresponding dual generalized flag manifolds
of G. Let O ' G/L be the open dense orbit of G in X ×X ′ for the diagonal action (note
that O is affine), i : O → X × X ′ be the open embedding, and p1 : X × X ′ → X and
p2 : X ×X ′ → X ′ be the projections. The relation O provides a natural correspondence
rO : Db(CX)→ Db(CX′) between the bounded derived categories of sheaves on X and X ′

by defining
rO(F ) = Rp2!(p

−1
1 F ⊗CO|X×X′)
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where the operations Rp2!, p
−1
1 and ⊗ are the proper direct image, inverse image and

tensor product in the derived category of sheaves, and CO|X×X′ is the constant sheaf with
fiber C on O and zero outside. Similarly, for D-modules one considers the DX×X′-module
BO = i∗OO of rational functions on X × X ′ with poles on the G-invariant closed subset
complementary to O (note that the sheaf K = CO|X×X′ and the D-module K = BO are
related by the Riemann-Hilbert correspondence [8], in the sense that K is the sheaf of
homomorphic solutions of K), and defines the functor RO : Db(DX)→ Db(DX′) by

RO(M) = Dp2∗(Dp1
∗M⊗D BO)

where the operations Dp2∗, Dp1
∗ and ⊗D are the direct image, inverse image and tensor

product for algebraic D-modules (see 1.2). Our first main result says that the transforms
rO and RO are nice (see Theorem 2.2 for more details):

Theorem 1. The functors rO and RO are equivalences of categories.

The next step is to “quantize” the equivalence RO , by computing the integral transform
of a quasi-G-equivariant locally free DX -module of finite rank.
For a L-dominant integral weight λ let V (λ) be the corresponding finite dimensional L-
module, and let λ′ (see (1.4)) be the L-dominant integral weight associated to λ such
that V (λ′) is the dual L-module of V (λ). By considering V (λ) as a P -module with the
trivial action of the unipotent part of P , one can define the generalized Verma module
MP (λ) = U(g) ⊗U(p) V (λ), which is endowed with a natural structure of (g, P )-module
(see 1.3). Let OX(λ) be the G-equivariant locally free OX -module of regular sections of
the vector bundle G×P V (λ) on X. The locally free DX -module DX(λ) := DX⊗OX

OX(λ)
carries a natural structure of quasi-G-equivariant DX -module (see Section 1.3). The same
argument holds for the dual parabolic subgroup P ′ and the dual manifold X ′. The second
main result, which relates our quantization problem to the irreducibility of generalized
Verma modules, can be stated as follows (see Theorem 2.8 for more details):

Theorem 2. One has Hj(RO(DX(λ))) = 0 for j 6= 0, and the following statements are
equivalent:

(i) there is an isomorphism DX′(λ′) −→∼ RO(DX(λ)) in Mod(DX′);

(ii) MP (λ′) is an irreducible g-module.

This result can also be successfully applied to the representation theory of a real form
GR of G, by letting GR act on the dual flag manifolds X and X ′ and then by comparing
—by means of the so-called “adjunction formulas”, a general family of isomorphisms of
cohomology associated to integral transforms, see Section 1.6— different spaces of GR-
equivariant holomorphic cohomology on X and X ′ associated to GR-orbits. A concrete
example of this procedure is shown in the final part of the paper, where we work out in
detail the above-mentioned case of “Grassmann Duality”, with G = SL(V ) and X, X ′

dual Grassmann manifolds of V : after getting an alternative proof of our results of [13],
we treat the real form GR = SU(Q) of G, where Q is a nondegenerate undefinite hermitian
form on V .
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1 Preliminary notions

1.1 Geometry and sheaves

We refer to Kashiwara-Schapira [11].
Let Z be a real analytic manifold. We denote by TZ (resp. T ∗Z) the tangent (resp.

cotangent) bundle; for a submanifold S of Z, the conormal bundle T ∗SZ is defined to be
the Zariski closure in T ∗Z of {(x; ξ) ∈ T ∗Z : x ∈ S, ξ ∈ (TxS)⊥}. We denote by CZ the
constant sheaf on Z with fiber C, by Mod(CZ) the category of sheaves of C-vector spaces
on Z and by Db(CZ) the derived category of Mod(CZ) whose objects have bounded
cohomology. We denote by SS(F ) ⊂ T ∗Z the microsupport of a sheaf F ∈ Mod(CZ)
(the analogous for sheaves of the notion of characteristic variety for D-modules), and for
F ∈ Db(CZ) we set SS(F ) =

⋃
j∈Z SS(HjF ).

In Db(CZ) are defined the usual operations (where f a morphism of real analytic
manifolds) f−1, Rf∗, Rf !, ⊗, RHom (internal Hom) and RHom (external Hom). We
shall also consider the duality functor

( · )∗ : Db(CZ)→ Db(CZ), F ∗ = RHom (F,CZ).

For a locally closed subset D ⊂ Z, we denote by CD|Z the sheaf on Z defined to be the
constant sheaf with fiber C over D and zero over Z \ D (in other words, CD|Z = j!CD

where j : D → Z is the natural embedding map).

1.2 Algebraic D-modules

We refer to Borel [3].
Let Z be a smooth algebraic variety over C, of complex dimension dZ , f : Z → Z ′ be

a morphism of smooth algebraic varieties over C. We denote by OZ the sheaf of regular
functions, by ΩZ the invertible OZ-module of differential forms of top degree, by ΘZ

the locally free OZ-module of regular tangent vector fields on Z and by DZ the sheaf of
algebraic linear differential operators on Z.

All OZ- and DZ-modules will be assumed to be quasi-coherent over OZ . We denote
by Mod(OZ) the category of OZ-modules, by Mod(DZ) the category of left DZ-modules,
by Db(DZ) the derived category of Mod(DZ) whose objects have bounded cohomology
and by Db

coh(DZ) the full subcategory of objects with coherent cohomologies. We denote
by char(M) ⊂ T ∗Z the characteristic variety of a coherent DZ-module M, and for M ∈
Db

coh(DZ) we set char(M) =
⋃
j∈Z char(HjM).
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The inverse image of a OZ′-module F ′ is the OZ-module F = OZ ⊗f−1OZ′
f−1F ′. We

denote by Df∗, Df! and Df∗ the direct and inverse image for D-modules:

Df∗,! : Db(DZ)→ Db(DZ′), Df∗,!M = Rf∗(DZ′←Z ⊗L
DZ
M),

Df∗ : Db(DZ′)→ Db(DZ), Df∗M′ = DZ→Z′ ⊗L
f−1DZ′

f−1M′,

where a (DZ , f−1DZ′)-bimoduleDZ→Z′ and an (f−1DZ′ ,DZ)-bimoduleDZ′←Z are defined
by DZ→Z′ = OZ ⊗f−1OZ′

f−1DZ′ and DZ′←Z = ΩZ ⊗OZ
DZ→Z′ ⊗f−1OZ′

f−1Ω
⊗−1

Z′ . For
M,N ∈ Db(DZ) we write

M⊗D N =M⊗LOZ
N in Db(DZ).

The duality functor for left DZ-modules is

( · )∗ : Db(DZ)→ Db(DZ), M∗ = RHomDZ
(M,KZ),

where KZ = DZ ⊗OZ
Ω
⊗−1

Z [dZ ] is the dualizing left DZ-module; we remark that there is
an isomorphism of functors from Db

coh(DZ) to Db(CZ)

(1.1) RHomDZ
(( · )∗,OZ) '

(
RHomDZ

( · ,OZ)
)∗

(in other words, the functor of holomorphic solutions commutes to duality).

1.3 Quasi-equivariant D-modules

We refer to Kashiwara [9].
Let G be an affine algebraic group over C with identity element e and Lie algebra g;

we denote by Ad the adjoint action of G on g. Let Z be a smooth algebraic variety over
C endowed with an algebraic left action µ : G× Z → Z (we write µ(g, z) = gz for short),
and let LZ : g→ ΘZ ⊂ DZ be the canonical Lie algebra homomorphism

LZ(A)(f)(z) =
d

dt
f(exp(−tA)z)

∣∣∣∣
t=0

(A ∈ g, f ∈ OZ , z ∈ Z)

(in particular, LG(A) ∈ ΘG is obtained for Z = G and µ(g, z) = gz). We denote by
i : Z → G × Z the embedding i(z) = (e, z) and by p : G × Z → Z and q : G × Z → G
the projections. Let us define the morphisms qj : G × G × Z → G × Z (j = 1, 2, 3) by
q1(g1, g2, z) = (g1, g2z), q2(g1, g2, z) = (g1g2, z) and q3(g1, g2, z) = (g2, z), and observe that
µ ◦ q1 = µ ◦ q2, p ◦ q2 = p ◦ q3 and µ ◦ q3 = p ◦ q1.

A G-equivariant OZ-module is an OZ-moduleM endowed with a OG×Z-linear isomor-
phism β : µ∗M−→∼ p∗M such that the following diagram commutes:

q2
∗µ∗M q2∗β // q2

∗p∗M

q1
∗µ∗M q1∗β // q1

∗p∗M = q3
∗µ∗M q3∗β // q3

∗p∗M.
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To a G-equivariant OZ-moduleM one canonically associates a Lie algebra homomorphism
LM,G : g→ EndC(M) by

LM,G(A)(u) = i∗((q∗LG(A))(β(µ∗u))) (A ∈ g, u ∈M).

Let OG � DZ denote the subalgebra OG×Z ⊗p−1OZ
p−1DZ of DG×Z . A DZ-module M

is called G-equivariant (resp. quasi-G-equivariant) if it is endowed with a G-equivariant
OZ-module structure such that the isomorphism β : µ∗M−→∼ p∗M is DG×Z-linear (resp.
OG �DZ-linear).

We denote by ModG(OZ) (resp. ModG(DZ)) the category of G-equivariantOZ-modules
(resp. quasi-G-equivariant DZ-modules), and by Db

G(DZ) the derived category of DZ-
modules with bounded quasi-G-equivariant cohomology.

Let M be a quasi-G-equivariant DZ-module. The homomorphism LZ induces a Lie
algebra homomorphism LM,D : g→ EndC(M) by

LM,D(A)(u) = LZ(A)u (A ∈ g, u ∈M).

Set
γM = LM,G − LM,D.

Proposition 1.1. [9] One has γM(A) ∈ EndDZ
(M) for any A ∈ g. Moreover, the map

γM : g → EndDZ
(M) is a Lie algebra homomorphism and γM = 0 if and only if M is

G-equivariant.

We also denote by
γM : U(g)→ EndDZ

(M)

the corresponding homomorphism of associative algebras.

Example 1.2. For a G-equivariant OZ-module F the DZ-module M = DZ ⊗OZ
F is

endowed with a natural quasi-G-equivariant DZ-module structure. In this case, for A ∈ g,
P ∈ DZ and s ∈ F one has LM,G(A)(P ⊗s) = [LZ(A), P ]⊗s+P ⊗LF ,G(A)(s) and hence
γM(A)(P ⊗ s) = −PLZ(A)⊗ s+ P ⊗LF ,G(A)(s).

Assume now that the action µ is transitive. Let z ∈ Z, j : {z} → Z the inclusion map
and K = Gz (resp. k = Lie(K) = gz) the isotropy subgroup (resp. subalgebra) at z: we
identify Z ' G/K. For a G-equivariant OZ-module M, the fiber

M(z) = Dj∗M = C⊗OZ,z
Mz

of M at z is endowed with a natural K-module structure. Conversely, for a K-module
M one defines a G-equivariant OZ-module OZ(M) as the sheaf of regular sections of the
vector bundle G×K M on Z: i.e., for U ⊂ Z open one sets

Γ(U ;OZ(M)) = {s ∈ Γ(π−1(U);OG ⊗M) : s(xg) = g−1s(x) for any x ∈ G and g ∈ K},

where π : G → Z ' G/K is the projection. Let us denote by Mod(K) the category of
algebraic K-modules: the following fact is well-known (see e.g. [14]).
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Proposition 1.3. The categories ModG(OZ) and Mod(K) are equivalent viaM 7→M(z)
and M 7→ OZ(M).

Moreover, ifM is a quasi-G-equivariant DZ-module, thenM(z) is also endowed with
a g-module structure induced from the OZ-linear action γM. For M =M(z) we have the
following:

(a) the action of k on M given by differentiating the K-module structure coincides
with the restriction to k of the action of g,

(b) gAv = (Ad(g)A)gv for any g ∈ K, A ∈ g, v ∈M .

A vector space M equipped with structures of a K-module and a g-module is called a
(g,K)-module if it satisfies the conditions (a) and (b) above. Let us denote by Mod(g)
(resp. Mod(g,K)) the category of g-modules (resp. (g,K)-modules): observe that the
forgetful functor Mod(g,K) → Mod(g) is fully faithful. Conversely, if M is a (g,K)-
module then by (b) one gets a Lie algebra homomorphism γOZ(M) : g→ EndOZ

(OZ(M)),
and LOZ(M),G− γOZ(M) defines a DZ-module structure on OZ(M). One has the following
generalization of Proposition 1.3:

Proposition 1.4. [9] The categories ModG(DZ) and Mod(g,K) are equivalent via M 7→
M(z) and M 7→ OZ(M).

1.4 Generalized Verma modules

From now on let G be a connected and simply connected semisimple algebraic group over
C with identity element e and Lie algebra g; we denote by U(g) the universal enveloping
algebra of g.

Let h be a Cartan subalgebra of g, ∆ ⊂ h∗ the roots of g, {αi : i ∈ S} ⊂ ∆ a family
of simple roots, {α∨i : i ∈ S} ⊂ h the simple coroots, {$i : i ∈ S} ⊂ h∗ the fundamental
weights (defined by 〈$i, α

∨
j 〉 = δi,j), ∆± the positive/negative roots, ρ = 1

2

∑
α∈∆+ α,

h∗Z =
∑

i∈S Z$i the integral weight lattice; a weight λ =
∑

i∈S λi$i ∈ h∗Z is called dominant
(resp. stricly dominant) when λi ≥ 0 (resp. λi > 0) for any i ∈ S, singular if 〈λ, α∨〉 = 0
for some α ∈ ∆, regular if non-singular. For α ∈ ∆ we denote by sα the reflection in
h∗ w.r.t. α and by W = 〈sαi : i ∈ S〉 ⊂ AutC(h∗) the Weyl group. We denote by `(w)
the length of w ∈ W . The affine action of w ∈ W on λ ∈ h∗ is denoted by w · λ (i.e.
w ·λ = w(λ+ ρ)− ρ). If λ is regular, we denote by w

λ
the unique element in W such that

w
λ
λ is stricly dominant. For λ ∈ h∗ let L(λ) (resp. L′(λ)) be the irreducible highest (resp.

lowest) weight g-module of highest (resp. lowest) weight λ.
For a g-module M and µ ∈ h∗, let

Mµ = {v ∈M : Av = µ(A)v for any A ∈ h}.

If h acts semisimply on M (i.e. if M =
⊕

µ∈h∗Mµ) and dimC(Mµ) is finite for any µ ∈ h∗,
the character of M is the sum

ch(M) =
∑
µ∈h∗

dimC(Mµ)eµ;
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we let g act contragradiently on Hom(M,C) by (Af)(v) = −f(Av) for A ∈ g, f ∈
Hom(M,C) and v ∈M and we define the dual of M as the g-module of h-finite elements
of Hom(M,C):

M∗ = {f ∈ Hom(M,C) : dimC U(h)f is finite}.
Note that (M∗)∗ 'M , M∗ =

⊕
µ∈h∗(M

∗)µ and for any µ ∈ h∗ one has

(1.2) (M∗)µ ' (M−µ)∗.

Let us fix once for all a subset I ⊂ S, and let

∆I = ∆ ∩
∑

i∈I Zαi, ∆±
I

= ∆I ∩∆±, ρI = 1
2

∑
α∈∆+\∆

I
α,

WI = 〈sαi : i ∈ I〉, lI = h⊕
(⊕

α∈∆
I
gα

)
, n±

I
=

⊕
α∈∆±\∆

I
gα,

p
I

= lI ⊕ n+
I
, p′

I
= lI ⊕ n−

I
.

We denote by wI the longest element of WI (characterized by wI ∆
±
I

= ∆∓
I
). Let H be

the maximal torus corresponding to h and let LI , N±I , PI and P ′I be the closed connected
subgroups of G corresponding to lI , n±

I
, p

I
and p′

I
. The set of I-dominant integral weights

(1.3) (h∗Z)I =
∑
i∈I

Z≥0$i +
∑
i∈S\I

Z$i = {λ ∈ h∗Z : 〈λ, α∨i 〉 ≥ 0 for any i ∈ I}

is identified to the set of finite dimensional irreducible LI -modules, by associating to
λ ∈ (h∗Z)I the irreducible LI -module V (λ) with highest weight λ.
For λ ∈ (h∗Z)I , let

(1.4) λ′ = −wIλ− 2ρI ∈ (h∗Z)I .

Note that V (λ′) is the dual LI -module to V (λ).
We regard V (λ) as a PI -module with the trivial action of N+

I . The generalized Verma
module with highest weight λ is the g-module

(1.5) MPI
(λ) = U(g)⊗U(pI) V (λ).

The action of PI defined by g(A ⊗ v) = Ad(g)(A) ⊗ gv for g ∈ PI , A ∈ U(g) and
v ∈ V (λ) gives to MPI

(λ) a structure of (g, PI)-module. It is well-known that the dual
MPI

(λ)∗ is locally p′
I
-finite and it has a natural structure of (g, P ′I)-module with lowest

weight −λ.
Recall the following property of highest weight modules:

Proposition 1.5. As a g-module, MPI
(λ) has a unique irreducible quotient (isomorphic

to L(λ)); dually, MPI
(λ)∗ has a unique irreducible submodule (isomorphic to L′(−λ)).

As for the the dual parabolic subgroup P ′I , for λ ∈ (h∗Z)I we set

(1.6) MP ′I
(λ) = U(g)⊗U(p′I) V (−wIλ) :

thenMP ′I
(λ) is a (g, P ′I)-module with lowest weight wI (−wIλ) = −λ and unique irreducible

quotient isomorphic to L′(−λ). Clearly, MP ′I
(λ) is irreducible if and only if MPI

(λ) is.
Let us set also

(1.7) (h∗Z)I,irr = {λ ∈ (h∗Z)I : MPI
(λ) is an irreducible g-module} ⊂ (h∗Z)I .
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Remark 1.6. The following condition is sufficient in order that λ ∈ (h∗Z)I,irr (see Jantzen
[7, Corollar 4]):

(1.8)
{

For any α ∈ ∆+ \∆I such that 〈λ+ ρ, α∨〉 ∈ Z>0

there exists β ∈ ∆ such that 〈λ+ ρ, β∨〉 = 0 and sα(β) ∈ ∆I .

Alternatively, using an approach through D-modules based on the results of Beilinson-
Bernstein [1], it is possible to prove that another sufficient condition in order that λ ∈
(h∗Z)I,irr is the following:

(1.9) 〈λ, α∨〉 /∈ Z≥0 for any α ∈ ∆+ \∆I .

Conditions (1.8) and (1.9), even if they are very close to each other, are in fact independent:
note that they are both implied by the (in general, strictly) stronger condition

〈λ+ ρ, α∨〉 /∈ Z>0 for any α ∈ ∆+ \∆I .

The following proposition is well-known.

Proposition 1.7. There exists a non-zero morphism of (g, P ′I)-modules

MP ′I
(λ) φ // MPI

(λ)∗

which is an isomorphism if and only if λ ∈ (h∗Z)I,irr.

1.5 Generalized flag manifolds

Let
XI = G/PI

(i.e. the generalized flag manifold associated to PI). By the category equivalence given
in Proposition 1.4, the isomorphism classes of G-equivariant OXI

-modules (resp. quasi-G-
equivariant DXI

-modules) are in one-to-one correspondence with the isomorphism classes
of PI -modules (resp. (g, PI)-modules). For λ ∈ (h∗Z)I we denote by OXI

(λ) (corresponding
to OXI

(V (λ)) in the notation of 1.3) the G-equivariant locally free OXI
-module of regular

sections of the homogeneous vector bundle G×PI
V (λ) on XI . In particular, by using the

identification T ∗x0
XI ' (g/pI)∗ ' p⊥I , one gets

(1.10) ΩXI
' OXI

(2ρI ).

We recall the following fact (see also Example 1.2):

Proposition 1.8. [9] In the equivalence of Proposition 1.4, the quasi-G-equivariant DXI
-

module OXI
(MPI

(λ)) corresponding to the (g, PI)-module MPI
(λ) is isomorphic to

(1.11) DXI
(λ) = DXI

⊗OXI
OXI

(λ).
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Let us also consider the dual generalized flag manifold

X ′I = G/P ′I ;

note that it is possible that XI = X ′I (in fact this happens quite often, and it is equivalent
to the fact that PI and P ′I are conjugated parabolic subgroups). Here OX′

I
(λ) is the G-

equivariant locally free OXI
-module of regular sections of the homogeneous vector bundle

G ×P ′I V (−wIλ) on X ′I ; one has ΩX′
I
' OX′

I
(2ρI ), and MP ′I

(λ) corresponds to DX′
I
(λ) =

DX′
I
⊗OX′

I

OX′
I
(λ) in Proposition 1.4.

1.6 Kernels for sheaves and D-modules

We refer to D’Agnolo-Schapira [5].
Let X and Y be complex analytic manifolds, p1 : X × Y → X and p2 : X × Y → Y be

the projections. Any sheaf K ∈ Db(CX×Y ) and any left DX×Y -module K ∈ Db(DX×Y )
are formally the kernels of “integral transforms” for sheaves or D-modules, i.e. functors

rK : Db(CX)→ Db(CY ), rK(F ) = Rp2!(p
−1
1 F ⊗K)

RK : Db(DX)→ Db(DY ), RK(M) = Dp2!(Dp1
∗M⊗D K),

as well as the similar ones in the opposite direction (for which we shall use the same
notation, for example we also denote rK : Db(CY )→ Db(CX), rK(F ) = Rp1!(K⊗p−1

2 F ));
the dual kernels K∗ and K∗ will also be considered. In the applications, K and K are often
related by the Riemann-Hilbert correspondence [8] (i.e. K = RHomDZ

(K,OZ), in other
words K is the sheaf of holomorphic solutions of K); in this case, due to the commutation
between duality and holomorphic solutions, it holds also K∗ = RHomDZ

(K∗,OZ).
These transforms are related by the following general adjunction formulas (where e.g.

dX is the complex dimension of X):

Proposition 1.9. [5] Let K ∈ Db
coh(DX×Y ), K = RHomDZ

(K,OZ) ∈ Db(CX×Y ) and
assume that char(K) ∩ (T ∗X × T ∗Y Y ) ⊂ T ∗(X × Y ). Then for any M ∈ Db(DX) and
F ∈ Db(CY ) there are isomorphisms in the derived category of C-vector spaces

RHomDX
(M, rK(F )⊗OX))[dX ] ' RHomDY

(RK(M), F ⊗OY )),
RHomDX

(M, RHom (rK(F ),OX)))[dX ] ' RHomDY
(RK∗(M), RHom (F,OY )))[2dY ].

These formulas are very general and, in this generality, they could not appear to be
significant. Anyway, they enclose a possibly infinite amount of applications, up to different
choices for F and M: the problem is of course to compute their transforms rK(F ) and
RK(M). In fact, we shall deal with the following particular cases.

(1) As for the geometry of the transform, let O be the open complementary to a (non
necessarily smooth) closed hypersurface S ⊂ X × Y , denote by i : O → XI × X ′I the
open embedding, and let BO = Ri∗OO the regular holonomic DX×Y -module of rational
functions on X×Y with poles on S. Set K = BO: then K = RHomDZ

(K,OZ) = CO|X×Y ,
and this amounts to consider O as relation for our transform. We assume also that the
characteristic variety char(BO) satisfies the transversality condition required in Proposition
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1.9: this is true under reasonable geometric hypotheses on O (e.g. in the case where O is
a orbit for a group action on X × Y ). We shall write for short

(1.12) rO := rCO|X×Y
, r∗

O
:= rC∗

O|X×Y
, RO := RBO

, R∗
O

:= RB∗O .

(2) Let F be a locally free OX -module and denote by DF := DX ⊗OX
F the associated

locally free DX -module. By applying Proposition 1.9 withM = DF , one gets:

Corollary 1.10. For any F ∈ Db(CY ) there are isomorphisms in the derived category of
C-vector spaces

RΓ(rO(F ),F∗)) ' RHomDY
(RO(DF), F ⊗OY ))[−dX ],

RHom(rO(F ),F∗))) ' RHomDY
(RO(DF), RHom (F,OY )))[2dY − dX ].

(3) The last step is to choose a sheaf F on Y and to compute its transform rO(F ).
For example, let F = CD|Y , where D is a locally closed subset of Y : by definition, one
has (rO(CD|Y ))x ' RΓc(LD(x); C) for any x ∈ X, where LD(x) = {y ∈ D : (x, y) ∈
O}. let D̂ = p2(O ∩ p−1

1 (D)). To simplify our task, assume that D is e.g. an open
(resp. compact) subset of Y well-behaving w.r.t. the transform, more precisely assume
that RΓ(LD(x); C) ' C for any x ∈ D̂: then one can prove (see [5, Lemma 2.8]) that
rO(CD|Y ) ' C bD|X [−2dY ] (resp. rO(CD|Y ) ' C bD|X). By applying Proposition 1.9 with
M = DF and F = CD|Y for D open, one then gets

RΓc(D̂;F∗) ' RΓc(D;RHomDY
(RO(DF),OY ))[2dY − dX ],

RΓ(D̂;F∗) ' RΓ(D;RHomDY
(R∗

O
(DF),OY ))[−dX ],

and withM = DF and F = CD for D compact,

RΓ(D̂;F∗) ' RΓ(D;RHomDY
(RO(DF),OY ))[−dX ],

RΓ bD(X;F∗) ' RΓD(Y ;RHomDY
(R∗

O
(DF),OY ))[2dY − dX ].

Therefore, the main problem appears —already at this stage— to be the computation of
the transforms RO(DF) and R∗

O
(DF). This is one of the objects of the present work.

2 Integral transforms on dual generalized flag manifolds

We keep the notations introduced in the previous section.

Let us consider the dual generalized flag manifolds XI and X ′I , and let x0 = ePI ∈ XI

and y0 = eP ′I ∈ X ′I . The diagonal action of G on XI ×X ′I has a unique open dense orbit

O = G(x0, y0) ⊂ XI ×X ′I :

namely, one has T(x0,y0)O = im[g → Tx0XI × Ty0X
′
I ] ' im[g → (g/p

I
) ⊕ (g/p′

I
)] =

(g/p
I
)⊕ (g/p′

I
) ' Tx0XI × Ty0X ′I (since g = p

I
+ p′

I
). Therefore one has

O ' G/(PI ∩ P ′I) = G/LI ,
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and hence O is an affine variety because G and LI are reductive. Similarly, the open dense
P ′I -orbit in XI

Oy0 = P ′Ix0 = {x ∈ XI : (x, y0) ∈ O} ' P ′I/LI
is identified to n−

I
by πI ◦ exp, and hence it is also affine.

The main object of the present paper will be the study of the integral transform
defined by O (see Section 1.6 for notations and references), i.e. the functors for sheaves
and D-modules

(2.1) rO , r
∗
O

: Db(CXI
)→ Db(CX′

I
) ; RO , R

∗
O

: Db(DXI
)→ Db(DX′

I
)

defined in (1.12). Recall that we use the same notation for the analogous functors going
in the opposite directions.

2.1 Equivalences of derived categories

Our first aim is to show that O defines a nice integral transform, i.e. that the functors of
(2.1) are equivalences of categories.

For the notions needed in the following lemma we refer to [9].

Lemma 2.1. Let X be a G-manifold, µ : T ∗X → g∗ the moment map, and let F ∈
Db(CX) be R-constructible and G-equivariant. Then

SS(F ) ⊂ µ−1(0) (=
⋃
{T ∗OX : O is a G-orbit in X}).

In particular, if X = X ′ × X ′′ with X ′ and X ′′ homogeneous G-manifolds and we let G
act diagonally on X, then SS(F ) ∩ (T ∗X′X ′ × T ∗X ′′) ⊂ T ∗X′×X′′(X ′ ×X ′′).

Proof. Let f := σ(LA) : T ∗X → C be the principal symbol of LA. Then Λ := SS(F ) is a
Lagrangian subvariety of T ∗X invariant under the action of Hf = LA for any A ∈ g: this
implies that Hf ∈ TpΛ for any p ∈ Λ, hence df |Λ = 0, i.e. f is constant on Λ, hence f = 0
on Λ since f is homogeneous of degree one on T ∗X. Therefore we get SS(F ) ⊂ σ(LA)−1(0)
for any A ∈ g. Since A ◦ µ = σ(LA) (here we consider A ∈ g ' (g∗)∗) and

⋂
A∈g ker(A :

g∗ → C) = 0, the first part of the statement follows. In particular, if X = X ′ ×X ′′ where
X ′ and X ′′ are G-manifolds then we get that SS(F ) ⊂ (µX′ × µX′′)−1(∆a

g∗); if moreover
X ′ and X ′′ are homogeneous then µX′ × µX′′ is injective, and the proof is complete.

Theorem 2.2. The functors

Db(CXI
)

r
O // Db(CX′

I
)

r∗
O

oo , Db(DXI
)
R

O // Db(DX′
I
)

R∗
O

oo

are quasi-inverse to each other, and thus are equivalences of categories.

Proof. The statement for D-modules follow from the one for sheaves by using Riemann-
Hilbert correspondence (see [8]): therefore it is enough to prove that rO and r∗

O
are quasi-

inverse to each other. By using the geometric criterion in [13, Lemma 2.2] it is enough to
prove the following statements (where for g ∈ G we set Sg := {xPI ∈ XI : (xPI , gP ′I) ∈
O} = gOy0 for short):
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(i) XI (and X ′I) are simply connected,

(ii)
{

RΓ(Se; C) ' C
RΓ(Se \ Sg; C) ' C for any gP ′I ∈ X ′I \ {eP ′I}

,

(iii) SS(CO) ∩ (T ∗XI
XI × T ∗X ′I) ⊂ T ∗XI×X′

I
(XI ×X ′I).

Statement (i) follows from the exact sequence 0 = π1(G) → π1(XI) → π0(PI) = 0, and
(iii) from Lemma 2.1. As for (ii), we have RΓ(Se; C) ' C. Then, if gP ′I 6= eP ′I , by the
Bruhat decomposition we can write g = g1wg2 for some g1, g2 ∈ P ′I and w ∈ W \ {e}:
since Sg = g1Sw and Se = g1Se, we may reduce the proof to the case g = w. Let A ∈ h be
in the positive Weyl chamber (i.e. 〈A,α〉 > 0 for any α ∈ ∆+): then the one-parameter
subgroup {exp(tA) : t ∈ R} acts on Se \ Sw (note that Se and Sw are H-stable) and this
action contracts any compact subset of Se \ Sw into its base point ePI . This shows that
RΓ(Se \ Sw; C) ' C.

Remark 2.3. Our integral transform is microlocally determined by the microsupport
SS(CO) ⊂ T ∗(XI ×X ′I) ' T ∗XI × T ∗X ′I . By Lemma 2.1 one has

SS(CO) ⊂
⋃
{T ∗S(XI ×X ′I) : S a G-orbit in XI ×X ′I};

on the other hand the converse inclusion is not always true, i.e. there could exist some G-
orbit S such that T ∗S(XI×X ′I) 6⊂ SS(CO). However, an interesting geometric consequence
of Theorem 2.2 is the following:

There exists a unique G-orbit S̃ ⊂ XI ×X ′I such that

(a) T ∗
S̃
(XI ×X ′I) ⊂ SS(CO),

(b) the natural projections T ∗XI ← T ∗
S̃
(XI ×X ′I)→ T ∗X ′I are generically surjective, in

particular are birational maps.

Roughly speaking, the above statement says that the integral transform associated to O
is “generically” determined —at the microlocal level— by a unique “privileged” G-orbit
S̃ in XI ×X ′I . In order to find the right orbit S̃ (which of course depends on G and I),
condition (b) is quite easy to check while (a) is not very. In most situations S̃ turns out to
be the closed G-orbit in XI×X ′I , but this is not always true: for example (in the standard
Bourbaki’s notation) there are cases where (b) fails, as e.g. G of type A3 and I = {1}
or G of type A5 and I = {2}; even in the case XI = X ′I (i.e. PI and P ′I are conjugated
parabolic subgroups), when (b) is obviously true (namely in this case the closed orbit in
XI ×X ′I is just the diagonal, and the projections are the identity), nevertheless (a) fails
in some cases, e.g. when G is of type C2 and I = {2}.

2.2 Quantizing the integral transforms

Our next aim is to study the transform RO(DXI
(λ)) in Db

G(DX′
I
) for λ ∈ (h∗Z)I (see (1.11)).
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For λ, µ ∈ (h∗Z)I , set

B(dXI
,0)

O (λ, µ) = p−1
1 (ΩXI

⊗OXI
OXI

(λ))⊗p−1
1 OXI

BO ⊗p−1
2 OX′

I

p−1
2 OX′

I
(µ).

One has a natural isomorphism (see [5, Lemma 3.1])

(2.2) α : Γ(XI ×X ′I ;B
(dXI

,0)

O (λ,−wIµ)) −→∼ HomDb(DX′
I
)(DX′

I
(µ),RO(DXI

(λ)));

in particular, denoting with the superscript ( · )G the subspace of G-invariant sections, we
get

HomDb
G(DX′

I
)(DX′

I
(µ),RO(DXI

(λ))) ' Γ(XI ×X ′I ;B
(dXI

,0)

O (λ,−wIµ))G

' Γ(O;OXI
(λ+ 2ρI ) �OX′

I
(−wIµ))G

'
[
V (λ+ 2ρI )⊗V (µ)

]LI :

here the first isomorphism is induced by α and the second follows from (1.10).
For µ = λ′ (see (1.4)) the representations V (µ) and V (λ + 2ρI ) of the group LI are

dual to each other, so there exists a canonical nonzero section

s ∈
[
V (λ+ 2ρI )⊗V (λ′)

]LI ' Γ(XI ×X ′I ;B
(dXI

,0)

O (λ,−wIλ
′))G

and hence a non-zero morphism in Db
G(DX′)

(2.3) DX′
I
(λ′) α(s) // RO(DXI

(λ)).

Let us study the morphism α(s) by means of the equivalence stated in Proposition 1.4.
We need to compute RO(DXI

(λ))(y0), where y0 = eP ′I .

Proposition 2.4. There exists an isomorphism of (g, P ′I)-modules

RO(DXI
(λ))(y0)

ϕ

∼
// Γ(Oy0 ;OXI

(λ+ 2ρI )).

In particular, one has Hj(RO(DXI
(λ))(y0)) = 0 for any j 6= 0.

Proof. Let j : {y0} → X ′I be the inclusion map, l : XI → XI ×X ′I the map l(x) = (x, y0),
a : XI → {y0} the constant map: then one has

RO(DXI
(λ))(y0) ' Dj∗Dp2∗(Dp1

∗(DXI
(λ))⊗D BO)

' Da∗Dl
∗(Dp1

∗(DXI
(λ))⊗D BO)

' Da∗(DXI
(λ)⊗D BOy0

)

' RΓ(XI ; ΩXI
⊗DXI

DXI
(λ)⊗D BOy0

)

' Γ(Oy0 ;OXI
(λ+ 2ρI )),

where the second step holds by cartesianity, the third since Dl∗ commutes to ⊗D and
Dl∗BO ' BOy0

and in the last we used (1.10) and the fact that Oy0 is affine.
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Corollary 2.5. One has Hj(RO(DXI
(λ))) = 0 for any j 6= 0.

Proposition 2.6. For any µ ∈ (h∗Z)I one has an isomorphism of (g, P ′I)-modules

Γ(Oy0 ;OXI
(µ))

ψ

∼
// MPI

(−wIµ)∗

Proof. Set V = Γ(Oy0 ;OXI
(µ)) andW = MPI

(−wIµ) for short. Since n−
I
' N−I ' Oy0 via

exp and πI , one has V ' Γ(Oy0 ;OOy0
)⊗V (µ) ' Γ(n−

I
;On−I

)⊗V (µ) ' S((n−
I
)∗)⊗V (µ), and

therefore ch(V ) = ch(V (µ))ch(S((n−
I
)∗)) = ch(W ∗). Thus we get a non-zero morphism

W → V ∗, and by duality a non-zero morphism ψ : V →W ∗: it suffices to prove that ψ is
injective. Setting ν = wIµ, we have (1) ψν : Vν −→∼ (W ∗)ν , and (2) {u ∈ V : n−u = 0} =
Vν : (1) is clear (ψ maps the lowest weight vector of V into the lowest weight vector of
W ∗), and (2) holds since if ϕ ∈ Γ(Oy0 ;OOy0

) and n−
I
ϕ = 0 then ϕ is a constant function

(recall that the action of n−I on V is induced by the left action on N−I on Oy0 ' N−I ) and
ν is the lowest weight of V (µ). If K = ker(ψ) 6= 0, there exists a non-zero vector u ∈ K
such that n−u = 0: then u ∈ K ∩ Vν = Kν 6= 0 by (2), but this contradicts (1).

Now, the following diagram of (g, P ′I)-modules of lowest weight −λ′ (where β is the
natural isomorphism of Proposition 1.8):

DX′
I
(λ′)(y0)

α(s)(y0) //

β ∼
��

RO(DXI
(λ))(y0)

ψ◦ϕ ∼
��

MP ′I
(λ′) φ // MPI

(λ′)∗

commutes up to a non-zero constant multiple since α(s)(y0) 6= 0 and φ 6= 0. Using
Proposition 1.7 and the equivalence of Proposition 1.4, we have finally proved that:

(2.4) α(s) : DX′
I
(λ′)→ RO(DXI

(λ)) is an isomorphism if and only if λ′ ∈ (h∗Z)I,irr .

It is of interest to study also the dual integral transform given by R∗
O
. The first step is:

Lemma 2.7. Duality commutes with the integral transforms given by RO and R∗
O
: more

precisely, there is an isomorphism of functors RO ◦ ( · )∗ ' ( · )∗ ◦ R∗
O
.

Proof. The duality functor commutes to non-characteristic inverse image, transversal ten-
sor product and proper direct image (see [3] fore more details), and these conditions are
easily satisfied in our case.

By (1.10) one has KXI
' DXI

(−2ρI )[dXI ], and hence for λ ∈ (h∗Z)I we get

(DXI
(λ))∗ ' DXI

(λ′)[dXI ].

Therefore, using Lemma 2.7, (2.4) and (λ′)′ = λ, for any λ ∈ (h∗Z)I,irr we have

(R∗
O
(DXI

(λ)))∗ ' RO((DXI
(λ))∗) ' RO(DXI

(λ′))[dXI ] ' DX′
I
(λ)[dXI ]
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and thus, since (M∗)∗ 'M ifM is a coherent DZ-module, we get

R∗
O
(DXI

(λ)) ' (DX′
I
(λ))∗[dXI ]) ' DX′

I
(λ′).

We may summarize up our results in the following theorem, which reduces the study of
the integral transforms RO and R∗

O
on quasi-G-equivariant DXI

-modules (which are —
up to isomorphism— of the form DXI

(λ) for some λ ∈ (h∗Z)I by Proposition 1.4) to the
study of irreducibility of a generalized Verma module (see Remark 1.6 for more details on
irreducibility):

Theorem 2.8. Let λ ∈ (h∗Z)I. Then:

(i) RO(DXI
(λ)) ' DX′

I
(λ′) if and only if λ′ ∈ (h∗Z)I,irr ;

(ii) R∗
O
(DXI

(λ)) ' DX′
I
(λ′) if and only if λ ∈ (h∗Z)I,irr .

Other interesting applications of Theorem 2.8 come from adjunction formulas (see Section
1.6); of course, here we use the underlying complex analytic structures of the dual flag
manifolds. By applying Theorem 2.8 to Corollary 1.10 (with X = X ′I , Y = XI , F =
OX′

I
(λ)) we get

Proposition 2.9. Let λ ∈ (h∗Z)I, F ∈ Db(CXI
). Then:

RΓ(XI ;F ⊗OXI
(λ)) ' RΓ(X ′I ; rO(F )⊗OX′

I
(λ′))[dXI ] if λ ∈ (h∗Z)I,irr ,

RHom(F,OXI
(λ)) ' RHom(rO(F ),OX′

I
(λ′))[−dXI ] if λ′ ∈ (h∗Z)I,irr .

Now we are left with the choice of the sheaf F . For example, to investigate relations
with representation theory, let us consider a semisimple real form GR of G, and let Z
be a GR-invariant subset of XI . The sheaf F = CZ|XI

and its transform rO(CZ|XI
) are

clearly GR-equivariant, and the adjunction formulas in Proposition 2.9 can be viewed as
isomorphisms (in the derived category) of representations of the group GR. If Z has
nice geometric properties, as explained in Section 1.6, the transform rO(CZ|XI

) could be
particularly simple to compute: we shall see a concrete example below, while dealing with
grassmannians.

3 Example: Grassmann duality and representations of SU(p, q)

Let us investigate more closely the case of maximal parabolic subgroups of G = SL(n,C),
with n ≥ 2. In the standard choices of [4], h is the subalgebra of diagonal matrices in
g = sl(n,C), i.e. h = {a ∈

⊕n
l=1 CEl :

∑n
l=1 al = 0} where El is the (n × n)-matrix with

zero in all entries excepted the (l, l)th which is 1; if {εl : l = 1, . . . , n} is the basis dual to
{El : l = 1, . . . , n}, one has h∗ = (

⊕n
l=1 Cεl) /C (

∑n
l=1 εl), and so we always argue modulo

the subspace C (
∑n

l=1 εl). The roots of g are ±{εi − εj : 1 ≤ i < j ≤ n}, the set of simple
roots is {αi = εi − εi+1 : i ∈ S} with S = {1, . . . , n − 1}, the fundamental weights are
{$i =

∑i
l=1 εl : i ∈ S} and ρ =

∑n−1
l=1 (n− l)εl.
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Let us fix p ∈ Z, 1 ≤ p ≤ n/2. We set I = S \ {p}: since ∆I = ±{εi − εj : 1 ≤ i < j ≤
p or p + 1 ≤ i < j ≤ n}, one has 2ρI = n$p. If we write g ∈ G as g =

„
g1 g2

g3 g4

«
with

g1 ∈Mp(C) and g4 ∈Mn−p(C), one has PI = {g ∈ G : g3 = 0} and P ′I = {g ∈ G : g2 = 0}:
therefore, XI (resp. X ′I) is identified with the Grassmann manifold G (resp. G′) of p- (resp.
(n − p)-)dimensional complex linear subspaces of Cn; one has dG = dG′ = p(n − p). The
open dense G-orbit in G×G′ is the transversality relation

O = {(x, y) ∈ G×G′ : x ∩ y = {0}}.

The weights λ ∈ (h∗Z)I are of the form λ =
∑n−1

i=1 λi$i with λp ∈ Z and λi ∈ Z≥0 for any
i 6= p. Let us fix such a λ. One computes that

λ′ =
∑p−1

i=1
λp−i$i − (λ1 + · · ·+ λn−1 + n)$p +

∑n−1

j=p+1
λn+p−j$j .

Notation 3.1. In P(Z) we introduce the relation “ ≤̇ ”: for A,B ⊂ Z, we say that A ≤̇B
if and only if x ≤ y for any x ∈ A \ B and any y ∈ B \ A. (Observe that ≤̇ is trivially
reflexive, but neither antisymmetric nor transitive.)

Lemma 3.2. Let λ =
∑n−1

i=1 λi$i ∈ (h∗Z)I, and consider the increasing subsets of Z

Aλ = {i+ (λp−i+1 + · · · ) + λp : i = 1, . . . , p} ⊂ Z≥1 + λp,

Bλ = {−[n− j + (λp+1 + · · ·+ λn+p−j)] : j = p+ 1, . . . , n− 1} ∪ {0} ⊂ Z≤0.

Then λ ∈ (h∗Z)I,irr if and only if Aλ ≤̇Bλ.

Proof. In this case, where g is of type An−1, the sufficient criterion (1.8) for λ ∈ (h∗Z)I,irr is
also necessary (see [7, Satz 4]), and it is not too difficult to check that the above condition
is equivalent to it: just remark that, by writing λ + ρ =

∑n
`=1 a`εl, one has —up to

Z(ε1 + · · ·+ εn)— Aλ = {ap, . . . , a1} and Bλ = {an, . . . , ap+1}.

Hence, from Theorem 2.8 and Lemma 3.2 we get the following proposition (for (i) note
that, up to a common integral translation, one has Aλ′ = −Aλ and Bλ′ = −Bλ):

Proposition 3.3. Let λ =
∑n−1

i=1 λi$i ∈ (h∗Z)I. Then:

(i) RO(DG(λ)) ' DG′(λ′) if and only if Aλ ≥̇Bλ ;

(ii) R∗
O
(DG(λ)) ' DG′(λ′) if and only if Aλ ≤̇Bλ .

In particular, observe that Aλ ≥̇Bλ (resp. ≤̇ ) is trivially true (resp. false) when λp ≥ −1
and trivially false (resp. true) when λp ≤ −(n− 1)−

∑
i6=p λi.

Let us put in evidence some particular cases.

(1) Projective duality. When p = 1, one has Aλ = {1 + λ1} and Bλ = {−(n − 2 +
λ2 + · · ·+ λn−1), . . . ,−(1 + λ2), 0} so that Aλ ≥̇Bλ (resp ≤̇ ) if and only if λ1 ≥ −1
(resp. λ1 ≤ −(n − 1) −

∑n−1
i=2 λi) or —for n ≥ 4— in the singular cases λ1 =

−(n+1−j)−(λ2+ · · ·+λn+1−j) with j = 3, . . . , n−1 (resp. the same). For example,
when n = 4 (the “twistor transform” between XI = CP3 and X ′I = (CP3)∗, see [2,
Chapter 10]) one has λ1 ≥ −1 (resp. λ1 ≤ −3 − λ2 − λ3) and the singular case
λ1 = −2− λ2.
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(2) Grassmann duality for line bundles. When λi = 0 for i 6= p, one has Aλ =
{1, . . . , p} + λp and Bλ = {−(n − p − 1), . . . ,−1, 0}, thus Aλ ≥̇Bλ (resp. ≤̇ ) if
and only if 1+λp ≥ −(n− p− 1), i.e. λp ≥ −(n− p) (resp. p+λp ≤ 0, i.e. λp ≤ −p).
We therefore get an alternative proof of [13, Theorem 3.16(i)].

(3) The conformal compactification of complexified space-time. In the case n = 4 and
p = 2, G = G′ may be viewed as the conformal compactification of complexified
Minkowski space in Penrose’s twistor approach to massless fields (see e.g. [2]). Here,
one has Aλ = {1 + λ2, 2 + λ1 + λ2} and Bλ = {−1 − λ3, 0}: thus Aλ ≥̇Bλ (resp.
≤̇ ) if and only if λ2 = −2 − min{λ1, λ3} or λ2 ≥ −1 (resp. λ2 ≤ −3 − λ1 − λ3 or
λ2 = −2−max{λ1, λ3}).

Now let us show a concrete example of how adjunction formulas provide informations
about representations of real forms of G.

Let k ∈ Z, 1 ≤ p ≤ k ≤ n/2, and let Q be a nondegenerate hermitian form on Cn of
signature (k, n − k). The real semisimple Lie group GR = SU(Q) ' SU(k, n − k) of
elements of G = SL(n,C) preserving Q is a real form of G, and the GR-orbits in G are

Uk′,k′′ = {x ∈ G : Q|x has signature (k′, k′′)} (k′, k′′ ≥ 0, 0 ≤ k′ + k′′ ≤ p).

The open GR-orbits are Uk′,p−k′ (with 0 ≤ k′ ≤ p) and the only closed one is U0,0 (the
Q-isotropic p-subspaces). In general, one has Uk′,k′′ =

⋃
i,j Ui,j (with i = 0, . . . k′, j =

0, . . . k′′). Similarly, the GR-orbits in G′ are

U ′`′,`′′ = {y ∈ G′ : Q|y has signature (`′, `′′)}
(k − p ≤ `′ ≤ k, n− k − p ≤ `′′ ≤ n− k, n− 2p ≤ `′ + `′′ ≤ n− p).

Let U+ = Up,0 and U ′− = U ′k−p,n−k. We are going to consider the constant sheaf F = CU+ |G

(note that the subset Z = U+ of G is clearly GR-invariant, since it is the union of the
GR-orbits Uk′,0 for 0 ≤ k′ ≤ p).

Lemma 3.4. One has rO(CU+ |G
) ' CU ′− |G′ [−2p(k − p)].

Proof. Is a natural generalization of the proof of Lemma 4.11 in [13], where k = p.

Hence, by choosing F = CU+ |G
into Proposition 2.9, thanks to Lemma 3.4 we get the

following isomorphisms in the derived category of representations of GR:

RΓ(U+ ;OG(λ)) ' RΓc(U ′− ;OG′(λ′))[p(n− 2k + p)] if Aλ ≤̇Bλ,
RΓU+ (G;OG(λ)) ' RΓ(U ′− ;OG′(λ′))[−p(n− 2k + p)] if Aλ ≥̇Bλ.
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